
Topological groups, 2024–2025

Tom Sanders

Course overview

Groups like the integers, the circle, and general linear groups (over R or C) share a number

of properties naturally captured by the notion of a topological group. Providing a unified

framework for these groups and properties was an important achievement of 20th century

mathematics, and in this course we shall develop this framework.

Highlights will include the existence and uniqueness of Haar integrals for locally compact

topological groups, the topology of the dual group, and the existence of characters in various

topological groups. Throughout, the course will use the tools of analysis to tie together the

topology and algebra, getting at superficially more algebraic facts by analytic means.

Course synopsis

[6 lectures] Definition of topological and topologized groups and intermediate structures.

Examples and non-examples, and basic properties. Subgroups. Quotient groups. The Open

Mapping Theorem.

[4 lectures] Complete regularity of topological groups. Continuous partitions of unity and

Fubini’s Theorem. Existence and uniqueness of Haar integrals.

[6 lectures] The Peter-Weyl Theorem for compact topological groups. Dual groups of topo-

logical groups. Local compactness of the dual of a locally compact topological group. Pon-

tryagin duality for compact Hausdorff Abelian topological groups.

References

There are other notes on similar topics with a slightly different focus e.g. [Fol95, Kör08,

Kra17, Meg17] and [Rud90].

General prerequisites

The course is designed to be pretty self-contained. We assume basic familiarity with groups

as covered in Prelims Groups and Group Actions. We shall also assume familiarity with

Prelims Linear Algebra and Part A: Metric Spaces and Complex Analysis for material on

metric and normed spaces.
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Familiarity with topology is essential, though not much is required content-wise. What

we use (and more) is covered in Part A: Topology, with the exception of Tychonoff’s The-

orem. This can be informally summarised as saying that a non-empty product of compact

spaces is compact, and there is no harm in taking it as a black box for the course. Those

interested in more detail may wish to consult Part C: Analytic Topology.

The Axiom of Choice is sometimes formulated as saying that an arbitrary product of

non-empty sets is non-empty, and in this formulation it may be less surprising that it can

be used to prove Tychonoff’s Theorem. It turns out that the converse is also true, i.e.

Tychonoff’s Theorem (and the other axioms of set theory) can be used to prove the Axiom

of Choice1.

Finally no familiarity with functional analysis is assumed, though there are clear sim-

ilarities and parallels for those who do have some. See, for example Part B: Functional

Analysis, and Part C: Further Functional Analysis.

Teaching

A first draft of these notes is on the website, but they will be updated after each lecture

with any resulting changes. This document was compiled on 5th May, 2025.

Lectures will be supplemented by some tutorial-style teaching where we can discuss the

course and also exercises from the sheets. Once I have a list of the MFoCS students attending

I shall be in touch to arrange these.

Contact details and feedback

Contact tom.sanders@maths.ox.ac.uk if you have any questions or feedback.

1Those unfamiliar and looking for a reference may wish to consult the notes [Ter10].

Page 2

mailto:tom.sanders@maths.ox.ac.uk


Group notation

A group G is said to be written multiplicatively if the binary operation of the group is

written G ˆ G Ñ G; px, yq ÞÑ xy and called multiplication; the unique inverse is written

x´1 and the map G Ñ G;x ÞÑ x´1 is called inversion; and the identity is written 1G. Given

S, T Ă G we write

S´1 :“ ts´1 : s P Su and ST :“ tst : s P S, t P T u.

For n P N0 we define Sn inductively by

S0 :“ t1Gu and Sn`1 :“ SnS; and S´n :“ pS´1
q
n.

!△This notation means that in general SS´1 ‰ S0 and S2 ‰ ts2 : s P Su.

It will also be convenient to write xS :“ txuS and Sx :“ Stxu for x P G, which aligns

the the usual notation for left and right cosets when S is a subgroup.

If G is Abelian then it is said to be written additively if the binary operation of the

group is written G ˆ G Ñ G; px, yq ÞÑ x ` y and called addition; inversion is written

G Ñ G;x ÞÑ ´x and called negation; and the identity is written 0G. !△All groups written

additively are Abelian, but not all Abelian groups will be written additively.

If G is written additively then the above notation changes in the obvious way so we write

´S instead of S´1, S ` T instead of ST , nS instead of Sn etc.
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1 Groups with topologies

A group G that is also a topological space is called a topologized group. Without any

additional assumptions this is no more than its constituent parts: a group and a topological

space. When the group inversion G Ñ G and the group operation G ˆ G Ñ G are both

continuous we say G is a topological group. (Here the product GˆG is given the product

topology.)

Example 1.1 (Indiscrete groups). For any group G, we write GI for G endowed with the

indiscrete topology. This is a topological group since any map into an indiscrete space is

continuous, so in particular both group inversion and the group operation are continuous.

Any indiscrete space is compact since the indiscrete topology is finite, so GI is a compact

topological group. GI is Hausdorff if and only if G is the trivial group.

A topological space is locally compact if every element is contained in a compact

neighbourhood. !△In the literature sometimes different definitions of local compactness

are used – see Remark 2.24 for an example that is relevant to us – although they usually

coincide when the space is additionally assumed to be Hausdorff.

Example 1.2 (Discrete groups). For any group G, we write GD for G endowed with the

discrete topology. This is a topological group since the product of two copies of the discrete

topology is discrete – so both the topological spaces G and G ˆ G are discrete – and any

map from a discrete space is continuous, so in particular both group inversion and the group

operation are continuous.

Any discrete space is locally compact since txu is an open neighbourhood of x which is

compact, since it is finite; and Hausdorff since txu and tyu are disjoint open neighbourhoods

of x and y respectively when x ‰ y. Hence GD is a locally compact Hausdorff topological

group. Since the set of singletons in GD is an open cover of GD, GD is compact if and only

if it is finite.

The reals under addition may be endowed with the discrete or indiscrete topologies

to make them into a topological group as above. However, neither of these is the ‘usual’

topology which has as open sets unions of intervals without their endpoints.

Example 1.3 (The real line). The additive group R endowed with its usual topology is a

topological group which we call the real line, and which we also denote R. The relevant

continuity is just the algebra of limits: in particular, if xn Ñ x0 then ´pxnq “ p´1qxn Ñ

p´1qx0 “ ´x0; and if xn Ñ x0 and yn Ñ y0, then xn ` yn Ñ x0 ` y0.

The compact sets in the real line R are exactly the closed and bounded sets (this is the

Heine-Borel Theorem for R). In particular, R itself is not bounded and so not compact;

and for any x P R, rx´ 1, x` 1s is a compact neighbourhood of x, so R is locally compact.
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R is also Hausdorff: certainly if x ‰ y then there are two disjoint open intervals, with one

containing x and the other y.

In summary, R is a locally compact Hausdorff topological group that is not compact.

The algebra of limits also apply multiplicatively and to complex numbers:

Example 1.4 (Non-zero complex numbers). The set of non-zero complex numbers, C˚, is

a multiplicative group and with the usual topology is a topological group also denoted C˚.

Again, the relevant continuity is just the algebra of limits: if xn Ñ x0 in C˚ then x´1
n Ñ x´1

0 ;

and if xn Ñ x0 and yn Ñ y0, then xnyn Ñ x0y0.

The compact sets in C are exactly the closed and bounded sets (this is the Heine-Borel

Theorem again, this time for R2). We can used this as in Example 1.3 to see that C˚ is a

locally compact Hausdorff topological group that is not compact.

Maps between topologized groups

The maps which will concern us the most are continuous homomorphisms, and also contin-

uous open homomorphisms, that is continuous homomorphisms in which the image of an

open set is open.

Example 1.5. The map R Ñ R;x ÞÑ αx for α P R is a continuous homomorphism of the

real line, and in fact these are the only continuous homomorphisms of the real line. For

α “ 0 this map is not open; for α ‰ 0, this map has an inverse of the same form and so is

open and in fact is a homeomorphic isomorphism.

Example 1.6. For a topologized group G, the identity map G Ñ GI is a continuous

isomorphism, because the identity map is an isomorphism and any map to an indiscrete

space is continuous.

!△G need not be a topological group despite the fact that Gi is a topological group.

That being said we do have the following:

Proposition 1.7. Suppose that θ : H Ñ G is a homomorphism and G is a topological group.

Then H with the initial topology w.r.t. θ (that is the topology tθ´1pUq : U is open in Gu) is

a topological group.

Proof. Suppose U is an open set in H so that there isW , open in G, such that U “ θ´1pW q.

For continuity of the inverse, note U´1 “ pθ´1pW qq´1 “ θ´1pW´1q, but W´1 is open in G

and so U´1 is open in H. For continuity of multiplication let S be a set of products of open

sets in G such that tpx, yq P G ˆ G : xy P W u “
Ť

S. Then

tpx, yq P H ˆ H : xy P Uu “ tpx, yq P H ˆ H : θpxqθpyq P W u

“ tpx, yq P H ˆ H : pθpxq, θpyqq P S ˆ T for some S ˆ T P Su

“
ď

tθ´1
pSq ˆ θ´1

pT q : S ˆ T P Su,
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and this last set is a union of open sets and so open. The result is proved.

Remark 1.8. In particular, if G is a topological group and H is a subgroup of G, then H

with the subspace topology is a topological group since the subspace topology is exactly the

initial topology on H w.r.t. the inclusion H Ñ G;x ÞÑ x.

Example 1.9 (The rationals). We write Q for the topological group of rationals with the

subspace topology inherited from the topological group R.
Q is Hausdorff since the real line is Hausdorff, but not locally compact (and so certainly

not compact) – this is exactly why one constructs the real line! To see this, suppose K were

a compact neighbourhood of 0. Then by definition of the subspace topology, there would

be ϵ ą 0 such that p´ϵ, ϵq X Q Ă K. The interval p´ϵ, ϵq contains an irrational α, and then

tp´8, α ´ 1{nq X Q, pα ` 1{n,8q X Q : n P N˚u would be an open cover of K without a

finite subcover – a contradiction.

Example 1.10 (The positive reals). We write Rą0 for the topological group of positive

reals with the subspace topology inherited from the topological group C˚.

In fact this is in a sense ‘the same’ as Example 1.3 because there is a homeomorphic

isomorphism between the two; part of Exercise II.1 asks for a proof of this.

Example 1.11 (The circle group). We write S1 for the topological group of complex num-

bers of modulus 1 with the subspace topology inherited from the topological group C˚; we

call it the circle group. S1 is compact (as a closed and bounded subset of C) and Hausdorff.

Example 1.12 (Universal covering of the circle group). The map θ : R Ñ S1;x ÞÑ

expp2πixq from the real line to the circle group is a surjective continuous open homomor-

phism. !△The topology on the real line is not the initial topology w.r.t θ, and so Proposition

1.7 applied to θ does not give us a new way of deducing that the real line is a topological

group. We shall revisit the topology we do get later in Example 2.27.

Group actions

Groups often arise with actions, and topological groups are no exception to this. !△Our

actions will all be left actions.

Example 1.13 (Homeomorphisms of topological spaces). For a topological space X and

group G of homeomorphisms of X under composition, the map G ˆ X Ñ X; pg, xq ÞÑ gpxq

is an action called the evaluation action.

Observation 1.14. Given an action of a group G on a topological space X, the maps X Ñ

X;x ÞÑ g.x are continuous for all g P G if and only if they are homeomorphisms since

g´1.pg.xq “ x “ g.pg´1.xq for all x P X and g P G.
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Example 1.15. The space X :“ r0, 1s with its usual topology and G the set of increasing

bijections r0, 1s Ñ r0, 1s. This is a group of continuous functions, and so of homeomorphisms

by the preceding observation.

Given an action of a group G on a topological space X, the topology of pointwise

converge on G w.r.t. this action is the weakest topology on G such that the maps

G Ñ X; g ÞÑ g.x are continuous for all x P X. (In other words it is the initial topology on

G w.r.t. the family of functions G Ñ X; g ÞÑ g.x for x P X.) In particular, given a base B
for X, the sets

Upx1, . . . , xn;U1, . . . , Unq :“ tg P G : g.x1 P U1, . . . , g.xn P Unu

with x1, . . . , xn P X and U1, . . . , Un P B form a base for the topology of pointwise convergence

w.r.t. the given action.

Proposition 1.16. Suppose that X is a topological space with topology given by a metric d,

and G is a group acting on X such that dpg.x, g.yq “ dpx, yq for all x, y P X and all g P G.

Then G with the topology of pointwise convergence w.r.t. this action is a topological group.

Proof. Write Bϵpxq :“ ty P X : dpx, yq ă ϵu so that tBϵpxq : x P X, ϵ ą 0u is a base for the

topology on X. If f0 P Upx1, . . . , xn;U1, . . . , Unq then there is ϵ ą 0 such that

Upx1, . . . , xn;Bϵpf0.x1q, . . . , Bϵpf0.xnqq Ă Upx1, . . . , xn;U1, . . . , Unq.

Hence the preimage under inversion of Upx1, . . . , xn;U1, . . . , Unq contains the preimage of

Upx1, . . . , xn;Bϵpf0.x1q, . . . , Bϵpf0.xnqq, but for f P G we have

dpf´1.pf0.xiq, xiq “ dpf0.xi, f.xiq “ dpf.xi, f0.xiq.

Hence this preimage contains Upf0.x1, . . . , f0.xn;Bϵpx1q, . . . , Bϵpxnqq, which is a neighbour-

hood of f´1
0 . Hence inversion is continuous.

Suppose g0f0 P Upx1, . . . , xn;U1, . . . , Unq, so that there is ϵ ą 0 such that

Upx1, . . . , xn;Bϵppg0f0q.x1q, . . . , Bϵppg0f0q.xnqq Ă Upx1, . . . , xn;U1, . . . , Unq.

Then, if dpg.pf0.xiq, pg0f0q.xiq ă ϵ{2 and dpf.xi, f0.xiq ă ϵ{2 for all 1 ď i ď n, we have

dppgfq.xi, pg0f0q.xiq ď dppgfq.xi, pgf0q.xiq ` dppgf0q.xi, pg0f0q.xiq

“ dpfpxiq, f0pxiqq ` dpg.pf0.xiq, pg0f0q.xiq ă ϵ,

and so gf P Upx1, . . . , xn;U1, . . . , Unq. Hence the preimage of Upx1, . . . , xn;U1, . . . , Unq

under the group operation contains the open neighbourhood

Upf0.x1, . . . , f0.xn;Bϵ{2ppg0f0q.x1q, . . . , Bϵ{2ppg0f0q.xnqq

ˆ Upx1, . . . , xn;Bϵ{2pf0.x1q, . . . , Bϵ{2pf0.xnqq

of pg0, f0q. We conclude that multiplication is continuous as a map G ˆ G Ñ G and G is a

topological group.
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Example 1.17 (Isometries of normed spaces). For X a normed space with norm } ¨ } the

map dpx, yq :“ }x´y} defines a metric on X, and we write IsopXq for the group of invertible

isometries of X, that is the set of bijections ϕ : X Ñ X such that }ϕpxq ´ ϕpyq} “ }x ´ y}

for all x, y P X. Proposition 1.16 applied to the evaluation action tells us that IsopXq is

a topological group when endowed with the topology of pointwise convergence (w.r.t. this

action).

If X is a real normed space then the Mazur-Ulam theorem [Väi03] tells us that every

invertible isometry is affine linear, but complex conjugation on C (considered as a complex

normed space with norm given by the absolute value) is an invertible isometry that is not

affine C-linear.

Example 1.18 (Unitary maps). For V a complex inner product space a unitary map is

a linear map ϕ : V Ñ V with xϕpvq, ϕpwqy “ xv, wy for all v, w P V . We write UpV q for

the group of invertible unitary maps V Ñ V . The inner product on V defines a norm (by

}v} :“ xv, vy1{2) which in turn defines a metric as in Example 1.17. Proposition 1.16 applied

to the evaluation action tells us that UpV q is a topological group when endowed with the

topology of pointwise convergence (w.r.t. this action).

Example 1.19 (Orthogonal groups). The group On of orthogonal matrices acts on the

metric space Rn equipped with the Euclidean metric dpx, yq “ p
řn

i“1 pxi ´ yiq
2q

1{2
via

pM,xq ÞÑ Mx, in such a way that dpMx,Myq “ dpx, yq for all x, y P Rn. Hence by

Proposition 1.16 On is a topological group when endowed with the topology of pointwise

convergence with respect to this action.

Translation invariant Abelian groups

We say that a metric d on a group G (written multiplicatively) is (left) translation in-

variant if

dpxy, xzq “ dpy, zq for all x, y, z P G.

Corollary 1.20. Suppose that G is an Abelian group and d is a translation invariant metric

on G. Then G with the topology induced by d is a Hausdorff topological group.

Proof. Since G is Abelian we shall write it additively and the group operation is an action of

the group on itself. It follows from Proposition 1.16 that G with the topology of pointwise

convergence w.r.t. this action is a topological group. On the other hand, writing Bϵpxq :“

ty P G : dpx, yq ă ϵu we have

Upx1, . . . , xn;Bϵpx
1
1q, . . . , Bϵpx

1
nqq “ Bϵpx

1
1 ´ x1q X ¨ ¨ ¨ X Bϵpx

1
n ´ xnq

since dpy ` x, x1q “ dpy, x1 ´ xq for all y, x, x1 P G (crucially using the hypothesis that G

is Abelian here), and these sets form a base for the topology on G induced by d. In other
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words the topology of pointwise convergence in this case is the topology induced by the

metric d, and G with this topology is a topological group. Finally, the topology is Hausdorff

since it is induced by a metric.

Example 1.21 (Normed spaces). For X a normed space with norm } ¨ } the map dpx, yq :“

}x ´ y} defines a translation invariant metric on the (Abelian) additive group of X (c.f.

Example 1.17). It follows from Corollary 1.20 that X under addition with this topology is

a Hausdorff topological group.

If X contains some x ‰ 0, then the subset tλ.x : λ P Ru is unbounded in the metric d

and hence X is not compact. It follows that the topological group X is compact if and only

if X “ t0u; more than this, a classic result of André Weil [Wei74, Corollary 2, p6] tells us

that the topological group X is locally compact if and only if the normed space X is finite

dimensional.

Write GN˚

for the group of G-valued sequences, i.e. sequences pxiqiPN˚ with xi P G,

endowed with the group operation xy :“ pxiyiqiPN˚ . This is a group with identity the

constant sequence taking the value 1G, and x
´1 “ px´1

i qiPN˚ .

Example 1.22 (Dyadic Cantor group). Define a metric on pZ{2ZqN
˚

by

dπpx, yq :“ inft2´k : k P N0, x1 “ y1, . . . , xk “ yku,

which in fact enjoys the stronger triangle inequality

dπpx, zq ď maxtdπpx, yq, dπpy, zqu for all x, y, z P pZ{2Zq
N˚

.

The metric dπ is also translation invariant and so Corollary 1.20 tells us that pZ{2ZqN
˚

with

this topology is a Hausdorff topological group which we denote D.
If pxpnqqn is Cauchy in dπ then for all k there is Nk such that x

pnq

i “ x
pmq

i for all i ď k

and n,m ě Nk; letting yk :“ x
pNkq

k for all k, we have xpnq Ñ y P D. It follows that D is

complete as a metric space. It is also totally bounded, since for every k P N˚ and x P D
there is y P pZ{2Zqk such that dπpx, ỹq ď 2´k where ỹ :“ py1, . . . , yk, 0, . . . q. We conclude

that D is compact.

We cannot drop the condition that G is Abelian from Corollary 1.20:

Example 1.23. A homomorphism f : D Ñ S1 takes values in t1,´1u since every element

of D has order 2; fix such an f .

The map px, yq ˚ px1, y1q “ px`fpyqx1, y`y1q defines a group operation2 on the set RˆD
– this group is denoted R ¸f D. Equip the group R ¸f D with the topology induced by the

2This is the semidirect product of the group R and D with respect to the homomorphism ϕ : D Ñ

AutpRq; y ÞÑ pR Ñ R;x ÞÑ fpyqxq.
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metric dppx, yq, px1, y1qq :“ maxt|x ´ x1|, dπpy, y1qu where dπ is as in Example 1.22. Then

dppx, yq ˚ px1, y1
q, px, yq ˚ px2, y2

qq “ maxt|x ` fpyqx1
´ px ` fpyqx2

q|, dπpy ` y1, y ` y2
qu

“ maxt|x1
´ x2

|, dπpy1, y2
qu “ dppx1, y1

q, px2, y2
qq

for all px, yq, px1, y1q, px2, y2q P R ¸f D since dπ is translation invariant and |fpyq| “ 1 for all

y P D. In other words d is left translation invariant.

If f is not continuous, then the map

R ¸f D Ñ R ¸f D; px, yq ÞÑ px, yq ˚ p1, 0q “ px ` fpyq, yq

is not continuous and so certainly R¸f D is not a topological group (c.f. Observation 1.31).

(It is not immediately obvious that such an f should exist, but we shall see in Exercise IV.3

that it does.)

1.24 A worked example: a square-free topology on the integers.

Although Proposition 1.7 takes the initial topology with respect to just one function, we

can define the initial topology for a whole family of functions; we do this here. Write Zsf

for the additive group of integers endowed with the initial topology with respect to the

homomorphisms

γp : Z Ñ S1; z ÞÑ expp2πiz{pq for p prime.

The map γp is continuous on Z endowed with some topology if and only if said topology

contains all the sets in Z{pZ i.e. all sets of the form x`pZ for x P Z. If px`nZq X py`mZq

is non-empty – say it contains some z – then it equals z ` lcmpn,mqZ. In particular, the

topology on Zsf must contain all elements of

B :“
ď

#

Z{mZ : m “
ź

pPM
p for M a finite set of primes

+

.

Claim. The set B is a base for the topology on Zsf.

Proof. First B is a base for a topology on Z because a) B is a cover of Z, since
ś

pPH
p “ 1,

and so Z P B; and b) if x ` mZ, y ` nZ P B then m “
ś

pPM p and n “
ś

pPN p for finite

sets of primes M and N , and if z P px`mZq X py`nZq then z` qZ Ă px`mZq X py`nZq

where q :“
ś

pPMYN p.

We noted above that B is certainly a set of open sets in Zsf, and it remains to note that

in any topology containing B the map γp is continuous since B contains Z{pZ.

The base B explains the subscript in Zsf: it stands for ‘square-free’ which is chosen

because, by the Fundamental Theorem of Arithmetic, the products
ś

pPM p are exactly the

square-free natural numbers.
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Claim. Zsf is a topological group.

Proof. Negation on Zsf is continuous since ´px ` mZq “ ´x ` mZ for all x P Z and m.

Addition is continuous since if px, yq is in the preimage under addition of z `mZ then that

preimage contains the open neighbourhood px ` mZq ˆ py ` mZq of px, yq.

Claim. Zsf is Hausdorff

Proof. If x ‰ y then without loss of generality px`1q ´y ą 1. Every natural number bigger

than 1 has a smallest factor bigger than 1, and this factor will be prime, so there is a prime

p with x` 1 ´ y P pZ. Then x` pZ X y ` pZ “ py ´ 1q ` pZ X y ` pZ. Since p ffl 1 we have

y ´ 1 ` pZ ‰ y ` pZ and since the intersection of two cosets of the same subgroup is either

equal or empty, the sets x ` pZ and y ` pZ are disjoint open neighbourhoods of x and y

respectively, as required.

Claim. The compact subsets of Zsf are exactly the finite sets.

Proof. Any finite set is compact, but conversely suppose that S Ă Z is infinite. Let S1 :“ S,

x1 “ 0, and m1 “ 1. At stage i, let pi`1 ą mi be a prime larger than the two smallest

elements of Si, mi`1 :“ pi`1mi and xi`1 be such that Si`1 :“ Si X pxi`1 `mi`1Zq is infinite.

The choice of pi`1 is possible since there are infinitely many primes; and the choice of xi`1

is possible since Z{mi`1Z is a partition of Z into finitely many sets and so Si must have

infinite intersection with one of them by the pigeonhole principle.

The fact that pi`1 ą mi for each i ensures that the mis are all products of distinct primes

and so xi ` miZ P C, and the fact that pi`1 is larger than the two smallest elements of Si

ensures that Si`1 ‰ Si. In particular then, we have Z “ x1 ` m1Z Ą x2 ` m2Z Ą . . . so

C :“ tpxi ` miZqzpxi`1 ` mi`1Zq : i P N˚
u.

This is a cover of Z by disjoint open sets each of which has a non-empty intersection with

S. It follows that C is an open cover with no finite subcover.

All the non-empty open sets in Zsf are infinite and so in particular Zsf is not locally

compact.

Between topologized and topological

To better understand topological groups we shall also look at some weaker structures with

some axioms stripped away – centipede mathematics. These structures are also studied in

their own right; for a much more detailed development including many examples and open

problems see [AT08, Chapters 1 & 2].

Suppose that G is a topologized group written multiplicatively. We say that left (resp.

right) multiplication is continuous if the maps G Ñ G; y ÞÑ xy (resp. G Ñ G; y ÞÑ yx)

Page 11



are continuous for all x P G. A topologized group in which left (resp. right) multiplication

is continuous is said to be a left-topological (resp. right-topological) group. A group

which is both a left-topological and a right-topological group is called a semitopological

group.

Example 1.25 (Example 1.23, revisited). The topologized group R ¸f D with operation ˚

is a left-topological group since the maps

R ¸f D Ñ R ¸f D; px1, y1
q ÞÑ px, yq ˚ px1, y1

q “ px ` x1fpyq, y ` y1
q

are continuous for fixed px, yq whether or not f is continuous. Its topology is the product

of two locally compact Hausdorff spaces and so it itself is locally compact and Hausdorff.

Example 1.26 (Opposite and Abelian topologized groups). When G is a topologized group

by Gop we mean the opposite group of G, that is the group with group operation GˆG Ñ

G; px, yq ÞÑ yx, endowed with the same topology as G. In this notation G is left-topological

if and only if Gop is right-topological.

In particular, any Abelian left-topological or right-topological group is semitopological

since left (resp. right) multiplication by y is the same as right (resp. left) multiplication by

y.

Example 1.27 (The coset topology). For a group G and H ď G, equipping G with the

topology whose closed sets are unions of left cosets of H makes it into a left-topological

group; we call this topology the (left) coset topology (on G generated by H). !△This

terminology is not standard.

The open (and closed) sets in G are exactly the unions of left cosets of H, hence if

S Ă G then S “ SH. Right multiplication is continuous (if and) only if H is normal

in G: Indeed, if right multiplication is continuous then since H is closed, Hy´1 is closed

for all y, so Hy´1 “ SH for some S Ă G. Let x P S be such that y´1 P xH, whence

y´1H “ xH Ă SH “ Hy´1 and so H is normal in G.

Proposition 1.28. Suppose that X is a topological space and G is a group of homeomor-

phisms of X. Then G with the topology of pointwise convergence w.r.t. the evaluation action

is a semitopological group.

Proof. For x1, . . . , xn P X and U1, . . . , Un open in X we have

Upx1, . . . , xn;U1, . . . , Unqg´1
“ Upg.x1, . . . , g.xn;U1, . . . , Unq

so right multiplication is continuous. Furthermore,

g´1Upx1, . . . , xn;U1, . . . , Unq “ Upx1, . . . , xn; g
´1.U1, . . . , g

´1.Unq,

so left multiplication is continuous since the sets g´1.U1, . . . , g
´1.Un are open because the

action is by continuous functions.
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Example 1.29 (Groups of continuous maps with continuous inverses). For X a normed

space we write GLpXq for the set of continuous linear maps X Ñ X with continuous linear

inverses.

The set GLpXq is a group of homeomorphisms of X, and hence if GLpXq is endowed with

the topology of pointwise convergence w.r.t. the evaluation action, then GLpXq becomes a

semitopological group by Proposition 1.28.

By contrast with Example 1.18 when X “ ℓ2, it can be shown that neither composition

nor inversion is continuous.

A topologized group in which the group operation is continuous (as a map from the

product space G ˆ G) is called a paratopological group.

Example 1.30 (The reals with the right order topology). The set3 tpa,8q : ´8 ď a ď 8u

is a topology on R which we call the right order topology (on R); we denote this

topologized group Rro. In particular, if A Ă R is non-empty and bounded above then

A “ p´8, supAs; and if A is non-empty and not bounded above then A “ R.
Rro is a paratopological group since for a P R,

tpx, yq : x ` y P pa,8qu “
ď

bPR

pa ´ b,8q ˆ pb,8q

so that the preimage of the open set pa,8q is open in the product topology. Inversion on

Rro is not continuous since p´8,´aq is not open (for any a P R), and hence Rro is not a

topological group.

Rro is not Hausdorff: Any two non-empty open sets contain all sufficient large reals and

hence have non-empty intersection.

The non-empty compact subsets of Rro are exactly the sets A that are bounded below

(and so have an infimum) and contain their infimum. Indeed, if inf A P A then any open

cover U of A contains an open set U containing inf A. But then A Ă U , and so tUu is a

finite subcover of U . Conversely, if A is not bounded below then it is not compact since

U :“ tpa,8q : a P Ru is an open cover of A, but any finite U 1 Ă U has a smallest a P R
such that pa,8q P U 1, and so U 1 is not a cover of A; and if A is bounded below but does not

contain its infimum then tpinf A ` 1{n,8q : n P Nu is a cover of A which does not have a

finite subcover by the approximation property.

It follows that Rro is locally compact, since for x P R, rx ´ 1,8q is a compact neigh-

bourhood of x, and also Rro is not compact since it is not bounded below.

Observation 1.31. Every paratopological group G is semitopological since the maps G Ñ

G ˆ G;x ÞÑ px, yq (and G Ñ G ˆ G;x ÞÑ py, xq) are continuous for all y P G, and the

composition of continuous maps is continuous.

3For the avoidance of doubt p´8,8q :“ R and p8,8q :“ H.
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A semitopological group in which inversion is continuous is called a quasitopological

group.

Example 1.32 (The reals with the cofinite topology). Write Rcf for the additive group R
equipped with the topology whose proper closed sets are the finite sets. This is a genuine

topology and is called the cofinite topology on R. In particular if A Ă R is finite then

A “ A and if A is infinite then A “ R.
Rcf is a quasitopological group because p´xq `U , U ` p´xq, and ´U are finite whenever

U is finite.

If U, V Ă R are non-empty and open in the cofinite topology, then U`V “ R: for x P R,
x ´ U is infinite and V c is finite and so x ´ U Ć V c, whence x P U ` V and U ` V “ R as

claimed. In particular, tpx, yq P R2 : x` y ‰ 0u, which is the preimage under addition of an

open set in the cofinite topology, cannot contain a sum of non-empty open sets. It follows

that multiplication is not continuous and Rcf is not paratopological.

Rcf is not Hausdorff: Any two non-empty open sets U and V have finite complements,

but R is infinite and so U is infinite and U Ć V c which is to say that U X V ‰ H.

Rcf is compact: Indeed, any A Ă R is compact since if U is an open cover of A, then

(either A is empty and we so compact or we may) let U P U be non-empty. U c is finite and

since U is a cover of A, if x P U c has x P A we may take Ux P U such that x P Ux. The set

tUu Y tUx : x P U cu is a finite subcover of U and our claim is proved.

Observation 1.33. Every left-topological group G with a continuous inverse is a quasitopo-

logical group, since for y P G the right multiplication map G Ñ G;x ÞÑ xy “ py´1x´1q´1

is continuous since it is a composition of inversion, left multiplication by y´1, and inversion

again.

The following diagram summarises the foregoing. The implications without any text

next to them follow a fortiori – i.e. by simply dropping hypotheses – and the missing

implications and non-implications can all be deduced from transitivity of implication and

the law of excluded middle.
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Topological

Quasitopological Paratopological

Left-topological
& continuous inverse

Semitopological

Left-topological

1.33

{
Rcf e.g. 1.32

{ Rro e.g. 1.30

1.31

{
HďG and H ◁G in e.g. 1.27

Figure 1: Relationships between types of topologized groups

2 Some basic tools

In this section there are a few key lemmas (Lemmas 2.2, 2.4, 2.13,2.16, 2.18, & 2.21) which

we highlight in red because they each capture a crucial technique or idea.

We say S Ă G is symmetric if S “ S´1.

Example 2.1. A group G in which every non-identity element has order 2 has every subset

symmetric. Moreover, if it is topologized then inversion is just the identity map and so is

automatically continuous.

Lemma 2.2 (Key Lemma I). Suppose that G is a topologized group in which inversion is

continuous. If U is a neighbourhood of the identity then there is a symmetric open neigh-

bourhood of the identity W Ă U ; and if S is symmetric then S is symmetric.

Proof. Since U is a neighbourhood of 1G, there is an open set V Ă U with 1G P V . Put

W :“ V X V ´1 which is open and contains 1G, since 1´1
G “ 1G, and is symmetric. For the

second part, since inversion is continuous, the preimage of S under inversion is closed, and

so S “ S´1 Ă S
´1

“ S
´1
. But then S

´1
Ă pS

´1
q´1 “ S, and we get the result.

Remark 2.3. Every conclusion of Lemma 2.2 may fail if ‘topologized group with continuous

inverse’ is replaced by ‘paratopological group’: In Rro, the only symmetric and open sets are

H and R, hence p´1,8q is a neighbourhood of the identity that does not contain a symmetric

neighbourhood of the identity; and t0u “ p´8, 0s which is not symmetric despite t0u being

symmetric.

Lemma 2.4 (Key Lemma II). Suppose that G is a left-topological group, U is open, and V

is any subset of G. Then V U is open; U is a neighbourhood of x if and only if x´1U is a

neighbourhood of the identity; and xV “ xV .
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Proof. First, V U “
Ť

vPV vU , which is a union of open sets since G Ñ G;x ÞÑ v´1x is

continuous. Secondly, if U is a neighbourhood of x then there is an open set Ux Ă U

containing x. Continuity of G Ñ G; z ÞÑ xz then says that x´1Ux is an open set containing

1G and contained in x´1U , which is to say x´1U is a neighbourhood of the identity. Similarly

if x´1U is a neighbourhood of the identity then U is a neighbourhood of x by continuity

of G Ñ G; z ÞÑ x´1z. Finally, since G Ñ G; z ÞÑ x´1z is continuous, xV is closed and

contains xV , hence xV Ă xV . Apply this with x replaced by x´1 and V replaced by xV to

get V Ă x´1xV , whence xV “ xV .

Checking continuity and openness of homomorphisms

Recall a neighbourhood base of a point x in a topological space X is a set B of open

neighbourhoods of x such that if N is a neighbourhood of x then there is B P B such that

B Ă N .

Proposition 2.5. Suppose that G and H are left-topological groups and B is a neighbourhood

base of the identity in H. Then a homomorphism θ : G Ñ H is continuous if (and only if)

θ´1pBq is a neighbourhood of the identity for all B P B; and a homomorphism θ : H Ñ G is

open if (and only if) θpBq is a neighbourhood of the identity for all B P B.

Proof. Suppose that U Ă H is open and θpyq P U . By Lemma 2.4 there is an open

neighbourhood of the identity Vy such that θpyqVy Ă U , and hence B P B such that B Ă Vy.

Thus θ´1pBq Ă θ´1pVyq so yθ´1pBq Ă θ´1pUq (using that θ is a homomorphism) and hence

θ´1pUq contains a neighbourhood of y i.e. θ´1pUq is open. The parenthetical ‘only if’ follows

since B contains an open neighbourhood of 1H and θp1Gq “ 1H . The result for open maps

follows similarly.

Corollary 2.6. Suppose that G is a semitopological group and B is a neighbourhood base

of the identity such that B´1 is a neighbourhood of the identity for all B P B. Then G is

quasitopological.

Proof. Since G is semitopological the map G Ñ Gop;x ÞÑ x´1 is a homomorphism between

left-topological groups, and so Proposition 2.5 gives the result.

Topological closures of subgroups

Extending the definition for subgroups, we say that a subset S of a group G is normal if

xS “ Sx for all x P G.

Corollary 2.7. Suppose that G is a semitopological group. If S Ă G is normal, then so is

S; if S Ă G is closed under multiplication ( i.e. xy P S whenever x, y P S), then so is S.
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Proof. First, by Lemma 2.4 we have xS “ xS “ Sx “ Sx for all x P G. Secondly, since G

is left-topological by Lemma 2.4 hS “ hS “ S for all h P S. Hence Sw Ă S for all w P S.

Since Gop is left-topological by Lemma 2.4 we have Sw “ Sw Ă S “ S. Hence S
2

Ă S.

Remark 2.8. We cannot relax ‘semitopological’ to ‘left-topological’: First, if G is a group

with a non-normal subgroupH thenG with the coset topology generated byH has t1Gu “ H

which is not normal. Secondly, if G is a group with subgroups H and K such that HK is

not closed under multiplication (which, of course, entails that H is not normal). Then G

with the coset topology generated by K is left-topological but has H “ HK, so that even

though H is closed under multiplication, its topological closure is not.

Proposition 2.9. Suppose that G is a quasitopological group and H ď G. Then H is a

subgroup of G which is normal if H is normal. In particular, t1Gu is a normal subgroup of

G.

Proof. By Corollary 2.7 H is closed under multiplication and normal if H is normal. By

Lemma 2.2, H
´1

“ H. Since H is non-empty it follows that H is a group and the result is

proved.

Remark 2.10. We cannot replace ‘quasitopological’ by ‘paratopological’ above: t0u is a

subgroup of Rro but t0u “ p´8, 0s which is not a subgroup.

If G is a group with a subset S that is not a subgroup, then S “ G in Gi so there is no

converse to the above saying if H is a subgroup then H is a subgroup; similarly if G has a

subgroup H that is not normal, then H “ G in Gi so there is no converse saying that if H

is normal then H is normal.

In Exercise I.6 there is an example of a compact semitopological group that is not

quasitopological, but despite the fact that Proposition 2.9 does not apply we do have the

following.

Proposition 2.11. Suppose that G is a compact semitopological group. Then t1Gu is a

normal subgroup of G.

Proof. Put H :“ t1Gu then by Corollary 2.7, H2 Ă H and H is normal. Now consider

H :“ txH : x P Hu. This is a set of closed subsets of H by Lemma 2.4, which has the finite

intersection property: suppose x1H, . . . , xnH P H. Then xiH Ą xi ¨ ¨ ¨ xnH “ Hxi ¨ ¨ ¨ xn Ą

x1 ¨ ¨ ¨ xi´1Hxi ¨ ¨ ¨ xn “ x1 ¨ ¨ ¨ xnH since x1 ¨ ¨ ¨ xi´1, xi`1 ¨ ¨ ¨ xn P H and H is closed under

multiplication. Since G is compact, V :“
Ş

H is non-empty.

V is closed and non-empty, so there is some y P V . By Lemma 2.4 yH “ tyu Ă V , but

then y2H P H and so y2H Ą V Ą yH, and since G is a group, yH Ą H. Now H P H, and

so H Ą V Ą yH Ą H – in other words V “ H. But then for all x P H we have H Ă xH,

and since 1G P H we have some y P H such that xy “ 1G and H is closed under inverses

and hence a subgroup.
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Remark 2.12. We cannot relax ‘semitopological’ to ‘left-topological’: if G is a finite group

with a non-normal subgroupH thenG with the coset topology generated byH has t1Gu “ H

which is not normal, but it is compact since G is finite. Similarly, we cannot relax the

compactness requirement to local compactness in view of the group Rro in which the closure

of the identity is not even a group (see Remark 2.10).

Lemma 2.13 (Key Lemma III). Suppose that G is a left-topological group, S is a subset of

G and V is an open neighbourhood of the identity. Then SV Ă SV V ´1.

Proof. Let A :“ GzpSV V ´1q and B :“ GzpAV q. B is closed since AV is open by Lemma

2.4. If x P AV then there is some v P V such that xv´1 P A, so xv´1 R SV V ´1. Hence

SV Ă B and since B is closed SV Ă B. Now if x P B then x R A since 1G P V , and hence

x P SV V ´1 as claimed.

Corollary 2.14. Suppose that G is a left-topological group and H ď G. If H is a neigh-

bourhood in G then H is open in G; if H is open in G then H is closed in G; if H is closed

in G and of finite index then H is open in G.

Proof. First, if H is a neighbourhood then there is a non-empty open set U Ă H. But then

H “ HU is open by Lemma 2.4. For the second part, if H is open then by Lemma 2.13

H Ă HH´1 “ H and so H is closed.

For the last part, since H is closed, every W P G{H is closed by Lemma 2.4. Since H is

of finite index,
Ť

tW P G{H : W ‰ Hu is a finite union of closed sets and so closed. Finally,

since G{H is a partition of G containing H, H “ Gz
Ť

tW P G{H : W ‰ Hu is open as

required.

Remark 2.15. Z is a closed subgroup of the real line R that is not open, so the hypothesis

that H have finite index above cannot be dropped.

Lemma 2.16 (Key Lemma IV). Suppose that G is a paratopological group and X is a

neighbourhood of z. Then there is an open neighbourhood of the identity V such that zV 2 Ă

X. Moreover, if G is a topological group then V may be taken to be symmetric.

Proof. Let U Ă X be an open neighbourhood of z. The map px, yq ÞÑ xy is continuous and

so tpx, yq : xy P Uu is an open subset of GˆG. By definition of the product topology there

is a set S of products of open sets in G such that

tpx, yq : xy P Uu “
ď

tS ˆ T : S ˆ T P Su.

Since z1G “ z P U , there is some S ˆ T P S such that pz, 1Gq P S ˆ T . Thus S is an

open neighbourhood of z and T is an open neighbourhood of the identity, so by Lemma 2.4

Page 18



V :“ pz´1Sq X T is an open neighbourhood of the identity. Now zV Ă S and V Ă T and so

zV 2 Ă U as required. Moreover, if G is a topological group inversion is also continuous so by

Lemma 2.2 V contains a symmetric open neighbourhood of the identity, and the conclusion

follows by nesting.

Remark 2.17. We cannot replace ‘paratopological’ by ‘quasitopological’ above: In Rcf if X

is the complement of some x ‰ z, then X is open but the sum of any two non-empty open

sets is the whole of R and so cannot be contained in X.

Lemma 2.18 (Key Lemma V). Suppose that G is a paratopological group and K1, . . . , Kn

are compact subsets of G. Then K1 ¨ ¨ ¨Kn is compact. In particular, if K is compact then

Kn is compact for all4 n P N0.

Proof. The (topological) product of two compact sets is compact so ifK1 ¨ ¨ ¨Kn´1 is compact

and Kn is compact then pK1 ¨ ¨ ¨Kn´1q ˆ Kn is compact. But then the continuous image of

a compact set is compact and so K1 ¨ ¨ ¨Kn “ pK1 ¨ ¨ ¨Kn´1qKn is compact and the result

follows by induction on n.

Remark 2.19. Exercise I.5 gives an example of a quasitopological group where the conclusion

above does not hold.

A cover U is a refinement of a cover V of a set X if U is a cover of X and each set in

U is contained in some set in V .

Observation 2.20. Refinements are transitive meaning that if W is a refinement of V and V
is a refinement of U then W is a refinement of U .

Lemma 2.21 (Key Lemma VI). Suppose that G is a paratopological group, K Ă G is

compact, and U is an open cover of K. Then there is an open neighbourhood of the identity

U Ă G such that txU : x P Ku is a refinement of U . If G is a topological group then U may

be taken to be symmetric.

Proof. By Lemma 2.16, for every x P K there is a open neighbourhood of the identity Ux

such that xU2
x is subset of a set in U . Since K is compact there are elements x1, . . . , xm P K

such that W :“ tx1Ux1 , . . . , xmUxmu is an open cover of K; let U :“ Ux1 X ¨ ¨ ¨ X Uxm which

is an open neighbourhood of the identity. Since W is a cover of K, for each x P K there

is i such that x P xiUxi
and hence xU Ă xiU

2
xi
. The first part is done and if, additionally,

G is assumed to be topological then we can take Uxs to be symmetric and hence U to be

symmetric. The result is proved.

This has a higher dimensional analogue which is related to the tube lemma:

4Note that K0 “ t1Gu by definition and so is compact since it is finite.
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Lemma 2.22. Suppose that X is a topological space, K Ă X is compact, and U is an open

cover of K ˆ K. Then there is an open cover W of K such that tW ˆ W 1 : W,W 1 P Wu

refines U .

Proof. For px, yq P K ˆ K there is some U P U with px, yq P U . By definition of the

product topology there are Ux and Vy open neighbourhoods of x and y respectively such

that Ux ˆ Vy Ă U . Since the topological product of of two compact sets is compact, the

cover tUx ˆ Vy : px, yq P K ˆKu of K ˆK has a finite subcover tUx1 ˆ Vy1 , . . . , Uxm ˆ Vymu.

For every z P K let

Wz :“
č

tUxi
: z P Uxi

u X
č

tVyi : z P Vyiu.

Write W for the set of Wzs, which is a (finite) open cover of K such that tW ˆW 1 : W,W 1 P

Wu refines U .

Where are the compact paratopological groups?

The quasitopological group Rcf is compact and not a topological group, and Exercise I.6

gives an example of a compact semitopological group that is not quasitopological, but we

have not seen an example of a compact paratopological group that is not topological and

here is why:

Theorem 2.23. Suppose that G is a compact paratopological group. Then G is a topological

group.

Proof. Suppose that K Ă G is closed and x R K´1. For y P K, if yx P t1Gu then by

Proposition 2.11 x´1y´1 P t1Gu and so by Lemma 2.4, x´1 P t1Guy “ tyu Ă K “ K, a

contradiction. Hence yx R t1Gu and again, by Lemma 2.4 there is an open neighbourhood

Uy of y such that Uyx X t1Gu “ H and in particular 1G R Uyx.

Apply Lemma 2.21 to the cover tUy : y P Ku of K to get an open neighbourhood of the

identity U such that for all y P K we have yU Ă Uz for some z “ zpyq P K. It follows that

1G R yUx for all y P K, so K´1 XUx “ H. Thus K´1 is closed and the result is proved.

Remark 2.24. We cannot relax ‘compact’ to ‘locally compact’ since Rro is a locally compact

paratopological group that is not a topological group. !△In [Rav15] it states that every

locally compact paratopological group is a topological group. This does not contradict the

above, it is simply using a different definition of local compactness in which every element

is contained in a closed compact neighbourhood.

Quotient topologies and topological quotient groups

For G a topologized group and H ď G, the quotient topology on left cosets G{H has

U Ă G{H open if and only if
Ť

U is open in G; or, equivalently, C Ă G{H closed if and
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only if
Ť

C is closed in G.

This topology is the final topology on G{H w.r.t. the quotient map q : G Ñ G{H;x ÞÑ

xH – it is the strongest topology (meaning finest topology, or topology with the most open

sets) on G{H making q continuous.

Proposition 2.25. Suppose that G is a topologized group and H is a normal subgroup of

G. Then

(i) if group inversion on G is continuous, then it is continuous on G{H;

(ii) if left (resp. right) multiplication is continuous on G, then it is continuous on G{H;

(iii) and if multiplication is continuous on G ˆ G then it is also on pG{Hq ˆ pG{Hq.

In particular, if G is a topological (resp. paratopological, quasitopological, semitopological,

or left-topological) group then so is G{H.

Proof. Suppose that U Ă G{H is open. If inversion is continuous on G then

ď

U´1
“
ď

␣

pxHq
´1 : xH P U

(

“
ď

␣

z´1 : z P xH P U
(

“
ď

␣

z´1 : zH P U
(

“

!

z´1 : z P
ď

U
)

“

´

ď

U
¯´1

and so U´1 is open in G{H by definition since
Ť

U is open in G. If left multiplication on G

is continuous, then for x P G,

ď

pxHq
´1U “

ď

␣

px´1HqpyHq : yH P U
(

“
ď

␣

x´1yH : yH P U
(

“ x´1
ď

U,

and so pxHq´1U is open in G{H and hence left multiplication by xH is continuous. If right

multiplication on G is continuous, then for x P G,

ď

UpxHq
´1

“
ď

␣

pyHqpxHq
´1 : yH P U

(

“
ď

␣

yHx´1 : yH P U
(

“

´

ď

U
¯

x´1,

and so UpxHq´1 is open in G{H and hence right multiplication by xH is continuous.

Finally suppose multiplication G ˆ G Ñ G is continuous. Define

W :“ tpzH,wHq P pG{Hq ˆ pG{Hq : pzHqpwHq P Uu ,

and V :“
!

pz, wq P G ˆ G : zw P
ď

U
)

.

Suppose that pxH, yHq P W . Then xy P pxHqpyHq Ă
Ť

U so px, yq P V and since V is open

there are open sets S, T Ă G such that x P S, y P T , and S ˆ T Ă V . If s P S and t P T ,

then st P
Ť

U , and since the latter is a union of cosets of H we have pstqH Ă
Ť

U . Since

H is normal we have psHqptHq “ pstqH Ă
Ť

U , and so SH ˆ TH Ă V .

By Lemma 2.4, SH and TH are open sets, and so the sets S 1 :“ tsH : s P Su and

T 1 :“ ttH : t P T u are open in G{H; xH P S 1 and yH P T 1; and S 1 ˆ T 1 Ă W . It follows

that W is open, and multiplication on pG{Hq ˆ pG{Hq Ñ G{H is continuous.
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Example 2.26 (The real line modulo 1). The real line R (Example 1.3) has a (normal)

subgroup Z and so the group R{Z may be given the quotient topology making it into a

topological group by Proposition 2.25.

!△In the literature on topological spaces (though not in these notes) the notation R{Z
is sometimes used to refer to a different space, called the adjunction space in which all the

integers in R are identified but the rest of R remains the same. In other language this is a

countably infinite bouquet of circles all connected at the point Z.

Example 2.27 (The reals with the circle topology). By Proposition 1.7 R is a topological

group (which we shall denote RC) when endowed with the initial topology w.r.t. the quotient

map q : R Ñ R{Z where R{Z is the reals pmod 1q (Example 2.26). We call this the circle

topology on R. The open sets in the circle topology have the form U ` Z where U Ă R is

open in the real line.

Since Rc has the initial topology, a set A Ă Rc is compact if (and only if) qpAq is

compact in R{Z: Indeed, if U is an open cover of A, we can write U “ tq´1pV q : V P Vu for

some set V of open subsets of R{Z. Now, if qpAq is compact then there are V1, . . . , Vn P V
such that qpAq Ă V1 Y ¨ ¨ ¨ Y Vn, and hence A Ă q´1pqpAqq Ă q´1pV1q Y ¨ ¨ ¨ Y q´1pVnq and so

tq´1pV1q, . . . , q
´1pVnqu is a finite subcover of U .

!△In particular, A :“ r0, 1s and B :“ r0, 1{2qYr3{2, 2s are compact, but AXB “ r0, 1{2q

is not compact. This phenomenon of the intersection of two compact sets not being compact

cannot happen in a Hausdorff space where every compact set is closed, and hence where the

intersection of two compact sets is an intersection of a closed set with a compact set which

is, therefore, compact.

Regularity in topological groups

A topological space X is said to be regular if for all x P X every neighbourhood of x

contains a closed neighbourhood of x. !△The literature is inconsistent on the meaning of

regular, and for some other authors a regular topological space is required to be Hausdorff.

Remark 2.28. One reason for considering regular topologies without the requirement that

they also be Hausdorff is that if X is a regular topological space and f : Y Ñ X is a function

then Y with the initial topology w.r.t. f is also regular. Of course Y need not be Hausdorff

even if X is Hausdorff.

Proposition 2.29. Suppose that G is a topological group. Then G is regular.

Proof. Let V be a neighbourhood of x P G. By Lemma 2.16 there is a symmetric open

neighbourhood of the identity U such that xU2 Ă V , and so by Lemmas 2.4 & 2.13, xU Ă

xUU´1 “ xU2 Ă V as required.
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Remark 2.30. The quasitopological group Rcf is not regular because the only closed neigh-

bourhood is the whole of R which cannot be contained in any neighbourhood that is not

the whole of R; and the paratopological group Rro is not regular for the same reasons.

Theorem 2.23 shows that the topological condition of compactness forces a paratopolog-

ical group to be topological, so one might wonder if regularity has the same effect; it does

not as Exercise I.9 shows.

There are also purely topological conditions that give rise to regularity:

Proposition 2.31. Suppose that X is a locally compact Hausdorff topological space. Then

X is regular.

Proof. Let V be an open neighbourhood of x P X, which by local compactness we may

assume is contained in a compact neighbourhood U . For all x ‰ y P X there is an open set

Uy containing y which is disjoint from an open set Vy containing x. tUy : y P UzV u is an open

cover of a closed subset of the compact set U and so has a finite subcover, say Uy1 , . . . , Uym .

But U is a compact subset of a Hausdorff topological space, so pUzUy1q X ¨ ¨ ¨ X pUzUymq is

closed, contained in V , and contains Vy1 X ¨ ¨ ¨ X Vym which is an open set containing x.

In a Hausdorff topological space a compact set is closed; in a regular topological space

we need not have this but we do preserve compactness:

Lemma 2.32. Suppose that X is a regular topological space and K is compact. Then K is

compact.

Proof. Suppose that U is an open cover of K. For each x P K there is Ux P U with

x P Ux and by regularity there is an open neighbourhood Vx of x with Vx Ă Ux. Then

tVx : x P Ku is an open cover of K and so has a finite subcover Vx1 , . . . , Vxk
, but then

K Ă Vx1 Y ¨ ¨ ¨ Y Vxk
Ă Ux1 Y ¨ ¨ ¨ Y Uxk

and so U has a finite subcover of K as required.

Regularity can be extended from points to compact sets:

Lemma 2.33. Suppose that X is a regular topological space, and K Ă B with K compact

and B open. Then there is an open set C with K Ă C Ă C Ă B.

Proof. Since B is open, for each x P K there is an open set Ux containing x and contained

in B; and since X is regular, there are open neighbourhoods Vx and Wx of x with Wx Ă Vx,

and Vx Ă Ux. K is compact and so K Ă Wx1 Y ¨ ¨ ¨ Y Wxm for some x1, . . . , xm P K. Put

C :“ Vx1 Y ¨ ¨ ¨ Y Vxm to get K Ă Wx1 Y ¨ ¨ ¨ Y Wxk
Ă C, and C Ă Ux1 Y ¨ ¨ ¨ Y Uxm Ă B.
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The open mapping theorem

Any bijective group homomorphism is a group isomorphism, but Example 1.6 shows that

there are continuous bijective group homomorphisms of topological groups that are not

homeomorphic isomorphisms. On the other hand any bijective continuous map from a

compact space to a Hausdorff space is a homeomorphism, and the group structure can help

to strengthen this:

Theorem 2.34 (Open Mapping Theorem). Suppose that G is a left-topological group that

is a countable union of compact sets, H is a locally compact Hausdorff left-topological group,

and π : G Ñ H is a continuous bijective homomorphism. Then π is a homeomorphic

isomorphism.

Proof. Since the inverse of a bijective group homomorphism is a group isomorphism, it

suffices to show that πpCq is closed whenever C is closed in G. Let Kn be compact in G

such that G “
Ť

nPN˚ Kn.

Claim. There is some n P N˚ such that πpKnq is a neighbourhood.

Proof. We use a Baire Category argument, though no familiarity with these is assumed. We

construct a nested sequence of closed neighbourhoods inductively: Let U0 be a compact (and

so closed since H is Hausdorff) neighbourhood in H, and for n P N˚ let Un Ă πpKnqc XUn´1

be a closed neighbourhood.

This is possible since (by the inductive hypothesis) Un´1 is a neighbourhood and so

contains an open neighbourhood Vn´1. But then πpKnqc X Vn´1 is open, since πpKnq is a

continuous image of a compact set and so compact, and therefore closed sinceH is Hausdorff;

and non-empty since otherwise πpKnq contains a neighbourhood. It follows that πpKnqc X

Un´1 contains an open neighbourhood and so it contains a closed neighbourhood since H is

regular by Proposition 2.31.

Now by the finite intersection property of the compact space U0, the set
Ş

n Un is non-

empty. This contradicts surjectivity of π since G “
Ť

nPN˚ Kn and the claim is proved.

Claim. If X Ă H is compact then π´1pXq is compact.

Proof. By the previous claim πpKnq contains a neighbourhood (and hence so does xπpKnq

by Lemma 2.4) and the set txπpKnq : x P Hu covers X, so by compactness of X there are

elements x1, . . . , xm such that X Ă
Ťm

i“1 xiπpKnq and hence π´1pXq Ă
Ťm

i“1 π
´1pxiqKn (by

injectivity of π). π´1pxiqKn is compact by Lemma 2.4, and since a finite union of compact

sets is compact it follows that π´1pXq is contained in a compact set. Finally, X is closed so

π´1pXq is closed and a closed subset of a compact set is compact as required.

Page 24



Finally, suppose that C Ă G is closed, and y is a limit point of πpCq. H is locally

compact so y has a compact neighbourhood X. Now π´1pXq is compact and so π´1pXq XC

is compact. But then X X πpCq is compact since π is continuous, and hence closed since H

is Hausdorff. But by design y P X X πpCq “ X X πpCq Ă πpCq.

Corollary 2.35. Suppose that G is a countable locally compact Hausdorff left-topological

group. Then G is discrete. In particular, if G is a compact Hausdorff topological group then

G is either finite or uncountable.

Proof. Since G is countable and finite sets are compact, Gd is a topological group that is

a countable union of compact sets, and the identity map GD Ñ G is a continuous bijective

homomorphism. Hence by the Open Mapping Theorem this is a homeomorphism and so G

is discrete. Finally, if G is compact and countable then it is compact and discrete and so

finite.

Remark 2.36. None of the hypotheses may be dropped: The real line is an example of an un-

countable locally compact Hausdorff topological group that is not discrete (since singletons

are not open); the rationals with the subspace topology from the real line are an example

of a countable Hausdorff topological group that is not discrete; the rationals with the indis-

crete topology, are an example of a countable (locally) compact topological group that is not

discrete; and finally, the topological space t1{n : n P N˚u Y t0u with its subspace topology

in R is a countable compact Hausdorff space (which may be given the group structure of

any countably infinite group to make it into a topologized group).
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3 Continuous complex-valued functions on topological

groups

For a topological space X we write CpXq for the set of continuous functions X Ñ C. This
is closed under pointwise addition and multiplication of functions and contains the constant

functions, so it is a C-algebra.

Example 3.1. The set CpRq contains the inclusion R Ñ C;x ÞÑ x, and since it is a

C-algebra it contains all polynomials with complex coefficients.

Example 3.2. For any discrete space X, the space CpXq contains all functions X Ñ C.

Example 3.3. For any indiscrete space X, the space CpXq contains only the constant

functions.

Example 3.4. For the rationals with the subspace topology inherited from the real line,

the function g : Q Ñ C with gpxq “ 0 if x2 ă 2 and gpxq “ 1 if x2 ą 2 is continuous because

the preimage of of any subset of C is either H, R, p´8,
?
2q XQ or p

?
2,8q XQ, depending

on which elements of t0, 1u it contains, and these are all opens sets.

The support of a (not necessarily continuous) function f : X Ñ C is denoted supp f

and is defined to be the set of x P X such that fpxq ‰ 0; f is said to be compactly

supported5 if its support is contained in a compact set. We write CcpXq for the subset of

functions in CpXq that are compactly supported.

The set CcpXq is a subalgebra of CpXq since the union of two compact sets is compact

and the support of the sum of two functions is contained in the union of their supports; and

the support of the product of two functions is the intersection of their supports which is

certainly contained in a compact set if one is. More than this, the function

}f}8 :“ sup t|fpxq| : x P Xu

is a norm on CcpXq called the uniform norm. It is well-defined since every continuous

(complex-valued) function on a compact set is bounded, and the axioms of a norm are easily

checked.

Remark 3.5. !△In general } ¨ }8 is not a norm on CpXq since we are not assuming the

elements of CpXq are bounded.

!△In general CcpXq is not complete despite the fact that the uniform limit of continuous

functions is continuous since this limit function may not be compactly supported.

5 !△As we have defined it the support of a function that is compactly supported need not actually be a

compact set; it is simply contained in one.
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Example 3.6. The set CpRq contains all polynomials (as we saw in Example 3.1), and in

fact all power series of infinite radius of convergence. However, by the Identity Theorem

the only one of these functions that is in CcpRq is the zero function. The sort of function in

CpRq that we often have in mind might look like:

Proposition 3.7. Suppose that G is a left-topological group and CcpGq contains a function

that is not identically zero. Then G is locally compact.

Proof. Suppose that f P CcpGq is not identically zero. Then supp f is open (since f is

continuous), non-empty and contained in a compact set K (since f is compactly supported).

It follows thatK is a compact neighbourhood of some point x P G, and by Lemma 2.4 yx´1K

is then a compact neighbourhood of y for y P G as required.

Example 3.8. Since Q with the subspace topology inherited from the real line is not locally

compact we have CcpQq “ t0u.

The regular representation

Given a group G and a function f : G Ñ C we write

λxpfqpzq :“ fpx´1zq for all x, z P G.

Proposition 3.9. Suppose that G is a left-topological group. Then the map

G Ñ IsopCcpGqq;x ÞÑ λx

is a well-defined homomorphism. Moreover, if G is a topological group then this map is

continuous.

Proof. First recall from Example 1.17 that IsopCcpGqq is the set of linear invertible isometries

of CcpGq. Since G is left-topological, for f P CcpGq the map z ÞÑ λxpfqpzq is continuous. If

f has support contained in a compact set K then λxpfq has support contained in xK, which

is itself compact since it is the continuous image of a compact set. Hence λxpfq P CcpGq.

λx is visibly linear and }λxpfq}8 “ }f}8 for all f P CcpGq and x P G, so by linearity is

an isometry. λx has λx´1 as an inverse and hence the given map maps into IsopCcpGqq,
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and so is well-defined. As usual (c.f. Cayley’s Theorem) we have λxypfq “ λxpλypfqq from

associativity of the group operation, and the first part is proved.

Now suppose that G is a topological group. The set

ttϕ P IsopCcpGqq : }ϕpfq ´ f}8 ă ϵ for all f P Fu for ϵ ą 0 and F Ă CcpGq finiteu

is a neighbourhood base of the identity in IsopCcpGqq. Hence by Proposition 2.5 it is enough

to show that for f P CcpGq the set tx P G : }λxpfq ´ f}8 ă ϵu contains a neighbourhood of

the identity in G.

Let K be a compact set containing the support of f , and let U be an open cover of G

such that |fpyq ´ fpy1q| ă ϵ for all y, y1 P U P U (see Observation 3.10 below). By Lemma

2.21 (applied to Gop) there is a symmetric open neighbourhood of the identity V such that

tV y : y P Ku is a refinement of U (as a cover of K).

Suppose that x P V and y P G is such that λxpfqpyq ´ fpyq ‰ 0. Then either fpyq ‰ 0

so y P K, but then V ´1y “ V y is a subset of an element of U and so |λxpfqpyq ´ fpyq| ă ϵ;

or λxpfqpyq ‰ 0 so x´1y P K, but then V px´1yq is a subset of an element of U and so again

|λxpfqpyq ´ fpyq| ă ϵ. Since λxpfq ´ f is continuous and compactly supported it attains its

bounds so }λxpfq ´ f}8 ă ϵ. The result is proved.

Observation 3.10. For ∆ :“ tz P C : |z| ă ϵ{2u and f P CpXq if fpxq, fpyq P z ` ∆ then

|fpxq ´ fpyq| ă ϵ and hence U :“ tf´1pz ` ∆q : z P Cu is an open cover of X such that

|fpxq ´ fpyq| ă ϵ whenever x, y P U P U .

Constructing continuous compactly supported functions

The interior of a subset S of a topological space is denoted S˝, and is the set of x P S that

are contained in an open set which is itself contained in S. In particular, S˝ is open.

The dyadic rationals in r0, 1s are the set D :“
Ť8

i“0Di, where

D0 :“ t0
1
, 1
1
u, D1 :“ t0

2
, 1
2
, 2
2
u, D2 :“ t0

4
, 1
4
, 2
4
, 3
4
, 4
4
u,&c.

In particular D is dense in r0, 1s; we have the nesting D0 Ă D1 Ă . . . ; and every element of

Di`1zDi can be written in the form 1
2
pq` q1q where q and q1 are consecutive elements of Di.

Lemma 3.11. Suppose that G is a paratopological group, V is an open neighbourhood of

the identity, and KV Ă pBq˝ for some set K. Then there are sets pUqqqPD with U0 “ K,

U1 “ B, and Uq Ă pUq1q˝ whenever q, q1 P D have q ă q1.

Proof. Set V0 :“ V and for i P N0 define Vi inductively by Lemma 2.16 to be an open

neighbourhood of the identity such that V 2
i`1 Ă Vi.
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We set U0 :“ K and U1 :“ B and define Uq for q P Di`1zDi iteratively for i P N0.

Suppose that at step i, for all consecutive pairs q ă q1 in Di we have UqVi Ă Uq1 – this is

certainly true for i “ 0. For q ă q1 consecutive elements of Di set U 1
2

pq`q1q :“ UqVi`1 so

that a) UqVi`1 Ă U 1
2

pq`q1q; and b) U 1
2

pq`q1qVi`1 “ UqVi`1Vi`1 Ă UqV 2
i`1 Ă UqVi Ă Uq1 “ Uq1 ,

where the first inclusion is by Lemma 2.4. Every element of Di`1zDi is the average of two

consecutive elements of Di, and the construction is complete.

It remains to note that if UqVi Ă Uq1 then Uq Ă pUq1q˝, and the result is proved.

Nested sets of the type described above can be used to define continuous functions:

Lemma 3.12. Suppose that X is a topological space, and pUqqqPD are such that Uq Ă pUq1q˝

whenever q ă q1. Then there is g P CpXq with gpxq P r0, 1s for all x P X; gpxq “ 0 for

x P U0; and gpxq “ 1 for x R pU1q
˝.

Proof. For x P G let Spxq :“ tq P D : x P pUqq
˝u and gpxq :“ inf Spxq Y t1u. Certainly

gpxq P r0, 1s. If x P U0 then q P Spxq for all q ą 0 by nesting, and hence gpxq “ 0; if

x R pU1q˝, then Spxq “ H by nesting, and so gpxq “ 1. It remains to show g P CpXq.

First, for α ď 1 we have g´1pr0, αqq “
Ť

tpUqq
˝ : q ă αu is open. Secondly, for α ě 0

suppose that x0 P g´1ppα, 1sq. Then gpx0q ą α and so there is q1 P D with q1 ą α such

that x0 R pUq1q˝ and hence by nesting x0 R Uq for any q P D with q ă q1; pick q P D with

α ă q ă q1. If z R Uq then again by nesting gpzq ě q ą α, and hence x0 P GzUq Ă g´1ppα, 1sq.

Thus every element of g´1ppα, 1sq is contained in an open subset of g´1ppα, 1sq, and so

g´1ppα, 1sq itself must be open.

We conclude that g´1ppa, bqq “ g´1ppa, 1sq X g´1pr0, bqq is open for any a, b P R. The

intervals without endpoints in R form a base for the topology on R, and hence g is continuous

as a function into R. Finally, R is a subspace of C, so g P CpXq as required.

Theorem 3.13. Suppose that G is a regular paratopological group, and K Ă B are compact

and open sets respectively. Then there is a continuous function g P CpGq with gpxq P r0, 1s

for all x P G; gpxq “ 0 for all x P K; and gpxq “ 1 for all x R B.

Proof. Since the topology is regular and K is compact, by Lemma 2.33, there is an open set

C with K Ă C Ă C Ă B. By Lemma 2.32, K is compact and so by Lemma 2.21 applied

to K and the open cover tCu there is an open neighbourhood of the identity V such that

KV Ă C Ă pCq˝. Hence by Lemma 3.11 (applied to K and C), and then by Lemma 3.12,

we get g P CpGq with gpxq P r0, 1s for all x P G; gpxq “ 0 for all x P K; and gpxq “ 1 for all

x R pCq˝. The result follows since pCq˝ Ă C Ă B.

Remark 3.14. We know from Proposition 2.29 that every topological group is regular, hence

every topological group is a regular paratopological group so in particular the above corol-

lary applies to all topological groups. This consequence is sometimes called the ‘complete

regularity of topological groups’.
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To explain the terminology ‘complete regularity’, note that if we suppose that G is a

topologized group such that the conclusion of Theorem 3.13 holds for all K Ă B with K

compact and B open, then G is regular. Indeed, if U is an open neighbourhood of x, then

the supposition applied to K “ txu, which is compact, and B “ U , gives g P CpGq with

gpxq “ 1 and gpyq “ 0 for all y R U , and so g´1ptz P C : |z ´ 1| ď 1{2uq is a closed

neighbourhood of x contained in U .

Surprisingly Theorem 3.13 was only shown relatively recently by Banakh and Ravsky in

[Ban17], though the complete regularity of topological groups was known much earlier.

Corollary 3.15. Suppose that G is a locally compact topological group, and K Ă B are a

compact and open set respectively. Then there is f P CcpGq with fpxq P r0, 1s for all x P G;

fpxq “ 1 for all x P K; and fpxq “ 0 for all x R B.

In particular, if B is a non-empty open set then there is f P CcpGq with fpxq ě 0 for all

x P G; f is not identically zero; and f has supp f Ă B.

Proof. Since G is locally compact it contains a compact neighbourhood of the identity L;

let H Ă L be an open neighbourhood of the identity. KH is open by Lemma 2.4, and so

KH X B is an open set containing K.

Apply Theorem 3.13 (and Proposition 2.29) to get g P CpGq with gpxq P r0, 1s for all

x P G; gpxq “ 0 for all x P K; and gpxq “ 1 for all x R pKHq X B. Let f :“ 1 ´ g and note

that supp f Ă KH X B, which is a subset of KL, which is compact by Lemma 2.18, and

also of B. This gives the result.

Remark 3.16. A topologized group G that is not indiscrete, has a non-empty proper open

subset, and so if G satisfies the conclusions of Corollary 3.15, then CcpGq contains a non-

constant function. In particular, by Proposition 3.7 we see that we cannot drop the ‘locally

compact’ hypothesis above.

Exercise II.9 asks for examples of locally compact quasitopological and paratopological

groups that are not topological groups, and where there are no non-constant continuous

functions into C. Since these are not topological groups, their topologies are not indiscrete,
and so it follows that we cannot relax ‘topological’ to either ‘quasitopological’ or ‘paratopo-

logical’ above.

Corollary 3.15 can also be bootstrapped to produce continuous partitions of unity for

which we first need a technical lemma:

Lemma 3.17. Suppose that X is a topological space, K Ă X is compact, and f P CcpXq, g P

CpXq are such that supp f Ă K Ă supp g. Then there is h P CcpXq such that f “ gh.

Proof. Since K is compact and g is continuous, |g| is continuous it achieves its minimum

c on K. Since the support of g contains K we have c ą 0. The function Φ : C Ñ C with
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Φpzq “ z for |z| ď 1 and Φpzq “ 1{z for |z| ě 1 is continuous, and so h :“ f
c
Φ
`

g
c

˘

is

continuous because the product and composition of continuous functions is continuous; has

compact support since f has compact support; and f “ gh. The lemma is proved.

Corollary 3.18. Suppose that G is a locally compact topological group, K is compact, U
is an open cover of K, and F P CpGq has suppF Ă K and F pxq P r0, 1s for all x P G.

Then there is some n P N˚, U1, . . . , Un P U , and f1, . . . , fn P CcpGq with supp fi Ă Ui and

fipxq P r0, 1s for all x P G and 1 ď i ď n, such that F “ f1 ` ¨ ¨ ¨ ` fn.

Proof. Since U is an open cover of K, for each x P K there is an open neighbourhood of x,

call it Ux P U , and by Proposition 2.29 there is a closed neighbourhood Vx Ă Ux of x. Since

each Vx is a neighbourhood and tVx : x P Ku is a cover of K, compactness tells us that

there are elements x1, . . . , xn such that K Ă Vx1 Y ¨ ¨ ¨ Y Vxn . For each i the set Vxi
X K is

a closed subset of a compact set and so compact. Apply Corollary 3.15 to Vxi
X K Ă Uxi

to get gi P CcpGq such that gipxq P r0, 1s for all x P G; gipxq “ 1 for all x P Vxi
X K; and

supp gi Ă Uxi
. Since the gis are non-negative we have

suppF Ă K Ă pVx1 X Kq Y ¨ ¨ ¨ Y pVxn X Kq Ă supppg1 ` ¨ ¨ ¨ ` gnq.

Thus by Lemma 3.17 there is h P CcpGq such that F “ hpg1 ` ¨ ¨ ¨ ` gnq and since F maps

into r0, 1s and g1pxq ` ¨ ¨ ¨ ` gnpxq ě 1 on the support of F , we conclude that h maps into

r0, 1s; for 1 ď i ď n put fi “ gih.

It remains to check the properties of the fis. First, fi P CcpGq with fpxq P r0, 1s

for all x P G by design of h and gi. Secondly, F “ f1 ` ¨ ¨ ¨ ` fn by design. Finally,

supp fi Ă supp gi Ă Uxi
P U . The result is proved.
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4 The Haar integral

We now turn to one of the most beautiful aspects of the basic theory of topological groups.

This describes the way the topology and the algebra naturally conspire to produce an inte-

gral.

For X a topological space, we say f P CcpXq is non-negative if fpxq ě 0 for all x P X,

and write C`
c pXq for the set of non-negative continuous compactly supported functions on

X.

We shall frequently have call to understand elements of CcpXq as a linear combination

of elements of C`
c pXq:

Observation 4.1. The functions C Ñ R; z ÞÑ Re z, C Ñ R; z ÞÑ Im z, R Ñ Rě0;x ÞÑ

maxtx, 0u and R Ñ Rě0;x ÞÑ maxt´x, 0u are continuous and so any f P CcpXq can be

written as f “ f1 ´f2 ` if3 ´ if4 for f1, f2, f3, f4 P C`
c pXq, and this decomposition is unique.

We say a linear functional
ş

: CcpXq Ñ C is non-negative if
ş

f ě 0 whenever f P

C`
c pXq. If f, g P CcpXq are both real-valued then we write f ě g if f ´ g is non-negative.

Observation 4.2. If f, g P CcpXq are real-valued and
ş

is a non-negative linear functional

CcpXq Ñ C then
ş

f ě
ş

g if f ě g; and if f P CcpGq then
ˇ

ˇ

ş

f
ˇ

ˇ ď
ş

|f | and
ş

f “
ş

f .

Example 4.3. The map
ż

: CcpRq Ñ C; f ÞÑ

ż 8

´8

fpxqdx,

where the integral sign on the right is the Riemann integral, is a non-trivial (meaning not

identically zero) non-negative linear map

Remark 4.4. We think of non-negative linear functionals as integrals and in fact the Riesz-

Markov-Kakutani Representation Theorem tells us that if X has a sufficiently nice topology

then every non-negative linear map CcpXq Ñ C arises as an integral against a suitably

well-behaved measure on X.

Given a further topological space Y and F : X ˆ Y Ñ C and x P X, we write
ş

y
F px, yq

for the functional
ş

: CcpY q Ñ C applied to the function Y Ñ C; y ÞÑ F px, yq (assuming this

function is continuous and compactly supported), and similarly for y P Y and
ş

x
F px, yq. It

will be crucial for us that the order of integration can be interchanged:

Theorem 4.5 (Fubini’s Theorem for continuous compactly supported functions). Suppose

that G is a locally compact topological group,
ş

and
ş1

are non-negative linear functionals

CcpGq Ñ C, and F P CcpGˆGq. Then the map x ÞÑ
ş1

y
F px, yq is continuous and compactly

supported, so that
ş

x

ş1

y
F px, yq exists. Similarly y ÞÑ

ş

x
F px, yq is continuous and compactly

supported, so that
ş1

y

ş

x
F px, yq exists and moreover

ż

x

ż 1

y

F px, yq “

ż 1

y

ż

x

F px, yq.
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Proof. In view of the decomposition in Observation 4.1 and linearity of
ş

and
ş1
it is enough

to establish the result for F non-negative.

Since F P C`
c pGˆGq has support contained in a compact setK, and since the coordinate

projection maps GˆG Ñ G are continuous (and the union of two compact sets is compact)

there is a compact set L such that K Ă L ˆ L. It follows that the maps x ÞÑ F px, yq for

y P G and y ÞÑ F px, yq for x P G are continuous and have support in the compact set L.

We also need an auxiliary ‘dominating function’ which is a compactly supported con-

tinuous function on whose support all of the ‘action’ happens. For those familiar with the

theory of integration, the Dominated Convergence Theorem may come to mind. Concretely,

by Corollary 3.15 there is f P CcpGq with fpxq P r0, 1s for all x P G; fpxq “ 1 for all x P L;

and supp f Ă M .

For ϵ ą 0 (by Observation 3.10) let U be an open cover of G ˆ G such that |F px, yq ´

F px1, y1q| ă ϵ for all px, yq, px1, y1q P U P U . M ˆM is compact and so by Lemma 2.22 there

is an open cover W of M such that U 1 :“ tW ˆW 1 : W,W 1 P Wu is a refinement of U (as a

cover ofM ˆM not of GˆG). First, the support of
ş1

y
F px, yq is contained in the (compact)

set L and if x, x1 P W P W then by design and non-negativity of
ş1
we have

ż 1

y

F px1, yq “

ż 1

y

F px1, yqfpyq ď

ż 1

y

pF px, yq ` ϵqfpyq “

ż 1

y

F px, yq ` ϵ

ż 1

f,

and similarly
ş1

y
F px, yq ď

ş1

y
F px1, yq ` ϵ

ş1
f , whence |

ş1

y
F px1, yq ´

ş1

y
F px, yq| ď ϵ

ş1
f . Since

ϵ is arbitrary (and
ş1
f does not depend on ϵ) it follows that x ÞÑ

ş1

y
F px, yq is continuous

(and compactly supported) and similarly for y ÞÑ
ş

x
F px, yq.

By Corollary 3.18 applied to f supported on the compact set M with the open cover W ,

there are continuous compactly supported f1, . . . , fn : G Ñ r0, 1s such that f1 ` ¨ ¨ ¨ `fn “ f

and supp fi Ă Wi P W . Now, F px, yq “ F px, yqfpxqfpyq and f “ f1 ` ¨ ¨ ¨ ` fn, so

F px, yq “

n
ÿ

i“1

n
ÿ

j“1

F px, yqfipxqfjpyq for all x, y P G.

By design of U 1 and U , for 1 ď i, j ď n there is λi,j ě 0 such that |F px, yq ´ λi,j| ă ϵ for all

px, yq P supp fi ˆ supp fj. We conclude that

n
ÿ

i“1

n
ÿ

j“1

λi,jfipxqfjpyq ´ ϵfpxqfpyq ď F px, yq ď

n
ÿ

i“1

n
ÿ

j“1

λi,jfipxqfjpyq ` ϵfpxqfpyq.

Since
ş

and
ş1
are non-negative linear functionals, we conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

ż

x

ż 1

y

F px, yq ´

n
ÿ

i“1

n
ÿ

j“1

λi,j

ż

fi

ż 1

fj

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ

ż

f

ż 1

f

and
ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

y

ż

x

F px, yq ´

n
ÿ

i“1

n
ÿ

j“1

λi,j

ż

fi

ż 1

fj

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ

ż

f

ż 1

f.
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The result is proved by the triangle inequality since ϵ is arbitrary (and
ş

f and
ş1
f do not

depend on ϵ).

Remark 4.6. !△It is not enough to assume that F : G ˆ G Ñ C is such that the maps

G Ñ C;x ÞÑ
ş1

y
F px, yq and G Ñ C; y ÞÑ

ş

x
F px, yq are well-defined, continuous, and

compactly supported. Exercise III.4 asks for an example.

Given a topological group G we say that
ş

: CcpGq Ñ C is a (left) Haar integral on G

if
ş

is a non-trivial (meaning not identically zero) non-negative linear map with
ż

λxpfq “

ż

f for all x P G and f P CcpGq.

We sometimes call this last property (left) translation invariance.

Remark 4.7. Our definition of Haar integral requires CcpGq to be non-trivial and hence

(Proposition 3.7) for G to support a Haar integral it must be locally compact. It will turn

out in Theorem 4.13 that this is enough to guarantee that there is a Haar integral.

Example 4.8. The map
ş

in Example 4.3 restricted to CcpRq is a Haar integral, with the

only property not already recorded being translation-invariance.

Example 4.9. If G is a discrete group then it supports a left Haar integral:
ż

: CcpGq Ñ C; f ÞÑ
ÿ

xPG

fpxq.

Exercise III.1 gives a partial converse to this.

The integral of a non-negative continuous function that is not identically 0 is positive,

and this already follows from the axioms of a Haar integral. To establish this we begin with

a lemma on the comparability of functions:

Lemma 4.10. Suppose that G is a topological group, f, g P C`
c pGq and f is not identically

zero. Then there is n P N˚, c1, . . . , cn ě 0 and y1, . . . , yn P G such that

gpxq ď

n
ÿ

i“1

ciλyipfqpxq for all x P G.

Proof. Since f is not identically zero there is some x0 P G such that fpx0q ą 0 and hence

(by Lemma 2.4) an open neighbourhood of the identity U such that fpx0yq ą fpx0q{2 for

all y P U . Let K be compact containing the support of g. Then txU : x P Ku is an open

cover of K and so there are elements x1, . . . , xn such that x1U, . . . , xnU covers K. But then

gpxq ď 2fpx0q
´1

}g}8

n
ÿ

i“1

fpx0x
´1
i xq “ 2fpx0q

´1
}g}8

n
ÿ

i“1

λxix
´1
0

pfqpxq for all x P G,

and the result is proved.
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Corollary 4.11. Suppose that G is a topological group,
ş

is a left Haar integral on G, and

f P C`
c pGq has

ş

f “ 0. Then f is identically zero.

Proof. We suppose, for a contradiction, that f is not identically zero. Then by Lemma 4.10

for g P C`
c pGq we have g ď

řn
i“1 ciλyipfq for c1, . . . , cn ě 0 and y1, . . . , yn P G. By linearity,

non-negativity, and translation invariance of the Haar integral
ż

g ď

n
ÿ

i“1

ci

ż

λyipfq “

n
ÿ

i“1

ci

ż

f “ 0.

Since g ě 0, non-negativity of the Haar integral implies
ş

g ě 0, and hence
ş

g “ 0.

Now, in view of Observation 4.1 we have that
ş

h “ 0 for all h P CcpGq i.e.
ş

is identically

zero contradicting the non-triviality of the Haar integral. The lemma follows.

Lemma 4.12. Suppose that G is a topological group,
ş

is a left Haar integral on G, and

f P CcpGq. Then
ˆ
ż

x

|fpxq|
p

˙1{p

Ñ }f}8 as p Ñ 8.

Proof. Since f is a continuous function with compact support there is y P G with |fpyq| “

}f}8, and we may suppose this is non-zero.

For ϵ ą 0, the set U :“ tx P G : |fpxq ´ fpyq| ă ϵu is an open neighbourhood of y; since

G is regular (Proposition 2.29) U contains a closed neighbourhood of y and intersecting this

with a compact neighbourhood of y (which exists since G is locally compact by Proposition

3.7), we have a compact neighbourhood K of y contained in U .

By Corollary 3.15 (applicable since G is locally compact) there is a continuous h : G Ñ

r0, 1s with support contained in K that is not identically 0, and hence by Corollary 4.11
ş

h ą 0. It follows by the triangle inequality that

|fpyq|
p

ş

|f |

|fpyq|
ě

ż

x

|fpxq|
p

ě p|fpyq| ´ ϵqp
ż

h.

Since r1{p Ñ 1 as p Ñ 8 for any r ą 0, and ϵ ą 0 was arbitrary we get the result.

Existence of a Haar Integral

Our first main aim is to establish the following.

Theorem 4.13 (Existence of a Haar integral). Suppose that G is a locally compact topolog-

ical group. Then there is a left Haar integral on G.

We begin by defining a sort of approximation: for f, ϕ P C`
c pGq with ϕ not identically 0

put

pf ;ϕq :“ inf

#

n
ÿ

j“1

cj : n P N˚; c1, . . . , cn ě 0; y1, . . . , yn P G; and f ď

n
ÿ

j“1

cjλy´1
j

pϕq

+

. (4.1)

We think of this as a sort of ‘covering number’ and begin with some basic properties:
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Lemma 4.14. Suppose that G is a topological group, f, g, ϕ, ψ P C`
c pGq are such that ϕ and

ψ are not identically 0. Then

(i) pf ;ϕq is well-defined;

(ii) pϕ;ϕq ď 1;

(iii) pf ;ϕq ď pg;ϕq whenever f ď g;

(iv) pf ` g;ϕq ď pf ;ϕq ` pg;ϕq;

(v) pµf ;ϕq “ µpf ;ϕq for µ ě 0;

(vi) pλxpfq;ϕq “ pf ;ϕq for all x P G;

(vii) pf ;ψq ď pf ;ϕqpϕ;ψq.

Proof. Lemma 4.10 shows that the set on the right of (4.1) is non-empty; it has 0 as a lower

bound. (i) follows immediately. For (ii)6 note that ϕ ď 1.λ1´1
G

pϕq so that pϕ;ϕq ď 1. (iii),

(iv), (v), and (vi) are all immediate. Finally, for (vii) suppose c1, . . . , cn ě 0 are such that

f ď
řn

j“1 cjλy´1
j

pϕq, so that by (iii), (iv), (v), and (vi) we have pf ;ψq ď
řn

j“1 cjpϕ;ψq. The

result follows on taking infima.

To make use of p¨ ; ¨q we need to fix a non-zero reference function f0 P C`
c pGq and for

ϕ P C`
c pGq not identically zero we put

Iϕpfq :“
pf ;ϕq

pf0;ϕq
ď pf ; f0q, (4.2)

where the inequality follows from Lemma 4.14 (vii).

Many of the properties of Lemma 4.14 translate into properties of Iϕ. In particular, we

have Iϕpf1 ` f2q ď Iϕpf1q ` Iϕpf2q; for suitable ϕ we also have the following converse.

Lemma 4.15. Suppose that G is a locally compact topological group, f1, f2 P C`
c pGq and

ϵ ą 0. Then there is a symmetric open neighbourhood of the identity V such that if ϕ P

C`
c pGq is not identically 0 and has support in V then Iϕpf1q ` Iϕpf2q ď Iϕpf1 ` f2q ` ϵ.

Proof. Let K be a compact set containing the support of both f1 and f2 (possible since

the union of two compact sets is compact) and apply Corollary 3.15 to get F : G Ñ r0, 1s

continuous, compactly supported, and with F pxq “ 1 for all x P K.

For j P t1, 2u let gj be continuous such that pf1 ` f2 ` ϵF qgj “ fj (possible by Lemma

3.17 since supp fi Ă K Ă suppF ). By Observation 3.10 (and the fact that the intersection

of two open covers is an open cover) there is an open cover U of G such that if x, y P U P U
6As it happens it is easy to prove equality here but we do not need it.
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then |gjpxq ´ gjpyq| ă ϵ for j P t1, 2u. K is compact; apply Lemma 2.21 to U to get a

symmetric open neighbourhood of the identity V such that tyV : y P Ku refines U as a

cover of K.

Now suppose that ϕ P C`
c pGq is not identically 0 and has support in V , and that

c1, . . . , cn ě 0 and y1, . . . , yn P G are such that

f1pxq ` f2pxq ` ϵF pxq ď

n
ÿ

i“1

ciϕpyixq for all x P G.

If ϕpyixqgjpxq ‰ 0 then x P K and y´1
i P xV (using V “ V ´1), but xV is a subset of a set

in U so gjpxq ď gjpy
´1
i q ` ϵ and hence

fjpxq ď

n
ÿ

i“1

ciϕpyixqgjpxq ď

n
ÿ

i“1

cipgjpy
´1
i q ` ϵqϕpyixq for all x P G, j P t1, 2u.

By Lemma 4.14 (ii),(iii), (iv),(v) & (vi) we have

pfj;ϕq ď

n
ÿ

i“1

cipgjpy
´1
i q ` ϵq for all j P t1, 2u,

but g1py´1q ` g2py
´1q ď 1 for all y P G, so

pf1;ϕq ` pf2;ϕq ď

n
ÿ

i“1

cip1 ` 2ϵq.

Taking infima and then applying Lemma 4.14 (iv) and (v) and the inequality in (4.2) we

get

Iϕpf1q ` Iϕpf2q ď p1 ` 2ϵqIϕpf1 ` f2 ` ϵF q

ď p1 ` 2ϵqpIϕpf1 ` f2q ` ϵIϕpF qq

ď Iϕpf1 ` f2q ` p2pf1 ` f2; f0q ` pF ; f0q ` 2ϵpF ; f0qqϵ.

The result follows since ϵ ą 0 was arbitrary and F , f1, f2 and f0 do not depend on ϵ.

With these lemmas we can turn to the main argument.

Proof of Theorem 4.13. By Corollary 3.15 there is f0 P C`
c pGq with f0 not identically zero.

Write F for the set of functions I : C`
c pGq Ñ Rě0 with Ipfq ď pf ; f0q for all f P C`

c pGq

endowed with the product topology i.e. the weakest topology such that the maps F Ñ

r0, pf ; f0qs; I ÞÑ Ipfq are continuous for all f P C`
c pGq. Since the closed interval r0, pf ; f0qs is

compact, F is a (non-empty) product of compact spaces and so compact (this is Tychonoff’s

Theorem). Let X be the set of I P F such that

Ipf0q “ 1 (4.3)
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Ipµfq “ µIpfq for all µ ě 0, f P C`
c pGq, (4.4)

and

Ipλxpfqq “ Ipfq for all x P G, f P C`
c pGq. (4.5)

The set X is closed as an intersection of the preimage of closed sets. Moreover, by Lemma

4.14 Iϕ P X for any ϕ P C`
c pGq that is not identically zero: the fact that Ipfq P r0, pf ; f0qs

follows from the inequality in (4.2); (4.3) by design; (4.4) by (v); and (4.5) by (vi).

This almost gives us a Haar integral (on non-negative functions) except that in general

the elements ofX are not additive, meaning we do not in general have Ipf`f 1q “ Ipfq`Ipf 1q.

To get this we introduce some further sets: for ϵ ą 0 and f, f 1 P C`
c pGq define

Bpf, f 1; ϵq :“ tI P X : |Ipf ` f 1
q ´ Ipfq ´ Ipf 1

q| ď ϵu.

As with X, the sets Bpf, f 1; ϵq are closed. We shall show that any finite intersection of

such sets is non-empty: For any f1, f
1
1, f2, f

1
2, . . . , fn, f

1
n P C`

c pGq and ϵ1, . . . , ϵn ą 0, by

Lemma 4.15 there are symmetric open neighbourhoods of the identity V1, . . . , Vn such that

if ϕ P C`
c pGq is not identically 0 and is supported in Vi then

|Iϕpfi ` f 1
iq ´ Iϕpfiq ´ Iϕpf 1

iq| ď ϵi. (4.6)

The set V :“
Şn

i“1 Vi is a symmetric open neighbourhood of the identity and by Corollary

3.15 there is ϕ P C`
c pGq that is not identically 0 with support contained in V . Iϕ enjoys

(4.6) for all 1 ď i ď n, and we noted before that Iϕ P X, hence Iϕ P
Şn

i“1Bpfi, f
1
i , ϵiq. We

conclude that tBpf, f 1; ϵq : f, f 1 P C`
c pGq, ϵ ą 0u is a set of closed subsets of F with the

finite intersection property, but F is compact and so there is some I in all of these sets.

Such an I is additive since |Ipf ` f 1q ´ Ipfq ´ Ipf 1q| ď ϵ for all f, f 1 and ϵ ą 0. It remains

to define
ş

: CcpGq Ñ C by putting
ż

f :“ Ipf1q ´ Ipf2q ` iIpf3q ´ iIpf4q where f “ f1 ´ f2 ` if3 ´ if4 for f1, f2, f3, f4 P C`
c pGq.

This decomposition of functions in CcpGq is unique (noted in Observation 4.1) and so this is

well-defined. Moreover,
ş

is linear since I is additive and enjoys (4.4); it is non-negative since

I is non-negative (and Ip0q “ 0); it is translation invariant by (4.5); and it is non-trivial by

(4.3). The result is proved.

Uniqueness of the Haar integral

Our second main aim is to establish the following result.

Theorem 4.16 (Uniqueness of the Haar Integral). Suppose that G is a locally compact

topological group and
ş

and
ş1

are left Haar integrals on G. Then there is some λ ą 0 such

that
ş

“ λ
ş1
.
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For this we introduce a little more notation: Given a topological group G and f P CcpGq

we write rfpxq “ fpx´1q.

Remark 4.17. r̈ is a conjugate-linear multiplicative involution on CcpGq, since complex con-

jugation and x ÞÑ x´1 are both continuous (and continuous images of compact sets are

compact).

Proof of Theorem 4.16. Suppose that f0, f1 P C`
c pGq are not identically 0 and write K for a

compact set containing the support of f0 and f1 (which exists since finite unions of compact

sets are compact). Since G is locally compact there is an open neighbourhood H of 1G

contained in a compact set L.

First, by Corollary 3.15 there is a continuous compactly supported function F : G Ñ

r0, 1s with F pxq “ 1 for all x P KL (this set is compact by Lemma 2.18, and hence the

corollary applies).

Now, suppose ϵ ą 0 and apply Observation 3.10 to get an open cover Ui of G such that if

x, y P U P Ui then |fipxq ´ fipyq| ă ϵ for i P t0, 1u; let U :“ tU0 X U1 : U0 P U0, U1 P U1u. By

Lemma 2.21 applied to U and the compact set KL there is a symmetric open neighbourhood

of the identity V such that txV : x P KLu is a refinement of U as a cover of KL; and by

Corollary 3.15 there is h P C`
c pGq that is not identically zero and is supported in V XH´1.

For x P G, translation invariance of
ş1
(and Observation 4.2) tells us that

ż 1

y

hpy´1xq “

ż 1

y

rhpx´1yq “

ż 1

y

rhpx´1yq “

ż 1

y

rhpyq “

ż 1

rh.

For i P t0, 1u, the map x ÞÑ
ş1

y
fipxqhpy´1xq “ fipxq

ş1
rh is continuous and is supported in K

and so is compactly supported and
ş

x

ş1

y
fipxqhpy´1xq exists and equals

ş

fi
ş1
rh (by linearity

of
ş

and
ş1
). On the other hand the map px, yq ÞÑ fipxqhpy´1xq is continuous and supported

on K ˆ L and so is compactly supported and hence by Fubini’s Theorem (Theorem 4.5),

y ÞÑ
ş

x
fipxqhpy´1xq exists, and (using translation invariance of

ş

) we have

ż

fi

ż 1

rh “

ż

x

ż 1

y

fipxqhpy´1xq “

ż 1

y

ż

x

fipxqhpy´1xq “

ż 1

y

ż

x

fipyxqhpxq.

Since tyV : y P KLu refines U (as a cover of KL) we have |fipyxq ´ fipyq| ă ϵ for x P V and

y P KL; and for x P H´1 and fipyxq ‰ 0 or fipyq ‰ 0 we have y P KH whence F pyq “ 1. It

follows that

fipyqhpxq ´ ϵF pyqhpxq ď fipyxqhpxq ď fipyqhpxq ` ϵF pyqhpxq for all x, y P G,

and so by non-negativity and linearity of
ş

and
ş1
we have

ż 1

y

ż

x

fipyqhpxq ´

ż 1

y

ż

x

ϵF pyqhpxq ď

ż 1

y

ż

x

fipyxqhpxq ď

ż 1

y

ż

x

fipyqhpxq `

ż 1

y

ż

x

ϵF pyqhpxq.
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It follows (using linearity of
ş

) that |
ş1
fi
ş

h´
ş

fi
ş1
rh| ď ϵ

ş1
F
ş

h, and hence by the triangle

inequality (and division, which is valid since
ş

f0,
ş

f1 ‰ 0 by Corollary 4.11 as f0 and f1 are

not identically zero) that

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
f0

ş

f0
´

ş1
f1

ş

f1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
f0

ş

f0
´

ş1
rh

ş

h

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
rh

ş

h
´

ş1
f1

ş

f1

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ

ż 1

F

ˆ

1
ş

f0
`

1
ş

f1

˙

.

Since ϵ was arbitrary (and in particular f0, f1, and F do not depend on it) it follows that
ş1
f{

ş

f is a constant λ for all f P C`
c pGq not identically zero. This constant must be non-

zero since
ş1
is non-trivial, and it must be positive since

ş1
and

ş

are non-negative. The result

follows from the usual decomposition (Observation 4.1), and the fact that
ş

0,
ş1
0 “ 0.
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5 The Peter-Weyl Theorem

Suppose that G is a topological group, and for an inner product space V recall the definition

of UpV q from Example 1.18. A finite dimensional unitary representation7 of G is a

continuous homomorphism G Ñ UpV q for some finite dimensional complex inner product

space V .

Example 5.1 (Permutation representation). For V “ Cn with its usual inner product, i.e.

xx, yy :“ x1y1 ` ¨ ¨ ¨ ` xnyn, the map

Sn Ñ UpCn
q;σ ÞÑ pCn

Ñ Cn; pxiq
n
i“1 ÞÑ pxσ´1piqq

n
i“1q

from Sn endowed with the discrete topology, is a finite dimensional unitary representation.

A function f : G Ñ C is said to be a matrix coefficient if there is a finite dimensional

unitary representation π : G Ñ UpV q, and elements v, w P V such that fpxq “ xπpxqv, wy

for all x P G.

Example 5.2. Suppose that π : G Ñ UpV q is a finite dimensional unitary representation

of a topological group G and e1, . . . , en is an orthonormal basis for V . If we write Ai,j :“

xπpxqei, ejy and suppose that λ P Cn is the vector for v P V written w.r.t. the basis e1, . . . , en

(i.e. λi “ xv, eiy), then λA – the matrix A pre-multiplied by the row vector λ – is πpxqv

written w.r.t. the basis e1, . . . , en. This is the reason for the terminology ‘matrix coefficient’.

Remark 5.3. All matrix coefficients are continuous, since continuity of π : G Ñ UpV q and

the definition of the topology on UpV q means that x ÞÑ πpxqv is continuous for all v P V ,

and the projections v ÞÑ xv, wy are continuous for all w P V , so the resulting composition is

also continuous.

Lemma 5.4. Suppose that G is a compact topological group. Then there is a unique left

Haar integral
ş

on G with
ş

1 “ 1 such that

xf, gy :“

ż

fg for all f, g P CpGq

is an inner product on CpGq and for each x P G, λx is unitary w.r.t. this inner product.

Furthermore, }f}2 :“ xf, fy1{2 and }f}1 :“
ş

|f | define norms on CpGq and

}f}1 ď }f}2 ď }f}8 for all f P CpGq.

7 !△A unitary representation is usually a continuous group homomorphism π : G Ñ UpHq for a complex

Hilbert space H, not merely a complex inner product space. Every finite dimensional complex inner product

space is complete and so a Hilbert space, and so our definition is not at variance with this.
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Proof. By Theorem 4.13 there is a left Haar integral
ş1

on G. Since G is compact the

constant function 1 is compactly supported and so by Corollary 4.11,
ş1
1 ą 0. Diving by

this positive constant we get a left Haar integral
ş

with
ş

1 “ 1. Now suppose that
ş1

is

another left Haar integral with
ş1
1 “ 1. By Theorem 4.16

ş1
“ λ

ş

for some λ ą 0, but since
ş

1 “ 1 “
ş1
1 we conclude that λ “ 1 and

ş

“
ş1
giving the claimed uniqueness.

Linearity in the first argument and conjugate-symmetry of x¨, ¨y follow from linearity of

the Haar integral and Observation 4.2 respectively. xf, fy ě 0 for all f P CpGq since
ş

is

non-negative and x¨, ¨y is then positive definite by Corollary 4.11.

The Haar integral is left-invariant so

xf, gy “

ż

fg “

ż

λxpfgq “

ż

λxpfqλxpgq for all f, g P CpGq,

and the first part is proved.

For any inner product f ÞÑ xf, fy1{2 is a norm, so } ¨ }2 is a norm. Absolute homogeneity

of } ¨ }1 follows from the fact that the modulus of a complex number is multiplicative and
ş

is linear, and the triangle inequality follows from, non-negativity, linearity and the triangle

inequality for the modulus of a complex number. }f}1 ě 0 by non-negativity of
ş

, and finally

} ¨ }1 is positive definite by Corollary 4.11.

Since G is compact the constant functions 1 and }f}28 are both in CpGq. By the Cauchy-

Schwarz inequality (which holds for all inner products) we have

}f}1 “

ż

|f | “ x1, |f |y ď }1}2}|f |}2 “ }f}2 for all f P CpGq;

and by non-negativity of
ş

we have

}f}
2
2 “

ż

|f |
2

ď

ż

}f}
2
8 “ }f}

2
8 for all f P CpGq.

The result is proved.

Remark 5.5. For the remainder of this section we write
ş

for the unique Haar integral in

Lemma 5.4, and use the notation x¨, ¨y, } ¨ }2 and } ¨ }1 as in this lemma.

For f, g P CpGq we define their convolution to be the function

x ÞÑ f ˚ gpxq :“

ż

y

fpyqgpy´1xq “ xf, λxprgqy.

Lemma 5.6 (Basic properties of convolution). Suppose that G is a compact topological

group. Then

(i) CpGq Ñ CpGq; g ÞÑ g ˚ f is well-defined and linear for all f P CpGq;

(ii) h ˚ pg ˚ fq “ ph ˚ gq ˚ f for all f, g, h P CpGq;
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(iii) λxpg ˚ fq “ λxpgq ˚ f for all x P G, f, g P CpGq;

(iv) xg ˚ f, hy “ xg, h ˚ rfy for all f, g, h P CpGq (recall rf from just before Remark 4.17);

(v) }h ˚ f}8 ď mint}h}1}f}8, }h}2}
rf}2u for all f, h P CpGq.

Proof. By the first part of Fubini’s Theorem (Theorem 4.5) the function g ˚ f P CpGq since

px, yq ÞÑ gpxqfpx´1yq is continuous and compactly supported. Since
ş

x
is linear, g ÞÑ g ˚ f

is well-defined and linear giving (i).

For (ii) we apply λy to the integrand z ÞÑ gpzqfpz´1y´1xq using that
ş

z
is a left Haar inte-

gral; then Fubini’s Theorem (Theorem 4.5) since pz, yq ÞÑ hpyqgpy´1zqfpz´1xq is continuous;

and finally linearity of
ş

y
to see that

h ˚ pg ˚ fqpxq “

ż

y

hpyq

ż

z

gpzqfpz´1y´1xq

“

ż

y

hpyq

ż

z

gpy´1zqfpz´1xq “

ż

z

ˆ
ż

y

hpyqgpy´1zq

˙

fpz´1xq “ ph ˚ gq ˚ fpxq

as claimed.

For (iii) note that λtpg ˚ fqpxq “ g ˚ fpt´1xq “ xg, λt´1xp rfqy “ xg, λt´1pλxp rfqqy “

xλtpgq, λxp rfqy “ λtpgq ˚ fpxq since λt is unitary w.r.t. x¨, ¨y by Lemma 5.4.

For (iv), since the function px, yq ÞÑ gpxqfpx´1yqhpyq is continuous and compactly sup-

ported, by Fubini’s Theorem (Theorem 4.5) and linearity of
ş

y
; and then Observation 4.2

we have

xg ˚ f, hy “

ż

y

ż

x

gpxqfpx´1yqhpyq

“

ż

x

gpxq

ż

y

fpx´1yqhpyq “

ż

x

gpxq

ż

y

hpyq rfpy´1xq “ xg, h ˚ rfy,

as required.

Finally, (v) follows on the one hand since

|h ˚ fpxq| ď

ż

y

|hpyq||fpy´1xq| ď

ż

|h|}f}8 “ }h}1}f}8,

and on the other since |h ˚ fpxq| “ |xh, λxp rfqy| ď }h}2}λxp rfq}2 “ }h}2}
rf}2. The result is

proved.

Remark 5.7. As usual, in view of the associativity in (ii) there is no ambiguity in omitting

parentheses when writing expressions like h ˚ g ˚ f .

Proposition 5.8. Suppose that G is a compact topological group G, f P CpGq and pgnqnPN˚

is a sequence of elements of CpGq with }gn}1 ď 1. Then there is a subsequence pgni
qiPN˚

such that gni
˚ f converges uniformly to some element of CpGq as i Ñ 8.
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Proof. For each j P N˚, let Uj be an open cover of G such that if x, y P U P Uj then

|fpxq ´ fpyq| ă 1{j. Since G is compact apply Lemma 2.21 to get an open neighbourhood

of the identity Uj such that txUj : x P Gu refines Uj; and by compactness again there is a

finite cover tx1,jUj, . . . , xkpjq,jUju which refines txUj : x P Gu.

By Lemma 5.4 (v) gn ˚ fpxq P r´}f}8, }f}8s. Let n0,i “ i for all i P N˚, and suppose

that j ě 1. By the Heine-Borel theorem (for Rkpjq) there is subsequence pnj,iqi of pnj´1,iqi

such that gnj,i
˚ fpxk,jq converges for all 1 ď k ď kpjq. Setting ni :“ ni,i we have that the

tail of pniqi is a subsequence of pnj,iqi for all j and so gni
˚ fpxk,jq converges, say to zk,j, as

i Ñ 8 for all 1 ď k ď kpjq and j P N˚.

Suppose ϵ ą 0 and let j :“ r3ϵ´1s. For all 1 ď k ď kpjq let Mk be such that |gni
˚

fpxk,jq ´ zk,j| ă ϵ{6 for all i ě Mk; let M :“ maxtMk : 1 ď k ď kpjqu and suppose that

i, i1 ě M .

For x P G there is some 1 ď k ď kpjq such that x P xk,jUj and hence for all y P G we have

y´1x, y´1xk,j P y´1xk,jUj which is a subset of an element of Uj, so |fpy´1xq ´ fpy´1xk,jq| ă

1{j. Thus for g P CpGq with }g}1 ď 1 we have

|g ˚ fpxq ´ g ˚ fpxk,jq| “ |xg, λxp rfq ´ λxk,j
p rfqy|

ď }g}1}λxp rfq ´ λxk,j
p rfq}8 ď sup

yPG
|fpy´1xq ´ fpy´1xj,kq| ď

1

j
ď ϵ{3.

In particular this holds for g “ gni
and g “ gni1 , so that

|gni
˚ fpxq ´ gni1 ˚ fpxq| ď |gni

˚ fpxq ´ gni
˚ fpxk,jq| ` |gni

˚ fpxk,jq ´ zk,j|

` |zk,j ´ gni1 ˚ fpxk,jq| ` |gni1 ˚ fpxk,jq ´ gni1 ˚ fpxq| ă ϵ.

Since x P G was arbitrary it follows that the sequence of functions pgni
˚ fqi is uniformly

Cauchy and so converges to a continuous function on G. The result is proved.

We say that V ď CpGq is invariant if λxpvq P V for all v P V .

Example 5.9. Suppose that V ď CpGq is invariant and finite dimensional. Then π : G Ñ

UpV q;x ÞÑ pV Ñ V ; v ÞÑ λxpvqq is a finite dimensional unitary representation.

For any V ď CpGq write V K for the set of w P CpGq such that xv, wy “ 0 for all v P V .

Proposition 5.10. Suppose that G is a compact topological group and f P CpGq. Then

there is an invariant space W ď CpGq with dimW ď ϵ´2}f}22 such that if g P WK then

}g ˚ f}2 ď ϵ}g}2.

Proof. Let V be the set of vectors of the form

h1 ` ¨ ¨ ¨ ` hn where n P N0, hi ˚ rf ˚ f “ λihi and λi ě ϵ2 for all 1 ď i ď n. (5.1)
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This is an invariant space by Lemma 5.6 (iii). For v P V we shall write v “ h1 ` ¨ ¨ ¨ ` hn to

mean a decomposition as in (5.1) with the additional requirements that hi is not identically

zero (so }hi}
2
2 ‰ 0 since hi is continuous), and λi ‰ λj for i ‰ j, which is possible since the

map T : CpGq Ñ CpGq;h ÞÑ h ˚ rf ˚ f is linear. (The zero vector is represented as a sum

with no terms.)

In fact T is positive definite and so the his, which are eigenvectors with corresponding

eigenvalues λi, are perpendicular for different eigenvalues. In our language the relevant parts

of this follow since if hi ˚ rf ˚ f “ λihi and hj ˚ rf ˚ f “ λjhj, then

λixhi, hjy “ xλihi, hjy “ xhi ˚ rf ˚ f, hjy “ xhi, hj ˚ rf ˚ fy “ xhi, λjhjy “ λjxhi, hjy.

Applying this identity with j “ i for some hj ‰ 0 we see that λi is real. Then applying

it again with λi ‰ λj we have xhi, hjy “ 0. In particular, if v “ h1 ` ¨ ¨ ¨ ` hn in the way

discussed after (5.1) then

}v ˚ rf}
2
2 “ xv ˚ rf ˚ f, vy “

n
ÿ

i“1

λi}hi}
2
2 ě ϵ2

n
ÿ

i“1

}hi}
2
2 “ ϵ2}v}

2
2. (5.2)

If V contains n linearly independent vectors, then by the Gram-Schmidt process8 there are

orthonormal vectors v1, . . . , vn P V . For x P G, by Bessel’s inequality9

n
ÿ

i“1

|xvi, λxpfqy|
2

ď }λxpfq}
2
2 “ }f}

2
2.

Integrating against x and using (5.2) we have

nϵ2 ď

n
ÿ

i“1

ż

x

|vi ˚ rfpxq|
2

“

ż

x

n
ÿ

i“1

|xvi, λxpfqy|
2

ď

ż

x

}f}
2
2 “ }f}

2
2.

8Given e1, e2, . . . linearly independent, the Gram-Schmidt process in an inner product space defines

ui :“ ei ´

i´1
ÿ

k“1

xei, vkyvk and vi :“ ui{}un}.

It can be shown by induction that v1, v2, . . . is an orthonormal sequence.
9Bessel’s inequality is the fact that if v1, v2, . . . is an orthonormal sequence in an inner product space

then
řn

i“1 |xvi, vy|2 ď }v}2 for all v. To prove it note that because the vis are orthonormal we have

›

›

›

›

›

n
ÿ

i“1

xvi, vyvi

›

›

›

›

›

2

“

n
ÿ

i“1

n
ÿ

j“1

xvi, vyxvj , vyxvi, vjy “

n
ÿ

i“1

|xvi, vy|2.

Hence by the Cauchy-Schwarz inequality

˜

n
ÿ

i“1

|xvi, vy|2

¸2

“

ˇ

ˇ

ˇ

ˇ

ˇ

C

v,
n
ÿ

i“1

xvi, vyvi

G
ˇ

ˇ

ˇ

ˇ

ˇ

2

ď }v}2

›

›

›

›

›

n
ÿ

i“1

xvi, vyvi

›

›

›

›

›

2

“ }v}2

˜

n
ÿ

i“1

|xvi, vy|2

¸

.

Cancelling gives the inequality.
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It follows that dimV ď ϵ´2}f}22.

Write W :“ tk ˚ rf : k P V u, which is invariant by Lemma 5.6 (iii) and the fact V is

invariant. Let M :“ supt}g ˚ f}2 : g P WK and }g}2 ď 1u. We shall be done if we can show

that M2 ď ϵ2.

Claim. If h P V K then }h ˚ rf}2 ď M}h}2.

Proof. First, h ˚ rf P WK: To see this, for v P V write v “ h1 ` ¨ ¨ ¨ ` hn to mean a

decomposition as in (5.1). Then

xh ˚ rf, v ˚ rfy “

n
ÿ

i“1

xh, hi ˚ rf ˚ fy “

n
ÿ

i“1

λixh, hiy “ 0.

Now let k P WK have }k}2 “ 1 such that }h ˚ rf}2 “ xh ˚ rf, ky “ xh, k ˚ fy ď }h}2}k ˚ f}2 ď

M}h}2 as claimed.

Let gn P WK have }gn ˚ f}2 Ñ M and }gn}2 ď 1. By Cauchy-Schwarz we have }gn}1 ď 1

and we may apply Proposition 5.8 to pass to a subsequence which converges uniformly.

Hence by relabelling we may now additionally assume that gn ˚ f Ñ h uniformly for some

h P CpGq. In particular, }gn ˚ f}2 Ñ }h}2 and xh, gn ˚ fy Ñ }h}22 and hence }h}2 “ M .

Moreover, if v P V then xgn ˚ f, vy “ xgn, v ˚ rfy “ 0, and the former converges to xh, vy,

whence h P V K.

Combining this with the claim above we have

}h ˚ rf ´ M2gn}
2
2 “ }h ˚ rf}

2
2 ´ 2M2Rexh ˚ rf, gny ` M4

}gn}
2
2

ď M2
}h}

2
2 ´ 2M2Rexh, gn ˚ fy ` M4

Ñ 0.

HenceM2gn Ñ h˚ rf in }¨}2, and since convergence in }¨}2 is mapped to uniform convergence

by convolution operators we have M2gn ˚ f Ñ h ˚ rf ˚ f . Uniqueness of limits then ensures

M2h “ h ˚ rf ˚ f . If M2 ě ϵ2 then h P V , but then since h P V K we see that h is identically

zero. In this caseM “ }h}2 “ 0 and certainlyM2 ď ϵ2 as required. The result is proved.

Theorem 5.11 (The Peter-Weyl Theorem, Part I). Suppose that G is a compact topological

group. Then matrix coefficients are dense in CpGq with the uniform norm.

Proof. Suppose that f P CpGq and let ϵ ą 0. Observation 3.10 gives us an open cover Uj

of G such that if x, y P U P Uj then | rfpxq ´ rfpyq| ă ϵ{2. Since G is compact, by Lemma

2.21 there is an open neighbourhood of the identity U such that txU : x P Gu refines U ,
and by Lemma 2.16 there is an open set V such that V 2 Ă U . By Corollary 3.15, there is

g P CpGq non-negative and not identically 0 such that supp g Ă V . By rescaling g we may

assume that
ş

g “ 1. The support of g ˚ g is contained in V 2 Ă U and by Fubini’s Theorem

(Theorem 4.5) we therefore have
ş

g ˚ g “ 1. But then

|g ˚ g ˚ fpxq ´ fpxq| “

ˇ

ˇ

ˇ

ˇ

ż

y

g ˚ gpyqfpy´1xq ´ fpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

y

g ˚ gpyqp rfpx´1yq ´ rfpx´1
qq

ˇ

ˇ

ˇ

ˇ

ď ϵ,
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for all x P G and so }f ´ g ˚ g ˚ f}8 ď ϵ{2.

Let δ ă ϵ}g}
´1
2 } rf}

´1
2 {2 for reasons which will be come clear shortly. By Proposition 5.10

there is a finite dimensional invariant space W ď CpGq such that }h ˚ g}2 ď δ}h}2 for all

h P WK. Write πW : CpGq Ñ CpGq for the map projecting onto W . Then g ´ πW pgq P WK

and so }g ˚ g ´ πW pgq ˚ g}2 ď δ}g ´ πW pgq}2 ď δ}g}2. By Lemma 5.6 (v) we have

}g ˚ g ˚ f ´ πW pgq ˚ g ˚ f}8 ď δ}g}2}
rf}2.

By the triangle inequality we have }f ´πW pgq ˚g ˚f}8 ă ϵ. Finally, writing k :“ pg ˚fq„ we

have by definition; since λx is unitary; sinceW is invariant; since πW is self-adjoint (meaning

xπWv, wy “ xv, πWwy for all v, w P CpGq); and again since λx is unitary, that

πW pgq ˚ g ˚ fpxq “ xπW pgq, λxpkqy “ xλx´1pπW pgqq, ky

“ xπW pλx´1pπW pgqqq, ky

“ xλx´1pπW pgqq, πW pkqy

“ xπW pgq, λxpπW pkqqy “ xλxpπW pkqq, πW pgqy.

Hence πW pgq ˚ g ˚ fpxq is a matrix coefficient. Since ϵ ą 0 was arbitrary the result is

proved.

Remark 5.12. !△There are other important parts to the Peter-Weyl Theorem which we

have not included here.
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6 The dual group

Suppose that G is a topologized group. We write pG for the set of continuous homomorphisms

G Ñ S1 (where S1 is as in Example 1.11), and call these characters. !△While characters

are elements of CpGq, they are not in CcpGq unless G is compact.

Example 6.1 (Characters of the circle group). For n P Z the maps S1 Ñ S1; z ÞÑ zn

are continuous homomorphisms of S1 and so characters. As it happens these are the only

characters but we shall not show this here.

Example 6.2 (Sign of permutations). Suppose that Sn is endowed with a topology making

it a left topological group such that An is topologically closed. Then the map Sn Ñ S1;σ ÞÑ

sgnpσq is a continuous homomorphism.

Example 6.3 (§1.24, contd.). For m a square-free natural number, and r P Z the maps

Zsf Ñ S1; z ÞÑ expp2πizr{mq are continuous homomorphisms and so characters.

Example 6.4 (Legendre symbol). Given a finite Abelian Hausdorff topological group G, if

it has a unique element of order 2, then it has a unique character of order 2. (In fact this

is an ‘if and only if’ which can either be proved directly or by combining what follows with

Proposition 6.5, Remark 6.13, and Theorem 6.22.)

The map G Ñ G;x ÞÑ x2 is a homomorphism and so its image, S, is a subgroup.

By hypothesis it has kernel of size 2 and so by Lagrange’s Theorem S has index 2 in G.

Define the map χ : G Ñ S1 by χpxq “ 1 if x P S and χpxq “ ´1 is x P GzS. This is a

homomorphism, and since G is finite and Hausdorff it is discrete and hence χ is continuous.

On the other hand, if χ1 : G Ñ S1 is a character of order 2 then its kernel must contain S.

Since χ1 is non-trivial and S has index 2 in G, we have kerχ1 “ S and hence χ “ χ1. In

other words, G has a unique character of order 2.

For p prime the multiplicative group F˚
p is cyclic and if it is odd this group has even

order so has a unique element of order 2. The corresponding unique character of order 2 is

called the Legendre symbol and features in number theory.

The set pG has a natural topology on it and to define this we make some notation: for

K a compact subset of G and δ ą 0 write

UpK, δq :“ tγ P pG : |γpxq ´ 1| ă δ for all x P Ku.

Proposition 6.5. Suppose that G is a topologized group. Then pG is a group with multipli-

cation and inversion defined by

pγ, γ1
q ÞÑ px ÞÑ γpxqγ1

pxqq and γ ÞÑ px ÞÑ γpxqq,
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and identity, 1
pG, the character taking the constant value 1; and there is a topology on pG

making it into a Hausdorff Abelian topological group with pUpK, δqqK,δ as K ranges compact

subsets of G and δ ą 0, is a neighbourhood base of the identity.

Proof. The fact that pG is an Abelian group with the given multiplication, inversion, and

identity follows since S1 is an Abelian group under multiplication and z´1 “ z when z P S1.

For the topological aspects of the proposition we begin by showing that

τ :“

#

ď

γPΓ

γUpKγ, δγq : Γ Ă pG and for all γ P Γ the set Kγ is compact and δγ ą 0

+

is a topology. To this end if λ P γUpK, δqXγ1UpK 1, δ1q, then by compactness of K (resp. K 1)

there is δ0 ă δ (resp. δ1
0 ă δ1) such that |pλγqpxq´1| ď δ0 for all x P K (resp. |pλγ1qpxq´1| ď

δ1
0 for all x P K 1). Let Kλ :“ K Y K 1, which is compact, and δλ :“ mintδ ´ δ0, δ

1 ´ δ1
0u,

which is positive, and suppose that µ P λUpKλ, δλq. By the triangle inequality

|pµγqpxq´1| “ |pµγqpxqλpxq´λpxq| ď |pµγqpxqλpxq´1|` |λpxq´1| ă δλ `δ0 ă δ for x P K,

and similarly |pµγqpxq ´ 1| ă δ1 for all x P K 1. In other words, λUpKλ, δλq Ă γUpK, δq X

γ1UpK 1, δ1q, and hence taking the union over λ P γUpK, δq X γ1UpK 1, δ1q we have that

γUpK, δq X γ1UpK 1, δ1q P τ as required.

Since τ is a topology, to see that pUpK, δqqK,δ is a neighbourhood base of the identity

it is enough to note that if 1
pG P γUpK, δq then, again by compactness, there is δ1 ă δ such

that |γpxq ´ 1| ď δ1 for all x P K and hence UpK, δ ´ δ1q Ă γUpK, δq.

Now suppose that γλ P µUpK, ϵq for some µ P pG. Since γλµ is continuous and K is

compact there is some δ ą 0 such that |pγλµqpxq ´ 1| ă ϵ ´ δ for all x P K. But then if

γ1 P γUpK, δ{2q and λ1 P λUpK, δ{2q we have

|pγ1λ1µqpxq ´ 1| ď |pγ1λ1µqpxq ´ pγλ1µqpxq| ` |pγλ1µqpxq ´ pγλµqpxq| ` |pγλµqpxq ´ 1|

ă δ{2 ` δ{2 ` ϵ ´ δ “ ϵ.

It follows that γ1λ1 P µUpK, ϵq and so the preimage of γλ contains a neighbourhood of pγ, λq

in pG ˆ pG i.e. multiplication is continuous.

Since pG is paratopological and hence semitopological Corollary 2.6 and the fact that

UpK, δq “ UpK, δq tells us inversion is continuous; we conclude that pG is a topological

group. Finally, the topology is Hausdorff since if γ ‰ λ then there is some x P G such that

γpxq ‰ λpxq; put ϵ :“ |γpxq ´ λpxq|{2 and note that γUptxu, ϵq and λUptxu, ϵq are disjoint

open sets containing γ and λ respectively.

We call the topology above the compact-open topology, the topological group pG the

dual group of G, and its identity the trivial character.
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Example 6.6 (Dual group of indiscrete topological groups). When G is a group with the

indiscrete topology the only continuous functions are constant, and hence there is only one

continuous homomorphism, the trivial character. It follows that xGI “ t1
xGI

u, and since there

is only one topology and one group structure on a set of size 1 this completely determines

the dual group.

Example 6.6 gave topological reasons for the dual group being trivial, but there can also

be algebraic reasons:

Example 6.7 (Dual group of non-Abelian simple groups). Suppose that G is a non-Abelian

simple10 topological group. Since G is non-Abelian there are elements x, y P G with xy ‰ yx,

but then xyx´1y´1 ‰ 1G. If γ P pG then

γpxyx´1y´1
q “ γpxqγpyqγpxq

´1γpyq
´1

“ 1

since S1 is Abelian. We conclude that the kernel of γ is non-trivial, but all kernels are

normal subgroups and since G is simple it follows that ker γ “ G i.e. γ is trivial. In other

words pG “ t1
pGu.

Proposition 6.8. Suppose that G is a compact topologized group. Then pG is discrete.

Proof. Suppose that γ ‰ 1
pG so there is x P G such that γpxq ‰ 1. Let y P G be such that

|γpyq ´ 1| is maximal (which exists since G is compact and x ÞÑ |γpxq ´ 1| is continuous)

and note that by assumption this is positive. If |γpyq ´ 1| ă 1 then we have

|γpy2q ´ 1| “ |γpyq
2

´ 1| “ |p2 ` pγpyq ´ 1qq||γpyq ´ 1|

ě p2 ´ |γpyq ´ 1|q|γpyq ´ 1| ą |γpyq ´ 1|.

This is a contradiction, whence γ R UpG, 1q and so t1
pGu “ UpG, 1q is open so the topology

is discrete.

Example 6.9 (Dual group of discrete finite cyclic groups). Suppose that C is a finite cyclic

group endowed with the discrete topology. Since C is cyclic it is generated by some element

x, and the map

ϕ : C Ñ pC;xr ÞÑ pC Ñ S1;xl ÞÑ expp2πirl{|C|qq

is a well-defined homeomorphic isomorphism. To see this note that ϕ is well-defined in

the sense that different representations of an element in the domain produce the same

image: xr “ xr
1

implies |C|  r ´ r1 and hence expp2πirl{|C|q “ expp2πir1l{|C|q; and ϕ

is well-defined in the sense that ϕpxrq as defined is genuinely an element of pC: xl “ xl
1

10A simple group is a group whose only normal subgroups are the trivial group and the whole group

e.g. An, the alternating group on n elements, when n ě 5 as shown in Part A: Group Theory.
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implies |C|  l ´ l1 and hence expp2πirl{|C|q “ expp2πirl1{|C|q so that ϕpxrq is itself a

well-defined function; it is continuous since C is discrete; and it is a homomorphism since

expp2πirpl ` l1q{|C|q “ expp2πirl{|C|q expp2πirl1{|C|q.

ϕ is a homomorphism since expp2πipr ` r1ql{|C|q “ expp2πirl{|C|q expp2πir1l{|C|q. ϕ is

injective since if expp2πirl{|C|q “ 1 for all l then |C|  r so xr “ 1C . ϕ is surjective since if

γ : C Ñ S1 is a homomorphism then γpxq|C| “ 1 so γpxq “ expp2πir{|C|q for some r P Z,
and γ “ ϕpxrq.

We conclude that ϕ : C Ñ pC is a bijective group homomorphism and hence ϕ´1 is a

group homomorphism. Since C is finite, C is compact and so pC is discrete by Proposition

6.8 and hence ϕ´1 is continuous as required.

There is only one infinite cyclic group up to isomorphism so to complement the above

we have:

Example 6.10 (The dual of Zd). The map

ϕ : S1
Ñ xZd; z ÞÑ pZd Ñ S1;n ÞÑ znq

is well-defined because any map from a discrete group is continuous, and it certainly takes

z P S1 to homomorphisms of Z. ϕ is visibly a homomorphism. If ϕpzq “ ϕpwq then

z “ ϕpzqp1q “ ϕpwqp1q “ w, so ϕ is injective; and any homomorphism Z Ñ S1 is determined

by where it maps 1, and so ϕ is surjective.

Compact subsets of discrete topological spaces are finite, and so if K Ă Zd is compact

then there if m P N˚ such that |n| ď m for all n P K. Then for δ ą 0, if |z ´ w| ă δ{m and

n P K we have

|zn ´ wn
| “ |z|n|

´ w|n|
| ď |z ´ w|p|z|

|n|´1
` ¨ ¨ ¨ ` |w|

|n|´1
q ď |z ´ w||n| ă δ.

In other words ϕ is continuous.

The continuous image of a compact set is compact and so xZd is compact. It is also

Hausdorff by Proposition 6.5, and so by the Open Mapping Theorem (Theorem 2.34), ϕ is

a homeomorphic isomorphism. In words the dual of Zd is homeomorphically isomorphic to

S1.

Orthogonality of characters

Characters on compact Abelian topological groups are particularly useful because they con-

vert topological information into algebraic information. For this subsection it is useful to

use the normalisation of Lemma 5.4, specifically
ş

denotes the unique left Haar integral on

G with
ş

1 “ 1 and we write

xf, gy :“

ż

x

fpxqgpxq for all f, g P CpGq.
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Lemma 6.11. Suppose that G is a compact Abelian topological group, γ, γ1 P pG. Then

xγ, γ1
y “

$

&

%

1 if γ “ γ1

0 otherwise.

Proof. The first case is immediate. If γ ‰ γ1 then there is y P G such that γpyq ‰ γ1pyq.

Now

γ1
pyqxγ, γ1

y “ xγ, λypγ1
qy “ xλy´1pγq, γ1

y “ γpyqxγ, γ1
y,

and so xγ, γ1y “ 0. The result is proved.

Lemma 6.12. Suppose that G is a compact Abelian topological group Γ Ă pG is finite,

ω : Γ Ñ C, and k P N˚. Then

ż

x

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γPΓ

ωpγqγpxq

ˇ

ˇ

ˇ

ˇ

ˇ

2k

“
ÿ

γ1¨¨¨γk“γ1
1¨¨¨γ1

k

ωpγ1q ¨ ¨ ¨ωpγkqωpγ1
1q ¨ ¨ ¨ωpγ1

kq.

Proof. We expand out the integrand:

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γPΓ

ωpγqγpxq

ˇ

ˇ

ˇ

ˇ

ˇ

2k

“

˜

ÿ

γPΓ

ωpγqγpxq

¸k ˜
ÿ

γ1PΓ

ωpγ1qγ1pxq

¸k

“
ÿ

γ1,...,γk,γ
1
1,...,γ

1
kPΓ

ωpγ1q ¨ ¨ ¨ωpγkqωpγ1
1q ¨ ¨ ¨ωpγ1

kq ¨ pγ1 ¨ ¨ ¨ γkγ
1
1 ¨ ¨ ¨ γ1

kqpxq.

Apply
ş

to both sides. By linearity of
ş

and Lemma 6.11 the contribution to the right hand

side is 0 unless γ1 ¨ ¨ ¨ γk “ γ1
1 ¨ ¨ ¨ γ1

k in which case it is 1. The result is proved.

Remark 6.13. The dual group of a countable group can be uncountable as Example 6.10

shows, but the dual group of a finite group must be finite: Indeed, if G is finite then x|G| “ 1

for all x P G and so if χ : G Ñ S1 is a homomorphism then it must map into the |G|th roots

of unity. Since there are at most |G||G| maps from G into the set of |G|th roots of unity, it

follows that | pG| ď |G||G| and so is finite.

The orthogonality of characters, however, gives a stronger bound: if G is finite, then

G is, in particular, compact and so the elements of pG are orthonormal and hence linearly

independent elements of CpGq. The space CpGq is a subspace of the space of functions

G Ñ C and so has dimension at most |G|, whence | pG| ď |G|.

Local compactness in the dual group

We can make use of the Haar integral we have developed to show that if G is a locally

compact topological group then the dual group is also locally compact. To do this we need

a lemma.
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Lemma 6.14. Suppose that G is a locally compact topological group supporting a Haar

integral
ş

, f0 P C`
c pGq has

ş

f0 ‰ 0, and κ, δ ą 0. Then there is an open neighbourhood of

the identity Lδ,κ such that if
ˇ

ˇ

ş

f0γ
ˇ

ˇ ě κ then |1 ´ γpyq| ă δ for all y P Lδ,κ.

Proof. Write K for a compact set containing the support of f0 and U for a compact neigh-

bourhood of the identity. UK is compact by Lemma 2.18. Apply Corollary 3.15 to get a

continuous compactly supported F : G Ñ r0, 1s such that F pxq “ 1 for all x P UK.

By Proposition 3.9 there is an open neighbourhood of the identity Lδ,κ (which we may

assume is contained in U since U is a neighbourhood and so contains an open neighbourhood

of the identity) such that }λypf0q´f0}8 ă δκ{
ş

F for all y P Lδ,κ. (Note
ş

F ą 0 by Corollary

4.11.) For y P Lδ,κ, the support of λypf0q ´ f0 is contained in UK (since Lδ,κ Ă U) and so

ż

|λypf0q ´ f0| ď }λypf0q ´ f0}8

ż

F ă δκ.

Now, if y P Lδ,κ then

|1 ´ γpyq|κ ď

ˇ

ˇ

ˇ

ˇ

pγpyq ´ 1q

ż

f0γ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

f0λy´1pγq ´

ż

f0γ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

λypf0qγ ´

ż

f0γ

ˇ

ˇ

ˇ

ˇ

ď

ż

|λypf0q ´ f0| ă δκ.

Dividing by κ gives the claim.

Theorem 6.15. Suppose that G is a locally compact topological group. Then pG is locally

compact.

Proof. Let
ş

be a left Haar integral on G (which exists by Theorem 4.13). Since
ş

is non-

trivial there is f0 P C`
c pGq such that

ş

f0 ‰ 0 and we may rescale so that
ş

f0 “ 1. Write K

for a compact set containing the support of f0 and define

V :“ tγ P pG : |γpxq ´ 1| ď 1{4 for all x P Ku,

so that V certainly contains, UpK, 1{4q, an open neighbourhood of the identity.

Write M for the set of maps G Ñ S1 endowed with the product topology so that M is a

(non-empty) product of compact set and so compact. This is Tychonoff’s Theorem, and our

approach here has parallels with another place we used Tychonoff’s Theorem: in the proof

of Theorem 4.13. The set pG is contained in the set M , but the compact-open topology on

pG is not, in general, the same as that induced on pG as a subspace of M . Our aim is to

make use of the compactness on M to show that pG is locally compact in the compact-open

topology.

First we restrict to homomorphisms: write H for the set of homomorphisms G Ñ S1,

which is a closed subset of M since it is the intersection over all pairs x, y P G of the set
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of f P M such that fpxyq “ fpxqfpyq, which are closed since the maps evaluation maps

f ÞÑ fpxq are closed in the product topology. With the sets Lδ,3{4 as in Lemma 6.14 write

C :“
č

δą0,xPLδ,3{4

tf P H : |fpxq ´ 1| ď δu

which is also closed as an intersection of closed sets. By Proposition 2.5 as sets we have

C Ă pG since the sets tz P S1 : |1 ´ z| ď δu form a neighbourhood base of the identity in

S1, and if f P C then f´1ptz P S1 : |1 ´ z| ď δuq Ą Lδ,3{4 which is a neighbourhood of the

identity in G.

If γ P V then
ˇ

ˇ1 ´
ş

f0γ
ˇ

ˇ ď
ş

f0|1 ´ γ| ď 1{4, so by the triangle inequality |
ş

f0γ| ě 3{4

and hence Lemma 6.14 tells us that γ P C. Thus (as sets) V Ă C Ă pG and so

V “
č

xPK

tf P C : |fpxq ´ 1| ď 1{4u,

which is again a closed subset of M .

Our aim is to show that V is compact in the compact-open topology on pG. This follows

if every cover of the form U “ tγUpKγ, δγq : γ P V u (where Kγ is compact and δγ ą 0) has

a finite subcover. Write Lγ :“ Lδγ{2,1{2 (where these sets are as in Lemma 6.14 applied to

f0) and note that by compactness of Kγ there is a finite set Tγ such that Kγ Ă TγLγ. Write

Uγ :“ tf P M : |fpxq ´ 1| ă δγ{2 for all x P Tγu

which is an open set in M since Tγ is finite. Suppose that λ P pγUγq X V for some γ P V .

Then since γ, λ P V , the triangle inequality gives

ˇ

ˇ

ˇ

ˇ

1 ´

ż

f0γλ

ˇ

ˇ

ˇ

ˇ

ď

ż

f0|1 ´ γλ| “

ż

f0|1 ´ γ ` γ ´ γλ|

ď

ż

f0|1 ´ γ| `

ż

f0|1 ´ λ| ď 1{2.

Hence
ˇ

ˇ

ş

f0γλ
ˇ

ˇ ě 1{2 by the triangle inequality again. Lemma 6.14 applied towith f0 gives

|1 ´ γpyqλpyq| ă δγ{2 for all y P Lγ. But γλ P Uγ so we also have |1 ´ γpzqλpzq| ă δγ{2 for

all z P Tγ. Thus, if x P Kγ then there is z P Tγ and y P Lγ such that x “ zy and

|1 ´ γpxqλpxq| ď |1 ´ γpzqλpzq| ` |γpzqλpzq ´ γpzyqλpzyq|

“ |1 ´ γpzqλpzq| ` |1 ´ γpyqλpyq| ă δγ.

We conclude that γUγ X V Ă γUpKγ, δγq X V . Finally tγUγ : γ P V u is a cover of V by sets

that are open in M . M is compact and V is closed as a subset of M so V is compact as a

subset of M , and hence tγUγ : γ P V u has a finite subcover which leads to a finite subcover

of our original cover U . The result is proved.
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Reflexive topological groups

For G a topological group write

αG : G Ñ
p

pG;x ÞÑ pγ ÞÑ γpxqq.

Observation 6.16. Certainly αGpxyqpγq “ γpxyq “ γpxqγpyq “ αGpxqpγqαGpyqpγq for all

x, y P G and γ P pG, and so αG is a homomorphism.

When αG is a homeomorphic isomorphism we say that G is reflexive.

To analyse the continuity of αG in the following auxiliary lemma can be useful.

Lemma 6.17. Suppose that G is a locally compact topological group. Then the map

G ˆ pG Ñ S1; px, γq ÞÑ γpxq (6.1)

is continuous.

Proof. For δ ą 0 and γ P pG the set tx P G : |γpxq ´ 1| ă δ{2u is an open neighbourhood of

1G and so by regularity of G (Proposition 2.29) there is an open neighbourhood of 1G, call

it L, such that L Ă tx P G : |γpxq ´ 1| ă δ{2u. We may take L to be a subset of a compact

set since G is locally compact, whence L is a subset of the closure of a compact set which

is compact by Lemma 2.32.

Suppose further that x P G, and px1, γ1q P xL ˆ γUpxL, δ{2q – an open neighbourhood

of px, γq. Then

|γ1
px1

q ´ γpxq| ď |γ1
px1

q ´ γpx1
q| ` |γpx1

q ´ γpxq|

“ |pγ1γqpx1
q ´ 1| ` |γpx´1x1

q ´ 1| ă δ,

and the result follows.

For Λ Ă pG compact and δ ą 0 define

BohrpΛ, δq :“ tx P G : |γpxq ´ 1| ă δ for all γ P Λu.

Proposition 6.18. Suppose that G is a locally compact topological group. Then αG is a

continuous homomorphism.

Proof. By Proposition 2.5 it suffices to show that the sets BohrpΛ, δq are open for Λ Ă pG

compact and δ ą 0. Fix x0 P BohrpΛ, δq. For each λ P Λ, Lemma 6.17 gives us open

neighbourhoods of the respective identities Uλ Ă G and Γλ Ă pG such that x0Uλ ˆ λΓλ is

a subset of tpx, γq : |γpxq ´ 1| ă δu. The sets tλΓλ : λ P Λu form an open cover of Λ

and so there is a finite subcover λ1Γλ1 , . . . , λmΓλm of Λ; let U 1 :“ Uλ1 X ¨ ¨ ¨ X Uλm . Then

x0U
1 Ă BohrpΛ, δq, and the set is open as required.
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Remark 6.19. In Exercise IV.8 we shall see that there are reflexive topological groups that

are not locally compact. On the other hand, in [MP95] it is shown that if G is a reflexive

topological group such that the map in (6.1) is continuous then G is locally compact, and

so Exercise IV.8 gives an example where the map in (6.1) is not continuous.

To analyse the injectivity of αG we use the following consequence of the Peter-Weyl

Theorem:

Proposition 6.20. Suppose that G is a compact Hausdorff Abelian topological group and

x ‰ 1G. Then there is γ P pG such that γpxq ‰ 1.

Proof. By Corollary 3.15 there is a continuous f P CpGq such that fpxq ‰ fp1q. By

Theorem 5.11 there is an inner product space V , v, w P V and a continuous homomorphism

π : G Ñ UpV q such that |fpzq ´ xπpzqv, wy| ă 1
2
|fpxq ´ fp1q| for all z P G. In particular, by

the triangle inequality πpxqv ‰ πp1Gqv “ v.

Let W :“ tu P V : πpxqu “ uu and V0 :“ tu P V : xu, u1y “ 0 for all u1 P W u. Then

(i) πpyqv P V0 for all y P G and v P V0, since xπpyqv, u1y “ xv, πpyq˚u1y “ xv, u1y “ 0 for

all u1 P W ;

(ii) and V0 ‰ t0u since if u1 P W then xπpxqv ´ v, u1y “ xv, πpxq˚u1y ´ xv, u1y “ 0, so

0 ‰ πpxqv ´ v P V0.

Suppose that i P N0 and πpyqv P Vi for all v P Vi and y P G and Vi ‰ t0u. If there is

y P G such that πpyq is not a scalar multiple of the identity on Vi then let Vi`1 be an

eigenspace of πpyq restricted to Vi corresponding, say, to some eigenvalue λi`1. We have

0 ă dimVi`1 ă dimVi; since G is Abelian, if v P Vi`1 and z P G then

πpyqpπpzqvq “ πpyzqv “ πpzyqv “ πpzqpπpyqvq “ πpzqpλi`1vq “ λi`1πpzqv

and so πpzqv P Vi`1. By induction we conclude that this terminates with some space Vj ‰ t0u

such that πpzq is a scalar multiple of the identity on Vj for every z P G; let γpzq be this

scalar. Since π is a continuous homomorphism, so is γ (indeed, γ is a matrix coefficient).

Moreover since Vj ‰ t0u there is 0 ‰ v1 P Vj and γpxqv1 “ πpxqv1 ‰ v1 since Vj ď V0, whence

γpxq ‰ 1 and the result is proved.

Remark 6.21. We cannot relax any of the hypotheses in a strong sense: if we drop ‘Abelian’

then Example 6.7 shows that the dual may be trivial; if we drop ‘Hausdorff’ then Example

6.6 shows that the dual may be trivial; and if we drop ‘compact’ then Exercise IV.5 shows

that the dual may be trivial.

Theorem 6.22 (Pontryagin duality for compact Hausdorff Abelian topological groups).

Suppose that G is a compact Hausdorff Abelian topological group. Then G is reflexive.
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Proof. By Proposition 6.5 and Theorem 6.15,
p

pG is a locally compact Hausdorff Abelian

topological group, so by Proposition 6.18 and the Open Mapping Theorem (Theorem 2.34)

it is enough to show that αG is a bijection. First, it is injective by Proposition 6.20. Secondly,

since G is compact and αG is continuous, the set αGpGq is compact and so closed (since
p

pG is

Hausdorff). Hence for surjectivity of αG it is enough to show that the image of αG is dense.

To show that αG has dense image, suppose that ϕ P
p

pG. By Proposition 6.8 the group pG

is discrete and hence any compact subset is finite and so it is enough to show that for finite

Γ Ă pG there is y P G such that ϕpγq “ γpyq for all γ P Γ. To begin suppose, as we may,

that Γ includes the trivial character, and define

fpxq :“
ÿ

γPΓ

ϕpγqγpxq and gpxq :“
ÿ

γPΓ

γpxq.

By Lemma 6.12 and the fact that ϕ is a homomorphism, for any k P N˚, we have

ż

x

|fpxq|
2k

“
ÿ

γ1,...,γk,γ1,...,γ
1
kPΓ

γ1¨¨¨γk“γ1
1¨¨¨γ1

k

ϕpγ1q ¨ ¨ ¨ϕpγkqϕpγ1
1q ¨ ¨ ¨ϕpγ1

kq

“
ÿ

γ1,...,γk,γ1,...,γ
1
kPΓ

γ1¨¨¨γk“γ1
1¨¨¨γ1

k

ϕpγ1 ¨ ¨ ¨ γkγ1
1 ¨ ¨ ¨ γ1

kq “
ÿ

γ1,...,γk,γ1,...,γ
1
kPΓ

γ1¨¨¨γk“γ1
1¨¨¨γ1

k

1 “

ż

x

|gpxq|
2k.

Since f and g are continuous, by Lemma 4.12 we have }f}8 “ }g}8. But gp0Gq “ |Γ| and

|gpxq| ď |Γ|, whence there is y P G such that |fpyq| “ |Γ|.

Since ϕp1
pGq “ 1, 1

pGpyq “ 1, and |ϕpγqγpyq| “ 1 for all γ P Γ we have |fpyq ´1| ď |Γ| ´1.

Hence |fpyq|2 ` 1 ´ 2Re fpyq ď |Γ|2 ´ 2|Γ| ` 1, but |fpyq| “ Γ and so Re fpyq ě |Γ| and

ÿ

γPΓ

|ϕpγq ´ γpyq|
2

“ 2|Γ| ´ 2Re fpyq ď 0.

It follows that each summand is 0 i.e. ϕpγq “ γpyq for all γ P Γ. The result is proved.

Remark 6.23. In view of Proposition 6.5, if G is a reflexive topological group then G must

be Hausdorff and Abelian, and the above can be extended to show that all locally compact

Hausdorff Abelian topological groups are reflexive – this is often called Pontryagin duality.

On the other hand, Exercise IV.8 shows that there are reflexive groups that are not

locally compact.
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