Topological groups, 2024-2025

Tom Sanders

Course overview

Groups like the integers, the circle, and general linear groups (over R or C) share a number
of properties naturally captured by the notion of a topological group. Providing a unified
framework for these groups and properties was an important achievement of 20th century
mathematics, and in this course we shall develop this framework.

Highlights will include the existence and uniqueness of Haar integrals for locally compact
topological groups, the topology of the dual group, and the existence of characters in various
topological groups. Throughout, the course will use the tools of analysis to tie together the

topology and algebra, getting at superficially more algebraic facts by analytic means.

Course synopsis

[6 lectures] Definition of topological and topologized groups and intermediate structures.
Examples and non-examples, and basic properties. Subgroups. Quotient groups. The Open
Mapping Theorem.

[4 lectures] Complete regularity of topological groups. Continuous partitions of unity and
Fubini’s Theorem. Existence and uniqueness of Haar integrals.

[6 lectures] The Peter-Weyl Theorem for compact topological groups. Dual groups of topo-
logical groups. Local compactness of the dual of a locally compact topological group. Pon-

tryagin duality for compact Hausdorff Abelian topological groups.

References

There are other notes on similar topics with a slightly different focus e.g. [Fol95, [K6r08|
Kral7, [Megl7] and [Rud90].

General prerequisites

The course is designed to be pretty self-contained. We assume basic familiarity with groups
as covered in Prelims Groups and Group Actions. We shall also assume familiarity with
Prelims Linear Algebra and Part A: Metric Spaces and Complex Analysis for material on

metric and normed spaces.



Familiarity with topology is essential, though not much is required content-wise. What
we use (and more) is covered in Part A: Topology, with the exception of Tychonoff’s The-
orem. This can be informally summarised as saying that a non-empty product of compact
spaces is compact, and there is no harm in taking it as a black box for the course. Those
interested in more detail may wish to consult Part C: Analytic Topology.

The Axiom of Choice is sometimes formulated as saying that an arbitrary product of
non-empty sets is non-empty, and in this formulation it may be less surprising that it can
be used to prove Tychonoftf’s Theorem. It turns out that the converse is also true, i.e.
Tychonoft’s Theorem (and the other axioms of set theory) can be used to prove the Axiom
of Choicdll

Finally no familiarity with functional analysis is assumed, though there are clear sim-
ilarities and parallels for those who do have some. See, for example Part B: Functional

Analysis, and Part C: Further Functional Analysis.

Teaching

A first draft of these notes is on the website, but they will be updated after each lecture
with any resulting changes. This document was compiled on 5" May, 2025.

Lectures will be supplemented by some tutorial-style teaching where we can discuss the
course and also exercises from the sheets. Once I have a list of the MFoCS students attending

I shall be in touch to arrange these.

Contact details and feedback

Contact tom.sanders@maths.ox.ac.uk if you have any questions or feedback.

!Those unfamiliar and looking for a reference may wish to consult the notes [Ter10].
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Group notation

A group G is said to be written multiplicatively if the binary operation of the group is
written G x G — G (z,y) — xy and called multiplication; the unique inverse is written

1

7! and the map G — G;x — 27! is called inversion; and the identity is written 1. Given

S, T < G we write

S ti={s':s5eS}and ST := {st:se S,teT}.
For n € Ny we define S™ inductively by

S%:={1g} and S"*! := §"S; and ST := (STH)™.

/N This notation means that in general SS~! # S0 and S? # {s? : s € S}.

It will also be convenient to write xS := {x}S and Sz := S{z} for x € G, which aligns
the the usual notation for left and right cosets when S is a subgroup.

If G is Abelian then it is said to be written additively if the binary operation of the
group is written G x G — G;(x,y) — x + y and called addition; inversion is written
G — G;x — —x and called negation; and the identity is written Og. /N Al groups written
additively are Abelian, but not all Abelian groups will be written additively.

If G is written additively then the above notation changes in the obvious way so we write
—S instead of S7!, S + T instead of ST, n.S instead of S™ etc.
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1 Groups with topologies

A group G that is also a topological space is called a topologized group. Without any
additional assumptions this is no more than its constituent parts: a group and a topological
space. When the group inversion G — G and the group operation G x G — G are both

continuous we say G is a topological group. (Here the product G x G is given the product

topology.)

Example 1.1 (Indiscrete groups). For any group G, we write Gy for G endowed with the

indiscrete topology. This is a topological group since any map into an indiscrete space is

continuous, so in particular both group inversion and the group operation are continuous.
Any indiscrete space is compact since the indiscrete topology is finite, so G is a compact

topological group. Gy is Hausdorft if and only if G is the trivial group.

A topological space is locally compact if every element is contained in a compact
neighbourhood. /N1n the literature sometimes different definitions of local compactness
are used — see Remark for an example that is relevant to us — although they usually

coincide when the space is additionally assumed to be Hausdorff.

Example 1.2 (Discrete groups). For any group G, we write Gp for G endowed with the
discrete topology. This is a topological group since the product of two copies of the discrete
topology is discrete — so both the topological spaces G and G x G are discrete — and any
map from a discrete space is continuous, so in particular both group inversion and the group
operation are continuous.

Any discrete space is locally compact since {x} is an open neighbourhood of x which is
compact, since it is finite; and Hausdorff since {z} and {y} are disjoint open neighbourhoods
of x and y respectively when x # y. Hence Gp is a locally compact Hausdorff topological
group. Since the set of singletons in Gp is an open cover of Gp, Gp is compact if and only

if it is finite.

The reals under addition may be endowed with the discrete or indiscrete topologies
to make them into a topological group as above. However, neither of these is the ‘usual’

topology which has as open sets unions of intervals without their endpoints.

Example 1.3 (The real line). The additive group R endowed with its usual topology is a
topological group which we call the real line, and which we also denote R. The relevant
continuity is just the algebra of limits: in particular, if x, — zo then —(x,) = (—=1)z,, —
(=1)zg = —xo; and if x,, — x¢ and y,, — Yo, then x, + y, — o + Yo.

The compact sets in the real line R are exactly the closed and bounded sets (this is the
Heine-Borel Theorem for R). In particular, R itself is not bounded and so not compact;

and for any = € R, [z — 1,2 + 1] is a compact neighbourhood of x, so R is locally compact.
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R is also Hausdorff: certainly if x # y then there are two disjoint open intervals, with one
containing x and the other y.

In summary, R is a locally compact Hausdorff topological group that is not compact.
The algebra of limits also apply multiplicatively and to complex numbers:

Example 1.4 (Non-zero complex numbers). The set of non-zero complex numbers, C*, is
a multiplicative group and with the usual topology is a topological group also denoted C*.
Again, the relevant continuity is just the algebra of limits: if 2, — ¢ in C* then z;' — 25"
and if z,, — z¢ and vy, — o, then x,y, — Toyo.

The compact sets in C are exactly the closed and bounded sets (this is the Heine-Borel
Theorem again, this time for R?). We can used this as in Example to see that C* is a

locally compact Hausdorff topological group that is not compact.

Maps between topologized groups

The maps which will concern us the most are continuous homomorphisms, and also contin-
uous open homomorphisms, that is continuous homomorphisms in which the image of an

open set is open.

Example 1.5. The map R — R;x — ax for a € R is a continuous homomorphism of the
real line, and in fact these are the only continuous homomorphisms of the real line. For
«a = 0 this map is not open; for a # 0, this map has an inverse of the same form and so is

open and in fact is a homeomorphic isomorphism.

Example 1.6. For a topologized group G, the identity map G — G is a continuous
isomorphism, because the identity map is an isomorphism and any map to an indiscrete

space is continuous.

/NG need not be a topological group despite the fact that G is a topological group.
That being said we do have the following:

Proposition 1.7. Suppose that 0 : H — G is a homomorphism and G is a topological group.
Then H with the initial topology w.r.t. 0 (that is the topology {0~ (U) : U is open in G}) is

a topological group.
Proof. Suppose U is an open set in H so that there is W, open in G, such that U = §=1(W).
For continuity of the inverse, note U1 = (6=(W))~! = 0~1(W~1), but W' is open in G
and so U~! is open in H. For continuity of multiplication let S be a set of products of open
sets in G such that {(z,y) e G x G :zye W} = JS. Then
{(z,y)e Hx H:ayeU} ={(z,y) e H x H:0(x)0(y) e W}
={(z,y)e Hx H:(0(x),0(y)) € S x T for some S x T € S}
= J{67'(5) x671(T): S x T e S},
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and this last set is a union of open sets and so open. The result is proved. O]

Remark 1.8. In particular, if G is a topological group and H is a subgroup of G, then H
with the subspace topology is a topological group since the subspace topology is exactly the

initial topology on H w.r.t. the inclusion H — Gz — .

Example 1.9 (The rationals). We write Q for the topological group of rationals with the
subspace topology inherited from the topological group R.

Q is Hausdorff since the real line is Hausdorff, but not locally compact (and so certainly
not compact) — this is exactly why one constructs the real line! To see this, suppose K were
a compact neighbourhood of 0. Then by definition of the subspace topology, there would
be € > 0 such that (—¢,e) n Q < K. The interval (—¢, €) contains an irrational «, and then
{(=0,a = 1/n) n Q,(a + 1/n,0) n Q : n € N*} would be an open cover of K without a

finite subcover — a contradiction.

Example 1.10 (The positive reals). We write R-, for the topological group of positive
reals with the subspace topology inherited from the topological group C*.
In fact this is in a sense ‘the same’ as Example because there is a homeomorphic

isomorphism between the two; part of Exercise asks for a proof of this.

Example 1.11 (The circle group). We write S! for the topological group of complex num-
bers of modulus 1 with the subspace topology inherited from the topological group C*; we

call it the circle group. S is compact (as a closed and bounded subset of C) and Hausdorff.

Example 1.12 (Universal covering of the circle group). The map 6 : R — S,z —
exp(2miz) from the real line to the circle group is a surjective continuous open homomor-
phism. /N The topology on the real line is not the initial topology w.r.t #, and so Proposition
[1.7 applied to € does not give us a new way of deducing that the real line is a topological
group. We shall revisit the topology we do get later in Example

Group actions

Groups often arise with actions, and topological groups are no exception to this. /N Our

actions will all be left actions.

Example 1.13 (Homeomorphisms of topological spaces). For a topological space X and
group G of homeomorphisms of X under composition, the map G x X — X;(g,x) — g(z)

is an action called the evaluation action.

Observation 1.14. Given an action of a group G on a topological space X, the maps X —
X;x — g.x are continuous for all ¢ € G if and only if they are homeomorphisms since

g l(gx)=2=g (g ) forallze X and g € G.
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Example 1.15. The space X := [0, 1] with its usual topology and G the set of increasing
bijections [0, 1] — [0, 1]. This is a group of continuous functions, and so of homeomorphisms

by the preceding observation.

Given an action of a group G on a topological space X, the topology of pointwise
converge on G w.r.t. this action is the weakest topology on G such that the maps
G — X;g — g.x are continuous for all x € X. (In other words it is the initial topology on
G w.r.t. the family of functions G — X;g — g.x for x € X.) In particular, given a base BB
for X, the sets

Uy, ..., o Uy, .. Uy) i ={9geG: g1 €Uy, ... g2, €U,}
with zq,...,2, € X and Uy, ..., U, € B form a base for the topology of pointwise convergence
w.r.t. the given action.

Proposition 1.16. Suppose that X is a topological space with topology given by a metric d,
and G is a group acting on X such that d(g.z,g.y) = d(z,y) for all z,y € X and all g€ G.

Then G with the topology of pointwise convergence w.r.t. this action is a topological group.
Proof. Write B(x) := {y € X : d(z,y) < €} so that {B.(x) : x € X,e > 0} is a base for the
topology on X. If fo e U(xy,...,2,;Us,...,U,) then there is € > 0 such that

U(l'l, R B€<f0.x1), Ce >Bﬁ(f0-$n)> C U(xl, ey I U17 ey Un)

Hence the preimage under inversion of U(xy,...,x,;U;,...,U,) contains the preimage of

U(zy, ..., 20 Be(fo-x1), ..., Be(fo-xn)), but for f € G we have
d(fil.(fo.l’i),xz) = d(fo..TZ', f.fz) = d(fl’l, fol’z)

Hence this preimage contains U(fo.x1, .. ., fo-Tn; Be(21), . . ., Be(xy,)), which is a neighbour-
hood of f;!. Hence inversion is continuous.

Suppose gofo € U(xy,...,x,;Us,...,Uy,), so that there is € > 0 such that
U(l’l, R Be((gofg).x1>, c. >Be((90f0)-$n)> c U(xl, ey I U17 e Un)
Then, if d(g.(fo-x:), (90f0)-x;) < €/2 and d(f.x;, fo.x;) < €/2 for all 1 < i < n, we have
d((gf)-xi, (gofo)-zi) < d((gf)-zi, (9fo)-xi) + d((gfo)-xi, (gofo)-i)
= d(f (), fo(z:)) + d(g.(fo-xi), (gofo)-x:i) <,
and so gf € U(xy,...,2,;Uy,...,U,). Hence the preimage of U(xy,...,z,;Us,...,Uy,)
under the group operation contains the open neighbourhood
U(fo-1,. .. fo-Ta; Bea((9ofo)-x1), - - -, Bea((go.fo)-2n))
X U(Qfl, ey T Be/g(fo.l'l), c. >Be/2(f0-xn))

of (go, fo). We conclude that multiplication is continuous as a map G x G — G and G is a

topological group. O
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Example 1.17 (Isometries of normed spaces). For X a normed space with norm | - | the
map d(z,y) := |z —y| defines a metric on X, and we write Iso(X) for the group of invertible
isometries of X, that is the set of bijections ¢ : X — X such that |¢(z) — o(y)|| = |z — ¥
for all x,y € X. Proposition applied to the evaluation action tells us that Iso(X) is
a topological group when endowed with the topology of pointwise convergence (w.r.t. this
action).

If X is a real normed space then the Mazur-Ulam theorem [Vai03] tells us that every
invertible isometry is affine linear, but complex conjugation on C (considered as a complex
normed space with norm given by the absolute value) is an invertible isometry that is not

affine C-linear.

Example 1.18 (Unitary maps). For V' a complex inner product space a unitary map is
a linear map ¢ : V. — V with {(¢p(v), p(w)) = {(v,w) for all v,w € V. We write U(V) for
the group of invertible unitary maps V' — V. The inner product on V' defines a norm (by
|v]| := (v, v)"/?) which in turn defines a metric as in Example [1.17} Proposition applied
to the evaluation action tells us that U(V) is a topological group when endowed with the

topology of pointwise convergence (w.r.t. this action).

Example 1.19 (Orthogonal groups). The group O, of orthogonal matrices acts on the
metric space R" equipped with the Euclidean metric d(z,y) = (X, (z; — yi)2)1/ ® via
(M,x) — Mz, in such a way that d(Mz, My) = d(x,y) for all x,y € R". Hence by
Proposition O,, is a topological group when endowed with the topology of pointwise

convergence with respect to this action.

Translation invariant Abelian groups

We say that a metric d on a group G (written multiplicatively) is (left) translation in-
variant if

d(zy,xz) = d(y, z) for all x,y,z € G.

Corollary 1.20. Suppose that G is an Abelian group and d is a translation invariant metric

on G. Then G with the topology induced by d is a Hausdorff topological group.

Proof. Since G is Abelian we shall write it additively and the group operation is an action of
the group on itself. It follows from Proposition that G with the topology of pointwise
convergence w.r.t. this action is a topological group. On the other hand, writing B.(z) :=

{ye G:d(z,y) < e} we have

U(xy, ..., x0; B(x)), ..., B(x))) = Be(x] — 1) n -+ n Be(a, — x,)

n

since d(y + x,2") = d(y,2’ — x) for all y,x,2" € G (crucially using the hypothesis that G
is Abelian here), and these sets form a base for the topology on G induced by d. In other
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words the topology of pointwise convergence in this case is the topology induced by the
metric d, and G with this topology is a topological group. Finally, the topology is Hausdorff

since it is induced by a metric. O]

Example 1.21 (Normed spaces). For X a normed space with norm | - | the map d(z,y) :=
[ — y| defines a translation invariant metric on the (Abelian) additive group of X (c.f.
Example . It follows from Corollary that X under addition with this topology is
a Hausdorff topological group.

If X contains some z # 0, then the subset {\.z : A € R} is unbounded in the metric d
and hence X is not compact. It follows that the topological group X is compact if and only
if X = {0}; more than this, a classic result of André Weil [Wei74, Corollary 2, p6] tells us
that the topological group X is locally compact if and only if the normed space X is finite

dimensional.

Write GN* for the group of G-valued sequences, i.e. sequences (x;)ien+ with z; € G,
endowed with the group operation zy := (x;9;)ien+. This is a group with identity the

constant sequence taking the value 1g, and 271 = (:Ei_l)ieN*.

Example 1.22 (Dyadic Cantor group). Define a metric on (Z/2Z)N* by
de(z,y) =inf{27% ke Ng, 21 = y1,..., 7% = Y},
which in fact enjoys the stronger triangle inequality
de(x,2) < max{d.(z,y),d:(y, 2)} for all z,y, z € (Z/27Z)""

The metric d, is also translation invariant and so Corollary [1.20] tells us that (Z/2Z)N" with
this topology is a Hausdorff topological group which we denote .

If (™), is Cauchy in d, then for all k there is N such that xgn) = ml(-m) for all 1 < k
and n,m > Nyg; letting y := a:,(CN’“) for all k, we have 2™ — y e D. It follows that D is
complete as a metric space. It is also totally bounded, since for every k € N* and = € D
there is y € (Z/27Z)* such that d,(z,9) < 27% where § := (y1,...,yr,0,...). We conclude
that D is compact.

We cannot drop the condition that G is Abelian from Corollary [1.20f

Example 1.23. A homomorphism f : D — S takes values in {1, —1} since every element
of D has order 2; fix such an f.

The map (z,y) * (2, y') = (z+ f(y)2’, y +y') defines a group operation?| on the set R x D
— this group is denoted R x ¢ D. Equip the group R x ;D with the topology induced by the

2This is the semidirect product of the group R and D with respect to the homomorphism ¢ : D —
Aut(R);y — (R = Ryz — f(y)x).
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metric d((z,y), (2, ) := max{|x — 2'|, d.(y,y’)} where d, is as in Example Then

d((z,y) = («",1), (x,y) = (2",9")) = max{|z + f(y)2’ — (z + f(y)2")].d=(y + ¥,y + ")}
= max{|z’ — "], dx(y/', ")} = d((«',5/), (", y"))

for all (z,y), («',y'), (z",y") € R x ¢ D since d, is translation invariant and |f(y)| = 1 for all
y € D. In other words d is left translation invariant.

If f is not continuous, then the map
RxpD—RxpD;(z,y) = (z,y) « (1,0) = (z+ f(y),y)

is not continuous and so certainly R x ;D is not a topological group (c.f. Observation [1.31]).
(It is not immediately obvious that such an f should exist, but we shall see in Exercise
that it does.)

1.24 A worked example: a square-free topology on the integers.

Although Proposition takes the initial topology with respect to just one function, we
can define the initial topology for a whole family of functions; we do this here. Write Zg;
for the additive group of integers endowed with the initial topology with respect to the
homomorphisms

Yp 1 Z — St 2 — exp(2miz/p) for p prime.

The map 7, is continuous on Z endowed with some topology if and only if said topology
contains all the sets in Z/pZ i.e. all sets of the form = + pZ for x € Z. If (x +nZ) n (y +mZ)
is non-empty — say it contains some z — then it equals z + lem(n, m)Z. In particular, the

topology on Zg, must contain all elements of

B = U {Z/mZ tm o= H p for M a finite set of primes} )

peEM

Claim. The set B is a base for the topology on Zgs.

Proof. First B is a base for a topology on Z because a) B is a cover of Z, since Hpegp =1,
and so Z € B; and b) if x + mZ,y + nZ € B then m = [\, p and n = [] .\ p for finite
sets of primes M and N, and if 2z € (z + mZ) n (y + nZ) then z + ¢Z < (x + mZ) N (y + nZ)
where ¢ := [ [ cpon P-

We noted above that B is certainly a set of open sets in Zg, and it remains to note that

in any topology containing B the map ~, is continuous since B contains Z/pZ. [

The base B explains the subscript in Zg: it stands for ‘square-free’ which is chosen
because, by the Fundamental Theorem of Arithmetic, the products Hpe m D are exactly the

square-free natural numbers.
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Claim. Zg, is a topological group.

Proof. Negation on Zg is continuous since —(z + mZ) = —x + mZ for all x € Z and m.
Addition is continuous since if (z,y) is in the preimage under addition of z + mZ then that

preimage contains the open neighbourhood (z + mZ) x (y + mZ) of (x,y). O
Claim. Zg, is Hausdorff

Proof. 1f © # y then without loss of generality (z + 1) —y > 1. Every natural number bigger
than 1 has a smallest factor bigger than 1, and this factor will be prime, so there is a prime
pwithz+1—yepZ. Then z+ pZny+pZ = (y—1)+pZny+ pZ. Since p | 1 we have
y — 1+ pZ # y + pZ and since the intersection of two cosets of the same subgroup is either
equal or empty, the sets x + pZ and y + pZ are disjoint open neighbourhoods of z and y

respectively, as required. O
Claim. The compact subsets of Zg are exactly the finite sets.

Proof. Any finite set is compact, but conversely suppose that S < Z is infinite. Let Sy := S,
r1 = 0, and m; = 1. At stage i, let p;41 > m; be a prime larger than the two smallest
elements of S;, m;1 := p;r1m; and x;,1 be such that S;; := S; N (2,41 + m;1Z) is infinite.
The choice of p;y; is possible since there are infinitely many primes; and the choice of ;1
is possible since Z/m;,17Z is a partition of Z into finitely many sets and so S; must have
infinite intersection with one of them by the pigeonhole principle.

The fact that p;,1 > m; for each 7 ensures that the m;s are all products of distinct primes
and so x; + m;Z € C, and the fact that p;,; is larger than the two smallest elements of 5;

ensures that S;;1 # S;. In particular then, we have Z = x; + m1Z D 29 + moZ > ... s0
C = {(zi + MiZ)\(vis1 +mipZ) i€ N*}.

This is a cover of Z by disjoint open sets each of which has a non-empty intersection with

S. It follows that C is an open cover with no finite subcover. n

All the non-empty open sets in Zg. are infinite and so in particular Zg, is not locally

compact.

Between topologized and topological

To better understand topological groups we shall also look at some weaker structures with
some axioms stripped away — centipede mathematics. These structures are also studied in
their own right; for a much more detailed development including many examples and open
problems see [AT08, Chapters 1 & 2.

Suppose that G is a topologized group written multiplicatively. We say that left (resp.
right) multiplication is continuous if the maps G — G;y — zy (resp. G — G;y — yz)
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are continuous for all x € G. A topologized group in which left (resp. right) multiplication
is continuous is said to be a left-topological (resp. right-topological) group. A group
which is both a left-topological and a right-topological group is called a semitopological

group.
Example 1.25 (Example [1.23] revisited). The topologized group R x; D with operation =

is a left-topological group since the maps
RxyD—Rx,D; (', y) = (z,9) « (a,y) = (z + 2" f(y),y + V)

are continuous for fixed (x,y) whether or not f is continuous. Its topology is the product

of two locally compact Hausdorff spaces and so it itself is locally compact and Hausdorft.

Example 1.26 (Opposite and Abelian topologized groups). When G is a topologized group
by G°" we mean the opposite group of GG, that is the group with group operation G x G —
G; (z,y) — yzx, endowed with the same topology as G. In this notation G is left-topological
if and only if G°" is right-topological.

In particular, any Abelian left-topological or right-topological group is semitopological

since left (resp. right) multiplication by y is the same as right (resp. left) multiplication by
Y.
Example 1.27 (The coset topology). For a group G and H < G, equipping G with the
topology whose closed sets are unions of left cosets of H makes it into a left-topological
group; we call this topology the (left) coset topology (on G generated by H). /\ This
terminology is not standard.

The open (and closed) sets in G are exactly the unions of left cosets of H, hence if
S < G then S = SH. Right multiplication is continuous (if and) only if H is normal
in G: Indeed, if right multiplication is continuous then since H is closed, Hy~! is closed
for all y, so Hy=! = SH for some S ¢ G. Let x € S be such that y~! € xH, whence
y'H =xH c SH = Hy ! and so H is normal in G.

Proposition 1.28. Suppose that X is a topological space and G is a group of homeomor-
phisms of X. Then G with the topology of pointwise convergence w.r.t. the evaluation action

s a semitopological group.
Proof. For xy,...,z, € X and Uy,...,U, open in X we have
Uy, .2y Uny . U)g = Ulga, .., g.an; Ur, .., Uy)
so right multiplication is continuous. Furthermore,
g U(x1, .y Uy U = U, w9 VU - g U,

so left multiplication is continuous since the sets ¢~ .Uy, ..., g '.U, are open because the

action is by continuous functions. O
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Example 1.29 (Groups of continuous maps with continuous inverses). For X a normed
space we write GL(X) for the set of continuous linear maps X — X with continuous linear
inverses.

The set GL(X) is a group of homeomorphisms of X, and hence if GL(X) is endowed with
the topology of pointwise convergence w.r.t. the evaluation action, then GL(X) becomes a
semitopological group by Proposition [1.28]

By contrast with Example when X = /5, it can be shown that neither composition

nor inversion is continuous.

A topologized group in which the group operation is continuous (as a map from the

product space G x () is called a paratopological group.

Example 1.30 (The reals with the right order topology). The setf] {(a, ) : —0 < a < o0}
is a topology on R which we call the right order topology (on R); we denote this
topologized group Rgo. In particular, if A < R is non-empty and bounded above then
A = (—o0,sup A]; and if A is non-empty and not bounded above then A = R.

Ryo is a paratopological group since for a € R,

{(z,y) :x +ye(a,0)} = U(a—b,oo) x (b, 0)
beR
so that the preimage of the open set (a,0) is open in the product topology. Inversion on
Ryo is not continuous since (—o0, —a) is not open (for any a € R), and hence Ry, is not a
topological group.

Ryo is not Hausdorff: Any two non-empty open sets contain all sufficient large reals and
hence have non-empty intersection.

The non-empty compact subsets of Ry, are exactly the sets A that are bounded below
(and so have an infimum) and contain their infimum. Indeed, if inf A € A then any open
cover U of A contains an open set U containing inf A. But then A < U, and so {U} is a
finite subcover of U. Conversely, if A is not bounded below then it is not compact since
U = {(a,0) : a € R} is an open cover of A, but any finite /' < U has a smallest a € R
such that (a,00) € U’, and so U’ is not a cover of A; and if A is bounded below but does not
contain its infimum then {(inf A + 1/n, ) : n € N} is a cover of A which does not have a
finite subcover by the approximation property.

It follows that Ry, is locally compact, since for z € R, [x — 1,00) is a compact neigh-

bourhood of z, and also Ry, is not compact since it is not bounded below.

Observation 1.31. Every paratopological group G is semitopological since the maps G —
G x G;x — (x,y) (and G — G x G;x — (y,x)) are continuous for all y € G, and the

composition of continuous maps is continuous.

3For the avoidance of doubt (—00,0) := R and (0, ®0) := .
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A semitopological group in which inversion is continuous is called a quasitopological

group.

Example 1.32 (The reals with the cofinite topology). Write R, for the additive group R
equipped with the topology whose proper closed sets are the finite sets. This is a genuine
topology and is called the cofinite topology on R. In particular if A < R is finite then
A = A and if A is infinite then A = R.

Rer is a quasitopological group because (—z) + U, U + (—z), and —U are finite whenever
U is finite.

If U,V < R are non-empty and open in the cofinite topology, then U +V = R: for x € R,
x — U is infinite and V¢ is finite and so x — U ¢ V¢, whence z e U + V and U + V = R as
claimed. In particular, {(z,y) € R? : x +y # 0}, which is the preimage under addition of an
open set in the cofinite topology, cannot contain a sum of non-empty open sets. It follows
that multiplication is not continuous and R is not paratopological.

R¢r is not Hausdorff: Any two non-empty open sets U and V' have finite complements,
but R is infinite and so U is infinite and U ¢ V¢ which is to say that U n V' # .

R¢r is compact: Indeed, any A < R is compact since if I/ is an open cover of A, then
(either A is empty and we so compact or we may) let U € U be non-empty. U¢ is finite and
since U is a cover of A, if x € U® has x € A we may take U, € U such that x € U,. The set

{U} U{U, : x € U} is a finite subcover of U and our claim is proved.

Observation 1.33. Every left-topological group G with a continuous inverse is a quasitopo-
logical group, since for y € G the right multiplication map G — G;z — xy = (y 'z~ 1)~}
is continuous since it is a composition of inversion, left multiplication by y~!, and inversion

again.

The following diagram summarises the foregoing. The implications without any text
next to them follow a fortiori — i.e. by simply dropping hypotheses — and the missing
implications and non-implications can all be deduced from transitivity of implication and
the law of excluded middle.
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Topological

4/RCF e.g. \

Quasitopological / Paratopological

Left-topological Semitopological

& continuous inverse

H<G and H4G in e.g.

Left-topological

Figure 1: Relationships between types of topologized groups

2 Some basic tools

In this section there are a few key lemmas (Lemmas 2.13}2.16} [2.18] & [2.21]) which

we highlight in red because they each capture a crucial technique or idea.

We say S < @ is symmetric if § = 571

Example 2.1. A group G in which every non-identity element has order 2 has every subset
symmetric. Moreover, if it is topologized then inversion is just the identity map and so is

automatically continuous.

Lemma 2.2 (Key Lemma I). Suppose that G is a topologized group in which inversion is
continuous. If U is a neighbourhood of the identity then there is a symmetric open neigh-

bourhood of the identity W < U; and if S is symmetric then S is symmetric.

Proof. Since U is a neighbourhood of 14, there is an open set V < U with 15 € V. Put
W =V n V~! which is open and contains 1¢, since 151 = 1lg, and is symmetric. For the
second part, since inversion is continuous, the preimage of S under inversion is closed, and

05=51cS5'=5 " Butthen§ ' (371

)71 =5, and we get the result. O

Remark 2.3. Every conclusion of Lemma [2.2] may fail if ‘topologized group with continuous
inverse’ is replaced by ‘paratopological group’: In Ry, the only symmetric and open sets are
& and R, hence (—1, «0) is a neighbourhood of the identity that does not contain a symmetric
neighbourhood of the identity; and {0} = (—o0, 0] which is not symmetric despite {0} being

symmetric.

Lemma 2.4 (Key Lemma II). Suppose that G is a left-topological group, U is open, and V'
is any subset of G. Then VU is open; U is a neighbourhood of x if and only if 27U is a
neighbourhood of the identity; and xV = V.
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Proof. First, VU = J,o, vU, which is a union of open sets since G — G;x — v 'z is
continuous. Secondly, if U is a neighbourhood of z then there is an open set U, < U
containing x. Continuity of G — G z — xz then says that 271U, is an open set containing
1¢ and contained in 271U, which is to say 2~ 'U is a neighbourhood of the identity. Similarly
if 271U is a neighbourhood of the identity then U is a neighbourhood of z by continuity

12 is continuous, xV is closed and

of G — G;z — 27 '2. Finally, since G — G;z — 2~
contains V', hence zV < zV. Apply this with z replaced by 2= and V replaced by zV to

get V < 2712V, whence 2V = 2V. O

Checking continuity and openness of homomorphisms

Recall a neighbourhood base of a point x in a topological space X is a set B of open
neighbourhoods of x such that if N is a neighbourhood of z then there is B € B such that
Bc N.

Proposition 2.5. Suppose that G and H are left-topological groups and B is a neighbourhood
base of the identity in H. Then a homomorphism 6 : G — H is continuous if (and only if)
0~1(B) is a neighbourhood of the identity for all B € B; and a homomorphism 0 : H — G is
open if (and only if) O(B) is a neighbourhood of the identity for all B € B.

Proof. Suppose that U < H is open and #(y) € U. By Lemma there is an open
neighbourhood of the identity V,, such that 6(y)V, < U, and hence B € B such that B < V.
Thus 6~1(B) < 671(V,) so y6~(B) < 671 (U) (using that 6 is a homomorphism) and hence
6~(U) contains a neighbourhood of y i.e. ~1(U) is open. The parenthetical ‘only if” follows
since B contains an open neighbourhood of 15 and 6(1g) = 1. The result for open maps

follows similarly. O]

Corollary 2.6. Suppose that G is a semitopological group and B is a neighbourhood base
of the identity such that B~! is a neighbourhood of the identity for all B € B. Then G is

quasitopological.

Proof. Since G is semitopological the map G' — G°F;x +— x~! is a homomorphism between

left-topological groups, and so Proposition [2.5| gives the result. O

Topological closures of subgroups

Extending the definition for subgroups, we say that a subset S of a group G is normal if
xS = Sx for all z € G.

Corollary 2.7. Suppose that G is a semitopological group. If S < G is normal, then so is

S;if S < G is closed under multiplication (i.e. xy € S whenever x,y € S), then so is S.
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Proof. First, by Lemma we have S = S = Sz = Sz for all € G. Secondly, since G
is left-topological by Lemma hS = hS = S for all he S. Hence Sw < S for all w e S.
Since G is left-topological by Lemma [2.4) we have Sw = Sw = S = S. Hence S O

Remark 2.8. We cannot relax ‘semitopological’ to ‘left-topological’: First, if G is a group
with a non-normal subgroup H then G with the coset topology generated by H has m =H
which is not normal. Secondly, if G is a group with subgroups H and K such that HK is
not closed under multiplication (which, of course, entails that H is not normal). Then G
with the coset topology generated by K is left-topological but has H = HK, so that even

though H is closed under multiplication, its topological closure is not.

Proposition 2.9. Suppose that G is a quasitopological group and H < G. Then H is a
subgroup of G which is normal if H is normal. In particular, {1¢} is a normal subgroup of

G.

Proof. By Corollary H is closed under multiplication and normal if H is normal. By
Lemma H ' = H. Since H is non-empty it follows that H is a group and the result is
proved. O]

Remark 2.10. We cannot replace ‘quasitopological’ by ‘paratopological’ above: {0} is a
subgroup of Ry but {0} = (—c0, 0] which is not a subgroup.

If G is a group with a subset S that is not a subgroup, then S = G in G, so there is no
converse to the above saying if H is a subgroup then H is a subgroup; similarly if G has a
subgroup H that is not normal, then H = G in G, so there is no converse saying that if H

is normal then H is normal.

In Exercise there is an example of a compact semitopological group that is not
quasitopological, but despite the fact that Proposition does not apply we do have the

following.

Proposition 2.11. Suppose that G is a compact semitopological group. Then {15} is a

normal subgroup of G.

Proof. Put H := {1_G} then by Corollary , H? « H and H is normal. Now consider
H := {zH : x € H}. This is a set of closed subsets of H by Lemma [2.4] which has the finite
intersection property: suppose ©1H,...,z,H € H. Then x;H > x;---x,H = Hx;---x, D
r1-xi Hy;---x, = x1---2,H since x1---x;_1,Tiy1 v, € H and H is closed under
multiplication. Since G is compact, V := (| H is non-empty.

V' is closed and non-empty, so there is some y € V. By Lemma yH = @ c V, but
then y>H € H and so y?H >V > yH, and since G is a group, yH > H. Now H € H, and
so H >V o yH o H — in other words V = H. But then for all x € H we have H < xH,
and since 1¢ € H we have some y € H such that xy = 15 and H is closed under inverses

and hence a subgroup. O
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Remark 2.12. We cannot relax ‘semitopological’ to ‘left-topological’: if G is a finite group
with a non-normal subgroup H then GG with the coset topology generated by H has m =H
which is not normal, but it is compact since G is finite. Similarly, we cannot relax the
compactness requirement to local compactness in view of the group Ry, in which the closure
of the identity is not even a group (see Remark .

Lemma 2.13 (Key Lemma IIT). Suppose that G is a left-topological group, S is a subset of
G and V is an open neighbourhood of the identity. Then SV < SVV L,

Proof. Let A := G\(SVV~!) and B := G\(AV). B is closed since AV is open by Lemma
If z € AV then there is some v € V such that zv™' € A, so zv™' ¢ SVV~!. Hence
SV < B and since B is closed SV < B. Now if z € B then = ¢ A since 1 € V, and hence
x e SVV ™! as claimed. O

Corollary 2.14. Suppose that G is a left-topological group and H < G. If H is a neigh-
bourhood in G then H is open in G; if H is open in G then H is closed in G; if H is closed
in G and of finite index then H is open in G.

Proof. First, if H is a neighbourhood then there is a non-empty open set U < H. But then
H = HU is open by Lemma [2.4l For the second part, if H is open then by Lemma [2.13
Hc HH ' = H and so H is closed.

For the last part, since H is closed, every W € G/H is closed by Lemma Since H is
of finite index, ( {W € G/H : W # H} is a finite union of closed sets and so closed. Finally,
since G/H is a partition of G containing H, H = G\ {W € G/H : W # H} is open as
required. O

Remark 2.15. Z is a closed subgroup of the real line R that is not open, so the hypothesis
that H have finite index above cannot be dropped.

Lemma 2.16 (Key Lemma IV). Suppose that G is a paratopological group and X is a
neighbourhood of z. Then there is an open neighbourhood of the identity V such that zV?

X. Moreover, if G is a topological group then V may be taken to be symmetric.

Proof. Let U < X be an open neighbourhood of z. The map (z,y) — xy is continuous and
so {(z,y) : zy € U} is an open subset of G x GG. By definition of the product topology there

is a set S of products of open sets in GG such that
{(x,y):xyeU}:U{SxT:SxTeS}.

Since z1g = z € U, there is some S x T" € § such that (z,1g) € S x T. Thus S is an

open neighbourhood of z and T" is an open neighbourhood of the identity, so by Lemma [2.4]
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V := (2718) n T is an open neighbourhood of the identity. Now 2V < S and V < T and so
2V? < U as required. Moreover, if G is a topological group inversion is also continuous so by
Lemma V' contains a symmetric open neighbourhood of the identity, and the conclusion
follows by nesting. m

Remark 2.17. We cannot replace ‘paratopological’ by ‘quasitopological’ above: In R¢y if X
is the complement of some x # z, then X is open but the sum of any two non-empty open

sets is the whole of R and so cannot be contained in X.

Lemma 2.18 (Key Lemma V). Suppose that G is a paratopological group and K, ..., K,
are compact subsets of G. Then Ky --- K, 1s compact. In particular, if K is compact then

K" is compact for alEl n € Ny.

Proof. The (topological) product of two compact sets is compact so if K - - - K, is compact
and K, is compact then (K;--- K, 1) x K, is compact. But then the continuous image of
a compact set is compact and so Ky --- K,, = (K;y--- K, 1)K, is compact and the result

follows by induction on n. m

Remark 2.19. Exercise[L.5] gives an example of a quasitopological group where the conclusion

above does not hold.

A cover U is a refinement of a cover V of a set X if U is a cover of X and each set in

U is contained in some set in V.

Observation 2.20. Refinements are transitive meaning that if W is a refinement of V and V

is a refinement of U then W is a refinement of U.

Lemma 2.21 (Key Lemma VI). Suppose that G is a paratopological group, K < G is
compact, and U 1s an open cover of K. Then there is an open neighbourhood of the identity
U < G such that {zU : x € K} is a refinement of U. If G is a topological group then U may

be taken to be symmetric.

Proof. By Lemma [2.16] for every x € K there is a open neighbourhood of the identity U,
such that zU? is subset of a set in . Since K is compact there are elements zy, ..., 7, € K
such that W := {x,U,,,...,x,U,, } is an open cover of K; let U := U,, n--- n U,,, which
is an open neighbourhood of the identity. Since W is a cover of K, for each x € K there
is ¢ such that = € z;U,, and hence U < miUin. The first part is done and if, additionally,
G is assumed to be topological then we can take U,s to be symmetric and hence U to be

symmetric. The result is proved. O]

This has a higher dimensional analogue which is related to the tube lemma:

“Note that K = {1g} by definition and so is compact since it is finite.
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Lemma 2.22. Suppose that X is a topological space, K < X is compact, and U is an open
cover of K x K. Then there is an open cover W of K such that {W x W' : W, W' e W}
refines U.

Proof. For (z,y) € K x K there is some U € U with (z,y) € U. By definition of the
product topology there are U, and V), open neighbourhoods of x and y respectively such
that U, x V,, © U. Since the topological product of of two compact sets is compact, the
cover {U, x V, : (x,y) € K x K} of K x K has a finite subcover {U,, x V,,,..., U, xV, }.
For every z € K let

W, = ﬂ{le cze Uy} n ﬂ{VZ cz eV}
Write W for the set of W,s, which is a (finite) open cover of K such that {W x W' : W, W' e
W} refines U. O

Where are the compact paratopological groups?

The quasitopological group R is compact and not a topological group, and Exercise
gives an example of a compact semitopological group that is not quasitopological, but we
have not seen an example of a compact paratopological group that is not topological and

here is why:

Theorem 2.23. Suppose that G is a compact paratopological group. Then G is a topological

group.

Proof. Suppose that K < G is closed and v ¢ K~'. For y € K, if yx € m then by
Proposition 2y e {1¢} and so by Lemma 2.4 ' e {Igly = {y} c K = K, a
contradiction. Hence yz ¢ m and again, by Lemma there is an open neighbourhood
U, of y such that U,z n m = & and in particular 1 ¢ U,x.

Apply Lemma to the cover {U, : y € K} of K to get an open neighbourhood of the
identity U such that for all y € K we have yU < U, for some z = z(y) € K. It follows that
lg¢yUxforallye K,so K-'nUx = . Thus K~! is closed and the result is proved. [

Remark 2.24. We cannot relax ‘compact’ to ‘locally compact’ since Ry, is a locally compact
paratopological group that is not a topological group. /N\Tn [Rav15] it states that every
locally compact paratopological group is a topological group. This does not contradict the
above, it is simply using a different definition of local compactness in which every element

is contained in a closed compact neighbourhood.

Quotient topologies and topological quotient groups

For G a topologized group and H < @, the quotient topology on left cosets G/H has
U < G/H open if and only if [ JU is open in G; or, equivalently, C = G/H closed if and
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only if [ JC' is closed in G.
This topology is the final topology on G/H w.r.t. the quotient map ¢ : G — G/H;z —
xH — it is the strongest topology (meaning finest topology, or topology with the most open

sets) on G/H making ¢ continuous.

Proposition 2.25. Suppose that G is a topologized group and H is a normal subgroup of
G. Then

(1) if group inversion on G is continuous, then it is continuous on G/H;
(11) if left (resp. right) multiplication is continuous on G, then it is continuous on G/H;
(111) and if multiplication is continuous on G x G then it is also on (G/H) x (G/H).

In particular, if G is a topological (resp. paratopological, quasitopological, semitopological,

or left-topological) group then so is G/H.

Proof. Suppose that U < G/H is open. If inversion is continuous on G then
LJU_1 = U{(ZBH)_l cxHeU} = U{z_l czexH eU}
= U{z_l :2HeU} = {z‘l :zeUU} = <UU)

and so U~ is open in G/H by definition since | JU is open in G. If left multiplication on G

-1

is continuous, then for x € G,

J@m) U= J{a " H)(yH):yHe U} = | J{a"yH :yH e U} = 27U,

and so (zH)~'U is open in G/H and hence left multiplication by xH is continuous. If right

multiplication on G is continuous, then for x € G,

vt = J{wm)@r) ™ yi e Uy = | J{yHa yH e U} = (JU) o

and so U(zH)™! is open in G/H and hence right multiplication by xH is continuous.

Finally suppose multiplication G x G — G is continuous. Define
W :={(zH,wH) e (G/H) x (G/H) : (zH)(wH) e U},

and V := {(z,w)erG:zweUU}.

Suppose that (zH,yH) € W. Then zy € («H)(yH) < | JU so (x,y) € V and since V is open
there are open sets S, T < G such that r € S, ye T, and SxT c V. If se Sandte T,
then st € (JU, and since the latter is a union of cosets of H we have (st)H < | JU. Since
H is normal we have (sH)(tH) = (st)H < |JU, and so SH x TH c V.

By Lemma SH and TH are open sets, and so the sets S’ := {sH : s € S} and
T':={tH : t € T} are open in G/H; xH € §" and yH € T"; and S’ x T" < W. It follows
that T is open, and multiplication on (G/H) x (G/H) — G/H is continuous. O
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Example 2.26 (The real line modulo 1). The real line R (Example has a (normal)
subgroup Z and so the group R/Z may be given the quotient topology making it into a
topological group by Proposition [2.25]

/NIn the literature on topological spaces (though not in these notes) the notation R/Z
is sometimes used to refer to a different space, called the adjunction space in which all the
integers in R are identified but the rest of R remains the same. In other language this is a

countably infinite bouquet of circles all connected at the point Z.

Example 2.27 (The reals with the circle topology). By Proposition R is a topological
group (which we shall denote R¢) when endowed with the initial topology w.r.t. the quotient
map ¢ : R — R/Z where R/Z is the reals (mod 1) (Example [2.26). We call this the circle
topology on R. The open sets in the circle topology have the form U + Z where U < R is
open in the real line.

Since R has the initial topology, a set A < R is compact if (and only if) ¢(A) is
compact in R/Z: Indeed, if U is an open cover of A, we can write U = {¢~' (V') : V € V} for
some set V of open subsets of R/Z. Now, if ¢(A) is compact then there are V3,...,V, € V
such that g(A) c Vy u--- UV, and hence A = ¢ ! (q(A)) c ¢ * (Vi) u--- U g }(V,) and so
{¢'(V1),...,q Y (V;)} is a finite subcover of U.

/N\In particular, A := [0,1] and B := [0, 1/2) u[3/2, 2] are compact, but AnB = [0, 1/2)
is not compact. This phenomenon of the intersection of two compact sets not being compact
cannot happen in a Hausdorff space where every compact set is closed, and hence where the
intersection of two compact sets is an intersection of a closed set with a compact set which

is, therefore, compact.

Regularity in topological groups

A topological space X is said to be regular if for all x € X every neighbourhood of x
contains a closed neighbourhood of x. /N The literature is inconsistent on the meaning of

regular, and for some other authors a regular topological space is required to be Hausdorft.

Remark 2.28. One reason for considering regular topologies without the requirement that
they also be Hausdorff is that if X is a regular topological space and f : Y — X is a function
then Y with the initial topology w.r.t. f is also regular. Of course Y need not be Hausdorff

even if X is Hausdorftf.
Proposition 2.29. Suppose that G is a topological group. Then G is reqular.

Proof. Let V' be a neighbourhood of x € G. By Lemma there is a symmetric open
neighbourhood of the identity U such that 2U? < V, and so by Lemmas &2.13 zU <
2UU = 2U? c V as required. O
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Remark 2.30. The quasitopological group R, is not regular because the only closed neigh-
bourhood is the whole of R which cannot be contained in any neighbourhood that is not
the whole of R; and the paratopological group Ry, is not regular for the same reasons.

Theorem [2.23| shows that the topological condition of compactness forces a paratopolog-
ical group to be topological, so one might wonder if regularity has the same effect; it does
not as Exercise [L9 shows.

There are also purely topological conditions that give rise to regularity:

Proposition 2.31. Suppose that X s a locally compact Hausdorff topological space. Then

X is reqular.

Proof. Let V be an open neighbourhood of z € X, which by local compactness we may
assume is contained in a compact neighbourhood U. For all  # y € X there is an open set
U, containing y which is disjoint from an open set V;, containing x. {U, : y € U\V'} is an open
cover of a closed subset of the compact set U and so has a finite subcover, say Uy,,...,U,,..
But U is a compact subset of a Hausdorff topological space, so (U\U,,) n--- n (U\Uy,,) is

closed, contained in V', and contains Vj,, n--- nV,, which is an open set containing . [

In a Hausdorff topological space a compact set is closed; in a regular topological space

we need not have this but we do preserve compactness:

Lemma 2.32. Suppose that X is a regqular topological space and K is compact. Then K is

compact.

Proof. Suppose that U is an open cover of K. For each x € K there is U, € U with
z € U, and by regularity there is an open neighbourhood V, of  with V, < U,. Then
{Vu : ® € K} is an open cover of K and so has a finite subcover V,,,...,V;,,, but then

K c V_I1 URERRY) Wk c Uz, u---u U, and so U has a finite subcover of K as required. O
Regularity can be extended from points to compact sets:

Lemma 2.33. Suppose that X is a reqular topological space, and K < B with K compact
and B open. Then there is an open set C with K < C < C < B.

Proof. Since B is open, for each x € K there is an open set U, containing x and contained
in B; and since X is regular, there are open neighbourhoods V, and W, of z with W, < V,,
and V, < U,. K is compact and so K < W,, U --- U W, _ for some 1,...,2,, € K. Put
C=Vy,u-uV, togt KcW,, u---uW, cC,andCc U, u---ul, cB. 0O
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The open mapping theorem

Any bijective group homomorphism is a group isomorphism, but Example (1.6 shows that
there are continuous bijective group homomorphisms of topological groups that are not
homeomorphic isomorphisms. On the other hand any bijective continuous map from a
compact space to a Hausdorff space is a homeomorphism, and the group structure can help

to strengthen this:

Theorem 2.34 (Open Mapping Theorem). Suppose that G is a left-topological group that
is a countable union of compact sets, H is a locally compact Hausdorff left-topological group,
and m : G — H 1is a continuous bijective homomorphism. Then w is a homeomorphic

1somorphism.

Proof. Since the inverse of a bijective group homomorphism is a group isomorphism, it
suffices to show that w(C') is closed whenever C' is closed in G. Let K, be compact in G
such that G = |, s Kn-

Claim. There is some n € N* such that w(K,) is a neighbourhood.

Proof. We use a Baire Category argument, though no familiarity with these is assumed. We
construct a nested sequence of closed neighbourhoods inductively: Let Uy be a compact (and
so closed since H is Hausdorff) neighbourhood in H, and for n € N* let U,,  7(K,)*n U,
be a closed neighbourhood.

This is possible since (by the inductive hypothesis) U,_; is a neighbourhood and so
contains an open neighbourhood V;,_;. But then m(K,)¢ n V,,_; is open, since 7(K,) is a
continuous image of a compact set and so compact, and therefore closed since H is Hausdorff;

‘N

and non-empty since otherwise 7(K,) contains a neighbourhood. It follows that 7(kX,)
U, —1 contains an open neighbourhood and so it contains a closed neighbourhood since H is
regular by Proposition [2.31]

Now by the finite intersection property of the compact space Uy, the set ), U, is non-

empty. This contradicts surjectivity of m since G = (J, .y« K and the claim is proved. [
Claim. If X < H is compact then 7=1(X) is compact.

Proof. By the previous claim 7(kK,) contains a neighbourhood (and hence so does z7(K,)
by Lemma and the set {z7w(K,) : x € H} covers X, so by compactness of X there are
elements x1,. .., 2, such that X < (J", z;7(K,) and hence n~*(X) < (J", 7 *(z;) K, (by
injectivity of 7). 7~(x;) K, is compact by Lemma [2.4] and since a finite union of compact
sets is compact it follows that 771(X) is contained in a compact set. Finally, X is closed so

71(X) is closed and a closed subset of a compact set is compact as required. O
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Finally, suppose that C' < G is closed, and y is a limit point of 7(C). H is locally
compact so y has a compact neighbourhood X. Now 7~1(X) is compact and so 771 (X) nC

is compact. But then X n 7(C) is compact since 7 is continuous, and hence closed since H
is Hausdorff. But by design y € X n7(C) = X n7(C) < n(C). O

Corollary 2.35. Suppose that G is a countable locally compact Hausdorff left-topological
group. Then G is discrete. In particular, if G is a compact Hausdorff topological group then

G 1is either finite or uncountable.

Proof. Since G is countable and finite sets are compact, Gy, is a topological group that is
a countable union of compact sets, and the identity map Gp — G is a continuous bijective
homomorphism. Hence by the Open Mapping Theorem this is a homeomorphism and so G
is discrete. Finally, if G is compact and countable then it is compact and discrete and so
finite. O

Remark 2.36. None of the hypotheses may be dropped: The real line is an example of an un-
countable locally compact Hausdorff topological group that is not discrete (since singletons
are not open); the rationals with the subspace topology from the real line are an example
of a countable Hausdorff topological group that is not discrete; the rationals with the indis-
crete topology, are an example of a countable (locally) compact topological group that is not
discrete; and finally, the topological space {1/n : n € N*} U {0} with its subspace topology
in R is a countable compact Hausdorff space (which may be given the group structure of

any countably infinite group to make it into a topologized group).
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3 Continuous complex-valued functions on topological
groups

For a topological space X we write C'(X) for the set of continuous functions X — C. This
is closed under pointwise addition and multiplication of functions and contains the constant

functions, so it is a C-algebra.

Example 3.1. The set C'(R) contains the inclusion R — C;z — z, and since it is a

C-algebra it contains all polynomials with complex coefficients.
Example 3.2. For any discrete space X, the space C'(X) contains all functions X — C.

Example 3.3. For any indiscrete space X, the space C'(X) contains only the constant

functions.

Example 3.4. For the rationals with the subspace topology inherited from the real line,
the function g : Q — C with g(z) = 0 if 22 < 2 and g(z) = 1 if 2% > 2 is continuous because
the preimage of of any subset of C is either §, R, (—0,+/2) nQ or (v/2, %) nQ, depending

on which elements of {0, 1} it contains, and these are all opens sets.

The support of a (not necessarily continuous) function f : X — C is denoted supp f
and is defined to be the set of € X such that f(z) # 0; f is said to be compactly
supportedﬂ if its support is contained in a compact set. We write C.(X) for the subset of
functions in C'(X) that are compactly supported.

The set C.(X) is a subalgebra of C'(X) since the union of two compact sets is compact
and the support of the sum of two functions is contained in the union of their supports; and
the support of the product of two functions is the intersection of their supports which is

certainly contained in a compact set if one is. More than this, the function

[ flleo := sup{[f ()] : z € X}

is a norm on C.(X) called the uniform norm. It is well-defined since every continuous

(complex-valued) function on a compact set is bounded, and the axioms of a norm are easily
checked.

Remark 3.5. /NIn general |- | is mot a norm on C(X) since we are not assuming the
elements of C'(X) are bounded.
/N1n general C.(X) is not complete despite the fact that the uniform limit of continuous

functions is continuous since this limit function may not be compactly supported.

5AAS we have defined it the support of a function that is compactly supported need not actually be a

compact set; it is simply contained in one.
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Example 3.6. The set C'(R) contains all polynomials (as we saw in Example 3.1)), and in
fact all power series of infinite radius of convergence. However, by the Identity Theorem
the only one of these functions that is in C.(R) is the zero function. The sort of function in
C(R) that we often have in mind might look like:

Proposition 3.7. Suppose that G is a left-topological group and C.(G) contains a function

that is not identically zero. Then G s locally compact.

Proof. Suppose that f € C.(G) is not identically zero. Then supp f is open (since f is
continuous), non-empty and contained in a compact set K (since f is compactly supported).
It follows that K is a compact neighbourhood of some point 2 € G, and by Lemma [2.4{yx 1 K

is then a compact neighbourhood of y for y € G as required. m

Example 3.8. Since Q with the subspace topology inherited from the real line is not locally
compact we have C.(Q) = {0}.

The regular representation

Given a group G and a function f: G — C we write
Mo(f)(2) = f(x7'2) for all 2,z € G.
Proposition 3.9. Suppose that G is a left-topological group. Then the map
G — Iso(C.(G));x — A,

is a well-defined homomorphism. Moreover, if G is a topological group then this map is

continuous.

Proof. First recall from Example[1.17|that Iso(C.(G)) is the set of linear invertible isometries
of C.(G). Since G is left-topological, for f € C.(G) the map z — A,(f)(2) is continuous. If
f has support contained in a compact set K then A, (f) has support contained in z K, which
is itself compact since it is the continuous image of a compact set. Hence A, (f) € C.(G).
A is visibly linear and |[A;(f)|lw = |f]w for all f € C.(G) and x € G, so by linearity is

an isometry. A, has A\,-1 as an inverse and hence the given map maps into Iso(C.(G)),
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and so is well-defined. As usual (c.f. Cayley’s Theorem) we have A, (f) = Az (A, (f)) from
associativity of the group operation, and the first part is proved.

Now suppose that G is a topological group. The set
{{p € Iso(C(G)) : |&(f) — flloo < € for all fe F} for e >0 and F < C,.(G) finite}

is a neighbourhood base of the identity in Iso(C.(G)). Hence by Proposition [2.5|it is enough
to show that for f € C.(G) the set {z € G : |[\.(f) — f|w < €} contains a neighbourhood of
the identity in G.

Let K be a compact set containing the support of f, and let & be an open cover of G
such that |f(y) — f(v')| < € for all y,y’ € U € U (see Observation below). By Lemma
(applied to G°) there is a symmetric open neighbourhood of the identity V' such that
{Vy:ye K} is a refinement of U (as a cover of K).

Suppose that z € V and y € G is such that \,(f)(y) — f(y) # 0. Then either f(y) # 0
so y € K, but then V~'y = Vy is a subset of an element of U and so |\.(f)(y) — f(y)| < &
or \.(f)(y) # 0so z 'y € K, but then V(x~'y) is a subset of an element of & and so again
IA:(f)(y) — f(y)] <e. Since \.(f) — f is continuous and compactly supported it attains its
bounds so |A(f) — flw < €. The result is proved. O

Observation 3.10. For A := {2z € C : |z| < ¢/2} and f € C(X) if f(z), f(y) € z + A then
|f(z) — f(y)] <€ and hence U := {f~'(z + A) : z € C} is an open cover of X such that

|f(z) — f(y)| < € whenever x,y € U € U.

Constructing continuous compactly supported functions

The interior of a subset S of a topological space is denoted S°, and is the set of x € S that
are contained in an open set which is itself contained in S. In particular, S° is open.
The dyadic rationals in [0,1] are the set D := | .-, D;, where

Doi= {9,131, Dy = {2,1,2) Dy = {2,128 4y e

101 T 4040401

In particular D is dense in [0, 1]; we have the nesting Dy € Dy < ...; and every element of

D;1\D; can be written in the form %(q +¢') where ¢ and ¢ are consecutive elements of D;.

Lemma 3.11. Suppose that G is a paratopological group, V is an open neighbourhood of
the identity, and KV < (B)° for some set K. Then there are sets (Uy)gep with Uy = K,
Uy, = B, and U, = (Uy)° whenever q,q' € D have ¢ < ¢ .

Proof. Set Vi := V and for ¢ € Ny define V; inductively by Lemma to be an open
neighbourhood of the identity such that V2, < V.
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We set Uy := K and U; := B and define U, for ¢ € D;;;\D; iteratively for i € Nj.
Suppose that at step i, for all consecutive pairs ¢ < ¢’ in D; we have U,V; < U, — this is
certainly true for ¢ = 0. For ¢ < ¢ consecutive elements of D; set U%(q +q) = UqViH SO
that a) U,V;1 Ué(q+q’); and b) Ué(quq,)V;H = U,Vi1Visr © FquH cUVic Uy =Uy,
where the first inclusion is by Lemma . Every element of D;,1\D; is the average of two

consecutive elements of D;, and the construction is complete.
It remains to note that if U,V; = U, then U, = (U,)°, and the result is proved. O

Nested sets of the type described above can be used to define continuous functions:

Lemma 3.12. Suppose that X is a topological space, and (U,)qep are such that Fq c (U_q/)O
whenever ¢ < ¢'. Then there is g € C(X) with g(x) € [0,1] for all x € X; g(xz) = 0 for
x e Uy; and g(x) =1 for x ¢ (U,)°.

Proof. For x € G let S(x) := {ge D : x € (U,)°} and g(x) := inf S(z) u {1}. Certainly
g(z) € [0,1]. If 2 € Uy then ¢ € S(x) for all ¢ > 0 by nesting, and hence g(z) = 0; if
x ¢ (U1)°, then S(x) = & by nesting, and so g(z) = 1. It remains to show g € C'(X).

First, for @ < 1 we have ¢71([0,a)) = |J{(U,)° : ¢ < a} is open. Secondly, for a > 0
suppose that zo € g ((c, 1]). Then g(zy9) > « and so there is ¢ € D with ¢ > « such
that 7o ¢ (U,)° and hence by nesting xq ¢ U, for any ¢ € D with ¢ < ¢'; pick ¢ € D with
a < q < ¢. If 2 ¢ U, then again by nesting g(2) = ¢ > a, and hence zy € G\U, = g~ *((a, 1]).
Thus every element of ¢g~!((a,1]) is contained in an open subset of ¢7'((c,1]), and so
g ((a, 1]) itself must be open.

We conclude that ¢g7'((a,b)) = g7'((a,1]) n ¢g7*([0,b)) is open for any a,b € R. The
intervals without endpoints in R form a base for the topology on R, and hence g is continuous

as a function into R. Finally, R is a subspace of C, so g € C(X) as required. ]

Theorem 3.13. Suppose that G is a regular paratopological group, and K < B are compact
and open sets respectively. Then there is a continuous function g € C(G) with g(z) € [0, 1]
forallz € G; g(x) =0 for all x € K; and g(x) = 1 for all z ¢ B.

Proof. Since the topology is regular and K is compact, by Lemma[2.33], there is an open set
C with K ¢ C < C < B. By Lemma K is compact and so by Lemma applied
to K and the open cover {C} there is an open neighbourhood of the identity V' such that
KV < C < (C)°. Hence by Lemma m (applied to K and ('), and then by Lemma m,
we get g € C(G) with g(z) € [0,1] for all z € G; g(x) = 0 for all z € K; and g(z) = 1 for all
x ¢ (C)°. The result follows since (C)° < C' < B. O

Remark 3.14. We know from Proposition that every topological group is regular, hence
every topological group is a regular paratopological group so in particular the above corol-
lary applies to all topological groups. This consequence is sometimes called the ‘complete

regularity of topological groups’.
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To explain the terminology ‘complete regularity’, note that if we suppose that G is a
topologized group such that the conclusion of Theorem holds for all K ¢ B with K
compact and B open, then G is regular. Indeed, if U is an open neighbourhood of x, then
the supposition applied to K = {z}, which is compact, and B = U, gives g € C(G) with
g(z) = 1 and g(y) = 0 for all y ¢ U, and so g '({z € C : |z — 1] < 1/2}) is a closed
neighbourhood of x contained in U.

Surprisingly Theorem [3.13| was only shown relatively recently by Banakh and Ravsky in

[Ban17], though the complete regularity of topological groups was known much earlier.

Corollary 3.15. Suppose that G is a locally compact topological group, and K < B are a
compact and open set respectively. Then there is f € C.(G) with f(z) € [0, 1] for all x € G;
f(z)=1 forallx e K; and f(x) =0 for all x ¢ B.

In particular, if B is a non-empty open set then there is f € C.(G) with f(x) =0 for all
x € G; f is not identically zero; and f has supp f < B.

Proof. Since G is locally compact it contains a compact neighbourhood of the identity L;
let H < L be an open neighbourhood of the identity. K H is open by Lemma [2.4] and so
KH n B is an open set containing K.

Apply Theorem (and Proposition to get g € C(G) with g(z) € [0,1] for all
reG;g(x)=0forall ze K; and g(z) =1 for all x ¢ (KH) n B. Let f:=1— g and note
that supp f € KH n B, which is a subset of KL, which is compact by Lemma [2.18, and
also of B. This gives the result. O]

Remark 3.16. A topologized group G that is not indiscrete, has a non-empty proper open
subset, and so if G satisfies the conclusions of Corollary then C.(G) contains a non-
constant function. In particular, by Proposition (3.7 we see that we cannot drop the ‘locally
compact’ hypothesis above.

Exercise asks for examples of locally compact quasitopological and paratopological
groups that are not topological groups, and where there are no non-constant continuous
functions into C. Since these are not topological groups, their topologies are not indiscrete,
and so it follows that we cannot relax ‘topological’ to either ‘quasitopological’ or ‘paratopo-

logical” above.

Corollary can also be bootstrapped to produce continuous partitions of unity for

which we first need a technical lemma:

Lemma 3.17. Suppose that X is a topological space, K < X is compact, and f € C.(X), g €
C(X) are such that supp f € K < suppg. Then there is h € C.(X) such that f = gh.

Proof. Since K is compact and ¢ is continuous, |g| is continuous it achieves its minimum

c on K. Since the support of g contains K we have ¢ > 0. The function ® : C — C with
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®(z) = z for |z| < 1 and ®(2) = 1/z for |z| > 1 is continuous, and so h := L& () is
continuous because the product and composition of continuous functions is continuous; has

compact support since f has compact support; and f = gh. The lemma is proved. O

Corollary 3.18. Suppose that G is a locally compact topological group, K is compact, U
is an open cover of K, and F' € C(G) has supp F' < K and F(z) € [0,1] for all x € G.
Then there is some n € N* Uy, ..., U, €U, and fi,..., fn € C.(G) with supp f; < U; and
fi(x) € [0,1] for allz € G and 1 <i < n, such that F = fi + -+ + f,.

Proof. Since U is an open cover of K, for each x € K there is an open neighbourhood of z,
call it U, € U, and by Proposition there is a closed neighbourhood V, < U, of x. Since
each V, is a neighbourhood and {V, : z € K} is a cover of K, compactness tells us that
there are elements z4,...,z, such that K <V, u--- UV, . For each i the set V,, n K is
a closed subset of a compact set and so compact. Apply Corollary toV,, n K < U,,
to get g; € C.(G) such that g;(x) € [0,1] for all z € G; g;(z) =1 for all z € V,, n K; and

supp ¢; < U,,. Since the g;s are non-negative we have
suppFcKc VynK)u--—-u(V, nK)csupp(gr + -+ gn).

Thus by Lemma there is h € C.(G) such that F' = h(g; + --- + g¢,) and since F' maps
into [0,1] and g;(z) + -+ + gn(z) = 1 on the support of F', we conclude that h maps into
[0,1]; for 1 < i < n put f; = g;h.

It remains to check the properties of the f;s. First, f; € C.(G) with f(z) € [0,1]
for all x € G by design of h and g¢;. Secondly, F' = f; + --- + f, by design. Finally,
supp f; < suppg; < U,, € U. The result is proved. O
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4 The Haar integral

We now turn to one of the most beautiful aspects of the basic theory of topological groups.
This describes the way the topology and the algebra naturally conspire to produce an inte-
gral.

For X a topological space, we say f € C.(X) is non-negative if f(z) > 0 for all z € X,
and write C.f (X)) for the set of non-negative continuous compactly supported functions on
X.

We shall frequently have call to understand elements of C.(X) as a linear combination
of elements of CF (X):

Observation 4.1. The functions C — R;z +— Rez, C - R;z — Imz, R - Ryp;x —
max{z,0} and R — R.g;x — max{—z,0} are continuous and so any f € C.(X) can be
written as f = f1— fo+ifs—ify for fi1, fo, f3, f1 € CH(X), and this decomposition is unique.
We say a linear functional { : C.(X) — C is non-negative if { f > 0 whenever f €
CHX). If f,g € C.(X) are both real-valued then we write f > g if f — ¢ is non-negative.

Observation 4.2. If f,g € C.(X) are real-valued and { is a non-negative linear functional

Ce(X) = Cthen § f = (gif f > g; and if f € C.(G) then |§ f| < §|f] andS_f:S?.
Example 4.3. The map

[rem—cir- f; f(x)dz,

where the integral sign on the right is the Riemann integral, is a non-trivial (meaning not

identically zero) non-negative linear map

Remark 4.4. We think of non-negative linear functionals as integrals and in fact the Riesz-
Markov-Kakutani Representation Theorem tells us that if X has a sufficiently nice topology
then every non-negative linear map C.(X) — C arises as an integral against a suitably

well-behaved measure on X.

Given a further topological space Y and F' : X x Y — C and z € X, we write Sy F(z,y)
for the functional { : C.(Y') — C applied to the function Y — C;y — F(x,y) (assuming this
function is continuous and compactly supported), and similarly for y € Y and Sz F(z,y). It

will be crucial for us that the order of integration can be interchanged:

Theorem 4.5 (Fubini’s Theorem for continuous compactly supported functions). Suppose
that G is a locally compact topological group, § and S/ are non-negative linear functionals
C.(G) - C, and F € C.(G x G). Then the map x — S; F(z,y) is continuous and compactly
supported, so that § Sly F(x,y) exists. Similarly y — §_F(x,y) is continuous and compactly

supported, so that S; Sw F(z,y) exists and moreover

LLF@M=LLF@M
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Proof. In view of the decomposition in Observation and linearity of { and S/ it is enough
to establish the result for F' non-negative.

Since F' € CF (G x G) has support contained in a compact set K, and since the coordinate
projection maps G' x G — G are continuous (and the union of two compact sets is compact)
there is a compact set L such that K < L x L. It follows that the maps x — F(x,y) for
y € G and y — F(z,y) for z € G are continuous and have support in the compact set L.

We also need an auxiliary ‘dominating function” which is a compactly supported con-
tinuous function on whose support all of the ‘action” happens. For those familiar with the
theory of integration, the Dominated Convergence Theorem may come to mind. Concretely,
by Corollary there is f € C.(G) with f(z) € [0,1] for all z € G; f(x) =1 for all z € L;
and supp f < M.

For ¢ > 0 (by Observation let U be an open cover of G x G such that |F(x,y) —
F(z',y)| < efor all (z,y), (2,y') e U eUd. M x M is compact and so by Lemma [2.22] there
is an open cover W of M such that U" := {W x W' : W, W' e W} is a refinement of U (as a
cover of M x M not of G x G). First, the support of S; F(z,y) is contained in the (compact)
set L and if x, 2" € W € W then by design and non-negativity of S/ we have

[Fa = [ Fe i < [ Fa +as6) = f P e[ 7

y y y
and similarly S; F(x,y) < S; F(2',y) +€§' f, whence | S; F(2 y) — S; F(x,y)| <€l f. Since
¢ is arbitrary (and { f does not depend on €) it follows that 2 ~— S; F(z,y) is continuous
(and compactly supported) and similarly for y — { F(z,y).

By Corollary [3.18 applied to f supported on the compact set M with the open cover W,
there are continuous compactly supported fi,..., f, : G — [0,1] such that f1 +---+ f, = f
and supp f; € W; e W. Now, F(z,y) = F(x,y)f(x)f(y) and f = f1 + -+ + fn, so

3

Z F(x,y)fi(x)f;(y) for all z,y € G.

i=1j=

—_

By design of " and U, for 1 <i,j < n there is A\;; > 0 such that |F(z,y) — \; ;| < € for all
(x,y) € supp f; x supp f;. We conclude that

n n

ZZ Hfz y) —ef(x)f(y) ZZ ljfl y) +ef(x)f(y).

Since § and S are non-negative linear functionals, we conclude that

/F<x,y>—§n]§n]&,jffiffj <effff

i=1j=1

and

F(%Z/)—ii)\i,j;fiffj <6ffj/f.




The result is proved by the triangle inequality since € is arbitrary (and { f and S/ f do not
depend on ). O

Remark 4.6. /\It is not enough to assume that F' : G x G — C is such that the maps
G — Cz — S; F(z,y) and G — C;y — Sz F(z,y) are well-defined, continuous, and

compactly supported. Exercise |[11.4] asks for an example.

Given a topological group G we say that { : C.(G) — C is a (left) Haar integral on G

if { is a non-trivial (meaning not identically zero) non-negative linear map with

f)\x(f) = Jf for all x € G and f € C.(G).

We sometimes call this last property (left) translation invariance.

Remark 4.7. Our definition of Haar integral requires C.(G) to be non-trivial and hence
(Proposition for G to support a Haar integral it must be locally compact. It will turn
out in Theorem that this is enough to guarantee that there is a Haar integral.

Example 4.8. The map { in Example restricted to C.(R) is a Haar integral, with the

only property not already recorded being translation-invariance.

Example 4.9. If G is a discrete group then it supports a left Haar integral:

f CUG) > T f - Y f(a),

zelG

Exercise [[11.1] gives a partial converse to this.

The integral of a non-negative continuous function that is not identically 0 is positive,
and this already follows from the axioms of a Haar integral. To establish this we begin with

a lemma on the comparability of functions:

Lemma 4.10. Suppose that G is a topological group, f,g€ CFH(G) and f is not identically

zero. Then there isn e N*, ¢1,...,¢, =0 and yy, ...,y € G such that
g(z) < Z cid: () () for all x € G.
i=1

Proof. Since f is not identically zero there is some zy € G such that f(zp) > 0 and hence
(by Lemma an open neighbourhood of the identity U such that f(zoy) > f(z0)/2 for
all y € U. Let K be compact containing the support of g. Then {zU : z € K} is an open

cover of K and so there are elements x4, ..., z, such that z,U, ..., z,U covers K. But then
g(@) < 2f(x0) Mgl Y flaor; w) = 2f(@0) Mgl ), Ayt (f) (@) for all z € G,
i=1 i=1

and the result is proved. O
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Corollary 4.11. Suppose that G is a topological group, § is a left Haar integral on G, and
fe€CHG) has § f =0. Then f is identically zero.

Proof. We suppose, for a contradiction, that f is not identically zero. Then by Lemma 4.10
for g € CF(G) we have g < 37 ¢\, (f) for e1,...,¢, =0 and yy,...,y, € G. By linearity,

non-negativity, and translation invariance of the Haar integral

fggécif/\yi(f) Zicsz=0-

Since g = 0, non-negativity of the Haar integral implies { g > 0, and hence {g = 0.
Now, in view of Observation [4.1|we have that {h = 0 for all h € C.(G) i.e. { is identically

zero contradicting the non-triviality of the Haar integral. The lemma follows. O]

Lemma 4.12. Suppose that G is a topological group, § is a left Haar integral on G, and

feC.G). Then
1/p
([170r) "= 171 s

Proof. Since f is a continuous function with compact support there is y € G with |f(y)| =
| flls, and we may suppose this is non-zero.

For € > 0, the set U := {z € G : |f(z) — f(y)| < €} is an open neighbourhood of y; since
G is regular (Proposition U contains a closed neighbourhood of y and intersecting this
with a compact neighbourhood of y (which exists since G is locally compact by Proposition
3.7), we have a compact neighbourhood K of y contained in U.

By Corollary (applicable since G is locally compact) there is a continuous h : G —
[0, 1] with support contained in K that is not identically 0, and hence by Corollary
§h > 0. It follows by the triangle inequality that

) S‘f‘ > [ @ = (- [

Since /7 — 1 as p — oo for any r > 0, and € > 0 was arbitrary we get the result. O]

Existence of a Haar Integral

Our first main aim is to establish the following.

Theorem 4.13 (Existence of a Haar integral). Suppose that G is a locally compact topolog-
ical group. Then there is a left Haar integral on G.

We begin by defining a sort of approximation: for f, ¢ € C}(G) with ¢ not identically 0
put

(f;0) :=inf{ch:neN*;cl,...,cn>O;y1,...,yneG; and f < ch)\yj1(¢)}. (4.1)
j=1

=1

We think of this as a sort of ‘covering number’ and begin with some basic properties:
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Lemma 4.14. Suppose that G is a topological group, f,g,d,1¥ € CH(G) are such that ¢ and
W are not identically 0. Then

(i) (f;9) is well-defined;
(ii) (d:0) < 1;
(iii) (f;0) < (9:¢) whenever f < g;
(w) (f +9:9) < (f;0) + (9;0);

(v) (nf; @) = u(f; @) for p=0;

(vi) (Aa(f);0) = (f;9) for all z € G;
(vii) (f;9) < (f;9)(¢:9).

Proof. Lemma shows that the set on the right of (4.1)) is non-empty; it has 0 as a lower
bound. follows immediately. For i note that ¢ < 1.)\151(¢) so that (¢;¢) < 1. [(iii)}
, , and are all immediate. Finally, for suppose ¢y, ..., ¢, = 0 are such that
f <201 ¢iA,-1(8), so that by ((iii)} [(iv)} [(v)} and |(vi)| we have (f;¢)) < X7 ¢j(¢;4). The

result follows on taking infima. ]

To make use of (-;-) we need to fix a non-zero reference function f, € CF(G) and for

¢ € CF(G) not identically zero we put

(f: )
(f0;¢)

where the inequality follows from Lemma [(viD)]
Many of the properties of Lemma translate into properties of I,. In particular, we

have I4(f1 + fa) < Is(f1) + Is(f2); for suitable ¢ we also have the following converse.

< (fa fO)? (4-2>

Io(f) ==

Lemma 4.15. Suppose that G is a locally compact topological group, fi, fo € CH(G) and
e > 0. Then there is a symmetric open neighbourhood of the identity V such that if ¢ €
CHG) is not identically 0 and has support in' V' then I(f1) + I(f2) < Is(f1 + fa) + €.

Proof. Let K be a compact set containing the support of both f; and fy (possible since
the union of two compact sets is compact) and apply Corollary to get F: G — [0,1]
continuous, compactly supported, and with F(z) =1 for all z € K.

For j € {1,2} let g; be continuous such that (f; + fo + €F")g; = f; (possible by Lemma
since supp f; € K < supp F'). By Observation (and the fact that the intersection

of two open covers is an open cover) there is an open cover U of G such that if v,y e U e U

6 As it happens it is easy to prove equality here but we do not need it.
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then |gj(x) — g;(y)| < € for j € {1,2}. K is compact; apply Lemma to U to get a
symmetric open neighbourhood of the identity V' such that {yV : y € K} refines U as a
cover of K.

Now suppose that ¢ € CF(G) is not identically 0 and has support in V| and that
Cly...,¢, = 0and yy,...,y, € G are such that

n

fi(z) + fa(x) + eF(x) < Z cid(y;x) for all x € G.
i=1
If ¢(y;x)gj(x) # 0 then x € K and y’1 e 2V (using V = V1), but 2V is a subset of a set
in U so g;(x) < g;(y;') + € and hence

n n

filx) < eid(yir)gi(x) < Y eilgi(yi!) + )dlysw) for all z € G, j € {1,2}.

i=1 =1

By Lemma .14 [W)][GGid)}, [Giv)[(v)] & we have

(f5:0) Zcz 9; (y; ') +e) for all j e {1,2},

=1

but g1 (y™1) + g2(y™) < 1 for all y € G, so

n

(f1:0) + (f2:0) < D i1 + 2e).

=1

Taking infima and then applying Lemma and and the inequality in (4.2) we
get

Iy(f1) + 1o(f2) < (1 +26)[4(f1 + fa + €F)
< (L+26)(Is(f1 + fa) + ely(F))
< Lu(f1 + fo) + 2(f1 + fos fo) + (F; fo) + 2¢(F; fo) )e.

The result follows since € > 0 was arbitrary and F', fi, fo and fy do not depend on e. [
With these lemmas we can turn to the main argument.

Proof of Theorem[{.15 By Corollary there is fy € CF(G) with fy not identically zero.
Write F' for the set of functions I : CF(G) — Ry with I(f) < (f; fo) for all f e CHG)
endowed with the product topology i.e. the weakest topology such that the maps F —
[0, (f; fo)]; I — I(f) are continuous for all f € C}(G). Since the closed interval [0, (f; fo)] is
compact, F'is a (non-empty) product of compact spaces and so compact (this is Tychonoff’s
Theorem). Let X be the set of I € F' such that

I(fo) =1 (4.3)

Page 37



I(nf) = pI(f) for all p >0, f € CFH(G), (4.4)
and

IN(f)) =I(f) for all z € G, f € CH(G). (4.5)

The set X is closed as an intersection of the preimage of closed sets. Moreover, by Lemma
I, € X for any ¢ € C}(G) that is not identically zero: the fact that I(f) € [0, (f; fo)]
follows from the inequality in ; by design; by and by .

This almost gives us a Haar integral (on non-negative functions) except that in general
the elements of X are not additive, meaning we do not in general have I(f+f") = I(f)+I(f").
To get this we introduce some further sets: for € > 0 and f, f' € CF(G) define

B(f, fi€) :={l e X [I(f+ f) = I(f) = L(f)] < ¢}.

As with X, the sets B(f, f’;€) are closed. We shall show that any finite intersection of
such sets is non-empty: For any fi, f1, fo, fo, -+ fu, [h € CH(G) and €,...,¢, > 0, by
Lemma there are symmetric open neighbourhoods of the identity Vi,...,V,, such that
if ¢ € CF(G) is not identically 0 and is supported in V; then

Lo (fi + [7) = Ls(fi) — Is(f})] < e (4.6)

The set V := [/, V; is a symmetric open neighbourhood of the identity and by Corollary
there is ¢ € CF(G) that is not identically 0 with support contained in V. I enjoys
for all 1 < ¢ < n, and we noted before that Iy € X, hence Iy € ()., B(fi, f/, ;). We
conclude that {B(f, f’;¢) : f,f € CH(G),e > 0} is a set of closed subsets of F' with the
finite intersection property, but F' is compact and so there is some [ in all of these sets.
Such an I is additive since |I(f + f) — I(f) — I(f')] < e for all f, f' and € > 0. It remains
to define { : C.(G) — C by putting

Jf = [(fl) —I(fg) +Z](f3) —’L[(f4) where f = fl —f2+'éf3_if4 for flaf27f37f4 € C:(G)

This decomposition of functions in C.(G) is unique (noted in Observation and so this is
well-defined. Moreover, { is linear since [ is additive and enjoys ; it is non-negative since
I is non-negative (and /(0) = 0); it is translation invariant by (4.5]); and it is non-trivial by
(4.3]). The result is proved. 0

Uniqueness of the Haar integral
Our second main aim is to establish the following result.

Theorem 4.16 (Uniqueness of the Haar Integral). Suppose that G is a locally compact

topological group and § and S/ are left Haar integrals on G. Then there is some A > 0 such
that § = A
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For this we introduce a little more notation: Given a topological group G and f € C.(G)

~

we write f(z) = f(z™1).

Remark 4.17. 7 is a conjugate-linear multiplicative involution on C.(G), since complex con-

1

jugation and x — x~' are both continuous (and continuous images of compact sets are

compact).

Proof of Theorem[{.16. Suppose that fy, f1 € C.F(G) are not identically 0 and write K for a
compact set containing the support of fy and f; (which exists since finite unions of compact
sets are compact). Since G is locally compact there is an open neighbourhood H of 14
contained in a compact set L.

First, by Corollary there is a continuous compactly supported function F' : G —
[0,1] with F(z) = 1 for all z € KL (this set is compact by Lemma [2.18] and hence the
corollary applies).

Now, suppose € > 0 and apply Observation to get an open cover U; of G such that if
z,y € U elU; then |f;i(x) — fi(y)| < eforie{0,1}; let U := {Uyn Uy : Uy € Uy, Uy € Uy }. By
Lemma applied to U and the compact set K L there is a symmetric open neighbourhood
of the identity V such that {zV : 2 € KL} is a refinement of U as a cover of K'L; and by
Corollary there is h € CF(G) that is not identically zero and is supported in V n H~L.

For x € GG, translation invariance of S/ (and Observation tells us that

gh@*m=warw»=£%u4wzjfm»=ff.

For i € {0,1}, the map z — S; fi(x)h(y 'z) = fi(x) g’ﬁ is continuous and is supported in K

and so is compactly supported and §, S; fi(z)h(y ') exists and equals § f; S/Z (by linearity
of { and {'). On the other hand the map (x,y) — fi(x)h(y 'z) is continuous and supported
on K x L and so is compactly supported and hence by Fubini’s Theorem (Theorem [4.5)),

y— §_fi(x)h(y ') exists, and (using translation invariance of {) we have

fﬁfﬁ=L£ﬁumwﬂw=LLﬁwmwﬂm=LLL@@M@

Since {yV :y e KL} refines U (as a cover of K'L) we have |f;(yx) — fi(y)| < € for z € V and
ye KL; and for z € H~! and f;(yz) # 0 or fi(y) # 0 we have y € KH whence F(y) = 1. Tt
follows that

fiyh(x) — eF(y)h(x) < filyr)h(z) < fiy)h(z) + eF(y)h(z) for all 2,y € G,

and so by non-negativity and linearity of { and { we have

L/Lfi(y)h(x) - L/LGF(Z/)h(:c) < L/Lfi(y:v)h(x) < LILfi(y)h(x) n LLEF(y)h(x)'
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It follows (using linearity of ) that |{" f; {n —§ f; S’Z\ < e F{h, and hence by the triangle
inequality (and division, which is valid since { fo, § f1 # 0 by Corollary as fo and f; are

not identically zero) that
! 1 1 )
<e| Fle—++— |-
f <S fo {h

Since € was arbitrary (and in particular fy, fi, and F' do not depend on it) it follows that
' f/§ f is a constant A for all f e Cf(G) not identically zero. This constant must be non-
zero since S/ is non-trivial, and it must be positive since S/ and { are non-negative. The result
follows from the usual decomposition (Observation , and the fact that (0, S/ 0=0. 0O

{h §h

§no Th

S/ fO S/ z

§fo Sh

i T h
o Th

< +

Page 40



5 The Peter-Weyl Theorem

Suppose that G is a topological group, and for an inner product space V recall the definition
of U(V) from Example A finite dimensional unitary representation| of G is a
continuous homomorphism G — U(V') for some finite dimensional complex inner product

space V.

Example 5.1 (Permutation representation). For V' = C" with its usual inner product, i.e.

(x,yy:=x1y1 + -+ + T, Yn, the map
Sp = U(C");0 — (C" — C"; (z5)i~1 = (To-133))i=1)
from S,, endowed with the discrete topology, is a finite dimensional unitary representation.

A function f : G — C is said to be a matrix coefficient if there is a finite dimensional
unitary representation 7 : G — U(V), and elements v, w € V such that f(z) = (w(x)v,w)
for all z € G.

Example 5.2. Suppose that 7 : G — U(V) is a finite dimensional unitary representation
of a topological group G and ey, ..., e, is an orthonormal basis for V. If we write A, ; :=
(m(z)e;, e;) and suppose that A € C" is the vector for v € V written w.r.t. the basis ey, ..., e,
(i.e. \; = (v,€;)), then NA — the matrix A pre-multiplied by the row vector A — is 7(z)v

written w.r.t. the basis eq, ..., e,. This is the reason for the terminology ‘matrix coefficient’.

Remark 5.3. All matrix coefficients are continuous, since continuity of 7 : G — U(V') and
the definition of the topology on U(V') means that = — 7(x)v is continuous for all v € V,
and the projections v — (v, w) are continuous for all w € V', so the resulting composition is

also continuous.

Lemma 5.4. Suppose that G is a compact topological group. Then there is a unique left
Haar integral § on G with §1 =1 such that

() = J 17 for all f,g € C(C)

is an inner product on C(G) and for each x € G, A\, is unitary w.r.t. this inner product.

Furthermore, | flz := (f, Y)Y and | f|1 := | f| define norms on C(G) and

[Flly < Ul < [flleo for all f € C(G).

7&A unitary representation is usually a continuous group homomorphism 7 : G — U(H) for a complex

Hilbert space H, not merely a complex inner product space. Every finite dimensional complex inner product

space is complete and so a Hilbert space, and so our definition is not at variance with this.
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Proof. By Theorem m there is a left Haar integral S/ on G. Since GG is compact the
constant function 1 is compactly supported and so by Corollary , S/ 1 > 0. Diving by
this positive constant we get a left Haar integral { with {1 = 1. Now suppose that { is
another left Haar integral with {' 1 = 1. By Theorem {" = \{ for some A > 0, but since
f1=1= S/ 1 we conclude that A = 1 and § = S/ giving the claimed uniqueness.

Linearity in the first argument and conjugate-symmetry of -, ) follow from linearity of
the Haar integral and Observation respectively. (f, f) = 0 for all f € C(G) since { is
non-negative and (-, -) is then positive definite by Corollary [4.11]

The Haar integral is left-invariant so

qg>=ff§=jAAﬁn=Jd4ﬁxzﬁmnmfgec«m

and the first part is proved.

For any inner product f +— {f, %% is a norm, so || - | is a norm. Absolute homogeneity
of | - |1 follows from the fact that the modulus of a complex number is multiplicative and §
is linear, and the triangle inequality follows from, non-negativity, linearity and the triangle
inequality for the modulus of a complex number. | f[; = 0 by non-negativity of §, and finally
|- |1 is positive definite by Corollary [4.11]

Since G is compact the constant functions 1 and | f||% are both in C(G). By the Cauchy-

Schwarz inequality (which holds for all inner products) we have

I £l = Jlf! = (LD < Il H2 = [f]2 for all fe C(G);

and by non-negativity of { we have

W%=JUP<JW&=WﬁﬁHﬂf60@)

The result is proved. [

Remark 5.5. For the remainder of this section we write { for the unique Haar integral in
Lemma [5.4] and use the notation {-,-), || - |2 and || - |; as in this lemma.

For f,g € C(G) we define their convolution to be the function
vre fogla) = [ Falye) = @),
y

Lemma 5.6 (Basic properties of convolution). Suppose that G is a compact topological

group. Then
(1) C(G) — C(G);g — g= f is well-defined and linear for all f € C(G);

(ii) hx g+ f) = (h+g)+ f for all f,g,heC(G);
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(117) Ne(g = f) = Ne(g) = f forallx e G, f,g€ C(G);
(iv) {g=f,hy={qg,h= f> forall f,g,h € C(G) (recall f from just before Remark ;
(v) Ihx floo < min{[hly [ £]oo, [Bl2| Fl2} for all £,h e C(G).

Proof. By the first part of Fubini’s Theorem (Theorem the function g = f € C'(G) since
(z,y) — g(z)f(z~'y) is continuous and compactly supported. Since {_is linear, g — g = f
is well-defined and linear giving [(i)]

For We apply A, to the integrand z — g(z) f(2~'y~'x) using that §_ is a left Haar inte-
gral; then Fubini’s Theorem (Theorem [4.5)) since (z,y) — h(y)g(y~'z)f(2 'z is continuous;
and finally linearity of Sy to see that

helg D) = |

Y

= Lh(y)ﬁg(y‘lz)f(flx) - f (L h(y)g(y‘IZ)) f"ra) = (hxg) = f(z)

) [ 915y )

as claimed.
For [(iii)| note that Ai(g * f)(@) = g = f(t7'2) = (g, M1(f)) = @A (N(f) =

M), A () = M(g) * f(x) since A, is unitary w.r.t. {-,-) by Lemma
For |(iv)| since the function (x,y) — g(z)f(z 'y)h(y) is continuous and compactly sup-

ported, by Fubini’s Theorem (Theorem and linearity of Sy; and then Observation

we have

{g* fihy= JJ F@y)h(y)

- Lg(g;)Lf(x‘ y)h(y) = Lg(fv)Lh(y) fly—'z) = (g.h+ ),

Finally, follows on the one hand since

as required.

e @) < | B DI < [ 1L = il

and on the other since |h + f(z)] = Kb, A(F)] < [R]2|Xe(F)]2 = |2]2] fll2. The result is
proved. O

Remark 5.7. As usual, in view of the associativity in there is no ambiguity in omitting

parentheses when writing expressions like h = g = f.

Proposition 5.8. Suppose that G is a compact topological group G, f € C(G) and (gn)nen+
is a sequence of elements of C(G) with |g,|l1 < 1. Then there is a subsequence (g, )icn+

such that g,, * f converges uniformly to some element of C(G) as i — oo.
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Proof. For each j € N*, let U; be an open cover of G such that if z,y € U € U; then
|f(xz) — f(y)] < 1/j. Since G is compact apply Lemma to get an open neighbourhood
of the identity U; such that {zU; : © € G} refines U;; and by compactness again there is a
finite cover {z1,Uj, ..., Tk, ~U-} which refines {zU; : z € G}.

By Lemma [5.4] E- G * € [=|flleo, | floo]- Let mg; = ¢ for all i € N*, and suppose
that j = 1. By the Heine- Borel theorem (for R*()) there is subsequence (n;;); of (n;_1,;);
such that g, * f(xx,;) converges for all 1 < k < k(j). Setting n; := n;; we have that the
tail of (n;); is a subsequence of (n;;); for all j and so g,, * f(xy ;) converges, say to zj ;, as
i — oo forall 1 <k < k(j) and j € N*,

Suppose € > 0 and let j := [3¢7!]. For all 1 < k < k(j) let M, be such that |g,, =
fzr;) — 265 < €/6 for all i = My; let M := max{M; : 1 < k < k(j)} and suppose that
i,i'" = M.

For z € G there is some 1 < k < k(j) such that = € z;, ;U; and hence for all y € G we have
ytz,y tay ;€ ylay,;U; which is a subset of an element of Uj, so |f(y'z) — f(y tay,)| <
1/j. Thus for g € C(G) with |g]; < 1 we have

9+ 1(2) — g Fn)] = 10 AalF) = Ao, (D)
< 1glhAa(F) = Aoy (Pl < sup £ (371a) - f(y-lxj,k>\<§<e/3.

yE

In particular this holds for g = g,, and g = gy, so that
(gn, # f (@) = gn, o [(@)] < Mgn, * f(@) = g * fl2rg)] + |gn, = f2rg) — 204
+ |25 = oy * [ (@) + gny * [ (@) = Gn, = f(2)] <€

Since = € G was arbitrary it follows that the sequence of functions (g,, * f); is uniformly

Cauchy and so converges to a continuous function on GG. The result is proved. O
We say that V < C(G) is invariant if A\, (v) e V for allv e V.

Example 5.9. Suppose that V < C(G) is invariant and finite dimensional. Then 7 : G —
U(V);z— (V= V;v+— A\ (v)) is a finite dimensional unitary representation.

For any V < C(G) write V* for the set of w € C(G) such that (v,w) =0 for allve V.

Proposition 5.10. Suppose that G is a compact topological group and f € C(G). Then
there is an invariant space W < C(G) with dim W < e 2|f||? such that if g € W then

lg = fl2 < €|gl2-

Proof. Let V be the set of vectors of the form

hy -+ h,, where n € Ny, h; * f f=MXh;and \; =€ forall 1 <i<n. (5.1)
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This is an invariant space by Lemma . For v e V we shall write v = hy +--- + h,, to
mean a decomposition as in (5.1]) with the additional requirements that h; is not identically
zero (so |h;|3 # 0 since h; is continuous), and \; # A; for ¢ # j, which is possible since the
map T : C(G) — C(G);h +— h =+ f = f is linear. (The zero vector is represented as a sum
with no terms.)

In fact T is positive definite and so the h;s, which are eigenvectors with corresponding

eigenvalues \;, are perpendicular for different eigenvalues. In our language the relevant parts
of this follow since if h; * ]?* f = Aih; and h; f* f = Ajhj, then

Nilhi, hyy = (i by = Chg s o by = Chayhy s o fy = Chay Ajhyy = NiCha, hy).

Applying this identity with j = ¢ for some h; # 0 we see that ); is real. Then applying
it again with A\; # \; we have (h;, h;) = 0. In particular, if v = hy + --- + h,, in the way
discussed after ((5.1]) then

n

[v= fI5 == fo o) = Y Nlhals = € ) Ihalls = €]lo]3. (5.2)
i=1

=1

If V' contains n linearly independent vectors, then by the Gram-Schmidt procesﬁ there are

orthonormal vectors vy,...,v, € V. For x € G, by Bessel’s inequalityﬂ

Z [vi A (DI < A ()12 = [ f]2-

Integrating against = and using ([5.2]) we have

n

né < ) [ oo Fol = | Rl oD < [ 173 = 175
Ti=1 x

i=1v%

8Given ey, e, . .. linearly independent, the Gram-Schmidt process in an inner product space defines

1—1
w; = e — Z {ei, v v and v; := u;/|ug|.

k=1
It can be shown by induction that vy, v, ... is an orthonormal sequence.
9Bessel’s inequality is the fact that if vq,vs,... is an orthonormal sequence in an inner product space

then Y7 | [{v;,v)|* < |[v|? for all v. To prove it note that because the v;s are orthonormal we have

— Z Z <Ui,v>m<vi,vj> = Z [Cvg, D[,

n
Z (vg, vY)v;
i=1

Hence by the Cauchy-Schwarz inequality

(Z |<’Ui’v>|2> = ’ v, Z <’UZ',U>Ui>

Cancelling gives the inequality.

2

< ol

2

Z (i, vpui| = [lv]? <Z |<vi,v>|2> .
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It follows that dim V' < e 2|| f3.

Write W := {k + f : k € V}, which is invariant by Lemma and the fact V is
invariant. Let M := sup{|g* f|2: g € W' and |g|. < 1}. We shall be done if we can show
that M? < €.

Claim. If he V- then |h+ fls < M|h|s.

Proof. First, h = f e W+: To see this, for v € V write v = h; + --- + h, to mean a
decomposition as in (5.1)). Then

n

(hofos o= Y Chhin Fo £y =3 Ah iy = 0.

i—1
Now let k € W' have k|, = 1 such that |k = flz = (hs f. k) = Chokos f) < |Ba]k = fll2 <
M| h|s as claimed. O

Let g, € W+ have |g, = f|o — M and |g,|> < 1. By Cauchy-Schwarz we have ||g,|; < 1
and we may apply Proposition to pass to a subsequence which converges uniformly.
Hence by relabelling we may now additionally assume that g, * f — h uniformly for some
h € C(G). In particular, |g, = flla — |hl2 and {h, g, = f> — ||k]|3 and hence |h[s = M.
Moreover, if v € V' then (g, = f,v) = {gn,v * f> = 0, and the former converges to (h,v),
whence h e V*.

Combining this with the claim above we have

|hs [ = M2gal5 = B JI5 = 2M° Reh s f gn) + M| a5
< M?||h|5 — 2M?* Relh, g, * ) + M* — 0.

Hence M2g, — h+f in ||- |, and since convergence in | -||; is mapped to uniform convergence
by convolution operators we have M?2g,, * f — h * f # f. Uniqueness of limits then ensures
M2h =h f«f. If M2 > € then h e V, but then since h € V' we see that h is identically

zero. In this case M = |[h], = 0 and certainly M? < ¢? as required. The result is proved. [

Theorem 5.11 (The Peter-Weyl Theorem, Part I). Suppose that G is a compact topological

group. Then matriz coefficients are dense in C(G) with the uniform norm.

Proof. Suppose that f € C(G) and let € > 0. Observation m gives us an open cover U;
of G such that if z,y € U € U; then ]f(x) — f(y)\ < €/2. Since G is compact, by Lemma
there is an open neighbourhood of the identity U such that {zU : z € G} refines U,
and by Lemma there is an open set V such that V2 < U. By Corollary , there is
g € C(G) non-negative and not identically 0 such that supp g = V. By rescaling g we may
assume that {¢g = 1. The support of g * g is contained in V2 < U and by Fubini’s Theorem

(Theorem [4.5)) we therefore have { g g = 1. But then

j g+ g Fy'z) — Fa)

g g fx) — f(x)] =
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for all z € G and so ||[f — g+ g * flo < €/2.

Let 0 < €|g|5 [ f]5/2 for reasons which will be come clear shortly. By Proposition m
there is a finite dimensional invariant space W < C(G) such that ||h = g[2 < 0||h]2 for all
h e W, Write my : C(G) — C(G) for the map projecting onto W. Then g — my(g) € W
and so [|g = g — mw(g) * g2 < d]lg — Tw(g)[2 < d]|g]2- By Lemma we have

lg g% F—mw(g) = gx Flo < 6lgla] flo-

By the triangle inequality we have | f — my(g) * g * f|lw < €. Finally, writing k := (g f)~ we
have by definition; since A, is unitary; since W is invariant; since 7y is self-adjoint (meaning

(rwv,w) = (v, myw) for all v,w e C(G)); and again since )\, is unitary, that

mw(g) * g+ f(x) = (mw(9), Ae(K)) = Ao (7w (9)), k)
= (mw (Ae-1(mw (9))), k)
= Qe (mw (9)), mw (k)
= (mw (9), Aa(mw (K))) = QAa(mw (K)), 7w (9))-

Hence my (g) * g » f(x) is a matrix coefficient. Since ¢ > 0 was arbitrary the result is

proved. O

Remark 5.12. /\There are other important parts to the Peter-Weyl Theorem which we

have not included here.
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6 The dual group

Suppose that G is a topologized group. We write G for the set of continuous homomorphisms
G — S' (where S! is as in Example , and call these characters. /\While characters
are elements of C'(G), they are not in C.(G) unless G is compact.

Example 6.1 (Characters of the circle group). For n € Z the maps S' — Sz — 27
are continuous homomorphisms of S and so characters. As it happens these are the only

characters but we shall not show this here.

Example 6.2 (Sign of permutations). Suppose that S,, is endowed with a topology making
it a left topological group such that A, is topologically closed. Then the map S,, — S';0 —

sgn(o) is a continuous homomorphism.

Example 6.3 (§1.24] contd.). For m a square-free natural number, and r € Z the maps

Zgy — SY; 2 — exp(2mizr/m) are continuous homomorphisms and so characters.

Example 6.4 (Legendre symbol). Given a finite Abelian Hausdorff topological group G, if
it has a unique element of order 2, then it has a unique character of order 2. (In fact this
is an ‘if and only if” which can either be proved directly or by combining what follows with
Proposition , Remark , and Theorem M)

The map G — G;x — 22 is a homomorphism and so its image, S, is a subgroup.
By hypothesis it has kernel of size 2 and so by Lagrange’s Theorem S has index 2 in G.
Define the map x : G — S' by x(z) = 1 if z € S and x(z) = —1 is z € G\S. This is a
homomorphism, and since G is finite and Hausdorff it is discrete and hence y is continuous.
On the other hand, if ¥’ : G — S is a character of order 2 then its kernel must contain S.
Since Y’ is non-trivial and S has index 2 in GG, we have ker x’ = S and hence y = x’. In
other words, G has a unique character of order 2.

For p prime the multiplicative group F7 is cyclic and if it is odd this group has even
order so has a unique element of order 2. The corresponding unique character of order 2 is

called the Legendre symbol and features in number theory.

The set G has a natural topology on it and to define this we make some notation: for

K a compact subset of G and § > 0 write
U(K,8) = {yeG:|y(x)—1| <6 for all z € K}.

Proposition 6.5. Suppose that G is a topologized group. Then G is a group with multipli-

cation and inversion defined by

(7,7) = (2 = y(2)y () and v — (z — y(2)),

Page 48



and identity, 14, the character taking the constant value 1; and there is a topology on G
making it into a Hausdorff Abelian topological group with (U(K,0))k s as K ranges compact
subsets of G and 6 > 0, is a neighbourhood base of the identity.

Proof. The fact that G is an Abelian group with the given multiplication, inversion, and

1

identity follows since S* is an Abelian group under multiplication and z=! = Z when z € S*.

For the topological aspects of the proposition we begin by showing that

T = {U YU(K,,04): T G and for all v € T the set K., is compact and 4, > O}
~el’

is a topology. To this end if A € YU (K, ) ny'U(K’, '), then by compactness of K (resp. K’)

there is 6y < 0 (resp. §) < &) such that [(\y)(x) —1| < dg for all x € K (resp. |(\Y)(z) —1] <

o) for all z € K’). Let K, := K u K’, which is compact, and ¢, := min{d — do, ¢’ — §,},

which is positive, and suppose that p € AU(K)y,dy). By the triangle inequality

() () = 1] = [(17) (@) A(@) = M2)| < |(17) (@) A(@) = 1]+ [Mzx) = 1] < dx+do < 0 for x € K,

and similarly [(p7)(x) — 1| < ¢ for all z € K'. In other words, AU (K, dy) < YU(K,d) n
YU(K’,d"), and hence taking the union over A € YU(K,d) n yU(K’,¢’) we have that
YU (K,0) n~'U(K’,d') € T as required.

Since 7 is a topology, to see that (U(K,0))k,s is a neighbourhood base of the identity
it is enough to note that if 15 € yU(K, d) then, again by compactness, there is ¢’ < 0 such
that |y(z) — 1| < ¢’ for all x € K and hence U(K, 6 — ¢') c yU(K, ).

Now suppose that yA € pU(K, €) for some u € G. Since YA is continuous and K is
compact there is some § > 0 such that |(yAZ)(x) — 1| < e — § for all x € K. But then if
v eyU(K,6/2) and X € A\U(K,§/2) we have

(YNE)(@) — 1] < [ NB) @) — GXE@)] + [GNE) @) — (B + (A @) — 1)
<d/24+0/24+e—F=ce.

It follows that v’ X € uU (K, €) and so the preimage of v\ contains a neighbourhood of (v, \)
in G x G ie. multiplication is continuous.

Since G is paratopological and hence semitopological Corollary and the fact that
m = U(K, ) tells us inversion is continuous; we conclude that G is a topological
group. Finally, the topology is Hausdorff since if v # A then there is some x € G such that
v(z) # Mx); put € := |y(z) — A(x)|/2 and note that yU({z},€) and AU({z},¢€) are disjoint

open sets containing v and A respectively. O

We call the topology above the compact-open topology, the topological group G the

dual group of GG, and its identity the trivial character.
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Example 6.6 (Dual group of indiscrete topological groups). When G is a group with the
indiscrete topology the only continuous functions are constant, and hence there is only one
continuous homomorphism, the trivial character. It follows that G = {15}, and since there
is only one topology and one group structure on a set of size 1 this completely determines

the dual group.

Example gave topological reasons for the dual group being trivial, but there can also

be algebraic reasons:

Example 6.7 (Dual group of non-Abelian simple groups). Suppose that G is a non-Abelian
simpld™| topological group. Since G is non-Abelian there are elements z,y € G with 2y # yz,
but then zyz~ly~! # 1g. If v € G then

Y(ayz 'y ™) = y(@)v(y)y(@) Ty (y) T =1

since S' is Abelian. We conclude that the kernel of « is non-trivial, but all kernels are
normal subgroups and since G is simple it follows that kery = G i.e. 7y is trivial. In other
words G = {1a}

Proposition 6.8. Suppose that G is a compact topologized group. Then G is discrete.

Proof. Suppose that v # 15 so there is € G such that y(z) # 1. Let y € G be such that
|7(y) — 1| is maximal (which exists since G is compact and z — |y(x) — 1| is continuous)

and note that by assumption this is positive. If |y(y) — 1| < 1 then we have

(W) =1 = [y (@) =1 =2+ (v(y) = )7 (y) — 1]
= (2 yv(y) = WDIv(y) — 1] > [y(y) = 1].

This is a contradiction, whence v ¢ U(G, 1) and so {15} = U(G, 1) is open so the topology

is discrete. O

Example 6.9 (Dual group of discrete finite cyclic groups). Suppose that C' is a finite cyclic
group endowed with the discrete topology. Since C'is cyclic it is generated by some element

x, and the map

¢:C— Cia"— (C — S' 2t — exp(2mirl/|C)))

is a well-defined homeomorphic isomorphism. To see this note that ¢ is well-defined in
the sense that different representations of an element in the domain produce the same
image: 2" = z” implies |C| | » — " and hence exp(27irl/|C|) = exp(27ir'l/|C|); and ¢

is well-defined in the sense that ¢(z") as defined is genuinely an element of C: ol = 2t

10A simple group is a group whose only normal subgroups are the trivial group and the whole group

e.g. Ap, the alternating group on n elements, when n > 5 as shown in Part A: Group Theory.
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implies |C| | [ — I’ and hence exp(2mirl/|C|) = exp(2mirl’/|C|) so that ¢(z") is itself a
well-defined function; it is continuous since C' is discrete; and it is a homomorphism since
exp(2mir(l +1")/|C|) = exp(2mirl/|C|) exp(2mirl’ /|C]).

¢ is a homomorphism since exp(27i(r + r)l/|C|) = exp(2mirl/|C|) exp(2wir'l/|C|). ¢ is
injective since if exp(2mirl/|C|) = 1 for all [ then |C| | r so 2" = 1¢. ¢ is surjective since if
v : C — S'is a homomorphism then v(z)!°! = 1 so y(x) = exp(27ir/|C|) for some r € Z,
and v = ¢(z").

We conclude that ¢ : C' — Cis a bijective group homomorphism and hence ¢! is a
group homomorphism. Since C' is finite, C' is compact and so C is discrete by Proposition

and hence ¢! is continuous as required.

There is only one infinite cyclic group up to isomorphism so to complement the above

we have:

Example 6.10 (The dual of Z;). The map
¢ S' o Tps 2> (Zp — S'n— 2")

is well-defined because any map from a discrete group is continuous, and it certainly takes
z € S' to homomorphisms of Z. ¢ is visibly a homomorphism. If ¢(z) = ¢(w) then
z=¢(2)(1) = ¢p(w)(1) = w, so ¢ is injective; and any homomorphism Z — S* is determined
by where it maps 1, and so ¢ is surjective.

Compact subsets of discrete topological spaces are finite, and so if K < Z; is compact
then there if m € N* such that |n| < m for all n € K. Then for § > 0, if |z — w| < §/m and

n € K we have
2" —w"| = |2 — w| <z —w[ ([ 4+ T < [z = wl|n| < 6.

In other words ¢ is continuous.

The continuous image of a compact set is compact and so Z; is compact. It is also
Hausdorff by Proposition and so by the Open Mapping Theorem (Theorem , @ is
a homeomorphic isomorphism. In words the dual of Z; is homeomorphically isomorphic to
St

Orthogonality of characters

Characters on compact Abelian topological groups are particularly useful because they con-
vert topological information into algebraic information. For this subsection it is useful to
use the normalisation of Lemma specifically { denotes the unique left Haar integral on
G with {1 =1 and we write

{f,q9):= f f(x)@ for all f,g € C(G).
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Lemma 6.11. Suppose that G is a compact Abelian topological group, v, € G. Then

Lify =+
)= ‘
0 otherwise.

Proof. The first case is immediate. If v # 4 then there is y € G such that v(y) # 7' (y).

Now
Y (W)Y = A () = Oy ()Y = (W),

and so (v, = 0. The result is proved. O

Lemma 6.12. Suppose that G is a compact Abelian topological group I' < G is finite,
w:I'—>C, and k € N*. Then

J

Proof. We expand out the integrand:

(ZwMW§)<ZwWW%0

/

= ) wh)wlhww(h) - wlh) - T ) (@)

2k

D R C A A R el

YL W=V

Dlw (@)

vyell

Apply { to both sides. By linearity of { and Lemma the contribution to the right hand

side is 0 unless y1 - - -y, = 71 - - -7, in which case it is 1. The result is proved. ]

Remark 6.13. The dual group of a countable group can be uncountable as Example [6.10
shows, but the dual group of a finite group must be finite: Indeed, if G is finite then z/l = 1
for all z € G and so if x : G — S! is a homomorphism then it must map into the |G|th roots
of unity. Since there are at most |G|/l maps from G into the set of |G|th roots of unity, it
follows that |G| < |G/ and so is finite.

The orthogonality of characters, however, gives a stronger bound: if G is finite, then
G is, in particular, compact and so the elements of G are orthonormal and hence linearly
independent elements of C'(G). The space C(G) is a subspace of the space of functions

G — C and so has dimension at most |G/, whence |G| < |G|.

Local compactness in the dual group

We can make use of the Haar integral we have developed to show that if G is a locally
compact topological group then the dual group is also locally compact. To do this we need

a lemma.
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Lemma 6.14. Suppose that G is a locally compact topological group supporting a Haar
integral §, fo € CH(G) has § fo # 0, and k,6 > 0. Then there is an open neighbourhood of
the identity Ls, such that if ‘Sfofy{ >k then |1 —~(y)| < 0 for all y € Ls,.

Proof. Write K for a compact set containing the support of fy and U for a compact neigh-
bourhood of the identity. UK is compact by Lemma Apply Corollary to get a
continuous compactly supported F': G — [0, 1] such that F(z) =1 for all z € UK.

By Proposition there is an open neighbourhood of the identity Ls, (which we may
assume is contained in U since U is a neighbourhood and so contains an open neighbourhood
of the identity) such that |\, (fo)— folew < dk/§ F forally € Ls .. (Note { F' > 0 by Corollary
4.11}) For y € Ls,, the support of A,(fy) — fo is contained in UK (since Ls,, < U) and so

[ ot = 1o < 10yt = ol [ 7 < b

Now, if y € Ls,, then

11 =7(y)|x <

(v(y) = 1) ffw

= Ufo)\yl(V) - ffw

= |[ ot = [ o] < [tz = sl < .

Dividing by x gives the claim. O]

Theorem 6.15. Suppose that G is a locally compact topological group. Then G is locally

compact.

Proof. Let § be a left Haar integral on G (which exists by Theorem [4.13). Since § is non-
trivial there is fo € C;F(G) such that { fo # 0 and we may rescale so that { fo = 1. Write K

for a compact set containing the support of fy and define
Vi={yeG:|y(x)—1] <1/4for all z € K},

so that V' certainly contains, U(K,1/4), an open neighbourhood of the identity.

Write M for the set of maps G — S! endowed with the product topology so that M is a
(non-empty) product of compact set and so compact. This is Tychonoff’s Theorem, and our
approach here has parallels with another place we used Tychonoft’s Theorem: in the proof
of Theorem . The set G is contained in the set M , but the compact-open topology on
G is not, in general, the same as that induced on G as a subspace of M. Our aim is to
make use of the compactness on M to show that G is locally compact in the compact-open
topology.

First we restrict to homomorphisms: write H for the set of homomorphisms G — S?!,

which is a closed subset of M since it is the intersection over all pairs x,y € G of the set
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of f € M such that f(xy) = f(z)f(y), which are closed since the maps evaluation maps
[ — f(x) are closed in the product topology. With the sets L34 as in Lemma write

Ci= (] {feH:|f(x)-1<0d}
5>0,2€Ls 3/4

which is also closed as an intersection of closed sets. By Proposition as sets we have
C < G since the sets {z € S*: |1 — 2] < ¢} form a neighbourhood base of the identity in
St and if f e C then f~'({z € S': |1 — 2| < &}) D Lss4 which is a neighbourhood of the
identity in G.

If v € V then ‘1 - Sfov} < § foll —~| < 1/4, so by the triangle inequality | { foy| = 3/4
and hence Lemma tells us that v € C. Thus (as sets) V < C < G and so

V= ({feC:Ifl@) -1l <1/4},
veK
which is again a closed subset of M.

Our aim is to show that V' is compact in the compact-open topology on G. This follows
if every cover of the form U = {yU(K,,0,) : 7€ V} (where K, is compact and 6, > 0) has
a finite subcover. Write L, := Lj 1212 (where these sets are as in Lemma applied to
fo) and note that by compactness of K., there is a finite set 7, such that K., < T, L,. Write

U,:={feM:|f(x)—-1] <é,/2forall z e T}

which is an open set in M since T, is finite. Suppose that A € (yU,) n'V for some vy € V.
Then since v, A € V, the triangle inequality gives

L= [ foyA < | foll =FA[ = | foll =7 +7 = 7FA]
- Jom)<] J
<Jﬁﬂ—ﬂ+fﬁH—M<1p.

Hence ‘S f(ﬁ/\} > 1/2 by the triangle inequality again. Lemma applied towith fy gives
11 —~v(y)A(y)| < d,/2 for all y € L,. But F\ € U, so we also have |1 — v(2)\(z)| < d,/2 for
all z € T,. Thus, if z € K, then there is z € T, and y € L, such that x = zy and

1= (@) @)] < 1 =7(2)AE)] + [1(2)AE) =129 (=)

= [1=7EAE)]+ 1 =1()A)| < 0,

We conclude that yU, n'V < yU(K,,d,) n' V. Finally {yU, : v € V'} is a cover of V by sets
that are open in M. M is compact and V' is closed as a subset of M so V' is compact as a
subset of M, and hence {yU, : v € V'} has a finite subcover which leads to a finite subcover

of our original cover Y. The result is proved. [
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Reflexive topological groups

For G a topological group write
ag: G — Gix— (v~ 7(2)).

Observation 6.16. Certainly ag(zy)(y) = v(zy) = v(2)v(y) = ag(x)(y)ac(y)(y) for all
x,ye G and v € @, and so ag ¢s a homomorphism.

When ag is a homeomorphic isomorphism we say that G is reflexive.

To analyse the continuity of a in the following auxiliary lemma can be useful.

Lemma 6.17. Suppose that G is a locally compact topological group. Then the map
G x G — 8% (z,7) = () (6.1)

1S continuous.

Proof. For 6 > 0 and v € G the set {xeG:|y(x) — 1] < /2} is an open neighbourhood of
1¢ and so by regularity of G (Proposition there is an open neighbourhood of 14, call
it L, such that L < {zr € G : |y(x) — 1| < 6/2}. We may take L to be a subset of a compact
set since G is locally compact, whence L is a subset of the closure of a compact set which
is compact by Lemma [2.32

Suppose further that = € G, and (2',v') € L x vU(xL,5/2) — an open neighbourhood
of (,7). Then

17 (2") = ()] < [V (2") — ()| + |7(2") — y(z)]
= |(YW)() =1+ [y ') = 1] < 6,
and the result follows. O

For Ac G compact and 0 > 0 define
Bohr(A,0) :={zx e G: |y(z) — 1| < 6 for all vy e A}.

Proposition 6.18. Suppose that G is a locally compact topological group. Then ag is a

continuous homomorphism.

Proof. By Proposition it suffices to show that the sets Bohr(A,d) are open for A < G
compact and § > 0. Fix xy € Bohr(A,d). For each A € A, Lemma m gives us open
neighbourhoods of the respective identities Uy < G and I') < G such that zoUy x Ay is
a subset of {(x,v) : |y(x) — 1] < d}. The sets {A'y : A € A} form an open cover of A
and so there is a finite subcover Iy, ..., A,y of A;let U := Uy, n---nU,,. Then

zoU’ < Bohr(A, ), and the set is open as required. O
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Remark 6.19. In Exercise we shall see that there are reflexive topological groups that
are not locally compact. On the other hand, in [MP95] it is shown that if G is a reflexive
topological group such that the map in is continuous then G is locally compact, and
so Exercise gives an example where the map in (6.1)) is not continuous.

To analyse the injectivity of ag we use the following consequence of the Peter-Weyl

Theorem:

Proposition 6.20. Suppose that G is a compact Hausdorff Abelian topological group and
x # 1g. Then there is v € G such that v(x) # 1.

Proof. By Corollary there is a continuous f € C(G) such that f(z) # f(1). By
Theorem there is an inner product space V', v,w € V and a continuous homomorphism
7 : G — U(V) such that | f(z) — (m(2)v, w)| < 3| f(x) — f(1)] for all z € G. In particular, by
the triangle inequality m(x)v # w(1g)v = v.

Let W:={ueV :m(x)u=u}and Vo :={ueV :{u,u'y=0 for all W' € W}. Then

(i) m(y)v e V, for all y € G and v € Vj, since (m(y)v, v’y = (v, w(y)*u') = {(v,u’y = 0 for
all ' € W:;

(ii) and Vy # {0} since if v’ € W then (w(z)v — v,u') = {(v,m(x)*u') — (v,u') = 0, so
0#7m(x)v—vel.

Suppose that ¢ € Ny and w(y)v € V; for all v € V; and y € G and V; # {0}. If there is
y € G such that 7(y) is not a scalar multiple of the identity on V; then let V;; be an
eigenspace of m(y) restricted to V; corresponding, say, to some eigenvalue \;;1. We have

0 < dimV;;; < dimVj; since GG is Abelian, if v € V;; and z € G then

m(y)(m(2)v) = m(yz)v = w(zy)v = 7(2) (7 (y)v) = 7(2)Ain10) = Aipam(2)v

and so w(z)v € V;11. By induction we conclude that this terminates with some space V; # {0}
such that m(z) is a scalar multiple of the identity on V; for every z € G; let v(z) be this
scalar. Since 7 is a continuous homomorphism, so is v (indeed, v is a matrix coefficient).
Moreover since V; # {0} there is 0 # v € V; and y(x)v" = w(x)v" # v’ since V; < Vp, whence

v(z) # 1 and the result is proved. O]

Remark 6.21. We cannot relax any of the hypotheses in a strong sense: if we drop ‘Abelian’
then Example [6.7| shows that the dual may be trivial; if we drop ‘Hausdorff” then Example
shows that the dual may be trivial; and if we drop ‘compact’ then Exercise shows
that the dual may be trivial.

Theorem 6.22 (Pontryagin duality for compact Hausdorff Abelian topological groups).
Suppose that G is a compact Hausdorff Abelian topological group. Then G is reflexive.
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Proof. By Proposition and Theorem |6.15] G is a locally compact Hausdorff Abelian
topological group, so by Proposition and the Open Mapping Theorem (Theorem 2.34))
it is enough to show that ag is a leeCtIOIl First, it is injective by Proposition[6.20} Secondly,

since G is compact and ag is continuous, the set ag(G) is compact and so closed (since G is
Hausdorff). Hence for surjectivity of a¢ it is enough to S/I\IOW that the image of ag is dense.

To show that ag has dense image, suppose that ¢ € G. By Proposition the group G
is discrete and hence any compact subset is finite and so it is enough to show that for finite
I < G there is y € G such that ¢(y) = v(y) for all ¥ € I'. To begin suppose, as we may,

that I' includes the trivial character, and define

ZQS a; ) and g(z 27

vyell vyell

By Lemma and the fact that ¢ is a homomorphism, for any k € N*, we have

f F@F = 6n) - b(w)dt) - B0

T TR=YE Y Y1 Ve= '71 ’Yk

Since f and g are continuous, by Lemma [1.12) we have | f]. = |g[w. But g(0¢) = |I'| and
lg(z)| < |T'|, whence there is y € G such that |f(y)| = |T|.

Since ¢(15) = 1, 14(y) = 1, and [(1)7(3)| = 1 for all y € T we have |f(y) — 1] < I~ 1.
Hence |f(y)|* +1—2Re f(y) < |T|* = 2|T| + 1, but | f(y)] =T and so Re f(y) = |I'| and

D 1o() > =2T| - 2Re f(y) <

~yel

It follows that each summand is 0 i.e. ¢(y) = v(y) for all v € I'. The result is proved. [

Remark 6.23. In view of Proposition [6.5] if G is a reflexive topological group then G' must
be Hausdorff and Abelian, and the above can be extended to show that all locally compact
Hausdorff Abelian topological groups are reflexive — this is often called Pontryagin duality.

On the other hand, Exercise shows that there are reflexive groups that are not

locally compact.
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