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Numerical Simulation of Electrochemical
Experiments



Introduction

The basic idea of an electrochemical experiment is that a potential
is applied to an electrode in an electrochemical cell and this causes
electron transfer to take place and a current to flow. Based on the
current, which can be measured, the properties of the chemical
system can be inferred.



Mathematical Model

The concentration of a chemical in the electrochemical cell can be
modelled (in dimensionless variables) by the 1D diffusion equation

∂a

∂t
=

∂2a

∂x2
, x , t > 0

with appropriate boundary and initial conditions.

The quantity of interest is the current

I (t) =
∂a

∂x

∣∣∣∣
x=0

.



Boundary Conditions

The boundary condition at x = 0 depends on how the potential is
applied:

▶ constant potential (homogeneous Dirichlet condition);

▶ linear sweep (mixed boundary condition);

▶ linear sweep with sine wave superimposed (mixed boundary
condition).



Examples of Currents
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Techniques

▶ Solution of 1D PDEs using finite differences;

▶ Theoretical solution using similarity solutions and Laplace
transforms;

▶ Integral equations;

▶ Parameter recovery (inverse problem).



Population Growth in a Closed System



The Model

The Volterra model for population growth in a closed system is

dp

dt
= ap − bp2 − cp

∫ t

0
p(x)dx

where

▶ a > 0 is the birthrate coefficient;

▶ b > 0 is the crowding coefficient;

▶ c > 0 is the toxicity coefficient.

The term cp
∫ t
0 p(x)dx represents the effect of toxin accumulation

on the species.



Dimensionless Form of Model

The dimensionless form of the problem is

κ
du

dt
= u − u2 − u

∫ t

0
u(x)dx

for t > 0 with u(0) = u0.

If κ ≪ 1 then we have a stiff problem and we need a small
time-step (at least initially).



Examples
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Techniques

▶ ODE solvers;

▶ Quadrature;

▶ Adaptive time-stepping;

▶ Analytical techniques.



Image Colourisation



Problem Statement

Given a greyscale image and some colour information, how can we
reconstruct a full colour image?

The idea is to use the fact that pixels which are close together are
likely to be similar in colour and those with similar greyscale values
are likely to be similar in colour.



Details

We write

(red)i =
m∑
j=1

ajϕ

(
∥zi − xj∥

σ2

)
ϕ

(
|g(zi )− g(xj)|p

σ1

)
,

where

▶ ϕ(r) is a radial basis function;

▶ zi is a point in the domain, 1 ≤ i ≤ n;

▶ xj is a point where colour information is known,
1 ≤ j ≤ m ≪ n;

▶ g(xi ) represents greyscale information at xi ;

▶ the coefficients aj are to be found by a minimisation process.



Idea of the Project

Build a GUI (graphical user interface) to solve the problem!

Use this to investigate how different parameters affect the recovery
process.



Example

(top left = original, top right = greyscale,
bottom left = greyscale + some colour, bottom right = recovered
image)



Numerical Solution of the Cahn-Hilliard Equation



The Cahn-Hilliard Equation

The Cahn-Hilliard equation is:

∂c

∂t
−∇ · (B(c)∇w) = 0 ,

w − 1

ϵ
Φ′(c) + ϵ∇2c = 0 ,

in Ω× (0,T ) with boundary conditions

∂c

∂n
= B

∂w

∂n
= 0 ,

on ∂Ω× (0,T ) and an initial condition for c .

Typically Φ(c) = (1− c2)2/4 and B(c) = 1 or B(c) = (1− c2)+.



Steady States

The spatially and temporally homogeneous steady states are
c = ±1 and the spatially dependent steady states consist of
regions where c = 1 and where c = −1. The size of the interface
between these regions is controlled by ϵ.

Idea of the project: investigate different time-stepping methods
(with finite differences in space) to solve the problem accurately
and efficiently.

Use one of these methods to solve the Cahn-Hilliard equation for
image recovery.



Example 1
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Example 2



Example 3



Numerical Solution of Problems in Pattern
Formation



The Schnakenberg Model

The general form of a (dimensional) reaction diffusion system is

∂A

∂t
= F (A,B) + DA∇2A ,

∂B

∂t
= G (A,B) + DB∇2B ,

in Ω× (0,T ) with boundary conditions

∂A

∂n
=

∂B

∂n
= 0 ,

on ∂Ω× (0,T ) and with initial conditions for A and B on Ω̄.

In the Schnakenberg model we set

F (A,B) = k1 − k2A+ k3A
2B ,

G (A,B) = k4 − k3A
2B .



Analysis

The project will begin with some mathematical analysis to
non-dimensionalise the equations and find conditions under which
patterns will form. This will follow similar methods to the
mathematical biology course.



Numerical Solution

We will then look at numerical solution of the model using finite
differences in space and a variety of timestepping schemes.

We will consider solutions in one space dimension to start with and
then move on to two space dimensions.



Example



Numerical Solution of Differential Equations
Using Neural Networks



Units in a Neural Network

Inputs are 1, x1, and x2 and the output is ŷ . We also have weights
w1 and w2 and a bias b.

b

w1

1

x1

x2

w2

ŷΣ

In each unit we compute a weighted sum z = b+w1x1 +w2x2 and
then compute a nonlinear function of z (often a sigmoid, e.g.
a = σ(z)).



Neural Network

We can combine these units together to get a feedforward neural
network.
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Neural Network

We can increase the depth of the network by adding more layers,
and the width of the network by adding more units in each layer.

The challenge is to optimise over the weights and biases.



Relation to ODEs
Suppose we want to solve the differential equation

d2y

dx2
= f (x , y) , x ∈ (0, 1)

y(0) = a ,

y(1) = b .

We choose a set of values xk at which to train the network.
Suppose we have a single hidden layer with m units, then for each
xk we compute

z2i = b2i + w2
i xk

a2i = σ(z2i )

for i = 1, . . . ,m. Then we compute

ŷ(xk) =
m∑
i=1

w3
i a

2
i + b3 .



Relation to ODEs

Having computed the ŷ(xk) we can compute a residual type error

L =
∑
k

(
d2ŷ(xk)

dx2
− f (xk , ŷ(xk))

)2

+γ1(ŷ(0)− a)2 + γ2(ŷ(1)− b)2 .

The aim is then to minimise L over the parameters
θ = (w2

1 , . . . ,w
2
m, b

2
1, . . . , b

2
m,w

3
1 , . . . ,w

3
m, b

3).

This can be done using gradient descent or stochastic gradient
descent, but in either case we need to know ∂L/∂θi . This is called
back-propagation.



Example 1 (ODE)

L = 1.3093× 10−6
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Example 2 (PDE)

L = 9.1519× 10−6
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