
C5.11 Mathematical Geoscience

Problem sheet 4

1. Sliding glaciers Consider a two-dimensional valley glacier of depth H(x, t) flowing over a
bed inclined at an angle ✓ to the horizontal, with net accumulation a(x, t).

(i) Use lubrication theory (the shallow ice approximation), assuming Glen’s flow law with a
constant rate factor A, and a sliding law of the form ub = C⌧

m

b
, to derive an approximate

model for the evolution of H.

(ii) Non-dimensionalise the model to the form
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giving definitions of the parameters µ and � (you should assume known scales for the
accumulation rate [a] and distance [x]).

To what do the limits � = 0 and � � 1 correspond? Sketch the velocity profile with
depth in each case.

(iii) Consider the approximation µ = 0, and suppose that the dimensionless accumulation
is a = 1 � x, where x = 0 is the head of the glacier. What are appropriate boundary
conditions for the equation in this case? Give an expression for the steady state depth
and show that the length of the glacier is independent of �, but that its maximum depth
decreases with increasing �.

2. Seasonal evolution of a glacier A glacier of depth H is described by the approximate
dimensionless equation

Ht +H
n+1

Hx = a, H = 0 at x = 0,

where the accumulation rate function a varies sinusoidally in time about a space-dependent
mean,

a(x, t) = a0(x) + a1 sin!t,

where a1 is constant.

(i) Assuming that H(x, t) varies by only a small amount from its mean H0(x), linearise
the characteristics of the model and hence determine the approximate solution for the
perturbed surface H1(x, t) = H �H0.

(ii) What can you say about the e↵ect of century-scale changes in accumulation as compared
to seasonal variations?

(iii) What assumptions are needed about the size of ! to validate the approximation of small
deviation from the mean? What alternative approximation might be used to understand
the behaviour in the limit ! ⌧ 1?

3. Ice sheets

(i) Write down appropriate lubrication equations to describe the flow of a radially symmetric
ice sheet flowing over a flat bed, assuming no slip at the bed, and assuming Glen’s flow
law for the ice in the form "̇ = A⌧

n. Hence show that the ice thickness satisfies a
dimensionless equation of the form
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where a is the net accumulation.
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(ii) Derive an expression for the steady-state ice thickness given an accumulation function
a(r), and assuming that the ice thickness is zero at the margin r = rm. What determines
the location of the margin rm if the ice sheet is land-terminating?

(iii) Calculate rm for the case a(r) = 1 � r, and show that in the limit n ! 1 (a pure
plasticity model for the ice), the maximum dimensionless ice thickness is

p
3.

[Hint: the approximate vertical and horizontal (radial) momentum equations are the same

as in two dimensions, the only significant deviatoric stress component being ⌧ = ⌧rz.]

4. Sea ice The temperature T (z, t) of a layer of sea ice b(t) < z < s(t) is governed by the
heat equation,
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where ⇢ is the ice density, c is the heat capacity, and k is the conductivity. Energy balance
at the upper surface z = s is described by
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either ms = 0, T  Tm,

or ms � 0, T = Tm,

where Q(t) is the shortwave radiative flux, a is the albedo, � is the Stefan-Boltzmann
coe�cient, L is the latent heat, and ms is the surface melt rate. The conditions at the
lower surface z = b are

T = Tm, k
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@z
+ Fo = ⇢Lmb,

where Fo is the (prescribed) heat flux from the ocean below and mb is the basal melt rate.
The rate of change of the ice thickness H(t) = s� b is given by Ḣ = �mb �ms.

(i) Explain the meaning of the terms in these boundary conditions.

(ii) By writing T = Tm + [T ] T̂ , choosing appropriate scales for the other variables, and
linearising the surface energy balance (on the assumption that [T ]/Tm ⌧ 1), derive the
dimensionless model
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where S = L/c[T ] is the Stefan number, F̂0 = F0/4�T 3

m
[T ] is the dimensionless ocean

heat flux, and Q̂(t) = ((1� a)Q� �T
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[T ] is the dimensionless radiative heat

flux.

(iii) If S � 1, find the approximate temperature in the ice (assuming ice exists) and show
that

Ḣ(t) =

8
><

>:

�F̂o � Q̂/(1 +H) Q̂  0 and H � 0,

�F̂o � Q̂ Q̂ > 0 and H � 0,

0 otherwise.

[The last case corresponds to there being no ice and the energy balance not being su�cient

to grow any; in this case Q̂ must fall below �F̂o to transition to the first case and have

the ice start to grow again.]

(iv) If Q̂ = Q̂0+cos!t is slowly varying (i.e. ! ⌧ 1), find an approximate expression for the
ice thickness H(t), and hence find the fraction of time for which the sea is ice-covered as
a function of Q̂0 (varying the value of Q̂0 corresponds to changing latitude).


