5. Epidemic modelling

To model spread of infectious diseases in a population, need to make assumptions about
how disease is spread, how it affects individuals, etc. Simplest model: SIR model.

Closed population. Individuals do not enter population, and leave only by death
due to disease.

Population in 3 compartments: Susceptible, Infective, or Removed (cured and now
immune, or dead).

No spatial effects (uniform mixing), and no heterogeneity in activity (important in,
e.g., STDs such as AIDS).

Negligible incubation time.

Susceptibles move into Infective class at rate proportional to number of contacts
between Susceptibles and Infectives.

Infectives removed at some rate ~ into Removed class.

dsS

dl
— = BSI—~I v >0
dR

dt



5.1.1 SIR epidemic: Model equations

dsS
— = —BSI B >0 (1)
dl
E:ﬁSI—fyI v >0 2)
dR
—— =1 3
a (3)

(Kermack & McKendrick (1927)). Solve subject to initial conditions
S(0)=S90>0, I(0)=1Iy>0, R(0)=0.

We define an epidemic to occur if I(t) > Ip for some t > 0. Thus an epidemic will
occurifdl/dt > 0att = 0.

Note: adding (1)—(3) gives conservation of population, S + I + R = N, constant,
and can eliminate one of variables from model.



5.1.2 Nondimensionalise model

ds
=2 — 38T > 0
” I6; B
dI
= —B3ST —~I >0
” B 0% ¥
dR
AT
a !

S+1+ R=N, constant
Dimensions:

S, I, R numbers; scale with N: (S, 1, R) = N(u, v, w)

~ has dimensions ¢t~ *. Thus t = 7/~ gives suitable nondimensionalisation of time
(could also have used a timescale based on 3).

Model then becomes
du )

— = —r*uw
— = (rfu—1)v
dr

w=1—u—v

J

r* is called the basic reproductive rate of infection = mean no. of secondary cases
of infection caused by a single infected case in a population without immunity.



5.1.3 Phase plane analysis

du 8
— = —7T Uuv (4)
dr
dv
— =(rfu—1 5
. (r*u —1)v (5)
w=1—u—v (6)

Since w > 0, clearly v + v < 1 by (6)

If w(0) = 0 (no-one immune/dead initially) all initial states for system (4), (5)
satisfy ug + vg = 1.

Eqns for v and v independent of w, thus can plot phase-plane for the (u, v) system
in triangular domain D = {u > 0,v > 0,u + v < 1}.

As for the predator-prey system, phase paths can be plotted directly, by dividing
eqgns (4), (5) to obtain separable ODE for v(w), with solution

1
v = T—*ln(u/uo)—u—l—vo—l—uo. (7)

Different choices of initial conditions correspond to different phase paths within D.



Phase trajectories (Maple)
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Phase trajectories of the system for two different values of r*



What it we don’t have access to Maple??

du N
= —r uv

g dr ut+v<1 (8)
— = (rfu—1)v
dr

Alternative approach to obtain the phase portrait is to determine the critical points,
their type, and the nulliclines of the system (8).
Critical points:

(u,v) = (ug,0) ug € [0, 1] arbitrary.

Every point on w-axis is a possible equilibrium of the system (non-standard case).

Consider the critical point (uo, 0). Linearise, writing
u = ug + ex(7) + O(e?), v =ey(T)+ O(€?), 0<ex 1l

Local behaviour of system satisfies

O ¥
x=Azx, A= rHo x = (z,y)T.
0 7r*upg—1



Linearised system

&= Ax, A:(O —ro )
0 7r*upg—1

Solutions & = xge™”

Eigenvalues of linearised system are

A =0, Ao =7r"ug — 1.

Two cases:
@ Ifr* < 1then A2 < 0forall ug € [0, 1] and the critical points are all neutrally
stable.
¢ Ifr* > 1thenfor 0 < wug < 1/r* critical points are again neutrally stable,
while for 1 /7* < ug < 1 they are unstable (Ao > 0).

Next determine nuliclines of system to determine turning-points of phase
trajectories.



Nullclines of system

du .

— = -7 uv
do dr u+v <1
— =(r*u—1)v
dr

Nullclines © = 0 given by the lines «w = 0, v = 0

Nullclines v = 0 givenby v = 1/r*, v =0

That v = 0 is a nullcline for both variables reflects its exceptional nature as a line
of critical points, already analysed. Take care when plotting!

Line » = 0 also slightly exceptional — it is a nullcline & = 0 so phase paths must
cross it vertically, but it is itself vertical — so it must be a phase path, on which ODE
for u satisfied trivially, and v = —v < 0.

For the nulicline « = 1/r* (v = 0), again two cases:

If »* < 1 then nullcline v = 1/7* lies outside physically-relevant domain D
and has no significance. v < 0 everywhere in D.

If ~* > 1 then nullicline lies partly within physical domain D, and phase
trajectories cross this vertical line horizontally.

In the latter case r* > 1: Inu > 1/r* we have v > 0, while in v < 1/r* we
have v < 0.



Phase trajectories (sketch based on analysis)

Noting also that . < 0 everywhere, can now sketch phase paths.
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Phase trajectories of the system for two casesr* < 1, r* > 1



Interpretation of phase diagram

Each individual phase trajectory represents a solution of the system.
Which trajectory the solution follows is dictated by initial conditions imposed.

For »* < 1 both v (infectives) and u (susceptibles) decrease monotonically in time
until v = 0 and v = 1 (0 < Uso < uQ).
Since v decreases monotonically to zero, there is no epidemic, outbreak dies
away.
Value of u~, can be found by setting v = 0 in explicit expression for phase
paths with given values of r*, ug, vg (slide 5).

For »* > 1, if the initial number of susceptibles uo > 1/r* then although u again
decreases monotonically (1o uso € (0,1/7*)), v initially increases to some v,
(epidemic), before decreasing ultimately to zero.

Value of v, found by setting v = 1/r* (the nulicline on which phase paths
horizontal) in explicit expression for phase-paths with given values of r*, ug,
vo (equation (7), slide 5).



5.1.4 Infection control

Can prevent epidemics if r* = BN/~ < 1. Hence 3 possible control mechanisms:
1. Increase -~ (rate of removal of infectives)
2. Decrease (3 (pairwise infectious contact rate)
3. Decrease effective value of NV (decrease total population).
Foot and mouth epidemic employed all 3 tactics.
1. Infected animals slaughtered (increase )
2. Disinfectant and movement controls reduced 3

3. Slaughtering potential infection carriers (esp. those adjacent to infected farms)
effectively reduced N.



Infection control (ctd)

Another strategy is to vaccinate.

Vaccination essentially removes a proportion p of initial susceptible class to the
removed class (that is, w(0) = p).

Assuming »* > 1, so that an epidemic will potentially occur in an unvaccinated
population, after vaccination initial numbers of susceptibles and infectives satisfy

ug +vg =1—p.

To avoid epidemic require ug < 1/r*, since then all phase trajectories have v
monotone decreasing.

Thus to be sure of avoiding an epidemic we must vaccinate such that

l-p<1l/r® = p>1-1/r".

Assuming a perfect vaccine, this is the proportion of the population we must
vaccinate to avoid an epidemic.



5.2 SIR endemic model

Endemic disease: one that is always present in a population.

SIR epidemic model: implicitly assumed that duration of epidemic sufficiently short
that the population does not change much due to natural births and deaths during
epidemic.

Endemic: interested in disease progress over long times — many generations
sometimes — so must include the “natural” population dynamics too.

Consider population IV with per capita birth rate b, and per capita death rates ¢
(from disease) and d (other causes).

Assume c, d constant, and that disease not transferred from mother to foetus, so
all new births enter susceptible class. Schematically:

( (

BIS
—

ar, natural death

I dR
I'< =5 R 2% natural death
<L, disease death

\

45, natural death

birth 2% 5 4

\

How might the population approach an endemic steady state?



5.2.1 No death from disease (non-fatal)

( (

BIS
—

IR natural death

~I1 dR
I'< 2, R 2% natural death
| <L diseasedeath

43, natural death

birth 2%, g ¢

Steady state in this case requires natural births to balance natural deaths.

Let b = d and ¢ = 0. Then the above schematic leads to model equations

d
a3 N - BIS — bS,
dt
dI
= = BIS —~I—bl,
pr B ¥
dR
=% — AT —bR.
dt K

Easily verified that N = S + I + R is constant for this model.
Scale population classes with N as before.

Now however scale time with 1/(~ + b) to reflect the different rate at which
infectives now leave the I-class.



5.2.2 Nondimensionalisation much as before. . .

dS

— = bN —p3IS —bS,
dt
dl
— = IS —~I —bl,
” B gl
dR
— = I — bR,
dt 7
-
S,I,R) = N(u,v,w), t = :
(5,1, R) = N(u,0,w) e
leads to
d R
—u:b(l—u)—r*uv \
— = (r*u—1)v = , Y= , =
dr (v +0) (v +0)
™ — 40— bw
dr i /

Note that 4 = 1 — b, so just 2 parameters in model.

Again, »* is defined to be the basic reproductive rate of infection.



5.2.3 Steady states and linear stability

d ~ )
—u:b(l—u)—r*uv

P A ;
— =(r*u—1)v ¢ y=1-0b
dr

w=1—u—v J

Again w = 1 — u — v uncouples from the system leaving a pair of ODEs to be
solved for v and v ondomain D = {u > 0,v > 0, u + v < 1}.

Critical points of (9) at

(e, v0) = (1,0) (disease-free state)
@ e (L,5(1 — X)) (disease remains endemic in population).

Endemic steady state exists only if r* > 1.

Linearising about first critical point, find that eigenvalues at (1,0) are

A

A1l =—=b, X=71r"-—1,

so the disease-free state is stable if »* < 1 (stable node) and unstable if »* > 1
(saddle).



Endemic steady state stable when it exists (r* > 1)

d A

it b(1l —u) — r*uv
dr

dv

bk — *u — 1

o (r*u—1)v

At endemic steady state critical point (1/7*,b(1 — 1/r*)) eigenvalues are

- A 4 4 \1/?
2>\1,2 = —br* £ br* (1 — = + = ) .
br*  br*2

For stability require real part of both eigenvalues to be negative, that is,

4 4 .
stable <= 1 — — 4+ = <1l <<= r™>1.
r*  br*2
If unstable, critical point lies outside domain of interest and is irrelevant.

If stable, it will either be a stable spiral (if square-rooted quantity is imaginary) or a
stable node. We have

~ < ~ stable spiral
br* — 2)2 41 —-b) =48 =
(br ) > ( ) K stable node



Nullclines

d A

it b(1l —u) — r*uv
dT

dv

°or *u — 1

o (r*u v

As usual, further information about phase-plane can be extracted by considering
nullclines of system:

©t=0 on v=——= (hyperbola)

1 : :
v=0 on wv=0, u=— (straight lines).
,r.*

Note that v = 0 is a solution trajectory of the system, on which u = 13(1 —u).

Endemic steady state critical point at (1/r*,b(1 — 1/r*)) provided r* > 1.

Typically in endemic diseases v > b (people removed from I-class much more
quickly by recovery than by natural death), thus b = b/(y+b) < 1,

Proportion of population who have the disease in the endemic steady state is
therefore usually small.



5.2.4 Worked example

d N

—u:b(l—u)—r*uv .

dr b=0.1,r" =5. (10)
— = (rfu—1)v

dr

Critical points at (uc,v.) = (1,0), (ue,ve) = (0.2,0.08)

Critical point at (1,0): Write (u,v) = (1 4 ex, ey) and seek solutions
x = rexp(AT). Linearised problem:

0— —b— A —r -
0 r* —1— M\

which leads to eigenvalues and (unnormalised) eigenvectors

(>\1, )\2) = (—B, r* — 1)
ri=1,07, ro=0*1-b—rT =(5-4.1)7.

(—0.1, 4), saddle-point

Eigenvectors give directions in which phase-paths enter or leave saddle-point.

Since A1 < 0, phase paths along 4+ enter the critical point. Note —»; is outside
physical region.

Ao > 0 = paths along —r2 leave critical point. Note 75 is outside physical region.



Worked example (ctd)

d N

—u:b(l—u)—r*uv R

dr b=0.1, r* = 5.
— = (rfu—1)v

dr

Critical point at (u.,v.) = (0.2,0.08): Linearising gives eigenvalues
A1,2 = —0.25 £ 0.581¢, stable spiral
Next consider nullclines of the system:

=0 on v=0.021/u—-1) (hyperbola)
v=0 on wv=0, u=0.2, (straight lines).

Hyperbola is easily sketched, since it must pass through the two critical points, and
asymptote to the v axis as u — 0.

Putting all this information together we can sketch the phase plane.



The phase plane
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Phase paths, together with the nulicline ©» = 0. Since this nulicline lies very close to
u-axis near critical point (1, 0) it is difficult to distinguish where the phase-paths turn over
near this saddle point. That w = 1/r* = 0.2 is also a nullcline @ = 0 is also easily seen.



5.2.5 Vaccination against endemics

Again assume a non-fatal disease, and suppose the vaccination strategy is to
vaccinate a proportion p of susceptibles at birth.

Governing equations are replaced by

dsS

— = b(l—p)N—pIS—bS
dt

dl

— = IS —~I — bl

o B ¥

dR,

— =  bpN I — bR

7 PIN + 7y

and again N = S + [ + R is constant.

With scalings as before

-
S,I,R) = N(u,v,w), t= :
(S.1.R) = N(wv.w), 1=
. d . .
we obtain o~ b1 - p) = bu— rfuw
dr
dv
e R |
- (r*u—1)v
dw

— = Bp—l—’yv—i)w.
dr



Steady states

d . .

e b(1 —p) — bu — r*uv (11)
dr

d

ki (r*u—1)v (12)
dr

@ Steady states of system (11), (12) given by

(e, v) = (1 = p,0), (e, ve) = (ri*,a(l_p_ 1 )>.

7“_*
® For successful vaccination, want disease-free state to be stable, and nontrivial

endemic state to be unstable, so that disease ultimately dies out.

@ Stability results may be read off directly from non-vaccinated case if we note that
rescalingu = (1 —p)U,v = (1 —p)V, R* = (1 — p)r* leads to system

dU ~

— = b1-U)—-R"'UYV,
dr

av

— = (R*U-1)V

dr

exactly equivalent to unvaccinated case.



Stability results from previous analysis

dU ~

— = b(l—U)—R*UV
dr

dVv

— = (R*U—l)V

dr

Rescaling — system identical to unvaccinated case.

Thus we have stability of disease-free state and instability of endemic state if

1
Rf=r*(l-p<1l = p>1-—— (13)
T
If R* > 1 the converse is true.

Condition (13) holds trivially if »* < 1 — in this case endemic steady state does
not exist in non-vaccine model — so no need to vaccinate.

Condition (13) gives minimum fraction of the population that must be vaccinated to
avoid endemic disease.



Real data

Data exists from which values of »* (and hence critical value of p) may be estimated, for
many common diseases. Some examples (see Britton):

Infection r* P
Smallpox 3105 0.67t00.8
Measles 12t0 13 0.92
Whooping cough 13to17 0.92100.94
Rubella 6to7 0.83t00.86
Chickenpox 9t010 0.89100.9
Diphtheria 4t06  0.75t00.83
Scarlet fever 5to7 0.8100.86
Mumps 4to7  0.75t00.86

Poliomyelitis 6 0.83



5.3 Criss-cross infection: STDs

Consider a simple model for gonorrhoea transmission. Make the following assumptions.
Criss-cross infection — only males infect females, and vice-versa
Incubation period short compared with length of infection.

Schematically,
Males S = I

"~ no acquired immunity.
Females S = I

Further assume that male and female populations closed.

Simplest model equations are then

dS ~ dl -

— =—rSI + al — =rSI —al
infection recovery

s T Al e s

— = —7rSI + al — =7rSI —al

dt dt

Can show that

S+I=N, S+I=N, N, N constant.



5.3.1 Model equations

dS

. dI _
— = —1rSI+al — =75 —al
dt dt
dsS - - dI . 3
— = —7rSI+al — =751 —al
dt dt

S+I=N S+I=N N, N constant.

Using (14) can then reduce model to a pair of ODEs for infected M and F
populations:

dl ~
— =r(N—-DI—al
dt
al - .
— =7(N—-DI—al
dt
Steady states (exercise):
. . NN —pp -. NN —pp
(1,1) = (0,0), (I*, "), wherel* = —— PP px_ T2 PP
N +p N+p

(nontrivial st.st. only realistic if NN > pp).

S |



5.3.2 Linear stability of steady state (0, 0)

Near (0, 0) approximate (linearised) equations are

~

dl ~ dl - =
— =rNI —al, — =7rNI-—al
dt dt

so usual procedure of seeking solutions (7, /) = Rexp(\t) gives eigenvalue problem

0— —a — A\ rN
N 7N —a— A
NN 1/2
= 2 =—(a+a)+ (a—l—&)2—|—4a&<—~—1>] .
pp

Hence stability depends on the value of NN /(pp).

® If NN /(pp) < 1 then both eigenvalues are negative: (0,0) is stable and in fact is
the only steady state, so infection dies out in population.

® If NN/(pp) > 1 then one eigenvalue is positive and one is negative: (0,0) is
unstable (saddle). In this case the nontrivial steady state (/*, I*) exists and must
be analysed.



Linear stability of (I*,I*)
Assume NN /(pp) > 1 and linearise about the steady state, writing / = /* + ez,

[ =1%+ ez, where 0 < ¢ < 1.
Usual procedure leads to eigenvalue problem for A, the growth-rate of (z, z):

2 ~ 1% T ~ ~ NN ~T N ~ Tk N
O=X 4+ XT7I"+r["+a+a)daa|1l—— | +ral" |1+ —= ) +7Fal™ |1+ —|.
pp p p

Writing this quadratic as A2 + BX + C = 0, the formula gives the solutions as

212 = —B + /B2 —4C,

Hence solutions are stable (R(\) < 0) if C' > 0. A little algebra reveals

NN
C=—-aal|ll———|>0,
pp

and the nontrivial steady state is stable, when it exists, while the trivial steady state
is unstable.




5.3.3 Interpretation

The parameter NN  NNr#

pp ad
combines the effects of the promiscuity of the population as a whole and the
infectiveness of the disease.

In terms of individual model parameters, 1 /a is the average period of infection of a
female. » NV is the no. of males contacted who get the disease if all males are
susceptible (I = 0), per infected female.

Similarly for females infected by males.

It follows that

N

TT ~  No. of infectives produced per infected female,
a

FN o .

—— ~ No. of infectives produced per infected male.
a

The product of these two parameters must be > 1 for the disease to persist.

Some data exists for these parameters. USA 1973: NN /(pp) ~ 1.127 > 1.



5.4 Overview of disease-spread modelling

Epidemic models: Disease outbreak duration short compared with natural birth
and death processes, hence natural birth and death neglected.

Compartment model — S7 R, susceptibles, infectives, removed.

Basic reproductive rate of infection »* determines whether or not epidemic
occurs. If »* > 1 have epidemic, otherwise not.

Possible control strategies considered, specifically vaccination.

Endemic models: Interested in situations where disease can persist indefinitely in
a population, hence natural birth and death processes important on such long
timescales.
Steady state population if birth rate balances death rate — assumed this,
giving modified ST R model.

Again find a critical parameter »*, which determines whether or not disease
can remain endemic in population (nontrivial stable steady state).

Vaccination again studied as a means of eliminating the endemic steady state.
Criss-cross infection models considered in 2 closed populations. Again criterion

can be derived in terms of model parameters that predicts whether or not disease
can persist, or must die out.



