
Root Finding (and Optimisation)

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2024, Lecture 4

Root Finding
The idea of root finding is simple — we want to find x such that
f(x) = 0.

Actually finding such roots is not so simple. For example if f (x) is
a cubic polynomial

f (x) = ax3 + bx2 + cx + d ,

then

x =
3

√√√√(
−b3
27a3

+
bc

6a2
− d

2a

)
+

√(
−b3
27a3

+
bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3

+
3

√√√√(
−b3
27a3

+
bc

6a2
− d

2a

)
−

√(
−b3
27a3

+
bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3

− b

3a
.

Root Finding

If f (x) is a quintic polynomial

f (x) = ax5 + bx4 + cx3 + dx2 + ex + f ,

then there is a closed form solution for the roots iff its Galois
group is solvable (Galois, 1846).

Closed form solutions to the general root-finding problem may:

▶ not exist;

▶ be unstable;

▶ require evaluation of special functions.

In such cases numerical methods help!

Relation to Optimisation

We know that if we want to maximise or minimise a function g(x)
then the maximum or minimum occurs at a turning point of g (or
on the boundary of the domain) so that

fi :=
∂g

∂xi
= 0 .

In other words, we have a root finding problem, f(x) = 0.

Univariate Root Finding

Bisection Algorithm

In 1D the problem is:

Given f : [a, b]→ R, find c ∈ [a, b] such that f (c) = 0.

The bisection algorithm relies on the intermediate value theorem
which states:

If f : [a, b]→ R is continuous and f (a) < u < f (b) or
f (b) < u < f (a) then ∃c ∈ (a, b) such that f (c) = u.

Thus, to find a root of f (x) we find a and b such that f (a) and
f (b) have opposite sign. We set c = (a+ b)/2, compute f (c) and
then repeat on the half of the interval where the sign changes.

Bisection Algorithm

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

f(a)<0

f(b)>0

f(c)>0

Bisection Algorithm
We need to decide when to terminate the algorithm — the normal
choices are one of:

▶ |b − a| < tol (solution is only changing by a very small
amount);

▶ |f (c)| < tol (residual is very small).

For convergence, since c ∈ [a, b], the maximum error in c is b − a
(i.e. the width of the interval).

Since each step halves the length of the interval, the error at the
nth iteration is

|cn − c | ≤ b − a

2n
.

Thus to achieve an accuracy of tol requires

n ≥ log(b − a)− log(tol)

log(2)

steps of the bisection algorithm.

Bisection Algorithm — Pseudocode

Input: a, b, f (x), tol (end-points of interval containing root,
function, error tolerance)

Output: c (approximate root of equation)
1: while |b − a| > tol do ▷ or |f (c)| > tol
2: c ← (a+ b)/2
3: if f (a)f (c) < 0 then ▷ f (a) and f (c) have opposite sign
4: b ← c
5: else
6: a← c
7: end if
8: end while

Regula Falsi

The regula falsi algorithm is similar to the bisection algorithm
except that it uses a potentially more intelligent guess for c.

Suppose we approximate the function f on [a, b] by its linear
interpolant

p1(x) =
x − a

b − a
f (b) +

b − x

b − a
f (a) .

Then p1(x) has a root at

c =
af (b)− bf (a)

f (b)− f (a)
.

The regula falsi algorithm uses this as c in the bisection algorithm.

Regula Falsi — Example When it Works Well

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5

2

(x-0.25)(4-x)

Blue dots correspond to standard bisection algorithm, red dots to
regula falsi.

Regula Falsi — Example When it Works Badly

Convergence can be slow when the curvature of f is large (when
the linear approximation is not good).

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
x

10
-1/10

Blue dots correspond to standard bisection algorithm, red dots to
regula falsi.

Regula Falsi — Fix

There is a simple fix. If the algorithm goes right twice then halve
f (b) so

c =
af (b)/2− bf (a)

f (b)/2− f (a)
.

If the algorithm goes left twice then halve f (a). Can show this still
gives c ∈ (a, b).

This method is sometimes called the Illinois algorithm.

Illinois Algorithm

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
x

10
-1/10

After 1 step of regula falsi we want to move right again.

Illinois Algorithm

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
x

10
-1/10

Illinois Algorithm (green) has effect of moving further right at the
second iteration than standard regula falsi (red).

Newton-Raphson
Suppose we approximate f (x) by g(x) which is the truncated
Taylor series of f about the point xk so

g(x) = f (xk) + (x − xk)f
′(xk) .

Then g(x) has a root at c given by

c = xk −
f (xk)

f ′(xk)
.

Thus the Newton-Raphson method requires an initial guess x0 and
then iterates

xk+1 = xk −
f (xk)

f ′(xk)
,

until convergence is achieved.

If the initial guess is “sufficiently close” to the solution, the
algorithm has quadratic convergence.

Newton-Raphson — Pseudocode

Input: x0, f (x), f
′(x), tol (initial guess of root, function and its

derivative, error tolerance)
Output: x⋆ (approximate root of equation)
1: k ← 0
2: while |f (xk)| > tol do
3: xk+1 ← xk − f (xk)/f

′(xk)
4: k ← k + 1
5: end while
6: x⋆ ← xk

Newton-Raphson Modifications
The iterate for the secant method is

xk+1 = xk − f (xk)
xk − xk−1

f (xk)− f (xk−1)
.

This avoids the need to compute f ′(xk).

For damped Newton we use

xk+1 = xk − σk
f (xk)

f ′(xk)
,

where σk ∈ (0, 1].

A third order variation is Halley’s method:

xk+1 = xk −
2f (xk)f

′(xk)

2(f ′(xk))2 − f (xk)f ′′(xk)
.

This works if the roots x∗ satisfy f ′(x∗) ̸= 0 and is then Newton’s
method applied to the function f (x)/

√
|f ′(x)|.

Polynomial Root Finding
Suppose we want to find the roots of a polynomial

p(z) =
n∑

i=0

aiz
i

where an = 1.

Methods based on bisection will find real roots, one at a time.
Methods based on Newton will find roots one at a time. With a
complex initial guess, such methods will find complex roots.

In order to find all the roots at once, we can define the companion
matrix C ∈ Cn×n as

C =

0 −a0
1

. . .
...

. . . 0 −an−2

1 −an−1

 .

Polynomial Root Finding
Then the matrix zI − C is given by

zI − C =

z a0

−1 . . .
...

. . . z an−2

−1 z + an−1

and we have

det(zI − C) = p(z) .

Thus finding the roots of the polynomial p(z) is equivalent to
finding the eigenvalues of the matrix C . The Matlab command
roots uses this approach.

You might think this is a “circular algorithm” as we often think of
solving the problem of finding eigenvalues by computing roots of
polynomials. However, you will see iterative algorithms in NLA.

Polynomial Root Finding Example
Suppose we want to find the roots of

p̂(z) = (2z − 1)(z − 1)(2z − 3)(z − 2)(4z2 + 1)

= 16z6 − 80z5 + 144z4 − 120z3 + 59z2 − 25z + 6 .

Then

p(z) = p̂(z)/16

= z6 − 5z5 + 9z4 − 7.5z3 + 3.6875z2 − 1.5625z + 0.375

has the same roots as p̂(z) and has leading coefficient 1.

In Matlab we type

a=[0.375, -1.5625, 3.6875, -7.5, 9, -5]’;

C=diag(ones(5,1),-1);

C(:,6)=-a;

r=eig(C)

to get r = ±i/2, 0.5, 1, 1.5, 2.

Multivariate Root Finding

Higher Dimensions

The problem is now find x such that f(x) = 0 where f : Rn → Rn.

Algorithms based on the bisection algorithm are not extendable to
higher dimensions.

Algorithms based on Newton’s method are!

Newton’s Method
Again we approximate f(x) by the first terms in its Taylor series:

f(x+ δx) ≈ f(x) + J(x)δx ,

where J(x) is the Jacobian evaluated at the point x,

J =

∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 .

In order to get the Newton iterate we solve f(x+ δx) = 0, i.e.

J(x)δx = −f(x) ,

so that

J(xk)(xk+1 − xk) = −f(xk) .

Newton’s Method

We can also write the Newton iterate as

xk+1 = xk − (J(xk))
−1f(xk) .

Thus a damped version is possible as in 1D:

xk+1 = xk − σk(J(xk))
−1f(xk) .

In both cases we should compute (J(xk))
−1f(xk) using backslash

in Matlab.

Newton’s Method and Newton Fractals

One of the problems with using Newton’s method is choosing an
initial guess. Generally root finding problems have many solutions
(think of polynomials) and different initial guesses lead to different
solutions with different numbers of iterations. Newton fractals
illustrate this behaviour in the complex plane.

Newton Fractals

For example, suppose we consider the function f (z) = z3 − 1. This
has three roots at z = 1 and z = (−1±

√
3ı)/2. By writing

z = x + ıy and equating real and imaginary parts we get a system

x3 − 3xy2 − 1 = 0

3x2y − y3 = 0

which can be solved using Newton’s method. For each point
(x , y) ∈ [−2, 2]2 we compute a solution using Newton’s method
and record which root it converges to. A Newton fractal is a plot
of this information. Shading using the number of iterations for
convergence is also possible.

Note that we can also use the 1D Newton’s method in the complex
variable z to achieve the same result.

Newton Fractal Example

Newton fractal for f (z) = z3 − 1.

