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Notation

• ℕ: the natural numbers.

• ℕ𝑋: if 𝑋 ⊆ 𝑉 is a subset of a vector space 𝑉 then ℕ𝑋 = {∑𝑖∈𝐼 𝑛𝑖𝑥𝑖 ∶ 𝑛𝑖 ∈ ℕ}, where 𝐼 any
finite indexing set such that {𝑥𝑖 ∶ 𝑖 ∈ 𝐼} ⊆ 𝑋.

• [., .]: a Lie bracket, see Definition 2.1.2.

• 𝔤𝔩(𝑉): for a vector space 𝑉, the Lie algebra which is End(𝑉) as a vector space, equipped with
the commutator as its Lie bracket.

• 𝔰𝔩(𝑉): the Lie subalgebra of 𝔤𝔩(𝑉) constisting of endomorphisms of trace 0.

• An ideal in a Lie algebra 𝔤 is a subspace 𝔞 such that [𝑎, 𝑥] ∈ 𝔞 for all 𝑥 ∈ 𝔤, 𝑎 ∈ 𝔞. See
Definition 2.2.1.

• 𝑁𝔤(𝔞): the normalizer of a subalgebra 𝔞 in a Lie algebra 𝔤. See Definition 2.2.6.

• (𝐶𝑘(𝔤))𝑘≥0: The lower central series of a Lie algebra, see Definition 5.3.2

• (𝐷𝑘(𝔤))𝑘≥0: The derived series of a Lie algebra, see Definition 5.1.3

• 𝜅 = 𝜅𝔤: The Killing form, an invariant symmetric bilinear form on a Lie algebra given by:

𝜅(𝑥, 𝑦) = tr𝔤(ad(𝑥)ad(𝑦)).

• rad(𝐵): If 𝐵 is a symmetric bilinear form on a vector space 𝑉 then

rad(𝐵) = {𝑣 ∈ 𝑉 ∶ 𝐵(𝑣, 𝑤) = 0, ∀𝑤 ∈ 𝑉}.

• rad(𝔤): If 𝔤 is a Lie algebra, then rad(𝔤) is the maximal solvable ideal in 𝔤.

• (𝑉, Φ): an abstract root system. See Definiton 7.3.2.

0.1 Modifications

(i) Chapter 1: Added a few more details about the examples discussed in lecture 1, but this is
just for curiosity.

(ii) Chapter 2: Clarified the definition of a k-algebra to tidy up the unital and non-unital cases:
the current version gives a definition of a k-algebra structure on a k-vector space 𝐴 with or
without a unit. In the case where 𝐴 has a unit, then the definition becomes equivalent to the
existence of a homomorphism of rings k → 𝐴 whose image lies in the centre of 𝐴.

(iii) Chapter 5: corrected some typos in Section 5.1 and subsection 5.3.2 now matches the account
of representations of nilpotent Lie algebras give in lectures. (The original online notes had a
mistake here.)
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Chapter 1

*Background

In this section I use some material, like multivariable analysis, which is not necessary for the main body
of the course, but if you know it, or are happy to rely on notions from Prelims multivariable calculus for
which you have not been given a rigorous definition, it will help to put the material of this course in a
broader context. For those worried about such things, fear not, it is non-examinable.

1.1 From group actions to group representations

In mathematics, group actions give a way of encoding the symmetries of a space or physical system.
Formally these are defined as follows: an action of a group 𝐺 on a space1 𝑋 is a map 𝑎 ∶ 𝐺 × 𝑋 → 𝑋,
written (𝑔.𝑥) ↦ 𝑎(𝑔, 𝑥) or more commonly (𝑔, 𝑥) ↦ 𝑔.𝑥 which satisfies the properties

1. 𝑒.𝑥 = 𝑥, for all 𝑥 ∈ 𝑋, where 𝑒 ∈ 𝐺 is the identity;

2. (𝑔1𝑔2).𝑥 = 𝑔1.(𝑔2.𝑥) for all 𝑔1, 𝑔2 ∈ 𝐺 and 𝑥 ∈ 𝑋.

Natural examples of actions are that of the group of rigid motions SO3 on the unit sphere {𝑥 ∈ ℝ3 ∶
||𝑥|| = 1}, or the general linear group GL𝑛(ℝ) on ℝ𝑛.
Whenever a group acts on a space 𝑋, there is a resulting linear action (a representation) on the

vector space of functions on 𝑋. Indeed if Fun(𝑋) denotes the vector space of real-valued functions
on 𝑋, then the formula

𝑔(𝑓 )(𝑥) = 𝑓 (𝑔−1.𝑥), ∀𝑔 ∈ 𝐺, 𝑓 ∈ Fun(𝑋), 𝑥 ∈ 𝑋,

defines a representation of 𝐺 on Fun(𝑋). If 𝑋 and 𝐺 have more structure. e.g. that of a topological
space or smooth manifold, then this action may also preserve the subspaces of say continuous, or
differentiable functions. Lie algebras arise as the “infinitesimal version” of group actions, which
loosely speaking means they are what we get by trying to differentiate group actions.

Example 1.1.1. Take for example the natural action of the circle 𝑆1 by rotations on the plane ℝ2.
This action can be written explicitly using matrices:

𝑔(𝑡) = ( cos(𝑡) −sin(𝑡)
sin(𝑡) cos(𝑡) )

where we have smoothly parametrized the circle 𝑆1 using the trigonometric functions. Note that
for this parametrization, 𝑔(𝑡)−1 = 𝑔(−𝑡). The induced action on Fun(ℝ2) restricts to an action on

1I’m being deliberately vague here about what a “space” is, 𝑋 could just be a set, but it could also have a more
geometric nature, such as a topological space or submanifold of ℝ𝑛.
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𝒞∞(ℝ2) the space of smooth (i.e. infinitely differentiable) functions on ℝ2. Using our parametriza-
tion, it makes sense to differentiate this action at the identity element (i.e. at 𝑡 = 0) to get an

operation 𝜈 ∶ 𝒞∞(ℝ2) → 𝒞∞(ℝ2), where if 𝑧 = ( 𝑥
𝑦 ) ∈ ℝ2, then 𝜈 is given by

𝜈(𝑓 ) = 𝑑
𝑑𝑡(𝑓 (𝑔(−𝑡).𝑧))|𝑡=0

= −𝐷𝑓𝑧 ∘ 𝑔′(0).(𝑧)

= − ( 𝜕𝑥𝑓 𝜕𝑦𝑓 ) ( −sin(𝑡) −cos(𝑡)
cos(𝑡) −sin(𝑡) )

|𝑡=0
( 𝑥

𝑦 )

= 𝑦𝜕𝑥 − 𝑥𝜕𝑦.

The operator we obtained in this example, 𝜈 = 𝑦𝜕𝑥 − 𝑥𝜕𝑦 is a 𝒞∞(ℝ2)- linear combination of 𝜕𝑥
and 𝜕𝑦. Such an operation is called a derivation, and we now discuss their structure. We will work
with the spaces ℝ𝑛 for the rest of this section, but everything we say also applies, mutatis mutandis
to the context of smooth manifolds.

Definition 1.1.2. For any positive integer 𝑛, an ℝ-linear operator 𝜈 ∶ 𝒞∞(ℝ𝑛) → 𝒞∞(ℝ𝑛) is said to
be a derivation if, for any 𝑓1, 𝑓2 ∈ 𝒞∞(ℝ𝑛) it satisfies

𝜈(𝑓1.𝑓2) = 𝜈(𝑓1).𝑓2 + 𝑓1.𝜈(𝑓2). (1.1)

The next Lemma shows that the previous, somewhat formal, definition, actually results in a
class of objects with a very concrete description. When working in ℝ𝑛 we will denote the partial
derivative of 𝑓 in the direction of the 𝑖-th standard basis vector by 𝜕𝑖𝑓 (in preference to the notation
𝜕𝑓 /𝜕𝑥𝑖 you may have seen more often).

Lemma 1.1.3. If 𝜈 ∶ 𝒞∞(ℝ𝑛) → 𝒞∞(ℝ𝑛) is a derivation, then there exist unique smooth functions
𝑎1, … , 𝑎𝑛 ∈ 𝒞∞(ℝ𝑛) such that for all 𝑓 ∈ 𝒞∞(ℝ𝑛) we have

𝜈(𝑓 ) =
𝑛

∑
𝑗=1

𝑎𝑗𝜕𝑗(𝑓 ).

Proof. Let 𝜈 be a derivation. Since 12 = 1 ∈ ℝ, we must have 𝜈(1) = 𝜈(1).1 + 1.𝜈(1), that is,
2𝜈(1) = 𝜈(1) so that 𝜈(1) = 0, and hence by linearity 𝜈(𝜆) = 0 for all 𝜆 ∈ ℝ, i.e. any derivation
vanishes on the subspace of constant functions ℝ ⊆ 𝒞∞(ℝ𝑛).
Now suppose that 𝑓 is an arbitrary smooth function, and fix a point 𝑐 ∈ ℝ𝑛. For 𝑥 ∈ ℝ𝑛, let

𝛾𝑥 ∶ [0, 1] → ℝ𝑛 be the line-segment path 𝛾𝑥(𝑡) = 𝑐 + 𝑡(𝑥 − 𝑐) from 𝑐 to 𝑥, and let ℎ𝑥(𝑡) = 𝑓 (𝛾𝑥(𝑡)).
Now by the fundamental theorem of calculus 𝑓 (𝑥) − 𝑓 (𝑐) = ℎ(1) − ℎ((0) = ∫1

0 ℎ′(𝑡)d𝑡 and since by
chain rule we have ℎ′(𝑡) = 𝐷𝑓𝛾𝑥(𝑡)(𝑥 − 𝑐), we obtain

𝑓 (𝑥) = 𝑓 (𝑐) + ∫
1

0

𝑛
∑
𝑗=1

𝜕𝑗𝑓 (𝛾𝑥(𝑡))(𝑥𝑗 − 𝑐𝑗)d𝑡 = 𝑓 (𝑐) +
𝑛

∑
𝑗=1

𝑔𝑗(𝑥).(𝑥𝑗 − 𝑐𝑗)

where 𝑔𝑗(𝑥) = ∫1
0 𝜕𝑗𝑓 (𝑐 + 𝑡(𝑥 − 𝑐))d𝑡 ∈ 𝒞∞(ℝ𝑛) and clearly 𝑔𝑗(𝑐) = 𝜕𝑗𝑓 (𝑐). Since the functions

(𝑥𝑗 − 𝑐𝑗) vanish at 𝑥 = 𝑐 for all 𝑗, it follows from the (1.1) that 𝜈(𝑔𝑗.(𝑥𝑗 − 𝑐𝑗))(𝑐) = 𝑔𝑗(𝑐)𝜈(𝑥𝑗 − 𝑐𝑗).
Using this and the fact that 𝜈(ℝ) = 0, it follows that if we set 𝑎𝑗 = 𝜈(𝑥𝑗) = 𝜈(𝑥𝑗 − 𝑐𝑗) then

𝜈(𝑓 )(𝑐) =
𝑛

∑
𝑗=1

𝑎𝑗(𝑐)𝜕𝑗𝑓 (𝑐).

Since 𝑐 ∈ ℝ𝑛 was arbitrary, it follows that 𝜈(𝑓 ) = ∑𝑛
𝑗=1 𝑎𝑗𝜕𝑗𝑓 as required. □
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It follows that to give a derivation is the same as to give an 𝑛-tuple of functions (𝑎1, … , 𝑎𝑛), or in
other words a smooth function 𝑎 ∶ ℝ𝑛 → ℝ𝑛.

Definition 1.1.4. A vector field on 𝑋 = ℝ𝑛 (or, with a bit more work, any manifold) is a (smooth)
function 𝜈 ∶ ℝ𝑛 → ℝ𝑛, which one can think of as giving the infinitesimal direction of a flow (e.g. of
a fluid, or an electric field say). The set of vector fields forms a vector space which we denote by
Θ𝑋. Such fields can be made to act on functions 𝑓 ∶ 𝑋 → ℝ by differentiation. If 𝜈 = (𝑎1, 𝑎2, … , 𝑎𝑛)
in standard coordinates (here 𝑎𝑖 ∶ ℝ𝑛 → ℝ), then set

𝜈(𝑓 ) =
𝑛

∑
𝑖=1

𝑎𝑖
𝜕𝑓
𝜕𝑥𝑖

.

By the previous Lemma, this yields a bijection between vector fields and derivations on 𝒞∞(ℝ𝑛).

Heuristically, we think of the infinitesimal version of a group action as the collection of deriva-
tions on smooth functions we obtain by “differentiating the group action at the identity element”.
(For the circle the collection of vector fields we get are just the scalar multiples of the vector field
𝜈, but for actions of larger group this will yield a larger space of derivations). It turns out this set
of derivations forms a vector space, but it also has a kind of “product” which is a sort of infinites-
imal remnant of the group multiplication2. The next definition seeks to formalize the notion of an
“infinitesimal symmetry”.
Note that if we compose two derivations 𝜈1 ∘ 𝜈2 we again get an operator on functions, but it

is not given by a vector field, since it involves second order differential operators. However, it is
easy to check using the symmetry of mixed partial derivatives that if 𝜈1, 𝜈2 are derivations, then
[𝜈1, 𝜈2] = 𝜈1 ∘ 𝜈2 − 𝜈2 ∘ 𝜈1 is again a derivation. Thus the spaceΘ𝑋 of vector fields on 𝑋 is equipped
with a natural product3 [., .] which is called a Lie bracket. The derivatives of a group action give
subalgebras of the algebra Θ𝑋.

Example 1.1.5. Consider the action of SO3(ℝ) on ℝ3. This is the group of orientation-preserving
linear isometries of ℝ3. It is well-known that any element of 𝑔 ∈ SO3(ℝ) is a rotation about an
axis 𝐿 through the origin by some angle, 𝜃 let us say. Then there is a continuous path 𝛾 in SO3(ℝ)
from the identity to 𝑔 which, for 𝑡 ∈ [0, 1] is the rotation by 𝑡.𝜃 about that axis.
This path is smooth and extends to 𝑡 in an open interval containing 𝑡 = 0, so it makes sense to

associate to it the derivation 𝑓 ↦ 𝑑
𝑑𝑡(𝑓 (𝛾(−𝑡)(𝑥)). Picking an orthonormal basis {𝑒1, 𝑒2, 𝑒3} which is

positively oriented, with 𝑒3 lying along the axis of rotation of 𝑔 and 𝑒1 and 𝑒2 on the plane perpen-
dicular to 𝑒3, then a calculation almost identical to the one above in the case of the circle shows that
𝜈 is a scalar multiple of 𝑥2𝜕1 − 𝑥1𝜕2, where the scalar depends on the angle 𝜃.
But since, for each 𝑔 ∈ SO3(ℝ), the derivation 𝜈𝑔 we obtain in this way, is determined up to

scaling by the axis of rotation, and if we conjugate 𝑔 by an element of ℎ ∈ SO3(ℝ), then ℎ𝑔ℎ−1 is a
rotation by the same angle around the axis ℎ(𝐿) and ℎ𝛾(𝑡)ℎ−1 is a path from the identity to ℎ𝑔ℎ−1.
Applying the chain rule as for the case of a circle, noting that a linear map is its own derivative, it
follows that the derivation obtained from using the rotation ℎ𝑔ℎ−1 in place of 𝑔 is obtained from that
for 𝑔 simply by applying ℎ. It follows from this that the linear span of all such derivations is in fact
a 3-dimensional vector space 𝔤 = spanℝ{𝑥𝜕𝑦 − 𝑦𝜕𝑥, 𝑦𝜕𝑧 − 𝑧𝜕𝑦, 𝑧𝜕𝑥 − 𝑥𝜕𝑧}, and moreover it is then
not hard to check that 𝔤 is closed under the bracket operations [⋅, ⋅]. (This also gives a non-trivial
example of a 3-dimensional Lie algebra).

2To be a bit more precise, it comes from the conjugation action of the group on itself.
3This is in the weakest sense, in that it is a bilinear map Θ𝑋 × Θ𝑋 → Θ𝑋. It is not even associative – the axiom it

does satisfy is discussed shortly.
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Chapter 2

Lie algebras: Definition and Basic
properties

2.1 Definitions and Examples

The definition of a Lie algebra is an abstraction of the above example of the product on vector fields.
It is purely algebraic, so it makes sense over any field k. We begin, however, with an even more
basic definition:

Definition 2.1.1. Let 𝑅 be a commutative ring1. An 𝑅-algebra is a pair (𝐴, ⋆) consisting of an 𝑅-
module 𝐴 and an 𝑅-bilinear map ⋆∶ 𝐴 × 𝐴 → 𝐴, that is, for all 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝐴 and 𝑟 ∈ 𝑅, the
operation ⋆ satisfies:

(𝑟.𝑎1 + 𝑎2) ⋆ 𝑏1 = 𝑟.(𝑎1 ⋆ 𝑏1) + (𝑎2 ⋆ 𝑏1),
𝑎1 ⋆ (𝑟.𝑏1 + 𝑏2) = 𝑟.𝑎1 ⋆ 𝑏1 + (𝑎1 ⋆ 𝑏2).

We say that (𝐴, ⋆) is unital (or has a unit) if there is an element 1𝐴 ∈ 𝐴 such that 1𝐴 ⋆ 𝑎 =
𝑎 ⋆ 1𝐴 = 𝑎 for all 𝑎 ∈ 𝐴. Note that if it exits, the multiplicative unit is unique. We say that (𝐴, ⋆)
is associative if 𝑎 ⋆ (𝑏 ⋆ 𝑐) = (𝑎 ⋆ 𝑏) ⋆ 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝐴. When 𝐴 is associative, we will normally
suppress the operation ⋆ and so, for any 𝑎, 𝑏 ∈ 𝐴, write 𝑎𝑏 rather than 𝑎 ⋆ 𝑏 for the value of the
bilinear map on the pair (𝑎, 𝑏).
Note that an associative ℤ-algebra (i.e. letting 𝑅 = ℤ the integers) is just a ring. In this course

we will usually assume that 𝑅 is a field, which we will denote by k.

Definition 2.1.2. A Lie algebra over a field k is a pair (𝔤, [., .]𝔤) consisting of a k-vector space 𝔤,
along with a bilinear operation [., .]𝔤 ∶ 𝔤 × 𝔤 → 𝔤 taking values in 𝔤 known as a Lie bracket, which
satisfies the following axioms:

1. [., .]𝔤 is alternating, i.e. [𝑥, 𝑥]𝔤 = 0 for all 𝑥 ∈ 𝔤.

2. The Lie bracket satisfies the Jacobi Identity: that is, for all 𝑥, 𝑦, 𝑧 ∈ 𝔤 we have:

[𝑥, [𝑦, 𝑧]𝔤]𝔤 + [𝑦, [𝑧, 𝑥]𝔤]𝔤 + [𝑧, [𝑥, 𝑦]𝔤]𝔤 = 0.

Remark 2.1.3. It is straight-forward to check directly from the definition that the commutator
bracket [𝜈1, 𝜈2] = 𝜈1 ∘ 𝜈2 − 𝜈2 ∘ 𝜈1 which we put on the space of vector fields Θ𝑋 satisfies the
above conditions.
Note that by considering the bracket [𝑥+𝑦, 𝑥+𝑦]𝔤 it is easy to see that the alternating condition

implies that for all 𝑥, 𝑦 ∈ 𝐿we have [𝑥, 𝑦]𝔤 = −[𝑦, 𝑥]𝔤, that is [., .]𝔤 is skew-symmetric. If char(k) ≠ 2,

1All commutative rings in this course will have a multiplicative identity.
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the alternating condition is equivalent to skew-symmetry. Note that a Lie algebra is a k-algebra in
the sense of Definition 2.1.1 where the product [., .] is neither commutative nor associative, and
moreover it does not have a unit (i.e. a multiplicative identity)2. We will normally simply write
[., .] and reserve use the decorated bracket only for emphasis or where there is the potential for
confusion.

Definition 2.1.4. Let (𝔤1, [., .]1) and (𝔤2, [., .]2) be Lie algebras. A k-linear map 𝜙∶ 𝔤1 → 𝔤2 is said
to be a homomorphism of Lie algebras if it respects the Lie brackets, that is:

𝜙([𝑎, 𝑏]1) = [𝜙(𝑎), 𝜙(𝑏)]2 ∀𝑎, 𝑏 ∈ 𝔤1.

An isomorphism of Lie algebras is a bijective homomorphism, since, just as for group homomor-
phisms and linear maps, the (set-theoretic) inverse of a Lie algebra homomorphism is automatically
itself a Lie algebra homomorphism.

Example 2.1.5. 1. If 𝑉 is any vector space then setting the Lie bracket [., .] to be zero we get a
(not very interesting) Lie algebra. Such Lie algebras are called abelian Lie algebras.

2. If 𝐴 is an (associative) k-algebra, then 𝐴 can be given the structure of a k-Lie algebra, where
if 𝑎, 𝑏 ∈ 𝐴 then we set [𝑎, 𝑏] = 𝑎.𝑏 − 𝑏.𝑎, the commutator of 𝑎 and 𝑏. The commutator bracket
is clearly alternating, and checking the Jacobi identity is a fundamental calculation. Indeed
we have

[𝑥, [𝑦, 𝑧]] = 𝑥(𝑦𝑧 − 𝑧𝑦) − (𝑦𝑧 − 𝑧𝑦)𝑥 = 𝑥𝑦𝑧 − 𝑥𝑧𝑦 − 𝑦𝑧𝑥 + 𝑧𝑦𝑥
= (𝑥𝑦𝑧 − 𝑦𝑧𝑥) + (𝑧𝑦𝑥 − 𝑦𝑧𝑥)

where,in the final expression, we have paired terms which can be obtained from each other
by cycling 𝑥, 𝑦 and 𝑧. Since the terms in these pairs have opposite signs, it is then clear that
adding the three expressions obtained by cycling 𝑥, 𝑦 and 𝑧 gives zero.

3. For a more down-to-earth example, take 𝔤 = 𝔤𝔩𝑛 the k-vector space of 𝑛 × 𝑛 matrices with
entries in k. It is easy to check that this is a Lie algebra for the commutator product:

[𝑋, 𝑌] = 𝑋.𝑌 − 𝑌.𝑋.

Slightly more abstractly, if 𝑉 is a vector space, then we will write 𝔤𝔩(𝑉) for the Lie algebra
End(𝑉) equipped with the commutator product as for matrices.

4. If 𝔤 is a Lie algebra and 𝑁 < 𝔤 is a k-subspace of 𝔤 on which the restriction of the Lie bracket
takes values in 𝑁, so that it induces a bilinear form [., .]𝑁 ∶ 𝑁 × 𝑁 → 𝑁, then (𝑁, [., .]𝑁) is
clearly a Lie algebra, and we say 𝑁 is a (Lie) subalgebra of 𝔤.

5. Let 𝔰𝔩𝑛 = {𝑋 ∈ 𝔤𝔩𝑛 ∶ tr(𝑋) = 0} be the space of 𝑛 × 𝑛 matrices with trace zero. It is easy to
check that 𝔰𝔩𝑛 is a Lie subalgebra of 𝔤𝔩𝑛 (even though it is not a subalgebra of the associative
algebra End(𝑉)). More generally we say any Lie subalgebra of 𝔤𝔩(𝑉) for a vector space 𝑉 is
a linear Lie algebra.

6. Generalising the example of vector fields a bit, if 𝐴 is a k-algebra and 𝛿 ∶ 𝐴 → 𝐴 is a k-linear
map, then we say 𝛿 is a k-derivation if it satisfies the Leibniz rule, that is, if:

𝛿(𝑎.𝑏) = 𝛿(𝑎).𝑏 + 𝑎.𝛿(𝑏), ∀𝑎, 𝑏 ∈ 𝐴.

It is easy to see by a direct calculation that if Derk(𝐴) denotes the k-vector space of k-
derivations on 𝐴, then Derk(𝐴) is stable under taking commutators, that is, if

[𝛿1, 𝛿2] = 𝛿1 ∘ 𝛿2 − 𝛿2 ∘ 𝛿1.
2This makes them sound awful. However, as we will see this is not the way to think about them!
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then [𝛿1, 𝛿2] ∈ Derk(𝐴). Indeed

(𝛿1 ∘ 𝛿2 − 𝛿2 ∘ 𝛿1)(𝑎.𝑏) = 𝛿1 (𝛿2(𝑎).𝑏 + 𝑎.𝛿2(𝑏)) − 𝛿2 (𝛿1(𝑎).𝑏 + 𝑎𝛿2(𝑏))
= 𝛿1𝛿2(𝑎).𝑏 + 𝛿2(𝑎).𝛿1(𝑏) + 𝛿1(𝑎).𝛿2(𝑏) + 𝑎.𝛿2(𝛿1(𝑏))

− 𝛿2𝛿1(𝑎).𝑏 − 𝛿1(𝑎).𝛿2(𝑏) − 𝛿2(𝑎).𝛿1(𝑏) − 𝑎.𝛿2𝛿1(𝑏))
= [𝛿1, 𝛿2](𝑎).𝑏 + 𝑎.[𝛿1, 𝛿2](𝑏).

7. If 𝐴 is an associative k-algebra, then if 𝑎 ∈ 𝐴 the operation of taking commutator with 𝑎 is a
derivation. That is, if 𝛿𝑎 ∶ 𝐴 → 𝐴 is given by 𝛿𝑎(𝑏) = [𝑎, 𝑏] for any 𝑏 ∈ 𝐴, then 𝛿𝑎 ∈ Derk(𝐴).
Indeed

𝛿𝑎(𝑏).𝑐 + 𝑏.𝛿𝑎(𝑐) = (𝑎𝑏 − 𝑏𝑎)𝑐 + 𝑏(𝑎𝑐 − 𝑐𝑎) = 𝑎.(𝑏𝑐) − (𝑏𝑐).𝑎 = 𝛿𝑎(𝑏.𝑐)
The map Δ∶ 𝐴 → Derk(𝐴) given by 𝑎 ↦ 𝛿𝑎 is compatible with commutators:

𝛿[𝑎,𝑏] = [𝛿𝑎, 𝛿𝑏].

In fact slightly more is true: if 𝜕 ∈ Derk(𝐴) and 𝑏 ∈ 𝐴 then [𝜕, 𝛿𝑏] = 𝛿𝜕(𝑏). (Applying this to
𝜕 = 𝛿𝑎 gives the compatibility with commutators). Indeed for all 𝑐 ∈ 𝔤 we have

[𝜕, 𝛿𝑏](𝑐) = 𝜕(𝑏𝑐 − 𝑐𝑏) − (𝑏𝜕(𝑐) − 𝜕(𝑐).𝑏) = 𝜕(𝑏).𝑐 − 𝑐.𝜕(𝑏) = 𝛿𝜕(𝑏)(𝑐).

Thus in particular, the map Δ∶ 𝐴 → Derk(𝐴) is a homomorphism of Lie algebras (where 𝐴
and Derk(𝐴) are equipped with the commutator bracket).

8. Given a Lie algebra 𝔤 we let Derk(𝔤) = {𝜙 ∈ 𝔤𝔩(𝔤) ∶ 𝜙([𝑥, 𝑦]) = [𝜙(𝑥), 𝑦] + [𝑥, 𝜙(𝑦)]}. It is
a Lie subalgebra of 𝔤𝔩(𝔤) (indeed the proof above that Derk(𝐴) is a Lie algebra only requires
the product on 𝐴 to be bilinear).

9. One way of interpreting the Jacobi identity is that, assuming the alternating property, it
is equivalent to the condition that, for any 𝑥 ∈ 𝔤, the operation ad(𝑥) ∈ 𝔤𝔩(𝔤) given by
ad(𝑥)(𝑦) = [𝑥, 𝑦] lies in Derk(𝔤). Indeed

ad(𝑥)([𝑦, 𝑧]) = [ad(𝑥)(𝑦), 𝑧] + [𝑦, ad(𝑥)(𝑧)]
⟺ [𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] + [𝑦, [𝑥, 𝑧]]
⟺ [𝑥, [𝑦, 𝑧]] − [𝑦, [𝑥, 𝑧]] − [[𝑥, 𝑦], 𝑧] = 0
⟺ [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0

where the equivalence between the third and fourth equalities follows from the alternating
property of a Lie bracket.

10. The Jacobi identity is also equivalent, again assuming the alternating property, to the fact that
ad ∶ 𝔤 → 𝔤𝔩(𝔤) is a homomorphism of Lie algebras: Indeed, for all 𝑥, 𝑦, 𝑧 ∈ 𝔤 we have

[ad(𝑥), ad(𝑦)](𝑧) = [𝑥, [𝑦, 𝑧]] − [𝑦, [𝑥, 𝑧]]
= [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]]
= −[𝑧, [𝑥, 𝑦]]
= ad([𝑥, 𝑦])(𝑧).

where the second and fourth equality uses the alternating property, and the third the Jacobi
identity.

*Remark 2.1.6. Combining (8) and (9) in the above example we see that the adjoint representation
𝑥 ↦ ad(𝑥) is in fact a Lie algebra homomorphism from 𝔤 to Derk(𝔤). This is, in a sense, where
the Jacobi identity comes from: very roughly, the conjugation action of 𝐺 on itself yields a group
homomorphism 𝐺 → GL(𝔤) (since conjugation preserves the identity 𝑒 ∈ 𝐺) whose image lies
in Aut(𝔤). The adjoint representation of 𝔤 is then the derivative of this action yields the adjoint
representation ad which hence should have image in Derk(𝔤).
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2.2 Ideals and isomorphism theorems

As one might expect if a Lie algebra is suppose to be an “infinitesimal” version of a Lie group, most
notions for groups have analogues in the context of Lie algebras. It might be worth noting, however,
that the linear structure of a Lie algebra comes from the basic properties of the derivative: it is the
Lie bracket which reflects the “infinitesimal” versions of properties of a group. The existence of
both the linear structure and the Lie bracket means that many of the notions we consider for a Lie
algebra also have natural analogues for a ring (which is an algebra object equipped with an addition
and an (associative) multiplication.

Definition 2.2.1. An ideal in a Lie algebra (𝔤, [., .]𝔤) is a subspace 𝔞 such that for all 𝑥 ∈ 𝔤 and 𝑎 ∈ 𝔞
we have [𝑎, 𝑥]𝔤 ∈ 𝔞. It is easy to check that if 𝜙∶ 𝔤1 → 𝔤2 is a homomorphism, then

ker(𝜙) = {𝑎 ∈ 𝔤1 ∶ 𝜙(𝑎) = 0}

is an ideal of 𝔤1.

Remark 2.2.2. Notice that because a Lie bracket is alternating, the condition that, for all 𝑥 ∈ 𝔤 and
𝑎 ∈ 𝔞 one has [𝑎, 𝑥] ∈ 𝔞, is equivalent to the condition that [𝑥, 𝑎] ∈ 𝔞 for all 𝑥 ∈ 𝔤, 𝑎 ∈ 𝔞. Thus,
similarly to commutative rings, the notions of a left, right or two-sided ideal in a Lie algebra are all
the same.

Just as for rings, in fact any ideal is the kernel of a Lie algebra homomorphism:

Theorem 2.2.3. The first isomorphism theorem for Lie algebras:

1. Let 𝔞 be an ideal in a Lie algebra 𝔤. Let 𝔤/𝔞 be the quotient space and let 𝑞∶ 𝔤 → 𝔤/𝔞 be the quotient
map (of vector spaces). Then there is a unique Lie bracket on 𝔤/𝔞 with respect to which 𝑞 is a
homomorphism of Lie algebras, that is, for all 𝑥, 𝑦 ∈ 𝔤

[𝑞(𝑥), 𝑞(𝑦)] = 𝑞([𝑥, 𝑦]), i.e. [𝑥 + 𝔞, 𝑦 + 𝔞] = [𝑥, 𝑦] + 𝔞.

Moreover, if 𝜙∶ 𝔤 → 𝔨 is a Lie algebra homomorphism such that 𝜙(𝔞) = 0, then 𝜙 induces a
homomorphism ̄𝜙 ∶ 𝔤/𝔞 → 𝔨 such that ̄𝜙 ∘ 𝑞 = 𝜙, so that ker( ̄𝜙) = ker(𝜙)/𝔞.

2. Let 𝜙∶ 𝔤1 → 𝔤2 be a homomorphism of Lie algebras. The subspace 𝜙(𝔤1) = im(𝜙) is a subalgebra
of 𝔤2 and 𝜙 induces an isomorphism ̄𝜙 ∶ 𝔤/ker(𝜙) → im(𝜙).

Proof. The proof is almost identical to the proof in the case of rings. The key point is to see that
the coset [𝑥, 𝑦] + 𝔞 is independent of the choice of representative for the cosets 𝑥 + 𝔞, 𝑦 + 𝔞, and the
condition that 𝔞 is an ideal ensures this. □

Definition 2.2.4. If 𝑉, 𝑊 are subspaces of a Lie algebra 𝔤, then write [𝑉, 𝑊] for the linear span of
the elements {[𝑣, 𝑤] ∶ 𝑣 ∈ 𝑉, 𝑤 ∈ 𝑊}. Notice that if 𝐼, 𝐽 are ideals in 𝔤 then so is [𝐼, 𝐽]. Indeed to
check this, note that by part 8) of Example 2.1.5, if 𝑧 ∈ 𝔤, 𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 then we have

[𝑧, [𝑥, 𝑦]] = ad(𝑧)([𝑥, 𝑦]) = [ad(𝑧)(𝑥), 𝑦] + [𝑥, ad(𝑧)(𝑦)] ∈ [𝐼, 𝐽]

since ad(𝑧)(𝑥) = [𝑧, 𝑥] ∈ 𝐼 if 𝑥 ∈ 𝔤, and similarly ad(𝑧)(𝑦) = [𝑧, 𝑦] ∈ 𝐽.

Remark 2.2.5. If 𝐼 and 𝐽 are ideals in a Lie algebra 𝔤 then it is easy to check that their intersection
𝐼 ∩ 𝐽 is again an ideal in 𝔤, and we have [𝐼, 𝐽] ⊆ 𝐼 ∩ 𝐽. (Thus [𝐼, 𝐽] is the Lie algebra analogue of the
product of ideals in a commutative ring.) Similarly, it is easy to see that the linear sum 𝐼 + 𝐽 of 𝐼 and
𝐽 is also an ideal3.

3Note however that the linear sum of two subalgebras is not necessarily a subalgebra.
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Definition 2.2.6. Let 𝔤 be a Lie algebra and let 𝔞 ≤ 𝔤 be a subalgebra. If we let

𝑁𝔤(𝔞) = {𝑥 ∈ 𝔤 ∶ ad(𝑥)(𝔞) ⊆ 𝔞} = {𝑥 ∈ 𝔤 ∶ ad(𝑎)(𝑥) ∈ 𝔞, ∀𝑎 ∈ 𝔞},

then 𝑁𝔤(𝔞) ⊇ 𝔞 is a subalgebra of 𝔤, as one can check using the formulation of the Jacobi identity
given in Definition 2.2.4. It is the largest subalgebra of 𝔤 within which 𝔞 is an ideal.

Remark 2.2.7. Note that because the Lie bracket is skew-symmetric, we do not need to consider
notions of left, right and two-sided ideals, as they will all coincide. If a nontrivial Lie algebra has no
nontrivial ideals we say that it is almost simple. It it is in addition not Abelian, i.e. the Lie bracket
is not identically zero, then we say that it is simple.

Just as for groups and rings, one can deduce the usual stable of isomorphism theorems from the
first isomorphism theorem.

Theorem 2.2.8. 1. If 𝔥 is a subalgebra of 𝔤 and 𝐼 is an ideal in 𝔤 then 𝔥 + 𝐼 is a subalgebra of 𝔤
(containing 𝐼 as an ideal) 𝔥 ∩ 𝐼 is an ideal in 𝔥, and

(𝔥 + 𝐼)/𝐼 ≅ 𝔥/(𝔥 ∩ 𝐼).

2. If 𝐽 ⊂ 𝐼 ⊂ 𝔤 are ideals of 𝔤 then we have:

(𝔤/𝐽)/(𝐼/𝐽) ≅ 𝔤/𝐼.

Proof. The proofs are identical to the corresponding results for groups. We give a proof of (2) as an
example. Since 𝐽 ⊆ 𝐼 the quotient map 𝔤∶ 𝔤 → 𝔤/𝐼, which has kernel 𝐼, induces a map ̄𝑞 ∶ 𝔤/𝐽 → 𝔤/𝐼.
The kernel of this map is by definition {𝑥 + 𝐽 ∶ 𝑥 + 𝐼 = 𝐼}, that is, 𝐼/𝐽. The result follows. □
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Chapter 3

Representations of Lie algebras

3.1 Definition and examples

Just as for finite groups (or indeed groups in general) one way of studying Lie algebras is to try and
understand how they can act on other (usually more concrete) objects. For Lie algebras, since they
are already vector spaces over k, it is natural to study their action on linear spaces, or in other words,
“representations”. Formally we make the following definition.

Definition 3.1.1. A representation of a Lie algebra 𝔤 is a vector space 𝑉 equipped with a homomor-
phism of Lie algebras 𝜌∶ 𝔤 → 𝔤𝔩(𝑉). In other words, 𝜌 is a linear map such that

𝜌([𝑥, 𝑦]) = 𝜌(𝑥) ∘ 𝜌(𝑦) − 𝜌(𝑦) ∘ 𝜌(𝑥)

where ∘ denotes composition of linear maps. We may also refer to a representation of 𝔤 as a 𝔤-
module. A representation is faithful if ker(𝜌) = 0. When there is no danger of confusion we will
normally suppress 𝜌 in our notation, and write 𝑥(𝑣) rather than 𝜌(𝑥)(𝑣), for 𝑥 ∈ 𝔤, 𝑣 ∈ 𝑉.
If (𝑉, 𝜌) and (𝑊, 𝜎) are 𝔤-representations, we say that 𝜙∶ 𝑉 → 𝑊 is a 𝔤-homomorphism (or

homomorphism of 𝔤-representations) if 𝜙 ∘ 𝜌(𝑥) = 𝜎(𝑥) ∘ 𝜙 for all 𝑥 ∈ 𝔤. We will sometimes write
Rep(𝔤) for the collection1 of representations of 𝔤.

We will study representation of various classes of Lie algebras in this course, but for the moment
we will just give some basic examples.

Example 3.1.2. 1. If 𝔤 = 𝔤𝔩(𝑉) for 𝑉 a vector space, then the identity map 𝔤𝔩(𝑉) → 𝔤𝔩(𝑉) is
a representation of 𝔤𝔩(𝑉) on 𝑉, which is known as the vector representation. Clearly any
subalgebra 𝔤 of 𝔤𝔩(𝑉) also inherits 𝑉 as a representation, where then the map 𝜌 is just the
inclusion map.

2. Given an arbitrary Lie algebra 𝔤, there is a natural representation ad of 𝔤 on 𝔤 itself known as
the adjoint representation. The homomorphism from 𝔤 to 𝔤𝔩(𝔤) is given by

ad(𝑥)(𝑦) = [𝑥, 𝑦], ∀𝑥, 𝑦 ∈ 𝔤.

Indeed, as noted in Example 2.1.5, the fact that this map is a homomorphism of Lie algebras
is just a rephrasing2 of the Jacobi identity. Note that while the vector representation is clearly
faithful, in general the adjoint representation is not. Indeed the kernel is known as the centre
of 𝔤:

𝔷(𝔤) = {𝑥 ∈ 𝔤 ∶ [𝑥, 𝑦] = 0, ∀𝑦 ∈ 𝔤}.
Note that if 𝑥 ∈ 𝔷(𝔤) then for any representation 𝜌∶ 𝔤 → 𝔤𝔩(𝑉) the endomorphism 𝜌(𝑥) com-
mutes with all the elements 𝜌(𝑦) ∈ End(𝑉) for all 𝑦 ∈ 𝔤.

1If you take the Category Theory course, Rep(𝔤) is a category whose objects are representations of 𝔤 and whose
morphisms are 𝔤-homomorphisms.

2It’s also (for some people) a useful way of remembering what the Jacobi identity says.
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3. If 𝔤 is any Lie algebra, then the zero map 𝔤 → 𝔤𝔩1 is a Lie algebra homomorphism. The
corresponding representation is called the trivial representation. It is the Lie algebra analogue
of the trivial representation for a group (which send every group element to the identity).

4. If (𝑉, 𝜌) is a representation of 𝔤, we say that a subspace 𝑈 < 𝑉 is a subrepresentation if
𝜙(𝑥)(𝑈) ⊆ 𝑈 for all 𝑥 ∈ 𝔤. It follows immediately that 𝜙 restricts to give a homomorphism
from 𝔤 to 𝔤𝔩(𝑈), hence (𝑈, 𝜙|𝑈) is again a representation of 𝔤. Note also that if {𝑉𝑖 ∶ 𝑖 ∈ 𝐼} are
a collection of invariant subspaces, their sum ∑𝑖∈𝐼 𝑉𝑖 is clearly also invariant, and so again a
subrepresentation.

5. If (𝑉, 𝜌) is a 𝔤-representation, then it contains a natural subrepresentation

𝑉𝔤 = {𝑣 ∈ 𝑉 ∶ 𝜌(𝑥)(𝑣) = 0, ∀𝑥 ∈ 𝔤}

known as the 𝔤-invariants in 𝑉.
We now give a different kind of example, and consider the question of classifying all possible

representations of the simplest Lie algebra 𝔤𝔩1(k).
Example 3.1.3. Giving a representation of 𝔤𝔩1 is equivalent to giving a vector space equipped with
a linear map. Indeed as a vector space 𝔤𝔩1 = k, hence if (𝑉, 𝜌) is a representation of 𝔤𝔩1 we obtain
a linear endomorphism of 𝑉 by taking 𝜌(1). Since every other element of 𝔤𝔩1 is a scalar multiple of
1 this completely determines the representation, and this correspondence is clearly reversible.
If we assume k is algebraically closed, then you know the classification of linear endomorphisms

is given by the Jordan canonical form. From this you can see that the only irreducible representations
of 𝔤𝔩1 are the one-dimensional ones, while indecomposable representations correspond to linear
maps with a single Jordan block.

Example 3.1.4. If 𝐿 is a one-dimensional vector space and 𝔤 a Lie algebra, a representation of 𝔤 on 𝐿
is a homomorphism of Lie algebras 𝜆∶ 𝔤 → 𝔤𝔩(𝐿) ≅ 𝑘, where the isomorphism 𝔤𝔩(𝐿) ≅ 𝑘 is canonical
– it is given by the scalar multiplication map. We write 𝔤𝔩1 = 𝔤𝔩1(k) for k viewed as an Abelian Lie
algebra, so that a one-dimensional representation of 𝔤 on 𝐿 is given by a Lie algebra homomorphism
𝜆∶ 𝔤 → 𝔤𝔩1 (identifying 𝔤𝔩1 with 𝔤𝔩(𝐿) via the canonical isomorphism above).
Since 𝔤𝔩1 is abelian, the condition that 𝜆 is a homomorphism of Lie algebras is precisely the

requirement that 𝜆(𝐷(𝔤)) = 0, thus the isomorphism classes of one-dimensional representations of
𝔤 are canonically identified with (𝔤/𝐷(𝔤))∗ ≅ 𝐷(𝔤)0 ⊆ 𝔤∗. Here, 𝐷(𝔤)0 denotes the elements of 𝔤∗

which vanish on 𝐷(𝔤). It is canonically identified with (𝔤/𝐷(𝔤))∗ by the transpose of the quotient
map 𝑞∶ 𝔤 → 𝔤/𝐷(𝔤).). Wewill write k𝜆 for the 𝔤-representation (k, 𝜆), where we view 𝜆 as an element
of 𝔤∗ which vanishes on 𝐷(𝔤)). In particular, if 𝜆 = 0 ∈ 𝔤∗ then k0 is the trivial representation of 𝔤.
We end this section with some terminology which will be useful later.

Definition 3.1.5. A representation is said to be irreducible if it has no proper non-zero subrepre-
sentations, and it is said to be completely reducible if it is isomorphic to a direct sum of irreducible
representations. A representation 𝑉 is said to be indecomposable if, whenever we have 𝑉 = 𝑈1 ⊕ 𝑈2
with 𝑈1, 𝑈2 subrepresentations, either 𝑈1 = 𝑉 or 𝑈2 = 𝑉 (and 𝑈2 = 0, 𝑈1 = 0 respectively).

3.2 Representations and constructions from linear algebra

There are a number of standard ways of constructing new representations from old, all of which
have their analogues in the context of group representations. For example,

1. Quotients: Recall that if 𝑉 is a k-vector space, and 𝑈 is a subspace, then we may form the
quotient vector space 𝑉/𝑈. If 𝜙∶ 𝑉 → 𝑉 is an endomorphism of 𝑉 which preserves 𝑈, that is
if 𝜙(𝑈) ⊆ 𝑈, then there is an induced map ̄𝜙 ∶ 𝑉/𝑈 → 𝑉/𝑈. Applying this to representations
of a Lie algebra 𝔤 we see that if 𝑉 is a representation of 𝔤 and 𝑈 is a subrepresentation we
may always form the quotient representation 𝑉/𝑈.

13



2. Direct sums: If (𝑉, 𝜌) and (𝑊, 𝜎) are representations of 𝔤, then clearly 𝑉 ⊕ 𝑊, the direct sum
of 𝑉 and 𝑊, becomes a 𝔤-representation via the obvious homomorphism 𝜌 ⊕ 𝜎.

3. Hom spaces: If (𝑉, 𝜌) and (𝑊, 𝜎) are representations of 𝔤, then the vector space Hom(𝑉, 𝑊)
of linear maps from 𝑉 to 𝑊 also has the structure of a 𝔤-representation via

𝑥(𝜙) = 𝜎(𝑥) ∘ 𝜙 − 𝜙 ∘ 𝜌(𝑥), ∀𝑥 ∈ 𝔤, 𝜙 ∈ Hom(𝑉, 𝑊). (3.1)

One can check that this gives Hom(𝑉, 𝑊) the structure of a 𝔤-representations, i.e. that it gives
a Lie algebra homomorphism from 𝜃 ∶ 𝔤 → 𝔤𝔩(Hom(𝑉, 𝑊)) by a direct calculation. Another,
slightly quicker way, goes as follows: as already noted, 𝜌 ⊕ 𝜎 defines a homomorphism from
𝔤 to 𝔤𝔩(𝑉 ⊕ 𝑊). Now we may decompose 𝔤𝔩(𝑉 ⊕ 𝑊) = Homk(𝑉 ⊕ 𝑊, 𝑉 ⊕ 𝑊) into four
summands which we write in the format of 2 × 2 matrix:

𝔤𝔩(𝑉 ⊕ 𝑊) = ( Homk(𝑉, 𝑉) = 𝔤𝔩(𝑉) Homk(𝑊, 𝑉)
Homk(𝑉, 𝑊) Homk(𝑊, 𝑊) = 𝔤𝔩(𝑊) ) ⊇ ( 𝜌(𝔤) 0

0 𝜎(𝔤) ) ,

where the right-most containment shows the image of (𝜌 ⊕ 𝜎) in terms of this decomposition:
since it preserves the summands𝑉 and𝑊, it is contained in the diagonal “blocks”. Composing
(𝜌 ⊕ 𝜎) with the adjoint representation of 𝔤𝔩(𝑉 ⊕ 𝑊) yields a homomorphism

𝜗 ∶ 𝔤 → 𝔤𝔩(𝔤𝔩(𝑉 ⊕ 𝑊)), 𝑥 ↦ ad( 𝜌(𝑥) 0
0 𝜎(𝑥) ) , (∀𝑥 ∈ 𝔤),

giving 𝔤𝔩(𝑉 ⊕ 𝑊) the structure of a 𝔤-representation for which each direct of the four direct
summands is a subrepresentation. The action on Homk(𝑉, 𝑊) is given by

( 𝜌(𝑥) 0
0 𝜎(𝑥) ) ( 0 0

𝜙 0 ) − ( 0 0
𝜙 0 ) ( 𝜌(𝑥) 0

0 𝜎(𝑥) ) = ( 0 0
𝜎(𝑥) ∘ 𝜙 − 𝜙 ∘ 𝜌(𝑥) 0 ) .

It follows that the formula in (3.1) gives an action of 𝔤 on Homk(𝑉, 𝑊), that is, the structure
of a 𝔤-representation.

4. Duals: An important special case of this is where𝑊 = k is the trivial representation (as above,
so that the map 𝜎 ∶ 𝔤 → 𝔤𝔩(k) is the zero map). This allows us to give 𝑉∗ = Hom(𝑉,k), the
dual space of 𝑉, a natural structure of 𝔤-representation where (since 𝜎 = 0) the action of 𝑥 ∈ 𝔤
on 𝑓 ∈ 𝑉∗ is given by 𝜌∗ ∶ 𝔤 → 𝔤𝔩(𝑉∗) where

𝜌∗(𝑥)(𝑓 ) = −𝑓 ∘ 𝜌(𝑥) (𝑓 ∈ 𝑉∗).

If 𝛼∶ 𝑉 → 𝑉 is any linear map, recall that the transpose map 𝛼𝑡 ∶ 𝑉∗ → 𝑉∗ is defined by
𝛼𝑡(𝑓 ) = 𝑓 ∘𝛼, thus our definition of the action of 𝑥 ∈ 𝔤 on𝑉∗ is just3 −𝜌(𝑥)𝑡. This makes it clear
that the action of 𝔤 on 𝑉∗ is compatible with the standard constructions on dual spaces, e.g. if
𝑈 is a subrepresentation of 𝑉, the 𝑈0 the annihilator of 𝑈 will be a subrepresentation of 𝑉∗,
and moreover, the natural isomorphism of 𝑉 with 𝑉∗∗ is an isomorphism of 𝔤-representations.

3.3 Representations and multilinear algebra: tensor products

An important method for constructing representations of a finite group 𝐺 arises from the fact that if
𝑉 and𝑊 are𝐺-representations, then so is𝑉⊗𝑊. It turns out that the same is true for representations
of a Lie algebra.4 In this section we show that the same is true for representations of Lie algebras.
First, however, let us review the group case:

3Note that the minus sign is crucial to ensure this is a Lie algebra homomorphism – concretely this amounts to
noticing that 𝐴 ↦ −𝐴𝑡 preserves the commutator bracket on 𝑛 × 𝑛 matrices.

4As an intuitive guide, if Lie algebras are supposed to be some kind of “infinitesimal” version of a group, then their
representations ought to have the same properties
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3.3.1 Tensor products and group representations In fact we will consider two related questions
one can consider:

(i) Suppose that 𝐺1 and 𝐺2 are groups, then we can form their product 𝐺1 × 𝐺2 (as a set, this
is the Cartesian product of 𝐺1 and 𝐺2, and the group operation is given componentwise). If
we are given representations (𝑉1, 𝜌1) and (𝑉2, 𝜌2) of 𝐺1 and 𝐺2 respectively, can we build a
representation of 𝐺1 × 𝐺2 from them?

(ii) If we take 𝐺1 = 𝐺2 = 𝐺, can we build a new representation of 𝐺 from 𝑉 and 𝑊?

It is relatively easy to see that if the answer to the first question is positive then so is the answer
to the second, because of (𝑊, 𝜎) is the representation produced by a solution to (𝑖), then 𝜎 ∘ Δ give
a representation of 𝐺 on 𝑊, where Δ∶ 𝐺 → 𝐺 × 𝐺 given by Δ(𝑔) = (𝑔, 𝑔) (this map is usually called
the “diagonal” map or embedding of 𝐺 into 𝐺 × 𝐺).
One answer to the first question is given by the tensor product: the vector space 𝑉 ⊗ 𝑊 is

naturally a representation of 𝐺1 ×𝐺2. To see why, note that the homomorphisms 𝜌1 and 𝜌2 combine
to give a homomorphism (𝜌1, 𝜌2) ∶ 𝐺1 × 𝐺2 → GL(𝑉1) × GL(𝑉2), and so to obtain an action of
𝐺1 × 𝐺2 on 𝑉1 ⊗ 𝑉2 it suffices to produce an action of GL(𝑉1) ×GL(𝑉2) on 𝑉 ⊗ 𝑊.
To see what is required, one just needs to understand what data needs to be given in order to

define a group homomorphism from GL(𝑉) ×GL(𝑊) → GL(𝑉 ⊗ 𝑊). The answer is given in the
following simple Lemma.

Lemma 3.3.1. Let 𝜃 ∶ 𝐺1 ×𝐺2 → 𝐻 be a group homomorphism and let 𝜃1 ∶ 𝐺1 → 𝐻 be given by 𝜃1(𝑔1) =
𝜃(𝑔1, 𝑒𝐺2

), and similarly for 𝜃2 ∶ 𝐺2 → 𝐻. Then 𝜃 is determined by the pair of homomorphisms 𝜃1, 𝜃2 and
any such pair yields a homomorphism of𝐺1 × 𝐺2 provided 𝜃1(𝑔1)𝜃2(𝑔2) = 𝜃2(𝑔2)𝜃1(𝑔1) for all 𝑔1 ∈ 𝐺1
and 𝑔2 ∈ 𝐺2.

Proof. For simplicity of notation, we identify 𝐺1 and 𝐺2 with their images in 𝐺1 ×𝐺2 under the maps
𝑔1 ↦ (𝑔1, 𝑒𝐺2

) and 𝑔2 ↦ (𝑒𝐺1
, 𝑔2) respectively. To see that the pair (𝜃1, 𝜃2) determine 𝜃 uniquely,

note that
𝜃(𝑔1, 𝑔2) = 𝜃(𝑔1, 𝑒𝐺2

).𝜃(𝑒𝐺1
, 𝑔2) = 𝜃1(𝑔1)𝜃2(𝑔2).

On the other hand, provided 𝜃1, 𝜃2 satisfy 𝜃1(𝑔1).𝜃2(𝑔2) = 𝜃2(𝑔2)𝜃1(𝑔1), then it is easy to see that
𝜃(𝑔1, 𝑔2) = 𝜃1(𝑔1)𝜃2(𝑔2) is a group homomorphism the the map 𝜃 ∶ 𝐺1 ×𝐺2 → 𝐻 given by 𝜃(𝑔1, 𝑔2) =
𝜃1(𝑔1)𝜃2(𝑔2) is a group homomorphism. Indeed if (𝑔1, 𝑔2), (𝑘1, 𝑘2) ∈ 𝐺1 × 𝐺2 then

𝜃((𝑔1, 𝑔2).(𝑘1, 𝑘2)) = 𝜃((𝑔1𝑘1, 𝑔2𝑘2)) ∶= 𝜃1(𝑔1𝑘1)𝜃2(𝑔2𝑘2)
= 𝜃1(𝑔1)𝜃1(𝑘1)𝜃2(𝑔2)𝜃2(𝑘2) = 𝜃1(𝑔1)𝜃2(𝑔2)𝜃1(𝑘1)𝜃2(𝑘2)
= 𝜃((𝑔1, 𝑔2)).𝜃(𝑘1, 𝑘2).

□

Thus to give a homomorphism from GL(𝑉1) ×GL(𝑉2) → GL(𝑉1 ⊗ 𝑉2) we must give homo-
morphisms from GL(𝑉𝑖) → GL(𝑉1 ⊗ 𝑉2) for 𝑖 = 1, 2 whose images centralise each other. But this
is easy to find using the basic compatibility between linear maps and the tensor product shown in
I.2.2: if 𝛼1, 𝛼2 ∈ Hom(𝑉1, 𝑉1) and 𝛽1, 𝛽2 ∈ Hom(𝑉2.𝑉2), then they induce linear maps 𝛼1 ⊗𝛽1 and
𝛼2 ⊗ 𝛽2 from 𝑉 ⊗ 𝑊 to itself which satisfy the identity

(𝛼1 ⊗ 𝛽1) ∘ (𝛼2 ⊗ 𝛽2) = (𝛼1 ∘ 𝛼2) ⊗ (𝛽1 ∘ 𝛽2).

In particular, for any 𝛼 ∈ Hom(𝑉, 𝑉) and 𝛽 ∈ Hom(𝑊, 𝑊), we have

(𝛼 ⊗ 1𝑊) ∘ (1𝑉 ⊗ 𝛽) = 𝛼 ⊗ 𝛽 = (1𝑉 ⊗ 𝛽) ∘ (𝛼 ⊗ 1𝑊), (3.2)

and hence the map 𝜏(𝛼, 𝛽) = 𝛼 ⊗ 𝛽 gives the required action of GL(𝑉) ×GL(𝑊) on 𝑉 ⊗ 𝑊.
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3.3.2 Tensor products and Lie algebra representations Suppose now that 𝔤1, 𝔤2 are Lie alge-
bras and (𝑉1, 𝜌1) and (𝑉2, 𝜌2) are representations of 𝔤1 and 𝔤2 respectively. We may consider
the corresponding pair of questions for Lie algebras that we considered for groups above: can we
build a representation of 𝔤1 ⊕ 𝔤2 from 𝑉1 and 𝑉2, and when 𝔤1 = 𝔤2 = 𝔤 can we also obtain a
𝔤-representation?
The map 𝑥 ↦ (𝑥, 0) + (0, 𝑥) = (𝑥, 𝑥) is a homomorphism of Lie algebras 𝔤 → 𝔤 ⊕ 𝔤, thus

using this “diagonal” map, we can, as above, reduce the second question to the first, namely can
we build a representation of 𝔤1 ⊕ 𝔤2 from 𝑉1 and 𝑉2? Again, our candidate is 𝑉1 ⊗ 𝑉2, and since
(𝜌1, 𝜌2) ∶ 𝔤1 ⊕ 𝔤2 → 𝔤𝔩(𝑉1) ⊕ 𝔤𝔩(𝑉2) is a Lie algebra homomorphism, this question also reduces to
whether there is a natural Lie algebra homomorphism 𝔤𝔩(𝑉1) ⊕ 𝔤𝔩(𝑉2) → 𝔤𝔩(𝑉1 ⊗ 𝑉2).
As with the group case, we first consider what it means to give a representation of a direct sum

of Lie algebra 𝔤1 ⊕ 𝔤2:

Lemma 3.3.2. Let 𝔤1, 𝔤2 be Lie algebras and suppose that 𝛼𝑖 ∶ 𝔤𝑖 → 𝔤𝔩(𝑈) are Lie algebra homomor-
phisms. Then 𝛽∶ 𝔤1 ⊕ 𝔤2 → 𝔤𝔩(𝑈) given by 𝛽(𝑥1, 𝑥2) = 𝛼1(𝑥1) + 𝛼2(𝑥2) is a Lie algebra homomorphism
if and only if [𝛼1(𝑥), 𝛼2(𝑦)] = 0 for all (𝑥, 𝑦) ∈ 𝔤1 × 𝔤2.

Proof. This is a direct calculation. For all (𝑥1, 𝑥2), (𝑦1, 𝑦2) ∈ 𝔤1 ⊕ 𝔤2 we have

[𝛽(𝑥1, 𝑥2), 𝛽(𝑦1, 𝑦2)] = [𝛼1(𝑥1) + 𝛼2(𝑥2), 𝛼1(𝑦1) + 𝛼2(𝑦2)]
= [𝛼1(𝑥1), 𝛼1(𝑦1)] + [𝛼1(𝑥1), 𝛼2(𝑦2)] + [𝛼2(𝑥2), 𝛼1(𝑦1)] + [𝛼2(𝑥2), 𝛼2(𝑦2)]
= [𝛼1(𝑥1), 𝛼1(𝑦1)] + [𝛼2(𝑥2), 𝛼2(𝑦2)]
= 𝛼1([𝑥1, 𝑦1]) + 𝛼2([𝑥2, 𝑦2])
= 𝛽(([𝑥1, 𝑦1], [𝑥2, 𝑦2])
= 𝛽([(𝑥1, 𝑥2), (𝑦1, 𝑦2)])

where in passing from the second to the third equality we use the hypothesis applied to (𝑥.𝑦) =
(𝑥1, 𝑦2) and (𝑦1, 𝑥2) ∈ 𝔤1 × 𝔤2. The converse follows similarly. □

Equipped with this observation, it follows that we again simply need, for 𝛼 ∈ 𝔤𝔩(𝑉) and 𝛽 ∈
𝔤𝔩(𝑊), to give action maps 𝜏𝑉 and 𝜏𝑊 on 𝑉 ⊗ 𝑊 which commute with each other. But by (3.2), we
have

(𝛼 ⊗ 1) ∘ (1 ⊗ 𝛽) − (1 ⊗ 𝛽) ∘ (𝛼 ⊗ 1) = (𝛼 ⊗ 𝛽) − (𝛼 ⊗ 𝛽) = 0.

It therefore follows from Lemma 3.3.2 that 𝜂𝑉(𝛼) = 𝛼 ⊗ 1 and 𝜂𝑊(𝛽) = 1 ⊗ 𝛽 give representations
of 𝔤𝔩(𝑉) and 𝔤𝔩(𝑊) on 𝑉 ⊗ 𝑊 which commute with each other, and hence induce a representation
of 𝔤𝔩(𝑉) ⊕ 𝔤𝔩(𝑊) on 𝑉 ⊗ 𝑊 as required.
Now returning to the general setting.

Definition 3.3.3. If (𝑉, 𝜌) and (𝑊, 𝜎) are 𝔤-representations for an arbitrary Lie algebra 𝔤 then𝑉⊗𝑊
becomes a 𝔤 representation via the composition

𝔤 Δ // 𝔤 ⊕ 𝔤
𝜌⊕𝜎 // 𝔤𝔩(𝑉) ⊕ 𝔤𝔩(𝑊) 𝜏𝑉⊕𝜏𝑊// 𝔤𝔩(𝑉 ⊗ 𝑊)

More explicitly (and this is the only formula you really need to remember from this section!) 𝑉 ⊗ 𝑊
becomes a 𝔤-representation via the map 𝜌 ⊗ 𝜎 ∶ 𝔤 → 𝔤𝔩(𝑉 ⊗ 𝑊) where

(𝜌 ⊗ 𝜎)(𝑥)(𝑣 ⊗ 𝑤) = 𝜌(𝑥)(𝑣) ⊗ 𝑤 + 𝑣 ⊗ 𝜎(𝑥)(𝑤), ∀𝑣 ∈ 𝑉, 𝑤 ∈ 𝑊. (3.3)

Remark 3.3.4. The discussion in the section is an attempt to explain how one might discover the
action of a Lie algebra 𝔤 on a tensor product. On the other hand, if one simply guessed the formula
in Equation (3.3), it is straight-forward to check directly that it does indeed give a Lie algebra
homomorphism from 𝔤 to 𝔤𝔩(𝑉 ⊗ 𝑊). It is a good exercise to do this computation for oneself.
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Remark 3.3.5. In fact 𝔤𝔩(𝑉1) ⊗ 𝔤𝔩(𝑉2) ≅ (𝑉∗
1 ⊗ 𝑉1) ⊗ (𝑉∗

2 ⊗ 𝑉2) ≅ (𝑉1 ⊗ 𝑉2)∗ ⊗ (𝑉1 ⊗ 𝑉2),
so that 𝔤𝔩(𝑉1) ⊗ 𝔤𝔩(𝑉2) ≅ 𝔤𝔩(𝑉1 ⊗ 𝑉2), it can be checked that this implies that the image of the
group homomorphism GL(𝑉1) × GL(𝑉2) → GL(𝑉1 ⊗ 𝑉2) is equal to 𝑃(𝑉1, 𝑉2), the elements of
GL(𝑉1 ⊗ 𝑉2) which preserve “pure tensors”, that is, 𝑔 ∈ 𝑃(𝑉1, 𝑉2) if for all 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2 we
have 𝑔(𝑣1 ⊗ 𝑣2) = 𝑤1 ⊗ 𝑤2 for some 𝑤1 ∈ 𝑉1, 𝑤2 ∈ 𝑉2.

3.3.3 Homomorphisms, 𝔤-homomorphism, and tensor products The properties asserted of themaps
described in this section are proved in detail in Appendix I.2.
An immediate consequence of the above definition is that, just as for group representations, if

𝑉 and 𝑊 are 𝔤-representations, then the isomorphism 𝜎 ∶ 𝑉 ⊗ 𝑊 → 𝑊 ⊗ 𝑉 given by 𝜎(𝑣 ⊗ 𝑤) =
𝑤 ⊗ 𝑣, (𝑣 ∈ 𝑉, 𝑤 ∈ 𝑊) is compatible with the action of 𝔤 and hence induces an isomorphism of
𝔤-representations.
Let 𝑉 and 𝑊 be k-vector spaces. There is a natural linear map 𝜃 ∶ 𝑉∗ ⊗ 𝑊 → Hom(𝑉, 𝑊),

given by 𝜃(𝑓 ⊗ 𝑤) = 𝑓 .𝑤 where (𝑓 .𝑤)(𝑣) = 𝑓 (𝑣).𝑤 for all 𝑣 ∈ 𝑉, 𝑓 ∈ 𝑉∗ and 𝑤 ∈ 𝑊. This
map is injective, and its image is precisely the space of finite-rank linear maps5 from 𝑉 to 𝑊. In
particular, if dim(𝑉) < ∞ then we have End(𝑉) ≅ 𝑉∗ ⊗ 𝑉. Similarly, there is a natural map
𝑚∶ 𝑉∗ ⊗ 𝑊∗ → (𝑉 ⊗ 𝑊)∗, where

𝑚(𝑓 ⊗ 𝑔)(𝑣 ⊗ 𝑤) = 𝑓 (𝑣).𝑔(𝑤), ∀𝑣 ∈ 𝑉, 𝑤 ∈ 𝑊, 𝑓 ∈ 𝑉∗, 𝑔 ∈ 𝑊∗.

The map 𝑚 is also injective and hence, by considering dimensions, it is an isomorphism when 𝑉
and 𝑊 are finite-dimensional. This tensor product description of End(𝑉) = Hom(𝑉, 𝑉) gives a
natural description of the trace map: Notice that we have a natural bilinear map 𝑉∗ × 𝑉 → k
given by (𝑓 , 𝑣) ↦ 𝑓 (𝑣). By the universal property of the tensor product, this induces a linear map
𝜄 ∶ 𝑉∗ ⊗ 𝑉 → k. Under the identification with Hom(𝑉, 𝑉) this map is identified with the trace of a
linear map.

Remark 3.3.6. It is worth noticing that this gives a coordinate-free way of defining the trace, and also
some explanation for why one needs some finiteness condition in order for the trace to be defined.

Remark 3.3.7. If 𝔤 is a Lie algebra and 𝑉 and𝑊 are 𝔤-representations, then the maps defined above
– the trace map and the map identifying 𝑉∗ ⊗ 𝑊 with the finite rank linear maps from 𝑉 to𝑊, are
maps of 𝔤-representations.

Example 3.3.8. If 𝔤 is a Lie algebra and (𝑉, 𝜌) is a 𝔤-representation, then 𝜌 induces a natural bilinear
map 𝔤 × 𝑉 → 𝑉, namely (𝑥, 𝑣) ↦ 𝜌(𝑥)(𝑣). By the universal property of tensor products this yields a
linear map ̃𝜌 ∶ 𝔤 ⊗ 𝑉 → 𝑉. We claim this map is a homomorphism of 𝔤 representations (where 𝔤 is
viewed as the adjoint representation). To see this, 𝑎 ∶ 𝔤 → 𝔤𝔩(𝔤 ⊗ 𝑉) denote the action of 𝔤 on 𝔤 ⊗ 𝑉.
Then we have, for 𝑥, 𝑔 ∈ 𝔤, 𝑣 ∈ 𝑉,

𝑎(𝑥)(𝑔 ⊗ 𝑣) = [𝑥, 𝑔] ⊗ 𝑣 + 𝑔 ⊗ 𝜌(𝑥)(𝑣),

and under ̃𝜌 this maps to

𝜌([𝑥, 𝑔])(𝑣) + 𝜌(𝑔) ∘ 𝜌(𝑥)(𝑣) = [𝜌(𝑥), 𝜌(𝑔)] + 𝜌(𝑔)𝜌(𝑥)(𝑣) = 𝜌(𝑥) ∘ 𝜌(𝑔)(𝑣) = 𝜌(𝑥)( ̃𝜌(𝑔 ⊗ 𝑣))

and hence ̃𝜌 ∘ 𝑎 = 𝜌 ∘ ̃𝜌 as required.

It is also easy to check from the definitions that the natural map 𝜃 ∶ 𝑉∗ ⊗ 𝑊 → Hom(𝑉, 𝑊)
defined in Lemma 3.3 is also a map of 𝔤-representations, as is the contraction map 𝜄 ∶ 𝑉∗ ⊗ 𝑉 → k,
where we view k as the trivial representation of 𝔤. For example, for 𝜄 we have:

𝜄(𝑥(𝑓 ⊗ 𝑣)) = 𝜄(𝑥(𝑓 ) ⊗ 𝑣 + 𝑓 ⊗ 𝑥(𝑣)) = −𝑓 (𝑥(𝑣)) + 𝑓 (𝑥(𝑣)) = 0, ∀𝑥 ∈ 𝔤, 𝑣 ∈ 𝑉, 𝑓 ∈ 𝑉∗.

Thus all the maps between tensor products of vector spaces discuss in Appendix I.2 yield maps of
𝔤-representations.

5That is, the linear maps from 𝑉 to 𝑊 which have finite-dimensional image.
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3.3.4 Tensoring with one-dimensional representations Let (𝐿, 𝜌) be a one-dimensional represen-
tation of 𝔤, then 𝔤𝔩(𝐿) ≅ 𝑘 = 𝔤𝔩1(k). It follows that 𝜌 is identified with an element of (𝔤/𝐷(𝔤))∗,
and this clearly identifies (𝐿, 𝜌) up to isomorphism. Conversely, if 𝜆 ∈ (𝔤/𝐷(𝔤))∗, we write k𝜆 for
the action of 𝔤 on k given by 𝜆.
If (𝑉, 𝜌) is any 𝔤-representation, then by Example I.8, we have an isomorphism of vector spaces

𝑉⊗k𝜆 → 𝑉 given by the map 𝑣⊗𝜆 ↦ 𝜆.𝑣. Via this map, one can think of the 𝔤-representation 𝑉⊗k𝜆
as the same vector space𝑉 but now equipped with a new action 𝜌𝜆 of 𝔤, where 𝜌𝜆(𝑥) = 𝜌(𝑥)+𝜆(𝑥).𝐼𝑉
(where we write 𝐼𝑉 for the identity map.) Note that, in particular, if 𝜆, 𝜇 ∈ (𝔤/𝐷(𝔤))∗ then this shows
that k𝜆 ⊗ k𝜇 ≅ k𝜆+𝜇.
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Chapter 4

Classifying Lie algebras

The goal of this course is to study the structure of Lie algebras, and attempt to classify them. The
most ambitious “classification” result would be to give a description of all finite-dimensional Lie
algebras up to isomorphism. In very low dimensions this is actually possible: For dimension 1
clearly there is a unique (up to isomorphism) Lie algebra since the alternating condition demands
that the bracket is zero. In dimension two, one can again have an abelian Lie algebra, but there is
another possibility: if 𝔤 has a basis {𝑒, 𝑓 } then we may set [𝑒, 𝑓 ] = 𝑓 , and this completely determines
the Lie algebra structure. All two-dimensional Lie algebras which are not abelian are isomorphic
to this one (check this). It is also possible to classify three-dimensional Lie algebras, but it becomes
rapidly intractable to do this in general as the dimension increases.
This reveals an essential tension in seeking any kind of classification result for mathematical

objects: a classification result should describe all such objects (or at least those in a natural, and
likely reasonably “large” class) up to some notion of equivalence. Clearly, using a stricter notion
of equivalence will mean any classification theorem you can prove will provide finer information
about the objects you are studying, but this must be balanced against the intrinsic complexity of the
objects which may make such a classification (even for quite small classes) extremely complicated.
Hence it is likely reasonable to accept a somewhat crude notion of equivalence in order to be have
any chance of obtaining a classification theorem which has a relatively simple statement.

4.1 Classification by composition factors

Our approach will follow the strategy often used in finite groups: In that context, the famous Jordan-
Hölder theorem shows that any finite group can be given by gluing together finite simple groups, in
the sense that we may find an decreasing chain of subgroups

𝐺 = 𝐺0 ▷ 𝐺1 ▷… 𝐺𝑛−1 ▷ 𝐺𝑛 = {𝑒},

where, for each 𝑖, (1 ≤ 𝑖 ≤ 𝑛), the subgroup 𝐺𝑖 is a normal in 𝐺𝑖−1 and 𝑆𝑖 = 𝐺𝑖−1/𝐺𝑖 is simple. That
such a filtration of 𝐺 exists is easy to prove by induction. The non-trivial part of the theorem is that,
for any fixed finite simple group 𝐻, the number of 𝑆𝑖 which are isomorphic to 𝐻 is independent of
the choice filtration. This is usually phrased as saying that the multiplicity with which a composition
factor 𝑆𝑖 occurs in the sequence {𝐺𝑖−1/𝐺𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} is well-defined.
One can thus give a somewhat crude classification of finite groups, where one considers two

finite groups to be equivalent if they have the same composition factors, by giving a classification of
finite simple groups. But even the question of classifying finite simple groups is not at all obviously
tractable, and answering it was one of the spectacular mathematical achievements of the second half
of the twentieth century.
For Lie algebras, we can attempt something similar. In fact, it turns out that, at least in char-

acteristic zero, we obtain a far more complete answer about the structure of an arbitrary finite-
dimensional Lie algebra than one could hope to obtain in a Part C course on finite group theory.
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One aspect of this finer information will reveal a sharp distinction between 𝔤𝔩1 and the non-abelian
Lie algebras which have no proper ideals, which is one reason for the following definition:

Definition 4.1.1. A non-zero Lie algebra 𝔤 is said to be almost simple1 if it has no proper ideals. If
𝔤 is almost simple and dim(𝔤) > 1 then we say that 𝔤 is simple. Equivalently, an almost simple Lie
algebra is simple if it is non-abelian. Thus the only almost simple Lie algebra which is not simple is
𝔤𝔩1.

Here we give a proof of the Jordan-Holder theorem for finite dimensional Lie algebras over a
field of arbitrary characteristic. The proof mirrors the case of finite groups. As we will see later,
Cartan’s criteria will give stronger results (though only in when working over fields of characteristic
zero), so this result is only included for completeness.

Definition 4.1.2. A composition series for a finite dimensional Lie algbera 𝔤 is a chain

𝒞 = (𝔤 = 𝔤0 ▷ 𝔤1 ▷… ▷ 𝔤𝑟 = 0)

of subalgebras such that, for 1 ≤ 𝑖 ≤ 𝑟, the subalgebra 𝔤𝑖 is an ideal in 𝔤𝑖−1 and the quotient 𝔤𝑖/𝔤𝑖−1
is almost simple. The quotients 𝔤𝑖/𝔤𝑖−1 are called the composition factors of the composition series.
(Note that the 𝔤𝑖 are not necessarily ideals in 𝔤.)

It is straight-forward to check by induction on dim(𝔤) that any finite-dimensional Lie algebra
has a composition series (one needs to use isomorphism theorems in the same manner as the proof in
the context of finite groups – see Sheet 0 for more details). The following Lemma shows moreover
that the property of possessing a composition series is inherited by ideals and quotients:

Lemma 4.1.3. Suppose that 𝔤 has a composition series 𝒞 = (𝔤 = 𝔤0 ▷ 𝔤1 ▷… ▷ 𝔤𝑛 = 0) and let 𝔞 be an
ideal of 𝔤. Then 𝒞 induces a composition series for 𝔞, and a composition series for the quotient 𝔤/𝔞.

Proof. Consider the intersection of 𝐶 ∩ 𝔞 of 𝐶 with 𝔞, that is, 𝐶 ∩ 𝔞 is the sequence (𝔞 = 𝔞0 ≥ 𝔞1 ≥
… ≥ 𝔞𝑛 = 0), where 𝔞𝑖 = 𝔞 ∩ 𝔤𝑖. Note that its terms, while nested, need not be strictly decreasing.
Since 𝔤𝑖 is an ideal in 𝔤𝑖−1, it is clear that 𝔞𝑖 is an ideal in 𝔞𝑖−1, and by the second isomorphism
theorem 𝔞𝑖−1/𝔞𝑖 ≅ (𝔞 ∩ 𝔤𝑖−1 + 𝔤𝑖)/𝔤𝑖. Since 𝔤𝑖−1/𝔤𝑖 is almost simple, it follows 𝔞𝑖−1/𝔞𝑖 is either zero
(that is 𝔞𝑖−1 = 𝔞𝑖) or 𝔞𝑖−1/𝔞𝑖 ≅ 𝔤𝑖−1/𝔤𝑖. It follows that if we let 𝒞𝔞 be the sequence of subalgebras
of 𝔞 obtained by omitting repetitions from 𝐶 ∩ 𝔞, then 𝒞𝔞 is a composition series for 𝔞. When 𝔞
is an ideal, then we may consider the sequence 𝒞/𝔞 = ((𝔤𝑖 + 𝔞)/𝔞)𝑟

𝑖=0, then the third isomorphism
theorem shows that

((𝔤𝑖−1 + 𝔞)/𝔞)/((𝔤𝑖 + 𝔞)/𝔞) ≅ (𝔤𝑖−1 + 𝔞)/(𝔤𝑖 + 𝔞),

which is either zero or isomorphic to 𝔤𝑖−1/𝔤𝑖 (since it is the image of 𝔤𝑖−1 under 𝑝∶ 𝔤/𝔤𝑖 → 𝔤/(𝔤𝑖 +
𝔞)) the quotient map. Thus we see that, again by removing repetitions from 𝒞/𝔞, we obtain a
composition series ̄𝒞𝔞 for 𝔤/𝔞. □

4.2 The Jordan-Hölder Theorem for Lie algebras

The proofs in this subsection are not examinable.

Definition 4.2.1. If 𝔰 is an almost simple Lie algebra and 𝒞 = (𝔤𝑖)𝑟
𝑖=0 is a composition series for a

finite-dimensional Lie algebra 𝔤, define the multiplicity of 𝔰 in 𝒞 to be [𝔰, 𝒞] = #{𝑖 ∈ {1, … 𝑟} ∶ 𝔰 ≅
𝔤𝑖−1/𝔤𝑖}

The Jordan-Hölder Theorem shows that these multiplicities are in fact independent of 𝒞, so that
we may define the multiplicity [𝔰, 𝔤] of 𝔰 in 𝔤 to be the number of times it occurs as a composition
factor in any composition series of 𝔤.

1This is not standard terminology, but it is convenient to use here.
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Lemma 4.2.2. Let 𝔤 be a Lie algebra and let 𝔥 and 𝔪 be proper ideals such that 𝔥 ∩ 𝔪 = {0} and
𝔥, 𝔪, 𝔤/𝔪, 𝔤/𝔥 are all almost simple. Then 𝔤 = 𝔪 ⊕ 𝔥 is a direct sum of almost simple ideals.

Proof. Consider the map 𝑞∶ 𝔤 → 𝔤/𝔥. Since 𝔪 ∩ 𝔥 = {0}, the restriction of 𝑞 to 𝔪 is injective. But
since 𝔤/𝔥 is almost simple it follows that 𝔪 ≅ 𝔤/𝔥. Moreover, since [𝔥, 𝔪] ⊆ 𝔥 ∩ 𝔪 = {0}, it follows
that 𝔤 ≅ 𝔥 ⊕ 𝔤/𝔥 ≅ 𝔥 ⊕ 𝔪. □

We can now prove the Jordan-Hölder Theorem:

Theorem 4.2.3. (Jordan-Hölder Theorem) Let 𝔤 be a finite-dimensional Lie algebra. Then if 𝔰 is an
almost simple Lie algebra and 𝒞1 = (𝔤𝑖)𝑟

𝑖=0 and 𝒞2 = (𝔥𝑗)𝑠
𝑗=0 are composition series for 𝔤, we have

[𝔰, 𝒞1] = [𝔰, 𝒞2]. In other words, the composition factors occuring in 𝒞1 are, up to isomorphism and
permutation, the same as those occuring in 𝒞2.

Proof. Let us prove this by induction on the dimension of 𝔤, the result being clear for dim(𝔤) = 1.
Suppose therefore that 𝔤 has two composition series

𝐶1 = (0 = 𝔥0 < 𝔥1 < … < 𝔥𝑟 = 𝔤); 𝐶2 = (0 = 𝔪0 < 𝔪1 < … < 𝔪𝑠 = 𝔤).

If 𝔪𝑟−1 = 𝔥𝑠−1, then applying induction to this ideal and the two composition series of it given
by truncating the two series for 𝔤, thus it follows that 𝑟 − 1 = 𝑠 − 1, and the isomorphism classes
of composition factors {𝔥𝑖+1/𝔥𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑟 − 2} and {𝔪𝑗+1/𝔪𝑗 ∶ 0 ≤ 𝑗 ≤ 𝑠 − 2} are equal up to
permutation and the remaining composition factors for the two series 𝔤/𝔪𝑟−1, and 𝔤/𝔥𝑠−1 are equal
to each other, so we are done.
Now suppose that 𝔥𝑟−1 ≠ 𝔪𝑠−1, so that 𝔨 = 𝔥𝑟−1 ∩𝔪𝑠−1 is a proper ideal in 𝔥𝑟−1 and𝔪𝑠−1. Again

by induction, the theorem holds for each of 𝔨, 𝔥𝑟−1, 𝔪𝑠−1. In particular, all composition series for
𝔥𝑟−1 have length 𝑟 − 1 and all composition series for 𝔪𝑠−1 have length 𝑠 − 1. Now by Lemma 4.1.3,
the intersection

𝐶1 ∩ 𝔪𝑠−1 = (0 < 𝔥0 ∩ 𝔪𝑠−1 < … < 𝔥𝑟−1 ∩ 𝔪𝑠−1 = 𝔨 < 𝔪𝑠−1).

yields, after removing repetitions where necessary, a composition series for 𝔨 and a composition
series for 𝔪𝑠−1 which is one term longer. It follows that all composition series for 𝔨 have length 𝑠−2.
However if we similarly consider 𝐶2 ∩ 𝔥𝑟−1 we see that 𝑠 − 2 = 𝑟 − 2 so that 𝑠 = 𝑟, and hence the
induced composition series of 𝔨 have no repetitions, and so the isomorphism classes of composition
factors of 𝐶1 and 𝐶2 coincide except perhaps those in 𝔤/𝔨. But these coincide by Lemma 4.2.2, so
the proof is complete.

□

As noted above, it will turn out that in characteristic zero, the simple Lie algebras will all occur
at “the top” of the composition series of a finite-dimensional Lie algebra, as a direct sum. The
almost simple Lie algebra 𝔤𝔩1, however, can be glued to itself in non-trivial ways. Thus our study
of the structure of Lie algebras therefore begins by examining Lie algebras which have only one
isomorphism class of composition factor, namely 𝔤𝔩1. Before we do that, however, it seems useful to
introduce the formalism of exact sequences:

4.3 Exact sequences of Lie algebras

Definition 4.3.1. We say that the sequence of Lie algebras and Lie algebra homomorphisms

𝔤1
𝑖 // 𝔤

𝑞 // 𝔤2
is exact at 𝔤 if im(𝑖) = ker(𝑞). A sequence of maps

0 // 𝔤1
𝑖 // 𝔤

𝑞 // 𝔤2 // 0
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is called a short exact sequence if it is exact at each of 𝔤1, 𝔤 and 𝔤2, so that 𝑖 is injective, 𝑞 is surjective
and im(𝑖) = ker(𝑞). In this case, we say that 𝔤 is an extension of 𝔤2 by 𝔤1. The existence of a
composition series for a finite-dimensional Lie algebra shows that any such Lie algebra is constructed
through successive extensions by almost simple Lie algebras.

Two kinds of extensions of Lie algebras will arise naturally in this course:

4.3.1 Split extensions

Definition 4.3.2. An extension of Lie algebras

0 // 𝔤1
𝑖 // 𝔤

𝑞 // 𝔤2 // 0
is said to be split if there is a homomorphism of Lie algebras 𝑠 ∶ 𝔤2 → 𝔤 such that 𝑞 ∘ 𝑠 = id𝔤2

.
Notice that in this case the image 𝑠(𝔤2) of the splitting map 𝑠 is a subalgebra of 𝔤 which is

isomorphic to 𝔤2 and is complementary to 𝑖(𝔤1), in the sense that 𝔤 = 𝑖(𝔤1) ⊕ 𝑠(𝔤2) as vector spaces.
Indeed the homomorphism 𝑠 is determined by 𝑠(𝔤2) its image, because it is the inverse of 𝑞|𝑠(𝔤),
the restriction of 𝑞 to that image. Moreover, since 𝑖(𝔤1) is an ideal of 𝔤, the adjoint action of 𝔤
preserves 𝑖(𝔤1), and so it restricts to give an action of 𝑠(𝔤2) on 𝑖(𝔤1). This completely describes
the Lie bracket on 𝔤: For any 𝑥, 𝑦 ∈ 𝔤, there are unique 𝑥1, 𝑦1 ∈ 𝔤1 and 𝑥2, 𝑦2 ∈ 𝔤2 such that
𝑥 = 𝑖(𝑥1) + 𝑠(𝑥2), 𝑦 = 𝑖(𝑦1) + 𝑠(𝑦2). Then

[𝑥, 𝑦] = [𝑖(𝑥1) + 𝑠(𝑥2), 𝑖(𝑦1) + 𝑠(𝑦2)]
= 𝑖([𝑥1, 𝑥2]) + ad(𝑠(𝑥2))(𝑖(𝑦1)) − ad(𝑠(𝑦2))(𝑖(𝑥1)) + 𝑠([𝑥2, 𝑦2]).

This motivates the following definition:

Definition 4.3.3. Suppose that 𝔤, 𝔥 are Lie algebras, and we have a homomorphism 𝜙∶ 𝔤 → Derk(𝔥),
the Lie algebra of derivations2 on 𝔥. Then it is straight-forward to check that we can form a new
Lie algebra 𝔥 ⋊ 𝔤, the semi-direct product3 of 𝔤 and 𝔥 by 𝜙 which as a vector space is just 𝔤 ⊕ 𝔥, and
where the Lie bracket is given by:

[(𝑥1, 𝑦1), (𝑥2, 𝑦2)] = ([𝑥1, 𝑥2] + 𝜙(𝑦1)(𝑥2) − 𝜙(𝑦2)(𝑥1), [𝑦1, 𝑦2]),

where 𝑥1, 𝑥2 ∈ 𝔥, 𝑦1, 𝑦2 ∈ 𝔤. The Lie algebra 𝔥, viewed as the subspace {(𝑥, 0) ∶ 𝑥 ∈ 𝔥} of 𝔥 ⋊ 𝔤, is
clearly an ideal of 𝔥 ⋊ 𝔤. Since it does not intersect 𝔥, the quotient map 𝑞∶ 𝔥 ⋊ 𝔤 → (𝔥 ⋊ 𝔤)/𝔥 induces
an isomorphism 𝔤 → (𝔥 ⋊ 𝔤)/𝔥, hence 𝔥 ⋊ 𝔤 is a split extension of 𝔤 by 𝔥. It is not difficult to check
that any split extension is of this form.

Remark 4.3.4. In general, there may be many ways to split an exact sequence of Lie algebras (see
Problem Sheet 1).

Example 4.3.5. Let 𝔰2 be the 2-dimensional Lie algebra with basis {𝑥, 𝑦} and Lie bracket given by
[𝑥, 𝑦] = 𝑦. Then k.𝑦 is an ideal in 𝔰2, and 𝔰2/k.𝑦 is 1-dimensional, hence we have a short exact
sequence:

0 // 𝔤𝔩1
𝑖 // 𝔰2

𝑞 // 𝔤𝔩1 // 0
where 𝑖(𝜆) = 𝜆.𝑦 and 𝑞(𝑎𝑥 + 𝑏𝑦) = 𝑎, for all 𝑎, 𝑏, 𝜆 ∈ k. Now the map 𝑠(𝜆) = 𝜆.𝑥 is a Lie algebra
homomorphism, hence the extension is split.
Note that Derk(𝔞) = 𝔤𝔩(𝔞) for an Abelian Lie algebra 𝔞, and so Derk(𝔤𝔩1) = 𝔤𝔩(𝔤𝔩1) = 𝔤𝔩1, and

the map from 𝔤𝔩1 to Derk(𝔤𝔩1) describing 𝔰2 as a semi-direct product corresponds to the identity
map under this identification.

2Recall that the derivations of a Lie algebra are the linear maps 𝛼∶ 𝔥 → 𝔥 such that 𝛼([𝑥, 𝑦]) = [𝛼(𝑥), 𝑦] + [𝑥, 𝛼(𝑦)].
3This is the Lie algebra analogue of the semidirect product of groups, where you build a group𝐻 ⋊𝐺 via a map from

𝐺 to the automorphisms (rather than derivations) of 𝐻.
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Remark 4.3.6. A short exact sequence of the form

0 // 𝔤1
𝑖 // 𝔤

𝑞 // 𝔤𝔩1 // 0
is automatically split. Indeed if we pick any 𝑥 ∈ 𝔤 with 𝑞(𝑥) = 1 ∈ 𝔤𝔩1(k) then setting 𝑠(𝜆) = 𝜆.𝑥 it
is immediate that 𝑞 ∘ 𝑠 = id. But since a Lie bracket is alternating, it always vanishes on any line,
and hence 𝑠 is a Lie algebra homomorphism. It follows that 𝔤 is a semidirect product 𝔤1 ⋊ 𝔤𝔩1(k).
Remark 4.3.7. If you took Part A Groups, you should note the analogy with the notion of a short
exact sequence of groups, which is a sequence

1 // 𝐺1
𝑖 // 𝐺

𝑞 // 𝐺2 // 1
where we write 1 for the trivial group (rather than 0 for the trivial Lie algebra). Exactness at 𝐺
means that im(𝑖) = ker(𝑞), and similarly at 𝐺1 and 𝐺2, so that 𝑖 is injective and 𝑞 is surjective. In
Part A Groups you show that this sequence is split, that is, there exists a splitting map 𝑠 ∶ 𝐺2 → 𝐺
such that 𝑞 ∘ 𝑠 = id𝐺2

, if and only if 𝐺 ≅ 𝐺1 ⋊ 𝐺2.

4.3.2 Central extensions Another type of extension which plays an important role in our study of
Lie algebras is a central extension. In this case, the Lie algebra 𝔤1 in the sequence of Definition 4.3.1
is assumed to be central in 𝔤, that is 𝔤1 ⊆ 𝔷(𝔤), and hence in particular 𝔤1 is Abelian. Picking a linear
splitting 𝑠 ∶ 𝔤2 → 𝔤, we can write any 𝑥, 𝑦 ∈ 𝔤 uniquely in the form 𝑥 = 𝑖(𝑥1)+𝑠(𝑥2), 𝑦 = 𝑖(𝑥2)+𝑠(𝑦2),
respectively. Thus, as 𝑖(𝔤1) is central, the Lie bracket on 𝔤 is given by

[𝑥, 𝑦] = [𝑖(𝑥1) + 𝑠(𝑥2), 𝑖(𝑥2) + 𝑠(𝑦2)] = [𝑠(𝑥2), 𝑠(𝑦2)] = 𝑖(𝛼(𝑥2, 𝑦2)) + 𝑠([𝑥2, 𝑦2])

where 𝛼(𝑥, 𝑦) = ([𝑥, 𝑦])1, that is, 𝑖(𝛼(𝑥2, 𝑦2)) is the component of [𝑠(𝑥2), 𝑠(𝑦2)] in 𝑖(𝔤1).

Definition 4.3.8. Let 𝔤 be a finite-dimensional Lie algebra and let 𝔷 be a vector space. A 2-cocycle
on 𝔤 taking values in the vector space 𝔷 is a map 𝛼∶ 𝔤 × 𝔤 → 𝔷 satisfying the conditions:

i) 𝛼(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝔤, (i.e. 𝛼 is alternating);

ii) 𝛼(𝑥, [𝑦, 𝑧]) + 𝛼(𝑦, [𝑧, 𝑥]) + 𝛼(𝑧, [𝑥, 𝑦]) = 0, ∀𝑥, 𝑦, 𝑧 ∈ 𝔤.

Given such a cocycle, one can define a Lie algebra structure on the vector space 𝔷 ⊕ 𝔤 by setting

[(𝑧1, 𝑥1), (𝑧2, 𝑥2)] = (𝛼(𝑥1, 𝑥2), [𝑥1, 𝑥2]).

The resulting Lie algebra is a central extension of 𝔤. Picking a vector-space basis of 𝔷, say {𝑒1, … , 𝑒𝑘},
and writing 𝛼 in terms of its components with respect to this basis, that is, 𝛼(𝑥, 𝑦) = ∑𝑘

𝑗=1 𝛼𝑗(𝑥, 𝑦).𝑒𝑗
one can immediately reduce the study of 2-cocycles to the study of k-valued 2-cocycles.

Example 4.3.9. It is straight-forward to understand central extensions of a Lie algebra 𝔤 by 𝔤𝔩1 in
low dimensions. If 𝔤 is 1-dimensional, then the fact that 𝛼 is alternating forces it to vanish, and
hence the only central extension of 𝔤𝔩1 by 𝔤𝔩1 is the abelian Lie algebra 𝔤𝔩⊕2

1 .
If dim(𝔤) = 2, then if 𝔤 is abelian then condition (𝑖𝑖) is automatically satisfied, and there is a

unique non-zero alternating bilinear form up to isomorphism: if 𝔤 has basis {𝑥, 𝑦}, then 𝛼(𝑥, 𝑦) =
1 = −𝛼(𝑦, 𝑥), defines a central extension of 𝔤.

Remark 4.3.10. Split and central extensions are in a loose sense complementary to each other: An
extension of 𝔤2 by 𝔤1 which is both central and split is just the direct sum 𝔤1 ⊕ 𝔤2, where 𝔤1 ≅ 𝔤𝔩⊕𝑘

1
and 𝑘 = dimk(𝔤1)
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Chapter 5

Something from nothing: Solvable and
nilpotent Lie algebras

Conventions: From this point onwards in these notes, we will assume that all Lie algebras and all rep-
resentations are finite-dimensional over k, unless the contrary is explicitly stated.
We now begin to study particular classes of Lie algebras. The first class we study, solvable Lie

algebras, in terms of the discussion on classification of Lie algebras in the previous section, can be
given as the class of Lie algebras which can be built using only 𝔤𝔩1, the simplest Lie algebra1 which
possesses only the structure of the base field k and the trivial Lie bracket.

5.1 Definition and basic properties

Definition 5.1.1. ALie algebra 𝔤 is solvable if its only composition factor is 𝔤𝔩1(k). This is equivalent
to the condition that 𝔤 has a nested sequence of subalgebras

𝔤 = 𝔤0 ⊋ 𝔤1 ⊋ … ⊋ 𝔤𝑑 = {0},

where 𝔤𝑘+1 is an ideal in 𝔤𝑘 and 𝔤𝑘/𝔤𝑘+1 is abelian for each 𝑘 (0 ≤ 𝑘 ≤ 𝑑 − 1). Indeed if such a
sequence of subalgebras exists, any refinement of it to a composition series will have 𝔤𝔩1(k) as its
only composition factor, and conversely, a composition series with 𝔤𝔩1(k) as its only composition
factor is an example of such a sequence of subalgebras.
If 𝔤 = 𝔤0 ⊃ 𝔤1 ⊃ … ⊃ 𝔤𝑛 = {0} is a composition series for 𝔤 with 𝔤𝑘/𝔤𝑘+1 ≅ 𝔤𝔩1 for each

𝑘 ∈ {0, 1, … , 𝑛 − 1}, so that dim(𝔤) = 𝑛, then we have 𝔤𝑛−1 ≅ 𝔤𝔩1, and, for each 𝑘 ∈ {0, 1, … , 𝑛 − 1},
we have a short exact sequence

0 // 𝔤𝑘+1
𝜄𝑘+1 // 𝔤𝑘

𝑞𝑘 // 𝔤𝔩1 // 0
where 𝜄𝑘+1 is the inclusion map and 𝑞𝑘 the quotient map. Thus 𝔤𝑘−1 is an extension of 𝔤𝔩1 by 𝔤𝑘.
By Remark 4.3.7, this short exact sequence must split, and so 𝔤𝑘 is a semidirect product of 𝔤𝑘−1
by 𝔤𝔩1(k), and so solvable Lie algebras are precisely the Lie algebras one obtains from the zero Lie
algebra by taking iterated semidirect products with 𝔤𝔩1(k).

Example 5.1.2. Example 4.3.5 shows that 𝔰2, the 2-dimensional non-abelian Lie algebra, is solvable.

Definition 5.1.3. We can rephrase the condition that a Lie algebra 𝔤 is solvable in terms of a de-
creasing sequence of ideals in 𝔤: The derived subalgebra2 𝐷(𝔤) of 𝔤 is defined to be [𝔤, 𝔤] (an ideal in
𝔤 since 𝔤 is). Inductively we define 𝐷𝑘(𝔤) = 𝐷(𝐷𝑘−1(𝔤)) = [𝐷𝑘−1(𝔤), 𝐷𝑘−1(𝔤)] for each 𝑘 ≥ 1. The
sequence of ideals (𝐷𝑘(𝔤))𝑘≥0 is called the derived series of 𝔤. Note that, since 𝔤 is an ideal in 𝔤, it
follows by induction on 𝑘 that 𝐷𝑘(𝔤) = [𝐷𝑘−1(𝔤), 𝐷𝑘−1(𝔤)] is an ideal in 𝔤.

1Hence starting with nothing...
2Oddly, it is not known as the derived ideal, even though it is indeed an ideal.
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Lemma 5.1.4. Let 𝔤 be a Lie algebra. Then𝐷(𝔤) is the smallest ideal in 𝔤 such that 𝔤/𝐷(𝔤)is abelian. In
particular, 𝔤 is solvable precisely when the derived series (𝐷𝑘(𝔤))𝑘≥1 satisfies 𝐷𝑘(𝔤) = 0 for sufficiently
large 𝑘.

Proof. For the first claim, suppose that 𝐼 is an ideal for which 𝔤/𝐼 is abelian. Then, for all 𝑥, 𝑦 ∈ 𝔤,
we must have [𝑥, 𝑦] ∈ 𝐼, and hence 𝐷(𝔤) ⊆ 𝐼. Since this also shows 𝔤/𝐷(𝔤) is abelian, the claim
follows.
Next note that we have a short exact sequence

0 // 𝐷(𝔤) // 𝔤 // 𝔤/𝐷𝔤 // 0
that is, 𝔤 is an extension of the abelian Lie algebra 𝔤/𝐷(𝔤) by 𝐷(𝔤). It follows that if 𝐷𝑘(𝔤) = {0}
for some 𝑘, then 𝔤 has a filtration by ideals for which the subquotients are abelian, so it is certainly
solvable. Conversely, if 𝔤 is solvable, so that we have a nested sequence of subalgebras 𝔤 = 𝔤0 ⊃ 𝔤1 ⊃
… ⊃ 𝔤𝑛 = {0}, where 𝔤𝑖+1 is an ideal in 𝔤𝑖 and 𝔤𝑖/𝔤𝑖+1 is abelian. But then 𝐷(𝔤𝑖) = [𝔤𝑖, 𝔤𝑖] ⊆ 𝔤𝑖+1,
and so since 𝔤 = 𝔤0, by induction it follows that 𝐷𝑘(𝔤) ⊆ 𝔤𝑘, and hence for 𝑘 ≥ 𝑛 we have 𝐷𝑘(𝔤) = 0.

□

Remark 5.1.5. Because the terms of the derived series are ideals in 𝔤, it follows that if 𝔤 is solvable,
then there is a filtration of 𝔤 by ideals not just subalgebras which are each an ideal in the previous
term of the filtration. In particular, if 𝔤 is solvable, it follows 𝔤 has an non-trivial abelian ideal, since
the last non-zero term of the derived series must be such an ideal.

We now give a fundamental family of solvable Lie algebras. To describe them we need the
following definition:

Definition 5.1.6. Let 𝑉 be a vector space, and let ℱ = (𝐹𝑖)𝑘
𝑖=0 be a flag in 𝑉, that is

ℱ = (0 = 𝐹0 ⊂ 𝐹1 ⊂ 𝐹2 ⊂ … ⊂ 𝐹𝑘 = 𝑉)

is a nested sequence of subspaces with dim(𝐹𝑖−1) < dim(𝐹𝑖) for 1 ≤ 𝑖 ≤ 𝑘. If ℱ1 and ℱ2 are flags
in 𝑉 then we say that ℱ2 is a refinement of ℱ1 if every subspace in ℱ1 occurs in ℱ2. If dim(𝐹𝑖) = 𝑖
for all 𝑖 (so that dim(𝑉) = 𝑘) then ℱ is called a complete flag (as it cannot be refined any further). It
is clear (since any linearly independent set can be extended to a basis) that any flag can be refined
to a complete flag.

Example 5.1.7. Let 𝑉 be a finite dimensional vector space and ℱ = (0 = 𝐹0 < 𝐹1 < … < 𝐹𝑛 = 𝑉)
be a complete flag in 𝑉. Let, for 0 ≤ 𝑘 ≤ 𝑛,

𝔟𝑘
ℱ = {𝑥 ∈ 𝔤𝔩(𝑉) ∶ 𝑥(𝐹𝑖) ⊆ 𝐹𝑖−𝑘, ∀𝑖, 𝑘 ≤ 𝑖 ≤ 𝑛},

Thus if we set 𝔟ℱ = 𝔟0
ℱ , then 𝔟ℱ is the associative subalgebra of End(𝑉) consisting of the endomor-

phisms which preserve all of the subspaces in the complete flag ℱ .

i) 𝐷(𝔟ℱ ) ⊆ 𝔟1
ℱ ,

ii) [𝔟𝑘
ℱ , 𝔟𝑙

ℱ ] ⊆ 𝔟𝑘+𝑙
ℱ , ∀𝑘, 𝑙 ≥ 1.

Given the claims, it follows by an easy induction that 𝐷𝑘(𝔟ℱ ) ⊆ 𝔟2𝑘−1

ℱ , and hence, since 𝔟𝑚
ℱ = 0 for

𝑚 ≥ dim(𝑉), it follows that 𝔟ℱ is solvable.
For 𝑖), suppose first that 𝑥, 𝑦 ∈ 𝔟ℱ and consider [𝑥, 𝑦]. We need to show that [𝑥, 𝑦](𝐹𝑖) ⊂ 𝐹𝑖−1

for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛. Since 𝑥, 𝑦 ∈ 𝔟ℱ , certainly we have [𝑥, 𝑦](𝐹𝑖) ⊆ 𝐹𝑖 for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛, thus
it is enough to show that the map [𝑥, 𝑦] induced by [𝑥, 𝑦] on 𝐹𝑖/𝐹𝑖−1 is zero. But this map is the
commutator of themaps induced by 𝑥 and 𝑦 in End(𝐹𝑖/𝐹𝑖−1), which since 𝐹𝑖/𝐹𝑖−1 is one-dimensional,
is abelian, so that all commutators are zero.
For 𝑖𝑖) note that if 𝑥 ∈ 𝔟𝑘

ℱ , 𝑦 ∈ 𝔟𝑙
ℱ where 𝑘, 𝑙 ≥ 0, then the compositions 𝑥𝑦 and 𝑦𝑥 both lie in

𝔟𝑘+𝑙
ℱ . It follows that [𝑥, 𝑦] ∈ 𝔟𝑘+𝑙

ℱ as required.
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We will see shortly that, in characteristic zero, any solvable linear Lie algebra 𝔤 ⊂ 𝔤𝔩(𝑉), where
𝑉 is finite dimensional, is a subalgebra of 𝔟ℱ for some complete flag ℱ . We next note some basic
properties of solvable Lie algebras.

Lemma 5.1.8. Let 𝔤 be a Lie algebra, 𝜙∶ 𝔤 → 𝔥 a homomorphism of Lie algebras.

1. We have 𝜙(𝐷𝑘𝔤) = 𝐷𝑘(𝜙(𝔤)). In particular 𝜙(𝔤) is solvable if 𝔤 is, thus any quotient of a solvable
Lie algebra is solvable.

2. If 𝔤 is solvable then so are all subalgebras of 𝔤.

3. If im(𝜙) and ker(𝜙) are solvable then so is 𝔤. Thus if 𝐼 is an ideal and 𝐼 and 𝔤/𝐼 are solvable, so is
𝔤.

Proof. The first two statements are immediate from the definitions. For the third, note that if im(𝜙)
is solvable, then for some 𝑁 we have 𝐷𝑁im(𝜙) = {0}, so that by part (1) we have 𝐷𝑁(𝔤) ⊂ ker(𝜙),
hence if 𝐷𝑀ker(𝜙) = {0} we must have 𝐷𝑁+𝑀𝔤 = {0} as required. □

5.2 Representations of solvable Lie algebras

In this section we will assume that our field k is algebraically closed of characteristic zero.

5.2.1 Lie’s theorem Our first goal is the following theorem:

Theorem 5.2.1. (Lie’s theorem)Let 𝔤 be a solvable Lie algebra and𝑉 is a 𝔤-representation. Then there is
a homomorphism𝜆∶ 𝔤 → 𝔤𝔩1(k) and anonzero vector 𝑣 ∈ 𝑉 such that 𝑥(𝑣) = 𝜆(𝑥).𝑣 for all 𝑥 ∈ 𝔤. Equiv-
alently, any finite-dimensional irreducible representation of a solvable Lie algebra is one-dimensional.

Proof. We first explain the equivalence asserted in the last sentence of the statement. Note that the
existence of a non-zero 𝑣 ∈ 𝑉 such that 𝑥(𝑣) = 𝜆(𝑥).𝑣 for all 𝑥 ∈ 𝔤 is equivalent to the assertion that
the line k.𝑣 is a subrepresentation of 𝑉. Thus the statement of the theorem shows that any repre-
sentation contains a one-dimensional subrepresentation, and hence any irreducible representation
must itself be one-dimensional. Since any representation contains an irreducible representation, the
equivalence follows.
To establish the statement, we use induction on dim(𝔤). If dim(𝔤) = 1, then 𝔤 = k.𝑥 for any

nonzero 𝑥 ∈ 𝔤, and since k is algebraically closed, 𝑥 has an eigenvector in 𝑉 and we are done. For
dim(𝔤) > 1, since 𝔤 is solvable, we may write it as an extension

0 // 𝐼 // 𝔤 // 𝔤𝔩1 // 0
where 𝐼 is an ideal of codimension3 1. Picking 𝑥 ∉ 𝐼, we may thus write 𝔤 = k.𝑥 ⊕ 𝐼 (a direct sum of
vector spaces, but a semi-direct product of 𝐼 and 𝔤𝔩1(k) as Lie algebras).
Now by induction, 𝑉 contains a non-zero vector 𝑣 ∈ 𝑉 with the property that k.𝑣 is preserved by

the action of 𝐼. Thus, for any ℎ ∈ 𝐼 we have ℎ(𝑣) = 𝜈(ℎ).𝑣 for some homomorphism of Lie algebras
𝜈 ∶ 𝐼 → 𝔤𝔩1.
Let 𝑈 = {𝑤 ∈ 𝑉 ∶ ℎ(𝑤) = 𝜈(ℎ).𝑤, ∀ℎ ∈ 𝐼}, a non-zero subspace of 𝑉 since by definition 𝑣 ∈ 𝑈.

Now recall 𝔤 = k.𝑥 ⊕ 𝐼. Provided the action of 𝑥 preserves 𝑈, then any eigenvector for 𝑥 in 𝑈 satisfy
the conditions of the theorem. Indeed if 𝑢 ∈ 𝑈 is such an eigenvector, so that 𝑥(𝑢) = 𝜇.𝑢 for some
𝜇 ∈ k then, for any 𝑎 ∈ k and ℎ ∈ 𝐼, we define 𝜆(𝑎.𝑥 + ℎ) = 𝑎.𝜇 + 𝜈(ℎ).
To see if this is indeed the case, note that we have

ℎ(𝑥(𝑤)) = [ℎ, 𝑥](𝑤) + 𝑥ℎ(𝑤)
= 𝜆([ℎ, 𝑥])(𝑤) + 𝜆(ℎ).𝑥(𝑤)

3Recall that a subspace 𝑈 of a vector space 𝑉 has codimension 𝑑 if dim(𝑉/𝑈) = 𝑑.
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Thus if we are to conclude that the action of 𝑥 preserves 𝑈, and thus complete the proof, it remains
to show that 𝜆([ℎ, 𝑥]) = 0, that is, we must show that 𝜆 vanishes on [𝔤, 𝐼]. This is the content of the
next Lemma.

□

Remark 5.2.2. The following Lemma completes the proof of Lie’s theorem. It relies on a trick which
permeates the course, namely that one can often compute a trace in two different ways to obtain
important information. One way will be by observing that one is computing the trace of a commu-
tator, which is therefore zero. The other will, in one fashion or another, follow from consideration
of the generalised eigenspaces of the linear map in question.

Lemma 5.2.3. (Lie’s Lemma)Let 𝔤 be aLie algebra and let 𝐼 ⊂ 𝔤 be an ideal, and𝑉 a finite dimensional
representation. Suppose 𝑣 ∈ 𝑉 is a vector such that 𝑥(𝑣) = 𝜆(𝑥).𝑣 for all 𝑥 ∈ 𝐼, where 𝜆∶ 𝐼 → 𝔤𝔩1(k).
Then 𝜆 vanishes on [𝔤, 𝐼] ⊂ 𝐼.

Proof. Let 𝑥 ∈ 𝔤. For each 𝑚 ∈ ℕ, let 𝑊𝑚 = span{𝑣, 𝑥(𝑣), … , 𝑥𝑚(𝑣)}. The 𝑊𝑚 form a nested
sequence of subspaces of 𝑉. We claim that ℎ𝑥𝑚(𝑣) ∈ 𝜆(ℎ)𝑥𝑚𝑣 + 𝑊𝑚−1 for all ℎ ∈ 𝐼 and 𝑚 ≥ 0.
Using induction on 𝑚, the claim being immediate for 𝑚 = 0, note that

ℎ𝑥𝑚(𝑣) = [ℎ, 𝑥]𝑥𝑚−1(𝑣) + 𝑥ℎ𝑥𝑚−1(𝑣)
∈ (𝜆([ℎ, 𝑥])𝑥𝑚−1𝑣 + 𝑊𝑚−2) + 𝑥(𝜆(ℎ)𝑥𝑚−1(𝑣) + 𝑊𝑚−2)
∈ 𝜆(ℎ)𝑥𝑚(𝑣) + 𝑊𝑚−1,

where in the second equality we use induction on 𝑚 for both ℎ, [ℎ, 𝑥] ∈ 𝐼.
Now since 𝑉 is finite dimensional, there is a maximal 𝑛 such that the vectors {𝑣, 𝑥(𝑣), … , 𝑥𝑛(𝑣)}

are linearly independent, and so 𝑊𝑚 = 𝑊𝑛 for all 𝑚 ≥ 𝑛. It then follows that 𝑊𝑛 is preserved by
𝑥, and from the claim it follows that 𝑊𝑛 is also preserved by every ℎ ∈ 𝐼. Moreover, the claim also
shows that for any ℎ ∈ 𝐼 the matrix of [𝑥, ℎ]with respect to the basis {𝑣, 𝑥(𝑣) … , 𝑥𝑛(𝑣)} of𝑊𝑛 is upper
triangular with diagonal entries all equal to 𝜆([𝑥, ℎ]). It follows that tr([𝑥, ℎ]) = (𝑛 + 1)𝜆([𝑥, ℎ]).
Since the trace of a commutator is zero4, it follows that (𝑛+1)𝜆([𝑥, ℎ]) = 0, and so since char(k) = 0
we conclude that 𝜆([𝑥, ℎ]) = 0. □

Corollary 5.2.4. Let 𝔤 be a solvable Lie algebra and let (𝑉, 𝜌) be a 𝔤-representation. Then there is a
complete flag ℱ = (𝑉 = 𝐹0 ⊃ 𝐹1 ⊃ … ⊃ 𝐹𝑑 = {0}) where each 𝐹𝑖 is a 𝔤-subrepresentation. In
particular, if 𝔤 is solvable, then it has a composition series each of whose terms is an ideal in all of 𝔤.

Proof. Take any composition series for 𝑉. Since Lie’s theorem shows that the irreducible represen-
tations of 𝔤 are all one-dimensional, the resulting chain of subrepresentations will form a complete
flag. The final sentence follows by applying this to the adjoint representation (𝔤, ad), since 𝐼 ≤ 𝔤 is
an ideal in 𝔤 is and only if it is a subrepresentation of the adjoint representation. □

Remark 5.2.5. Note that we can rephrase the statement of the Corollary in terms of Example 5.1.7:
If 𝔤 is solvable and (𝑉, 𝜌) is any 𝔤-representation, then by Lemma 5.1.8, the image 𝔤1 = 𝜌(𝔤) is
solvable. Ihen Corollary 5.2.4 shows that there is a complete flag ℱ in 𝑉 such that 𝔤1 ⊆ 𝔟ℱ

Recall from Example 3.1.4 that the isomorphism classes of one-dimensional representations of
a Lie algebra 𝔤 are given by the elements of (𝔤/𝐷(𝔤))∗: if 𝜆 ∈ (𝔤/𝐷𝔤)∗, via the identification
(𝔤/𝐷(𝔤))∗ ≅ 𝐷(𝔤)0, we may view 𝜆 as a linear map 𝜆∶ 𝔤 → k vanishing on 𝐷(𝔤), and that van-
ishing precisely ensures it is a homomorphism from 𝔤 to 𝔤𝔩1(k). Recall that we write k𝜆 for the
representation (k, 𝜆).

4It is important here that 𝜌([𝑥, ℎ]) is the commutator of 𝜌(𝑥) and 𝜌(ℎ) both of which preserve 𝑊𝑛 – by the claim in
the case of 𝜌(ℎ), and by our choice of 𝑛 in the case of 𝜌(𝑥) – in order to conclude the trace is zero.
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Definition 5.2.6. We will refer to an element of (𝔤/𝐷(𝔤))∗ (equivalently, an isomorphism class of
1-dimensional 𝔤-representations) as a weight of 𝔤. In the case where 𝔤 is solvable, Lie’s theorem
shows that the weights are exactly the isomorphism classes of irreducible 𝔤-representations. Note
that if 𝜆, 𝜇 ∈ (𝔤/𝐷(𝔤))∗, then the addition in the vector space (𝔤/𝐷(𝔤))∗ makes it an abelian group.
This abelian group structure can also be seen from the point of view of one-dimensional representa-
tions: since the tensor product of 1-dimensional vector spaces is 1-dimensional, the tensor product
restricts to an operation on 1-dimensional vector spaces. This gives the set of one-dimensional rep-
resentations the structure of an abelian group: it is abelian because the map induced by interchange
factors gives an isomorphism of 𝔤-representations 𝐿1 ⊗ 𝐿2 ≅ 𝐿2 ⊗ 𝐿1 and if 𝐿 is any one-dimensional
representation then 𝐿 ⊗ 𝐿∗ ≅ k0 via the evaluation (or contraction) map induced by the natural
bilinear pairing 𝐿 × 𝐿∗ → k.
Since a direct calculation shows that k𝜆 × k𝜇 ≅ k𝜆+𝜇, this abelian group structure becomes the

vector addition under the identification of the set of isomorphism classes of 1-dimensional represen-
tations with (𝔤/𝐷(𝔤))∗.

5.3 Nilpotent Lie algebras

In this section we continue our study of Lie algebras which are built from 𝔤𝔩1, but now by using
central extensions rather than arbitrary extensions.

Definition 5.3.1. A Lie algebra 𝔤 is said to be nilpotent if it can be obtained from 0, the trivial Lie
algebra, by iterated central extensions. If 𝔤 can be obtained by precisely 𝑘 iterated extentions, we
say 𝔤 is 𝑘-step nilpotent. Thus, for example, a Lie algebra is 1-step nilpotent if and only if it is abelian.

To make this more concrete, suppose that 𝔤 is a nilpotent Lie algebra. Then, for some 𝑘 ≥ 0
there are Abelian Lie algebras (𝔠𝑖)𝑘

𝑖=0 and, for each 𝑖 ≥ 1 a short exact sequence

0 // 𝔠𝑖
𝑝𝑖 // 𝔤𝑖

𝑞𝑖 // 𝔤𝑖−1 // 0
where 𝔤0 = 𝔠0 and 𝔠𝑖 ⊆ 𝔷(𝔤𝑖), that is, 𝔤𝑖 is a central extension of 𝔤𝑖−1 by 𝔠𝑖. and 𝔤 = 𝔤𝑘. It follows
that 𝑞𝑘 ∶ 𝔤 = 𝔤𝑘 → 𝔤𝑘−1, and if we set 𝑄𝑖 = 𝑞𝑖 ∘ 𝑞𝑖+1 ∘ … ∘ 𝑞𝑘, then 𝑄𝑖 ∶ 𝔤 → 𝔤𝑖 exhibits 𝔤𝑖 as a quotient
of 𝔤. Set 𝔮𝑖 = ker(𝑄𝑖), so that if we set 𝔮0 = 𝔤, then (𝔮𝑖)𝑘

𝑖=0 gives a descending sequence of ideals in
𝔤, and 𝔮𝑖/𝔮𝑖−1 ≅ 𝔠𝑖 is central in 𝔤/𝔮𝑖−1. The sequence of central extensions constructing 𝔤 can thus
be reconstructed from the sequence of ideals (𝔮𝑖)𝑘

𝑖=0.

Definition 5.3.2. For 𝔤 a Lie algebra, let 𝐶0(𝔤) = 𝔤, and 𝐶𝑖(𝔤) = [𝔤, 𝐶𝑖−1(𝔤)] for 𝑖 ≥ 1. This
sequence of ideals of 𝔤 is called the lower central series of 𝔤.

Remark 5.3.3. Notice that 𝐶1(𝔤) = [𝔤, 𝔤] is the derived subalgebra5 of 𝔤 and, as we have seen, this is
also denoted6 𝐷(𝔤) and sometimes 𝔤′.

Proposition 5.3.4. Suppose that 𝔤 is nilpotent and (𝔮𝑖)𝑘
𝑖=0 the sequence of ideals associated to a realization

of 𝔤 as an iterated sequence of central extensions. Then

1. For each 𝑖 ≥ 0 we have 𝐶𝑖(𝔤) ⊆ 𝔮𝑖 and hence 𝐶𝑘(𝔤) = 0.

2. Conversely, if 𝔤 is such that, for some𝑁 ≥ 0we have𝐶𝑁(𝔤) = 0, then 𝔤 is at most𝑁-step nilpotent.

Proof. Suppose 𝔤 is any Lie algebra, and 𝔟 ⊆ 𝔞 are ideals in 𝔤. If 𝔞/𝔟 is central in 𝔤/𝔟, then for any
𝑥 ∈ 𝔤 and 𝑦 ∈ 𝔞 we must have [𝑥, 𝑦] ∈ 𝔟 and hence [𝔤, 𝔞] ⊆ 𝔟. Since 𝔞/[𝔤, 𝔞] is certainly central in
𝔤/[𝔤, 𝔞] it follows that [𝔤, 𝔞] is the smallest ideal of 𝔤 contained in 𝔞 for which 𝔞 becomes central in
the quotient algebra.

5Oddly, not as the derived ideal even though it is an ideal.
6Partly just to cause confusion, but also because it comes up a lot, playing slightly different roles, which leads to the

different notation. We’ll see it again shortly in a slightly different guise.
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Applying this observation to 𝐶𝑖(𝔤) inductively yields 1). For the converse. observe that the
previous paragraph also shows that

0 // 𝐶𝑘(𝔤)/𝐶𝑘+1(𝔤) // 𝔤/𝐶𝑘+1(𝔤) // 𝔤/𝐶𝑘(𝔤) // 0
shows that 𝔤/𝐶𝑖+1(𝔤) is a central extension of 𝔤/𝐶𝑖(𝔤). It follows that if 𝐶𝑁(𝔤) = 0 for some 𝑁 then
𝔤 is at most 𝑁-step nilpotent. □

Lemma 5.3.5. Let 𝔤 be a Lie algebra. Then

1. If 𝔤 is nilpotent, any subalgebra or quotient of 𝔤 is nilpotent.

2. If 𝔤 is nilpotent, then the centre 𝔷(𝔤) is non-zero if 𝔤 is. Moreover, 𝔤/𝔷(𝔤) is nilpotent if and only if
𝔤 is.

Proof. For 1) we use induction on dim(𝔤). If 𝔤 is Abelian, the result is trivial, so we may suppose
that 𝔤 is a central extension

0 // 𝔠 // 𝔤 // 𝔮 // 0
where 𝔠 is central. If 𝔥 is a subalgebra, then we obtain an induced short exact sequence

0 // 𝔠 ∩ 𝔥 // 𝔥 // (𝔥 + 𝔠)/𝔠 // 0
But since dim(𝔮) < dim(𝔤), by induction (𝔥 + 𝔠)/𝔠) is nilpotent as it is a subalgebra of 𝔤/𝔠 ≅ 𝔮.
Hence 𝔥 is nilpotent also (as it is either isomorphic to (𝔥 + 𝔠)/𝔠 or it is a central extension of it).
Part (2) is trivial since a non-trivial central extension always has a non-trivial centre.

□

Remark 5.3.6. Notice that if 𝔞 is an arbitrary ideal in 𝔤, and 𝔞 and 𝔤/𝔞 are nilpotent it does not follow
that 𝔤 is nilpotent. Indeed recall from Example 4.3.5 the non-Abelian 2-dimensional Lie algebra
𝔰2, with basis {𝑥, 𝑦} where [𝑥, 𝑦] = 𝑦. Then k.𝑦 is a 1-dimensional ideal in 𝔰2 but it is not central.
Indeed 𝔷(𝔰2) = 0 so 𝔰2 is not nilpotent, even though the ideal k.𝑦 and the quotient 𝔰2/k.𝑦 are (since
they are both abelian). Note that this shows that 𝔰2 cannot be written as a central extension of 𝔤𝔩1
by itself.

Remark 5.3.7. The characterisation of the property of nilpotence in terms of the lower central series
is similar to the characterisation of solvable Lie algebras in terms of the derived series. This is one
reason it is commonly used. There is, however, another nature nested sequence of ideals which can
be used to characterize nilpotence: If 𝔤 is any Lie algebra, set 𝑍0(𝔤) = 𝔤, and, assuming 𝑍𝑘(𝔤) is
defined, let 𝑞𝑘 ∶ 𝔤 → 𝔤/𝑍𝑘(𝔤) be the quotient map, and set 𝑍𝑘+1(𝔤) = 𝑞−1

𝑘 (𝔷(𝔤𝑘)). This process yields
an increasing sequence of ideals of 𝔤 known as the upper central series. If it exhausts 𝔤, that is, if for
some 𝑛 ≥ 0 we have 𝑍𝑘(𝔤) = 𝔤 for all 𝑘 large enough, the 𝔤 is nilpotent. If 𝔤 is not nilpotent, the
upper central series will stabilize at a maximal nilpotent ideal of 𝔤.)
We now wish to show that simple considerations from linear algebra give us a large supply of

nilpotent Lie algebras.

Definition 5.3.8. Let 𝑉 be a vector space and suppose that ℱ is a flag in 𝑉. We set

𝔫ℱ = 𝔟1
ℱ = {𝑥 ∈ 𝔤𝔩(𝑉) ∶ 𝑥(𝐹𝑖) ⊆ 𝐹𝑖−1, ∀𝑖 ∈ {1, 2, … , 𝑘}}.

It is easy to see that 𝔫ℱ is an associative subalgebra of End(𝑉), and hence a Lie subalgebra of 𝔤𝔩(𝑉).
Moreover, if ℱ ′ refines ℱ , then 𝔫ℱ ≤ 𝔫ℱ ′ .

Lemma 5.3.9. Suppose that ℱ is a flag in a finite-dimensional vector space 𝑉. Then the Lie algebra
𝔫ℱ ⊆ 𝔤𝔩(𝑉) is nilpotent.

Proof. For convenience, let us write 𝔫 for the Lie algebra 𝔫ℱ . For each positive integer 𝑘, let 𝔫𝑘 be
the subspace

𝔫𝑘 = {𝑥 ∈ 𝔤𝔩(𝑉) ∶ 𝑥(𝐹𝑖) ⊂ 𝐹𝑖−𝑘}
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(where we let 0 = 𝐹𝑙 for all 𝑙 ≤ 0). Then clearly 𝔫𝑘 ⊆ 𝔫, and 𝔫𝑘 = 0 for any 𝑘 ≥ 𝑛. Thus if we
can show 𝐶𝑘(𝔫) ⊆ 𝔫𝑘+1 for each 𝑘 ≥ 0, it will follow that 𝔫 is nilpotent. The claim is immediate
for 𝑘 = 0, thus by induction we may assume that 𝐶𝑘(𝔫) ⊆ 𝔫𝑘+1. But if 𝑥 ∈ 𝔫 and 𝑦 ∈ 𝔫𝑘+1, we
have 𝑥𝑦(𝐹𝑖) ⊂ 𝑥(𝐹𝑖−𝑘−1) ⊂ 𝐹𝑖−𝑘−2, and similarly 𝑦𝑥(𝐹𝑖) ⊂ 𝐹𝑖−𝑘−2, thus certainly [𝑥, 𝑦] ∈ 𝔫𝑘+2 and
so 𝐶𝑘+1(𝔫) ⊆ 𝔫𝑘+2 as required. In fact you can check that 𝐶𝑘(𝔫) = 𝔫𝑘+1, so that 𝔫 is (𝑛 − 1)-step
nilpotent i.e. 𝐶𝑛−2(𝔫) ≠ 0, and 𝐶𝑛−1(𝔫) = 0. □

Example 5.3.10. When ℱ is a complete flag, so that dim(𝑉) = 𝑛, if we pick a basis {𝑒1, 𝑒2, … , 𝑒𝑛}
of 𝑉 such that 𝐹𝑘 = span(𝑒1, 𝑒2, … , 𝑒𝑘}, then the matrix 𝐴 representing an element 𝑥 ∈ 𝔫 = 𝔫ℱ
with respect to this basis is strictly upper triangular, that is, 𝑎𝑖𝑗 = 0 for all 𝑖 ≥ 𝑗. It follows that
dim(𝔫) = (𝑛

2). When 𝑛 = 2 we just get the 1-dimensional Lie algebra 𝔤𝔩1, thus the first nontrivial
case is when 𝑛 = 3. In this case 𝔫 is a 3-dimensional 2-step nilpotent Lie algebra.

If we pick a basis {𝑒1, 𝑒2, … , 𝑒𝑛} of 𝑉 such that 𝐹𝑖 = span(𝑒1, … , 𝑒𝑖), then 𝔤𝔩(𝑉) gets identified
with 𝔤𝔩𝑛 and 𝔟ℱ corresponds to the subalgebra 𝔟𝑛 of upper triangular matrices. It is straight-forward
to show by considering the subalgebra 𝔱𝑛 of diagonal matrices that 𝔟𝑛 is not nilpotent.

Remark 5.3.11. Notice that in the previous example, unlike in Lemma 5.3.9, it is essential that ℱ is
a complete flag. If ℱ is not a complete flag the corresponding subalgebra 𝔟ℱ will not be solvable.

Remark 5.3.12. Note that the subalgebra 𝔱 ⊂ 𝔤𝔩𝑛 of diagonal matrices is nilpotent, since it is abelian,
but the only nilpotent endomorphism of 𝑉 is 𝔱 is 0. Thus a nilpotent linear Lie algebra need not
consist of nilpotent endomorphisms. It turns out that, in some sense, the example of 𝔱 is the only
way in which a nilpotent Lie algebra 𝔫 ⊆ 𝔤𝔩(𝑉) can fail to consist of nilpotent endomorphisms. We
will make this precise in 5.3.2.

5.3.1 Nilpotent representations

Definition 5.3.13. Let 𝔤 be a Lie algebra and (𝑉, 𝜌) a representation of 𝔤. We say that (𝑉, 𝜌) is
nilpotent if, for all 𝑥 ∈ 𝔤, the endomorphism 𝜌(𝑥) ∈ 𝔤𝔩(𝑉) is a nilpotent linear map (that is, for some
𝑛 ≥ 1, 𝜌(𝑥)𝑛 = 0).

Lemma 5.3.14. Let 𝐴 be an associative algebra, and suppose 𝑎, 𝑏 ∈ 𝐴 are nilpotent i.e. for some 𝑛 > 0,
we have 𝑎𝑛 = 𝑏𝑛 = 0. Then if 𝑎 and 𝑏 commute, 𝑎 + 𝑏 is also nilpotent.

Proof. This follows from the binomial theorem: Indeed we have

(𝑎 + 𝑏)𝑁 =
𝑁

∑
𝑘=0

(𝑁
𝑘 )𝑎𝑘𝑏𝑛−𝑘.

But now if 𝑁 ≥ 2𝑛, then we must have either 𝑘 ≥ 𝑛 or 𝑁 − 𝑘 ≥ 𝑛, hence in either case, each of the
terms on the left-hand side vanishes, hence so does the right-hand side, and hence 𝑎 + 𝑏 is nilpotent
as required. □

Lemma 5.3.15. Suppose 𝔤 is a Lie algebra and (𝑉, 𝜌) and (𝑊, 𝜎) are representation of 𝔤.

1. If 𝑥 ∈ 𝔤 is such that both 𝜌(𝑥) and𝜎(𝑥) are nilpotent, then the action of 𝑥 on𝑉⊗𝑊 is also nilpotent.
Moreover, the action of 𝑥 on𝑉∗ is also nilpotent. Thus if𝑉 and𝑊 are nilpotent, so are𝑉∗,𝑉 ⊗ 𝑊
and Hom(𝑉, 𝑊) ≅ 𝑉∗ ⊗ 𝑊.

2. If𝑉 is nilpotent, then any subrepresentation and any quotient representation of𝑉 is also nilpotent.

Proof. By definition, 𝑥 on 𝑉 ⊗ 𝑊 is by the endomorphsim 𝜌(𝑥) ⊗ 1𝑊 + 1𝑉 ⊗ 𝜎(𝑥). Since the two
terms in this sum commute, the claim follows from Lemma 5.3.14 (taking 𝐴 = End(𝑉 ⊗ 𝑊).)
To see that 𝑥 acts nilpotently on 𝑉∗, note that if 𝑓 ∈ 𝑉∗, then

𝑥𝑛(𝑓 )(𝑣) = (−1)𝑛𝑓 (𝜌(𝑥)𝑛)(𝑣)) = ±𝑓 (0) = 0, ∀𝑣 ∈ 𝑉, 𝑓 ∈ 𝑉∗.
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Part (2) follows from the fact that if 𝑈 ≤ 𝑉 and we write End𝑈(𝑉) = {𝛼 ∈ End(𝑉) ∶ 𝛼(𝑈) ⊆ 𝑈}
then the restriction map 𝑟 ∶ End𝑈(𝑉) → End(𝑈) and the quotient map 𝑞∶ End𝑈(𝑉) → End(𝑉/𝑈)
are both compatible with composition. □

The next proposition is the key result in this section. For the proof we will need the notion of
the normalizer 𝑁𝔤(𝔞) of a subalgebra 𝔞 of a Lie algebra 𝔤 given in Definition 2.2.6. We have

𝑁𝔤(𝔞) = {𝑥 ∈ 𝔤 ∶ [𝑥, 𝑎] ∈ 𝔞, ∀𝑎 ∈ 𝔞},

so that 𝑁𝔤(𝔥) is the largest subalgebra of 𝔤 in which 𝔞 is an ideal.

Proposition 5.3.16. Let 𝔤 be a Lie algebra, and let (𝑉, 𝜌) be a nilpotent representation of 𝔤.

1. The invariant subspace
𝑉𝔤 = {𝑣 ∈ 𝑉 ∶ 𝜌(𝑥)(𝑣) = 0, ∀𝑥 ∈ 𝔤}

is non-zero.

2. There is a complete flag ℱ in 𝑉 such that 𝔤 ⊆ 𝔫ℱ . In particular, the image 𝜌(𝔤) is a nilpotent Lie
algebra.

Proof. We use induction on 𝑑 = dim(𝔤), the case 𝑑 = 1 being clear. Now if 𝜌 is not faithful, i.e.
ker(𝜌) ≠ 0, then dim(𝜌(𝔤)) < dim(𝔤), and we are done by induction applied to the image 𝜌(𝔤),
hence we may assume 𝜌 gives an embedding of 𝔤 into 𝔤𝔩(𝑉) as a subalgebra, and we may thus
identify 𝔤 with its image in the rest of this proof.
Now let 𝒮 = {𝔟 ⊊ 𝔤 ∶ 𝔟 is a proper subalgebra of 𝔤} denote the set of proper subalgebras of 𝔤,

and pick 𝔞 ∈ 𝒮. Now by Lemma 5.3.15, 𝔞 ⊊ 𝔤 ⊆ 𝔤𝔩(𝑉) = 𝑉∗ ⊗ 𝑉 are all nilpotent representations
of 𝔞, since the restriction of (𝑉, 𝜌) to 𝔞 is. But then, by the same Lemma, 𝔤/𝔞 is also a nilpotent
representation, and since dim(𝔞) < dim(𝔤), it follows by induction that the 𝔞-invariants (𝔤/𝔞)𝔞 form
a non-zero subrepresentation. Let 𝑥 ∈ 𝔤 be such that 0 ≠ 𝑥 + 𝔞 ∈ (𝔤/𝔞)𝔞. Then ad(𝑎)(𝑥) ∈ 𝔞 for
all 𝑎 ∈ 𝔞, or equivalently, since ad(𝑎)(𝑥) = −ad(𝑥)(𝑎), for all 𝑎 ∈ 𝔞, we have ad(𝑥)(𝑎) ∈ 𝔞, that is,
𝑥 ∈ 𝑁𝔤(𝔞). Thus the normalizer of 𝔞 is a subalgebra of 𝔤 which is strictly larger than 𝔞.
Thus if we take 𝔞 ∈ 𝒮 of maximal dimension, we must have 𝑁𝔤(𝔞) = 𝔤, that is 𝔞 is an ideal in 𝔤.

But then if 𝑧 ∈ 𝔤\𝔞, it is easy to see that k.𝑧 ⊕ 𝔞 is a subalgebra7 of 𝔤, hence again by maximality,
we must have 𝔤 = k.𝑧 ⊕ 𝔞. By induction, we know that 𝑉𝔞 = {𝑣 ∈ 𝑉 ∶ 𝑎(𝑣) = 0, ∀𝑎 ∈ 𝔞} is a nonzero
subspace of 𝑉. We claim that 𝑧 preserves 𝑉𝔞. Indeed

𝑎(𝑧(𝑣)) = [𝑎, 𝑧](𝑣) + 𝑧(𝑎(𝑣)) = 0, ∀𝑎 ∈ 𝔞, 𝑣 ∈ 𝑉𝔞,

since [𝑎, 𝑧] ∈ 𝔞. But the restriction of 𝑧 to 𝑉𝔞 is nilpotent, so the subspace 𝑈 = {𝑣 ∈ 𝑉𝔞 ∶ 𝑧(𝑣) = 0}
is nonzero. Since 𝑈 = 𝑉𝔤 we are done.
For the second part, let 𝒞 = (0 < 𝐹1 < … < 𝐹𝑚 = 𝑉) be a composition series for 𝑉. It suffices to

show that each of the composition factors are trivial. But if 1 ≤ 𝑘 ≤ 𝑚, then 𝐹𝑘 is a subrepresentation
of 𝑉 and hence it is nilpotent. Similarly 𝑄𝑘 = 𝐹𝑘/𝐹𝑘−1, as a quotient of 𝐹𝑘 must be nilpotent. But
then by part (1), its invariants 𝑄𝔤

𝑘 are a non-zero subrepresentation of 𝑄𝑘, and since 𝑄𝑘 is simple it
follows that 𝑄𝑘 is the trivial representation as required.

□

Corollary 5.3.17. (Engel’s theorem.) A Lie algebra 𝔤 is nilpotent if and only if ad(𝑥) is nilpotent for
every 𝑥 ∈ 𝔤, i.e the adjoint representation is nilpotent.

7One way to see this is to note that k.𝑧 ⊕ 𝔞 is a line– i.e. one-dimensional subspace– of 𝔤/𝔞 and any such subspace is
a subalgebra, because, by the alternating property, the Lie bracket vanishes on lines. Note in particular that the direct
sum is one of vector spaces, not Lie algebras.
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Proof. First note that 𝔤𝔤, the invariants of 𝔤 in its adjoint representation, is precisely the centre
𝔷(𝔤) of 𝔤, and if 𝔤 is nilpotent, 𝔷(𝔤) is nontrivial whenever 𝔤 is. In other words, if we let 𝔷1 = 𝔷(𝔤)
and inductively let 𝔷𝑘 be the preimage in 𝔤 of 𝔷(𝔤/𝔷𝑘−1), we obtain a strictly increasing sequence
of subalgebras of 𝔤 for which ad(𝑥)(𝔷𝑘) ⊆ 𝔷𝑘−1. Since dim(𝔤) < ∞, this sequence terminates with
𝔷𝑛 = 𝔤 for some 𝑛 ≥ 1, and hence it follows that ad(𝑥) acts nilpotently on 𝔤 as required.
To show the converse, first note that 𝔤 is evidently a central extension of 𝔤/𝔷(𝔤), and 𝔷(𝔤) =

ker(ad) is the kernel of the adjoint representation, thus it suffices to show that the image of 𝔤 in
𝔤𝔩(𝔤) is nilpotent. But by assumption, ad(𝑥) is nilpotent for every 𝑥 ∈ 𝔤, hence by part 2) of
Theorem 5.3.16, there is a flag ℱ in 𝔤 such that ad(𝔤) ≤ 𝔫ℱ . But recalling that 𝔷(𝔤) = 𝔤𝔤 as above,
it then follows that 𝔤 is nilpotent as required. □

5.3.2 Representations of nilpotent Lie algebras In this sectionwe assume thatk is an algebraically closed
field of characteristic zero.

Definition 5.3.18. Let 𝔤 be a Lie algebra and let 𝒮 be a set of irreducible representation of 𝔤. Let

Rep𝒮(𝔤) = {𝑉 ∈ Rep𝔤∶ [𝑇 ∶ 𝑉] > 0 if and only if ∃𝑆 ∈ 𝒮, 𝑇 ≅ 𝑆}
Rep𝒮(𝔤, 𝑉) = {𝑊 ≤ 𝑉 ∶ 𝑊 ∈ Rep𝒮(𝔤)}.

If 𝒮 = {𝑆} then we will write Rep𝑆(𝔤),Rep𝑆(𝔤, 𝑉) rather than Rep{𝑆}(𝔤),Rep{𝑆}(𝔤, 𝑉) respectively.

Proposition 5.3.19. Let 𝔤 be a Lie algebra and (𝑉, 𝜌) a representation of 𝔤. If 𝒮 is a set of irreducible 𝔤-
representation then Rep𝒮(𝔤, 𝑉) has a unique element𝑉𝒮 which is maximal with respect to containment,
that is 𝑉𝒮 ∈ Rep𝒮(𝔤, 𝑉) and if 𝑈 ∈ Rep𝒮(𝔤, 𝑉) then 𝑈 ≤ 𝑉𝒮 .

Proof. First note that if it exists, such a maximal element is automatically unique, since if 𝑊1, 𝑊2
are both maximal with respect to containment we must have 𝑊1 ≤ 𝑊2 ≤ 𝑊1 and hence 𝑊1 = 𝑊2.
Next note that if 𝑉1, 𝑉2 ∈ 𝒱𝑆 then 𝑉1 + 𝑉2 ∈ 𝒱𝑆. Indeed by the second isomorphism theorem,

(𝑉1 + 𝑉2)/𝑉1 ≅ 𝑉2/(𝑉1 ∩ 𝑉2), so that any composition factor of 𝑉1 + 𝑉2 must be a composition
factor of 𝑉1 or of 𝑉2/(𝑉1 ∩ 𝑉2), and hence is a composition factor of 𝑉1 or 𝑉2. Now pick 𝑊 ∈ 𝒱𝑆
with dim(𝑊) ≥ dim(𝑈) for all 𝑈 ∈ 𝒱[𝑆] (such a 𝑊 exists if 𝑉 is finite-dimensional, as we always
assume). We claim that 𝑊 is maximal for containment. Indeed if 𝑈 ∈ 𝒱𝑆 then we have just shown
that 𝑊 + 𝑈 ∈ 𝒱𝑆, hence dim(𝑊) ≤ dim(𝑊 + 𝑈) ≤ dim(𝑊) by our choice of 𝑊, and hence
𝑈 ≤ 𝑊 and 𝑊 is maximal for containment as required. Thus 𝑊 = 𝑉𝒮 is the unique maximal
subrepresentation in 𝒱𝒮 . □

Definition 5.3.20. Recall that the isomorphism classes of 1-dimensional representations of 𝔤 can
be identified with 𝐷(𝔤)0 ⊆ 𝔤, and given 𝜆 ∈ 𝐷(𝔤)0, we write k𝜆 for the 1-dimensional representa-
tion (k, 𝜆). Given a 𝔤-representation (𝑉, 𝜌), we will write 𝑉𝜆 and Rep𝜆(𝔤, 𝑉) instead of 𝑉k𝜆

and
Repk𝜆

(𝔤, 𝑉). When 𝜆 ∈ 𝐷(𝔤)0 we will refer to 𝑉𝜆 as the 𝜆-generalised weight space of 𝑉.8 If 𝑉 is a
finite-dimensional representation of a Lie algebra 𝔤, let

Ψ𝑉 = {𝜆 ∈ 𝐷(𝔤)0 ∶ 𝜆 is a composition factor of 𝑉}

Thus Ψ𝑉 is the finite set of the one-dimensional representations of 𝑉 which occur as composition
factors of 𝑉. If 𝔤 is solvable and char(k) = 0 then by Lie’s TheoremΨ𝑉 contains all the composition
factors of 𝑉.
If 𝜑∶ 𝔤1 → 𝔤2 and (𝑉, 𝜌) is a representation of 𝔤2, then (𝑉, 𝜑∗(𝜌)) is a representation of 𝔤1,

where 𝜑∗(𝜌) = 𝜌 ∘ 𝜑. Since 𝜑(𝐷(𝔤1)) ⊆ 𝐷(𝔤2), the transpose 𝜑⊺ ∶ 𝔤∗
2 → 𝔤∗

1 restricts to give a map
𝜑⊺ ∶ 𝐷(𝔤2)0 → 𝐷(𝔤1)0, and Ψ𝜑∗(𝑉) = 𝜑⊺(Ψ𝑉). Now if 𝑥 ∈ 𝔤 and 𝑖𝑥 ∶ 𝔤𝔩1 → 𝔤 is the homomorphism
𝑖𝑥(𝑡) = 𝑡.𝑥 (∀𝑡 ∈ k = 𝔤𝔩1), and 𝜆 ∈ 𝐷(𝔤)0 then 𝑖⊺𝑥 (𝜆) = 𝜆(𝑥). The weights of the 𝔤𝔩1-representation
𝜌 ∘ 𝑖𝑥 are just the eigenvalues of 𝜌(𝑥), as in Example 3.1.3, it follows that the eigenvalues of 𝜌(𝑥) are
{𝜆(𝑥) ∶ 𝜆 ∈ Ψ𝑉}, and the 𝜇-generalised eigenspace of 𝜌(𝑥) is ⨁𝜆∈Ψ𝑉 ∶𝜆(𝑥)=𝜇 𝑉𝜆.

8In lectures these were sometimes referred to as ”weight spaces”, whereas it is more standard to reserve the term
“weight space” for a direct sum of copies of k𝜆 for some 𝜆 ∈ 𝐷(𝔤)0.
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Lemma 5.3.21. Suppose that 𝔤 is a Lie algebra and 𝜆, 𝜇 ∈ 𝐷(𝔤)0 are weights of 𝔤. If 𝑉 and 𝑊 are
finite-dimensional representations of 𝔤 then

i) 𝑉𝜆 ⊗ 𝑊𝜇 ⊆ (𝑉 ⊗ 𝑊)𝜆+𝜇.

ii) If 𝜙∶ 𝑉 → 𝑊 is a homomorphism of 𝔤-representation, then 𝜙(𝑉𝜆) ⊆ 𝑊𝜆.

Proof. For part (i), we may assume that 𝑉 = 𝑉𝜆 and 𝑊 = 𝑊𝜇, hence there are composition series
(𝐹𝑘)𝑟

𝑘=0 and (𝐺𝑙)𝑠
𝑙=0, where 𝐹𝑘/𝐹𝑘+1 ≅ k𝜆 for each 𝑘, and 𝐺𝑙/𝐺𝑙+1 ≅ k𝜇, for all 𝑙 ∈ {0, 1, … , 𝑟} and

𝑘 ∈ {0, 1 … , 𝑠}. Pick bases {𝑒𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑟 − 1} and {𝑓𝑗 ∶ 0 ≤ 𝑗 ≤ 𝑠 − 1} of 𝑉 and 𝑊 respectively
such that 𝐹𝑘 = ⟨{𝑒𝑖 ∶ 𝑖 ≥ 𝑘}⟩k and 𝐺𝑙 = ⟨{𝑓𝑗 ∶ 𝑗 ≥ 𝑙}⟩k. If we set 𝐻𝑘 = ∑𝑟+𝑠=𝑘 𝐹𝑟 ⊗ 𝐺𝑠, then 𝐻𝑘 is
a subrepresentation of 𝑉 ⊗ 𝑊 and we have 𝑥(𝑒𝑘) ⊗ 𝑓𝑙 = 𝜆(𝑥)𝑒𝑘 ⊗ 𝑓𝑙 + 𝐹𝑘+1 ⊗ 𝐺𝑙 and 𝑒𝑘 ⊗ 𝑥(𝑓𝑙) =
𝜇(𝑥).𝑒𝑘 ⊗ 𝑓𝑙 + 𝐹𝑘 ⊗ 𝐺𝑙+1 hence

𝑥(𝑒𝑘 ⊗ 𝑓𝑙) = 𝑥(𝑒𝑘) ⊗ 𝑓𝑙 + 𝑒𝑘 ⊗ 𝑥(𝑓𝑙) ∈ (𝜆 + 𝜇)(𝑒𝑘 ⊗ 𝑓𝑙) + 𝐻𝑘+𝑙+1 (5.1)

and thus 𝐻𝑘/𝐻𝑘+1 ≅ kdim(𝐻𝑘)−dim(𝐻𝑘+1)
𝜆+𝜇 . It follows 𝑉 ⊗ 𝑊 has k𝜆+𝜇 as its unique composition factor.

For part (ii), since 𝑉𝜆 ∈ Rep𝜆(𝔤), and 𝜙(𝑉𝜆) ≅ 𝑉𝜆/ker(𝜙|𝑉𝜆
) is isomorphic to a quotient of 𝑉𝜆,

it lies in Rep𝜆(𝔤, 𝑊) and so by the maximality of 𝑊𝜆 it follows that 𝜙(𝑉𝜆) ⊆ 𝑊𝜆. □

The adjoint representation of a nilpotent Lie algebra 𝔤 has the trivial representation as its only
composition factor, that is, 𝔤 = 𝔤0. This has the following important consequence:

Proposition 5.3.22. Let 𝔤 be a nilpotent Lie algebra, 𝔥 ⊆ 𝔤 be a subalgebra of 𝔤, and (𝑉, 𝜌) a represen-
tation of 𝔤. Then if 𝜇 ∈ (𝔥/𝐷(𝔥))∗ ≅ 𝐷(𝔥)0/𝔥0 ⊆ 𝔤∗/𝔥0 ≅ 𝔥∗ is a weight of 𝔥, and 𝑉𝜇 is the 𝜇-isotypic
subrepresentation of Res𝔤𝔥(𝑉), the restriction of 𝑉 to 𝔥, then 𝑉𝜇 is a 𝔤-subrepresentation of 𝑉. In partic-
ular, taking 𝔥 = k.𝑥 for 𝑥 ∈ 𝔤\{0}, any generalised eigenspace 𝑉𝜇,𝑥 of 𝜌(𝑥) is a 𝔤-subrepresentation.

Proof. Since 𝔤 is nilpotent, we have 𝔤 = 𝔤0 as an 𝔥-representation. But then by Lemma 5.3.21, we
have 𝔤⊗𝑉𝜇 = 𝔤0 ⊗𝑉𝜇 ⊆ (𝔤⊗𝑉)𝜇, and since the map ̃𝑎𝜌 ∶ 𝔤⊗𝑉 → 𝑉 given by ̃𝑎𝜌(𝑥⊗𝑣) = 𝜌(𝑥)(𝑣) is a
homomorphism of 𝔥-representations by Example 3.3.8, it follows that ̃𝑎𝜌(𝔤 ⊗ 𝑉𝜇) = 𝜌(𝔤)(𝑉𝜇) ⊆ 𝑉𝜇,
that is, 𝑉𝜇 is a 𝔤-subrepresentation as required. □

Definition 5.3.23. Let 𝔤 be a nilpotent Lie algebra and let (𝑉, 𝜌) be a representation of 𝔤. Say 𝑥 ∈ 𝔤
is 𝑉-generic if, for all 𝜆, 𝜇 ∈ Ψ𝑉 we have 𝜆(𝑥) = 𝜇(𝑥) if and only if 𝜆 = 𝜇.
If 𝐷𝑉 = {𝜆 − 𝜇 ∶ 𝜆, 𝜇 ∈ Ψ𝑉}\{0}, then 𝑥 is 𝑉-generic if and only if 𝑥 ∉ ⋃𝜈∈𝐷𝑉

ker(𝜈). If k is
infinite,9 it is an elementary exercise to show that a nonzero k-vector space cannot be written as the
union of finitely many hyperplanes, hence 𝑉-generic elements of 𝔤 exist for any finite-dimensional
𝔤-representation 𝑉.

Theorem 5.3.24. Let 𝔤 be a nilpotent Lie algebra and (𝑉, 𝜌) a finite-dimensional representation of 𝔤.
For each 𝜆 ∈ (𝔤/𝐷𝔤)∗, let

𝑊𝜆 = ⋂
𝑥∈𝔤

𝑉𝜆(𝑥),𝑥, 𝑉𝜆(𝑥),𝑥 = {𝑣 ∈ 𝑉 ∶ ∃𝑛 > 0 such that (𝜌(𝑥) − 𝜆(𝑥))𝑛(𝑣) = 0}.

If 𝑥0 ∈ 𝔤 is 𝑉-generic, then we have 𝑉𝜆(𝑥0),𝑥0
= 𝑉𝜆 = 𝑊𝜆 and hence 𝑉 = ⨁𝜆 𝑉𝜆 is the direct sum of its

(generalised) weight spaces.

Proof. Since 𝔤 is nilpotent, it is solvable, hence for any 𝔤-representation (𝑈, 𝜎) its composition
factors all lie in Ψ𝑈 and, as in Definition 5.3.20, if 𝑥 ∈ 𝔤 then 𝜎(𝑥) has spectrum {𝜆(𝑥) ∶ 𝜆 ∈ Ψ𝑈}.
In particular, taking 𝑈 = 𝑉𝜆 we see that 𝜌(𝑥)|𝑉𝜆

has 𝜆(𝑥) as its sole eigenvalue, that is, 𝑉𝜆 ⊆ 𝑉𝜆(𝑥),𝑥.
It follows that 𝑉𝜆 ⊆ 𝑊𝜆.

9Any field k with char(k) = 0 contains a copy of ℚ and so is infinite. Alteratively, any algebraically closed field is
infinite – e.g. take the 𝑛-th roots of some 𝜇 ∈ k× where 𝑛 is taken coprime to char(k).
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Now if 𝑥 ∈ 𝔤, we have 𝑉 = ⨁𝜆(𝑥)∶𝜆∈Ψ𝑉
𝑉𝜆(𝑥),𝑥. Moreover each summand 𝑉𝜆(𝑥),𝑥 is a 𝔤-

representation by Proposition 5.3.22, hence taking 𝑈 = 𝑉𝜆(𝑥),𝑥 we see that if k𝜈 is a composition
factor, then 𝜈(𝑥) = 𝜆(𝑥). It follows that if we take 𝑥0 to be 𝑉-generic, the generalised eigenspace
𝑉𝜆(𝑥0),𝑥0

has 𝜆 as its unique composition factor, so that 𝑉𝜆(𝑥0),𝑥0
⊆ 𝑉𝜆. Hence 𝑉𝜆(𝑥0),𝑥0

= 𝑉𝜆 = 𝑊𝜆
and 𝑉 = ⨁𝜆∈Ψ𝑉

𝑉𝜆. □

5.3.3 Nilpotent Lie algebras as measurements: Cartan subalgebras

5.3.3.1 Cartan Subalgebras In this section we work over an algebraically closed field k. In particular,
k is infinite.
Let 𝔤 be a Lie algebra. Recall that if 𝔥 is a subalgebra of 𝔤 then the normalizer 𝑁𝔤(𝔥) of 𝔤 is

𝑁𝔤(𝔥) = {𝑥 ∈ 𝔤 ∶ [𝑥, ℎ] ∈ 𝔥, ∀ℎ ∈ 𝔥}.

It follows immediately from the Jacobi identity that 𝑁𝔤(𝔥) is a subalgebra, and clearly 𝑁𝔤(𝔥) is the
largest subalgebra of 𝔤 in which 𝔥 is an ideal.

Definition 5.3.25. A subalgebra 𝔥 is said to be a Cartan subalgebra if it is nilpotent and self-
normalizing, that is, 𝑁𝔤(𝔥) = 𝔥.

It is not clear from this definition whether a Lie algebra necessarily has a Cartan subalgebra. To
show this, we need a few more definitions.

Definition 5.3.26. If 𝑥 ∈ 𝔤, let 𝔤0,𝑥 be the generalized 0-eigenspace of ad(𝑥), that is

𝔤0,𝑥 = {𝑦 ∈ 𝔤 ∶ ∃𝑁 > 0 such that ad(𝑥)𝑁(𝑦) = 0}

Note that we always have 𝑥 ∈ 𝔤0,𝑥. We say that 𝑥 ∈ 𝔤 is regular if 𝔤0,𝑥 is of minimal dimension.

Proposition 5.3.27. 1. If 𝑥 ∈ 𝔤 is any element, then 𝔤0,𝑥 is a self-normalizing subalgebra of 𝔤.

2. If 𝑥 ∈ 𝔤 is a regular element, then 𝔤0,𝑥 is a nilpotent and so a Cartan subalgebra of 𝔤.

Proof. Part (1) is straight-forward: It follows immediately from Lemma 5.3.22 applied to the adjoint
representation that 𝔥 = 𝔤0,𝑥 is a subalgebra of 𝔤. To see that 𝔥 is a self-normalizing in 𝔤. Indeed if
𝑧 ∈ 𝑁𝔤(𝔥) then [𝑥, 𝑧] ∈ 𝔥 (since certainly 𝑥 ∈ 𝔥), so that for some 𝑛 we have ad(𝑥)𝑛([𝑥, 𝑧]) = 0, and
hence ad(𝑥)𝑛+1(𝑧) = 0 and 𝑧 ∈ 𝔥 as required.
To establish part (2), assume that 𝑥 is regular, and let 𝔥 = 𝔤0,𝑥. To see that 𝔥 is nilpotent, by

Engel’s theorem it suffices to show that, for each 𝑦 ∈ 𝔥, the map ad(𝑦) is nilpotent as an endomor-
phism of 𝔥. To see this, we consider the characteristic polynomials of ad(𝑦) on 𝔤, 𝔥 and 𝔤/𝔥: Since
𝔥 is a subalgebra of 𝔤, the characteristic polynomial 𝜒𝑦(𝑡) ∈ k[𝑡] of ad(𝑦) on 𝔤 is the product of the
characteristic polynomials of ad(𝑦) on 𝔥 and 𝔤/𝔥, which we will write as 𝜒𝑦

1(𝑡) and 𝜒𝑦
2(𝑡) respectively.

We may write 𝜒𝑦(𝑡) = ∑𝑛
𝑘=0 𝑐𝑘(𝑦)𝑡𝑘, where 𝑛 = dim(𝔤). Pick {ℎ1, ℎ2, … , ℎ𝑟} a basis of 𝔥 (so that

dim(𝔥) = 𝑟). Then if we write 𝑦 = ∑𝑟
𝑖=1 𝑦𝑖ℎ𝑖, the coefficients {𝑐𝑘(𝑦)}𝑛

𝑘=0 of 𝜒𝑦(𝑡) are polynomial
functions of the coordinates {𝑦𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑟}. Similarly we have

𝜒𝑦
1(𝑡) =

𝑟
∑
𝑖=0

𝑑𝑖(𝑦)𝑡𝑖, 𝜒𝑦
2(𝑡) =

𝑛−𝑟
∑
𝑗=0

𝑒𝑗(𝑦)𝑡𝑗

where the 𝑑𝑖, 𝑒𝑗 ∈ k[𝑥1, … , 𝑥𝑛] are polynomials and 𝑑𝑖(𝑦) = 𝑑𝑖(𝑦1, … , 𝑦𝑛) where 𝑦 = ∑𝑛
𝑖=1 𝑦𝑖ℎ𝑖. Since

ad(𝑥)(𝑥) = 0, we have 𝑥 ∈ 𝔤0,𝑥. But ad(𝑥) is invertible on 𝔤/𝔥, since all its eigenvalues are non-zero
on 𝔤/𝔥, hence 𝜒𝑥

2(𝑡) has 𝑒0(𝑥) ≠ 0, and thus the polynomial 𝑒0 is nonzero.
Now let 𝑠 = min{𝑖 ∶ 𝑑𝑖(𝑥1, … , 𝑥𝑛) ≠ 0}. Then we may write 𝜒𝑦

1(𝑡) = 𝑡𝑠 ∑𝑟−𝑠
𝑘=0 𝑑𝑠+𝑘(𝑦)𝑡𝑘, and hence

𝜒𝑦(𝑡) = 𝑡𝑠(𝑑𝑠 + 𝑑𝑠+1𝑡 + …)(𝑒0 + 𝑒1.𝑡 + …) = 𝑡𝑠𝑑𝑠𝑒0 + … ,
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For any endomorphism of a vector space, the dimension of its 𝜆-generalised eigenspace is the
largest power of (𝑡−𝜆) dividing its characteristic polynomial. In particular this implies that, for any
𝑦 ∈ 𝔥, we have dim(𝔤0,𝑦) = min{𝑖 ∶ 𝑐𝑖(𝑦) ≠ 0}. But since 𝑒0.𝑑𝑠 ∈ k[𝑥1, … , 𝑥𝑛] is nonzero, there is
some 𝑧 ∈ 𝔥 such that 𝑑𝑠(𝑧).𝑒0(𝑧) ≠ 0, and hence dim(𝔤0,𝑧) = 𝑠. Now by definition 𝑠 ≤ 𝑟 = dim(𝔤0,𝑥),
hence since 𝑥 is regular, we must have 𝑠 = 𝑟, and hence 𝜒𝑦

1(𝑡) = 𝑡𝑟, for all 𝑦 ∈ 𝔥. Hence every ad(𝑦)
is nilpotent on 𝔥, so that 𝔥 is a Cartan subalgebra as required.

□

In the course of the proof of the above Proposition we used the fact that the coefficients of the
characteristic polynomial were polynomial functions of the coordinates of 𝑦 ∈ 𝔥 with respect to a
basis of 𝔥. This was crucial because, whereas the product of two arbitrary nonzero functions may
well be zero, the product of two nonzero polynomials (over a field) is never zero. For completeness
we give a proof10. (To apply it to the above, take 𝑉 = 𝔤, 𝐴 = 𝔥 and 𝜑 = ad).

Lemma 5.3.28. Suppose that 𝑉 and 𝐴 are finite dimensional vector spaces, 𝜑∶ 𝐴 → End(𝑉) is a linear
map, and {𝑎1, 𝑎2, … , 𝑎𝑘} is a basis of 𝐴. Let

𝜒𝑎(𝑡) =
𝑑

∑
𝑖=0

𝑐𝑖(𝑎)𝑡𝑖 ∈ k[𝑡]

be the characteristic polynomial of 𝜑(𝑎) ∈ 𝐴. Then if we write 𝑎 = ∑𝑘
𝑖=1 𝑥𝑖𝑎𝑖, the coefficients 𝑐𝑖(𝑎)

(1 ≤ 𝑖 ≤ 𝑑) are polynomials in k[𝑥1, 𝑥2, … , 𝑥𝑘].

Proof. Pick a basis of 𝑉 so that we may identify End(𝑉) with Mat𝑛(k) the space of 𝑛 × 𝑛 matrices.
Then each 𝜑(𝑎𝑖) is a matrix (𝑎𝑗𝑘

𝑖 )1≤𝑗,𝑘≤𝑛, and if 𝑎 = ∑𝑘
𝑖=1 𝑥𝑖𝑎𝑖, we have

𝜒𝑎(𝑡) = det(𝑡𝐼𝑛 −
𝑘

∑
𝑖=1

𝑥𝑖𝜑(𝑎𝑖)),

which from the formula for the determinant clearly expands to give a polynomial in the 𝑥𝑖 and 𝑡,
which yields the result. □

Remark 5.3.29. As an aside, there’s no reason one needs to pick a basis of a vector space 𝑉 in order
to talk about the space k[𝑉] of k-valued polynomial functions on it. For example, one can define
k[𝑉] to be the subalgebra of all k-valued functions on 𝑉 which is generated by 𝑉∗ the space of
functionals on 𝑉. (This is fine if k is algebraically closed at least, if that is not the case then one
should be a bit more careful, e.g. recall if k is finite, then an element of k[𝑡] is not a function on k).
Remark 5.3.30. Although we will not prove it in this course, any two Cartan subalgebras of 𝔤 are
conjugate by an automorphism11 of 𝔤, that is, given any two Cartan subalgebras 𝔥1, 𝔥2 there is
an isomorphism 𝛼∶ 𝔤 → 𝔤 such that 𝛼(𝔥1) = 𝔥2. One difficulty here is that, while the proof of
Proposition 5.3.27 shows that, if 𝑥 ∈ 𝔤 is regular, then 𝔤𝑥,0 is a Cartan subalgebra, it is not clear that
any Cartan subalgebra is of that form.

5.3.3.2 The Cartan Decomposition In this section we work over an algebraically closed field k of charac-
teristic zero.
Our study of the representation theory of nilpotent Lie algebras can now be used to study the

structure of an arbitrary Lie algebra. Indeed, if 𝔤 is any Lie algebra, we have shown that it contains
a Cartan subalgebra 𝔥, and the restriction of the adjoint action makes 𝔤 into an 𝔥-representation.
As such it decomposes into a direct sum

𝔤 = ⨁
𝜆∈(𝔥/𝐷𝔥)∗

𝔤𝜆.

10If this all seems overly pedantic then feel free to ignore it.
11In fact, they are even conjugate by what is known as an inner automorphism.
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Let Φ = {𝜆 ∈ (𝔥/𝐷(𝔥))∗ ∶ 𝔤𝜆 ≠ 0} be the set of roots of 𝔤 with respect to 𝔥. The next Lemma
establishes some basic properties of this decomposition.

Lemma 5.3.31. Let 𝔤, 𝔥 be as above, and let 𝑉 be a (finite-dimensional) 𝔤-representation. As an 𝔥-
representation, it decomposes

𝑉 = ⨁
𝜇∈Ψ

𝑉𝜇

into generalised 𝔥-weight spaces as in Theorem 5.3.24, where Ψ = {𝜆 ∈ (𝔤/𝐷(𝔤))∗ ∶ 𝑉𝜆 ≠ 0} is a finite
subset of (𝔤/𝐷(𝔤))∗. Then for any 𝛼, 𝜇 ∈ (𝔤/𝐷(𝔤))∗ we have

𝜌(𝔤𝛼)(𝑉𝜇) ⊆ 𝑉𝛼+𝜇.

In particular, taking (𝑉, 𝜌) = (𝔤, ad) we see that, for any 𝛼, 𝛽 ∈ (𝔤/𝐷(𝔤))∗ we have [𝔤𝛼, 𝔤𝛽] ⊆ 𝔤𝛼+𝛽.

Proof. By Lemma 5.3.21, the 𝔥-representation 𝔤𝜆 ⊗ 𝑉𝜇 has k𝜆+𝜇 as its only composition factor. As
in Example 3.3.8, the map ̃𝜌 ∶ 𝔤 ⊗ 𝑉 → 𝑉 given by ̃𝜌(𝑦 ⊗ 𝑣) = 𝜌(𝑦)(𝑣) is a homomorphisms of
𝔤-representations, and hence of 𝔥-representation, thus its image span{𝜌(ℎ)(𝑣) ∶ ℎ ∈ 𝔥, 𝑣 ∈ 𝑉} lies in
𝑉𝛼+𝜇. □

Definition 5.3.32. By the previous Lemma, if 𝔥 is a Cartan subalgebra of 𝔤 then 𝔤 decomposes into
a direct sum

𝔤 = 𝔥 ⊕ ⨁
𝜆≠0

𝔤𝜆.

This is known as the Cartan decomposition of 𝔤. The set Φ of non-zero 𝜆 ∈ (𝔥/𝐷𝔥)∗ for which the
subspace 𝔤𝜆 is non-zero is called the set of roots of 𝔤, and the subspaces 𝔤𝜆 are known12 as the root
spaces of 𝔤. Thus finally the Cartan decomposition becomes

𝔤 = 𝔥 ⊕ ⨁
𝜆∈Φ

𝔤𝜆.

By Remark 5.3.30 above, the Cartan decomposition of 𝔤 is unique up to automorphism.

12i.e. in the terminology for representations of nilpotent Lie algebras discussed above, the roots of 𝔤 are the weights
of 𝔤 as an 𝔥-representation.
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Chapter 6

Trace forms and semisimple Lie algebras

6.1 Trace forms and the Killing form

In this section we introduce certain symmetric bilinear forms, which will play an important role in
the rest of the course. A brief review of the basic theory of symmetric bilinear forms1 is given in
§I.3 in Appendix 1 of these notes.

6.1.1 Bilinear forms Let Bil(𝑉) be the space of bilinear forms on 𝑉, that is,

Bil(𝑉) = {𝐵∶ 𝑉 × 𝑉 → k ∶ 𝐵 bilinear}.

From the definition of tensor products it follows that Bil(𝑉) can be identified with (𝑉 ⊗ 𝑉)∗. We
say that a bilinear form is symmetric if 𝐵(𝑣, 𝑤) = 𝐵(𝑤, 𝑣). In terms of tensor products, notice that
the map 𝜎 ∶ 𝑉 ×𝑉 → 𝑉 ×𝑉 given by (𝑣, 𝑤) ↦ (𝑤, 𝑣) induces an involution (which we will also denote
by 𝜎 on 𝑉 ⊗ 𝑉 and the condition that 𝐵 is symmetric is just the condition that 𝐵 ∘ 𝜎 = 𝐵.
If 𝑉 is a 𝔤-representation, this means Bil(𝑉) also has the structure of 𝔤-representation: explicitly,

if 𝐵 ∈ Bil(𝑉), then it yields a linear map 𝑏∶ 𝑉 ⊗𝑉 → k by the universal property of tensor products,
and if 𝑦 ∈ 𝔤, it acts on 𝐵 as follows:

𝑦(𝐵)(𝑣, 𝑤) = 𝑦(𝑏)(𝑣 ⊗ 𝑤)
= −𝑏(𝑦(𝑣 ⊗ 𝑤))
= −𝑏(𝑦(𝑣) ⊗ 𝑤 + 𝑣 ⊗ 𝑦(𝑤))
= −𝐵(𝑦(𝑣), 𝑤) − 𝐵(𝑣, 𝑦(𝑤)).

That is, 𝐵 is invariant if 𝐵(𝑦(𝑣), 𝑤) = −𝐵(𝑣, 𝑦(𝑤)) for all 𝑣, 𝑤 ∈ 𝑉 and 𝑦 ∈ 𝔤. Notice that the
involution 𝜎 ∈ End(𝑉 ⊗ 𝑉) commutes with the action of 𝔤 (this is a special case of the fact that,
for any two 𝔤-representations, the map 𝜏 ∶ 𝑉 ⊗ 𝑊 → 𝑊 ⊗ 𝑉 given by 𝜏(𝑣 ⊗ 𝑤) = 𝑤 ⊗ 𝑣 is a 𝔤-
homomorphism). It follows that the action of 𝔤 preserves the space SBil(𝑉) of symmetric bilinear
forms2

If we apply this to (𝑉, 𝜌) = (𝔤, ad), then the condition that 𝐵 ∈ Bil(𝔤)𝔤 is just that, for all
𝑥, 𝑦, 𝑧 ∈ 𝔤,

0 = 𝑦(𝐵)(𝑥, 𝑧) = −𝐵(ad(𝑦)(𝑥), 𝑧) − 𝐵(𝑥, ad(𝑦)(𝑧)) = 𝐵([𝑥, 𝑦], 𝑧) − 𝐵(𝑥, [𝑦, 𝑧]),

that is, 𝐵([𝑥, 𝑦], 𝑧) = 𝐵(𝑥, [𝑦, 𝑧]).
1Part A Algebra focused more on positive definite and Hermitian forms, but there is a perfectly good theory of

general symmetric bilinear forms.
2In Part B Representation Theory it was shown that if 𝐺 is a group and (𝑉, 𝜎) is a 𝐺-representation, then 𝑉 ⊗ 𝑉 =

Sym2(𝑉) ⊕ Alt2(𝑉), where the two summands are the +1 and −1 eigenspaces for the involution 𝜏 ∶ 𝑉 ⊗ 𝑉 → 𝑉 ⊗ 𝑉
given by 𝜏(𝑣1 ⊗ 𝑣2) = 𝑣2 ⊗ 𝑣1 (𝑣1, 𝑣2 ∈ 𝑉). The analogous result also holds for representations of a Lie algebra.
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Definition 6.1.1. We say that a bilinear form 𝐵 is invariant if it is an invariant vector for the action
of 𝔤 on Bil(𝔤) ≅ (𝔤 ⊗ 𝔤)∗, that is, if

𝐵([𝑥, 𝑦], 𝑧) = 𝐵(𝑥, [𝑦, 𝑧]), ∀𝑥, 𝑦, 𝑧 ∈ 𝔤.

If 𝛼∶ 𝔤1 → 𝔤2 is a homomorphism of Lie algebras, and 𝐵 is a bilinear form on 𝔤2, then we may
“pull-back” 𝐵 using 𝛼 to obtain a bilinear form on 𝔤1. Indeed viewing 𝐵 as an element of (𝔤2 ⊗ 𝔤2)∗,
we obtain an element 𝛼∗(𝐵) of (𝔤1 ⊗ 𝔤1)∗ given by 𝛼∗(𝐵)(𝑥, 𝑦) = 𝐵(𝛼(𝑥), 𝛼(𝑦)). It is immediate from
the definitions that if 𝐵 is an invariant form for 𝔤2, then 𝛼∗(𝐵) is an invariant form for 𝔤1.
It follows that if we can find an invariant form 𝑏𝑉 on a general linear Lie algebra 𝔤𝔩(𝑉), then any

representation 𝜌∶ 𝔤 → 𝔤𝔩(𝑉) of a Lie algebra 𝔤 on 𝑉 will yield an invariant bilinear form 𝑡𝑉 = 𝜌∗(𝑏𝑉)
on 𝔤. The next Lemma shows that there is in fact a very natural invariant bilinear form, indeed an
invariant symmetric bilinear form, on a general linear Lie algebra 𝔤𝔩(𝑉):

Lemma 6.1.2. Let 𝑉 be a k-vector space. The trace form 𝑏𝑉 ∶ 𝔤𝔩(𝑉) ⊗ 𝔤𝔩(𝑉) → k given by

𝑏𝑉(𝑎, 𝑏) = tr(𝑎.𝑏), ∀𝑎, 𝑏 ∈ 𝔤𝔩(𝑉),

is an invariant symmetric bilinear form on 𝔤𝔩(𝑉).

Proof. The invariance of the form 𝑏𝑉 is just the condition that the map 𝑏𝑉 ∶ 𝔤𝔩(𝑉) ⊗ 𝔤𝔩(𝑉) → k is
a map of 𝔤𝔩(𝑉)-representations, where k is viewed as the trivial representation of 𝔤𝔩(𝑉). In fact
this follows from Example I.11. To see this we use the notation of Appendix I.2. Indeed, using the
notation of Remark I.12, the bilinear map is just the composition

𝔤𝔩(𝑉) ⊗ 𝔤𝔩(𝑉) // 𝑉∗ ⊗ 𝑉 ⊗ 𝑉∗ ⊗ 𝑉 𝜄32 // 𝑉∗ ⊗ k ⊗ 𝑉 // 𝑉∗ ⊗ 𝑉 𝜄 // k.
where the first map is 𝜃−1 ⊗ 𝜃−1, and the third map is induced by the scalar multiplication isomor-
phism 𝑉 ⊗ k ≅ 𝑉. Since this description of the trace form uses only the map 𝑐 and identity maps,
it is clearly a 𝔤-homomorphism, and hence an invariant bilinear form. □

Definition 6.1.3. If 𝔤 is a Lie algebra, and let (𝑉, 𝜌) be a representation of 𝔤. we may define a
bilinear form 𝑡𝑉 ∶ 𝔤 × 𝔤 → k on 𝔤, known as a trace form of the representation (𝑉, 𝜌), to be 𝜌∗(𝑏𝑉).
Explicitly, we have

𝑡𝑉(𝑥, 𝑦) = tr𝑉(𝜌(𝑥)𝜌(𝑦)), ∀𝑥, 𝑦 ∈ 𝔤.

Definition 6.1.4. TheKilling form 𝜅 ∶ 𝔤×𝔤 → k is the trace form given by the adjoint representation,
that is:

𝜅(𝑥, 𝑦) = tr(ad(𝑥)ad(𝑦)).

Note that if 𝔞 ⊆ 𝔤 is a subalgebra, the Killing form of 𝔞 is not necessarily equal to the restriction
of that of 𝔤. We will write 𝜅𝔤 when it is not clear from context which Lie algebra is concerned.

If 𝔞 is an ideal in 𝔤, then in fact the Killing form is unambiguous, as the following Lemma shows.

Lemma 6.1.5. Let 𝔞 be an ideal of 𝔤. The Killing form 𝜅𝔞 of 𝔞 is given by the restriction of the Killing
form 𝜅𝔤 on 𝔤, that is:

𝜅𝔤
|𝔞 = 𝜅𝔞.

Moreover, the subspace orthogonal to 𝔞, that is, 𝔞⟂ = {𝑥 ∈ 𝔤 ∶ 𝜅(𝑥, 𝑦) = 0∀𝑦 ∈ 𝔞} is also an ideal.

Proof. If 𝑎 ∈ 𝔞 we have ad(𝑎)(𝔤) ⊆ 𝔞, thus the same will be true for the composition ad(𝑎1)ad(𝑎2)
for any 𝑎1, 𝑎2 ∈ 𝔞. Thus if we pick a vector space complement𝑊 to 𝔞 in 𝔤, the matrix of ad(𝑎1)ad(𝑎2)
with respect to a basis compatible with the subspaces 𝔞 and 𝑊 will be of the form

( 𝐴 𝐵
0 0. )
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where 𝐴 ∈ End(𝔞) and 𝐵 ∈ Homk(𝔞, 𝑊). Then clearly tr(ad(𝑎1)ad(𝑎2)) = tr(𝐴). Since 𝐴 is clearly
given by ad(𝑎1)|𝔞ad(𝑎2)|𝔞, we are done.
Since 𝜅 is invariant, it corresponds to a 𝔤-homomorphism 𝜃 ∶ 𝔤 → 𝔤∗, where 𝜃(𝑥)(𝑦) = 𝜅(𝑥, 𝑦).

An ideal is simply a subrepresentation of 𝔤 (viewed as a representation under the adjoint action) and
𝔞⟂ = 𝜃−1(𝔞0), where 𝔞0 is the annihilator of 𝔞 in 𝔞∗. But if 𝑉 is any representation and 𝑈 < 𝑉 is a
subrepresentation, then its annihilator 𝑈0 is a subrepresentation of 𝑉∗, and clearly the preimage of
a subrepresentation under a homomorphism of 𝔤-representations is a subrepresentation, thus 𝔞⟂ is
an ideal as required.

□

6.1.2 Cartan criteria for solvable Lie algebras In this section k is an algebraically closed field of charac-
teristic zero.
We now wish to show how the Killing form yields a criterion for determining whether a Lie

algebra is solvable or not. For this we need a couple of technical preliminaries.

Lemma 6.1.6. Let 𝔤 be a Lie algebra and let 𝔥 be a Cartan subalgebra with associated Cartan decompo-
sition 𝔤 = 𝔥 ⊕ ⨁𝜆∈Φ 𝔤𝜆. Let (𝑉, 𝜌) be a finite dimensional representation of 𝔤 and let𝑉 = ⨁𝜇∈Ψ 𝑉𝜇 be
the generalised weight-space decomposition of 𝑉 as an 𝔥-representation, where Φ ⊔ {0} denotes the set of
irreducible representations of 𝔥 which occur as composition factors of 𝔤 and Ψ denotes the set which occur
as composition factors of 𝑉. Let 𝜆 ∈ Ψ and 𝛼 ∈ Φ. Then there is an 𝑟 ∈ ℚ such that the restriction of 𝜆
to [𝔤𝛼, 𝔤−𝛼] is equal to 𝑟𝛼.

Proof. The set of weights Ψ is finite, thus there are positive integers 𝑝, 𝑞 such that 𝑉𝜆+𝑡𝛼 ≠ 0 only
for integers 𝑡 with −𝑝 ≤ 𝑡 ≤ 𝑞; in particular, 𝜆 − (𝑝 + 1)𝛼 ∉ Ψ and 𝜆 + (𝑞 + 1)𝛼 ∉ Ψ. Let
𝑀 = ⨁−𝑝≤𝑡≤𝑞 𝑉𝜆+𝑡𝛼. If 𝑧 ∈ [𝔤𝛼, 𝔤−𝛼] is of the form [𝑥, 𝑦] where 𝑥 ∈ 𝔤𝛼, 𝑦 ∈ 𝔤−𝛼 then, using also
Lemma 5.3.31, since

𝜌(𝑥)(𝑉𝜆+𝑞𝛼) ⊆ 𝑉𝜆+(𝑞+1)𝛼 = {0}, 𝜌(𝑦)(𝑉𝜆−𝑝𝛼) ⊆ 𝑉𝜆−(𝑝+1)𝛼 = {0}

we see that 𝜌(𝑥) and 𝜌(𝑦) preserve𝑀. Thus the action of 𝜌(𝑧) on𝑀 is the commutator of the action
of 𝜌(𝑥) and 𝜌(𝑦) on 𝑀, and so tr(𝜌(𝑧), 𝑀) = 0. On the other hand, we may also compute the trace
of 𝜌(𝑧) on 𝑀 directly:

0 = tr(𝜌(𝑧), 𝑀)
= ∑

−𝑝≤𝑡≤𝑞
tr(𝜌(𝑧), 𝑉𝜆+𝑡𝛼)

= ∑
−𝑝≤𝑡≤𝑞

(𝜆(𝑧) + 𝑡𝛼(𝑧))dim(𝑉𝜆+𝑡𝛼).

since any ℎ ∈ 𝔥 acts on a generalised weight-space 𝑉𝜇 with unique eigenvalue 𝜇(ℎ). Rearranging the
above equation gives 𝜆(𝑧) = 𝑟𝛼(𝑧) for some 𝑟 ∈ ℚ as required (where the denominator is a sum of
dimensions of subspaces which are not all zero, and hence is nonzero, and clearly 𝑟 does not depend
on 𝑧). □

Definition 6.1.7. Let 𝔤 be a Lie algebra over a field k. We say that 𝔤 is perfect if 𝔤 = 𝐷(𝔤) = [𝔤, 𝔤].
A perfect Lie algebra therefore has no nontrivial abelian quotients.

Proposition 6.1.8. Let 𝔤 be a Lie algebra and (𝑉, 𝜌) a 𝔤-representation for which 𝜌(𝔤) ≠ 0. Suppose
that 𝐷𝔤 = 𝔤. Then there is an 𝑥 ∈ 𝔤 for which 𝑡𝑉(𝑥, 𝑥) ≠ 0.

Proof. Since 𝜌(𝐷𝔤) = 𝐷(𝜌(𝔤)), by replacing 𝔤 with its image in 𝔤𝔩(𝑉) we may assume that 𝔤 is a
subalgebra of 𝔤𝔩(𝑉) (and hence we will suppress 𝜌 the inclusion map). Suppose that 𝔥 is a Cartan
subalgebra of 𝔤 so that that 𝔤 = ⨁𝜆∈Φ∪{0} 𝔤𝜆 is the associated Cartan decomposition, where 𝔥 = 𝔤0.
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If we let 𝑉 = ⨁𝜇∈Ψ 𝑉𝜇 be the decomposition of 𝑉 into generalised 𝔥-weight spaces as in Theorem
5.3.24, then since 𝔤 ⊆ 𝔤𝔩(𝑉) ≅ 𝑉∗ ⊗ 𝑉, it follows that Φ ⋃{0} ⊆ {𝜇1 − 𝜇2 ∶ 𝜇1, 𝜇2 ∈ Ψ}. In
particular, if 𝑉 = 𝑉0, then 𝔤𝔩(𝑉) = 𝔤𝔩(𝑉)0 and hence 𝔤 = 𝔤0 = 𝔥. But 𝔥 is nilpotent and hence
solvable, whereas 𝐷𝔤 = 𝔤 implies 𝔤 is not solvable. It follows there must be some 𝜆 ∈ Ψ\{0}.
Next observe that

𝔤 = 𝐷𝔤 = [𝔤, 𝔤] = [ ⨁
𝜆∈Φ∪{0}

𝔤𝜆, ⨁
𝜇∈Φ∪{0}

𝔤𝜇] = ∑
𝜆,𝜇

[𝔤𝜆, 𝔤𝜇].

Since we know that [𝔤𝜆, 𝔤𝜇] ⊆ 𝔤𝜆+𝜇, and moreover 𝔥 = 𝔤0, it follows that we must have

𝔥 = [𝔥, 𝔥] + ∑
𝛼

[𝔤𝛼, 𝔤−𝛼],

where the sum runs over those roots 𝛼 such that −𝛼 ∈ Φ. But by definition, 𝜆 vanishes on 𝐷𝔥, so
that there must be some 𝛼 ∈ Φ with 𝜆([𝔤𝛼, 𝔤−𝛼]) ≠ 0.
Picking 𝑥 ∈ [𝔤𝛼, 𝔤−𝛼] such that 𝜆(𝑥) ≠ 0, we find that:

𝑡𝑉(𝑥, 𝑥) = tr(𝑥2) = ∑
𝜆∈Ψ

dim(𝑉𝜆)𝜆(𝑥)2.

But now by Lemma 6.1.6 we know that for any 𝜇 ∈ Ψ there is an 𝑟𝛼,𝜇 ∈ ℚ such that 𝜇(𝑥) = 𝑟𝛼,𝜇.𝛼(𝑥)
for all 𝑥 ∈ [𝔤𝛼, 𝔤−𝛼]. In particular, 0 ≠ 𝜆(𝑥) = 𝑟𝛼,𝜆𝛼(𝑥) so that 𝑟𝛼,𝜆 ≠ 0 and 𝛼(𝑥) ≠ 0. Hence we see
that

𝑡𝑉(𝑥, 𝑥) = ⎛⎜⎜
⎝

∑
𝜇∈Ψ

dim(𝑉𝜇)𝑟2
𝛼,𝜇

⎞⎟⎟
⎠

𝛼(𝑥)2.

Since the terms in the sum are nonnegative, and the term corresponding to 𝜆 is positive, we conclude
𝑡𝑉(𝑥, 𝑥) ≠ 0 are required. □

Applying the previous Proposition to the Killing form we can give a criterion for a Lie algebra
to be solvable.

Theorem 6.1.9 (Cartan’s criterion for solvability). ALie algebra 𝔤 is solvable if and only if the Killing
form restricted to 𝐷𝔤 is identically zero.

Proof. First suppose that 𝜅 vanishes on 𝐷(𝔤). Consider the derived series {𝐷𝑘(𝔤)}𝑘≥0. If there
is some 𝑘 ≥ 1 with 𝐷𝑘(𝔤) = 𝐷𝑘+1(𝔤) = 𝐷(𝐷𝑘𝔤) ≠ {0}, then Proposition 6.1.8 applied to 𝐷𝑘(𝔤)
and (𝔤, ad|𝐷𝑘(𝔤)) the restriction to 𝐷𝑘(𝔤) of the adjoint representation of 𝔤, shows that there is an
𝑥 ∈ 𝐷𝑘𝔤 with 𝜅𝔤(𝑥, 𝑥) ≠ 0, and hence 𝜅𝔤 is not identically zero on 𝐷𝑘(𝔤), contradicting the fact that
𝐷𝑘(𝔤) ⊆ 𝐷(𝔤). Thus we conclude 𝐷𝑘+1𝔤 is a proper subspace of 𝐷𝑘𝔤 whenever 𝐷𝑘𝔤 is nonzero, and
hence since 𝔤 is finite dimensional, it must be solvable as required.
For the converse, assume 𝔤 is solvable. We may replace 𝔤 by its image 𝔤1 = ad(𝔤) in 𝔤𝔩(𝔤)

since 𝔤 is solvable if and only if 𝔤1 ≅ 𝔤/𝔷(𝔤) is. By Lie’s theorem, we can find a complete flag
ℱ = (0 = 𝐹0 < 𝐹1 < … < 𝐹𝑛 = 𝔤) in 𝔤 such that 𝔤1 ⊆ 𝔟ℱ . But then by Example 5.1.7 we
have 𝐷(𝔤1) ⊆ 𝐷(𝔟ℱ ) ⊆ 𝔫ℱ . Since 𝔫ℱ is an associative subalgebra of End(𝔤) consisting of nilpotent
endomorphisms, if 𝑥, 𝑦 ∈ 𝐷(𝔤) then ad(𝑥)ad(𝑦) is nilpotent and hence 𝜅𝔤(𝑥, 𝑦) = tr(ad(𝑥)ad(𝑦)) = 0
as required.

□

6.2 The radical and semisimple Lie algebras

Suppose that 𝔤 is a Lie algebra, and 𝔞 and 𝔟 are solvable Lie ideals of 𝔤. It is easy to see that 𝔞 + 𝔟
is again solvable (for example, because 0 ⊆ 𝔞 ⊆ 𝔞 + 𝔟, and 𝔞 and (𝔞 + 𝔟)/𝔞 ≅ 𝔟/(𝔞 ∩ 𝔟) are both
solvable). It follows that if 𝔤 is finite dimensional, then it has a largest solvable ideal 𝔯. Note that this
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is in the strong sense: every solvable ideal of 𝔤 is a subalgebra of 𝔯 (c.f. Definition 5.3.18 where the
same strategy was used to define the subrepresentation 𝑉𝑆 of a 𝔤-representation given an irreducible
representation 𝑆 of 𝔤).

Definition 6.2.1. Let 𝔤 be a finite dimensional Lie algebra. The largest solvable ideal 𝔯 of 𝔤 is known
as the (solvabel) radical of 𝔤, and will be denoted rad(𝔤). We say that 𝔤 is semisimple if rad(𝔤) = 0,
that is, if 𝔤 contains no non-zero solvable ideals.

Lemma 6.2.2. The Lie algebra 𝔤/rad(𝔤) is semisimple, that is, it has zero radical.

Proof. Suppose that 𝔰 is a solvable ideal in 𝔤/rad(𝔤). Then if 𝔰′ denotes the preimage of 𝔰 in 𝔤, we
see that 𝔰′ is an ideal of 𝔤, and moreover it is solvable since rad(𝔤) and 𝔰 = 𝔰′/rad(𝔤) as both solvable.
But then by definition we have 𝔰′ ⊆ rad(𝔤) so that 𝔰′ = rad(𝔤) and 𝔰 = 0 as required. □

Example 6.2.3. The Lemma shows that any Lie algebra 𝔤 contains a canonical solvable ideal rad(𝔤)
such that 𝔤/rad(𝔤) is a semisimple Lie algebra. Thus we have a short exact sequence:

0 // rad(𝔤) // 𝔤 // 𝔤/rad(𝔤) // 0,
so that any Lie algebra is an extension of the semisimple Lie algebra 𝔤/rad(𝔤) by the solvable Lie
algebra rad(𝔤).

In characteristic zero, every Lie algebra 𝔤 is built out of rad(𝔤) and 𝔤/rad(𝔤) as a semidirect
product.

Theorem 6.2.4. (Levi’s theorem) Let 𝔤 be a finite dimensional Lie algebra over a field k of characteristic
zero, and let 𝔯 be its radical. Then there exists a subalgebra 𝔰 of 𝔤 such that 𝔤 ≅ 𝔯⋉𝔰. In particular 𝔰 ≅ 𝔤/𝔯
is semisimple.

6.2.1 Cartan’s Criterion for semisimplicity The Killing form gives us a way of detecting when a
Lie algebra is semisimple. Recall that, given a symmetric bilinear form 𝐵∶ 𝑉 × 𝑉 → k, the radical
of 𝐵 is rad(𝐵) = {𝑣 ∈ 𝑉 ∶ ∀𝑤 ∈ 𝑉, 𝐵(𝑣, 𝑤) = 0} = 𝑉⟂. The form 𝐵 said to be nondegenerate if
rad(𝐵) = {0}. We first note the following simple result.

Lemma 6.2.5. A finite dimensional Lie algebra 𝔤 is semisimple if and only if it does not contain any
non-zero abelian ideals.

Proof. Clearly if 𝔤 contains an abelian ideal, it contains a solvable ideal, so that rad(𝔤) ≠ 0. Con-
versely, if 𝔰 is a non-zero solvable ideal in 𝔤, then the last term in the derived series of 𝔰 will be an
abelian ideal of 𝔤 (check this!). □

We have the following simple characterisation of semisimple Lie algebras.

Theorem 6.2.6. ALie algebra 𝔤 is semisimple if and only if the Killing form is nondegenerate.

Proof. Let 𝔤⟂ = {𝑥 ∈ 𝔤 ∶ 𝜅(𝑥, 𝑦) = 0, ∀𝑦 ∈ 𝔤}. Then by Lemma 6.1.5 𝔤⟂ is an ideal in 𝔤, and clearly
the restriction of 𝜅 to 𝔤⟂ is zero, so by Cartan’s Criterion, and Lemma 6.1.5 the ideal 𝔤⟂ is solvable.
It follows that if 𝔤 is semisimple we must have 𝔤⟂ = {0} and hence 𝜅 is non-degenerate.
Conversely, suppose that 𝜅 is non-degenerate. To show that 𝔤 is semisimple it is enough to

show that any abelian ideal of 𝔤 is trivial, thus suppose that 𝔞 is an abelian ideal, and pick 𝑊 a
complementary subspace to 𝔞 so that 𝔤 = 𝔞 ⊕ 𝑊. With respect to this decomposition, if 𝑥 ∈ 𝔤 and
𝑎 ∈ 𝔞, we have

ad(𝑥) = ( 𝑥1 𝑥2
0 𝑥3

) , ad(𝑎) = ( 0 𝑎2
0 0 ) ∈ ( Homk(𝔞, 𝔞) Homk(𝑊, 𝔞)

Homk(𝔞, 𝑊) Homk(𝑊, 𝑊) ) .

But then we see that ad(𝑥) ∘ ad(𝑎) = ( 0 𝑥1𝑎2
0 0 ), and hence tr(ad(𝑥)ad(𝑎)) = 0. It follows that

𝔞 ⊆ 𝔤⟂ = {0} as 𝜅 is non-degenerate and hence 𝔞 = {0} as required. □
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Remark 6.2.7. It is worth noting that the proof of the previous theorem establishes two facts: first,
that 𝔤⟂ is a solvable ideal in 𝔤 for any Lie algebra 𝔤, and secondly, that any abelian ideal of 𝔤 is
contained in 𝔤⟂. Combined with the previous Lemma this shows that 𝔤⟂ = {0} ⟺ rad(𝔤) = {0},
but in general the containment 𝔤⟂ ⊆ rad(𝔤) need not be an equality.

6.2.2 Simple and semisimple Lie algebras Recall that we say that a Lie algebra is simple if it is
non-Abelian and has no nontrivial proper ideal. We now show that this notion is closed related to
our notion of a semisimple Lie algebra.

Proposition 6.2.8. Let 𝔤 be a semisimple Lie algebra, and let 𝐼 be an ideal of 𝔤. Then 𝔤 = 𝐼 ⊕ 𝐼⟂.

Proof. Since 𝔤 is semisimple, the Killing form is nondegenerate, hence by Lemma I.17 in Appendix
1, we have

dim(𝐼) + dim(𝐼⟂) = dim(𝔤). (6.1)

Now consider 𝐼 ∩ 𝐼⟂. The Killing form of 𝔤 vanishes identically on 𝐼 ∩ 𝐼⟂ by definition, and since it
is an ideal, the Killing form of 𝐼 ∩ 𝐼⟂ is just the restriction of the Killing form of 𝔤. It follows from
Cartan’s Criterion that 𝐼 ∩ 𝐼⟂ is solvable, and hence since 𝔤 is semisimple we must have 𝐼 ∩ 𝐼⟂ = 0.
But then by Equation (6.1) we must have 𝔤 = 𝐼 ⊕ 𝐼⟂ as required (note that this is a direct sum of Lie
algebras, since [𝐼, 𝐼⟂] ⊂ 𝐼 ∩ 𝐼⟂). □

Proposition 6.2.9. Let 𝔤 be a semisimple Lie algebra.

1. Any ideal and any quotient of 𝔤 is semisimple.

2. Then there exist ideals 𝔤1, 𝔤2, … 𝔤𝑘 ⊆ 𝔤 which are simple Lie algebras and for which the natural
map:

𝔤1 ⊕ 𝔤2 ⊕ … ⊕ 𝔤𝑘 → 𝔤,

is an isomorphism. Moreover, any simple ideal 𝔞 ∈ 𝔤 is equal to some 𝔤𝑖 (1 ≤ 𝑖 ≤ 𝑘). In particular
the decomposition above is unique up to reordering, and 𝔤 = 𝐷𝔤.

Proof. For the first part, if 𝐼 is an ideal of 𝔤, by the previous Proposition we have 𝔤 = 𝐼 ⊕ 𝐼⟂, so
that the Killing form of 𝔤 restricted to 𝐼 is nondegenerate. Since this is just the Killing form of 𝐼,
Cartan’s criterion shows that 𝐼 is semisimple. Moreover, clearly 𝔤/𝐼 ≅ 𝐼⟂ so that any quotient of 𝔤
is isomorphic to an ideal of 𝔤 and hence is also semisimple.
For the second part we use induction on the dimension of 𝔤. Let 𝔞 be a minimal non-zero ideal in

𝔤. If 𝔞 = 𝔤 then 𝔤 is simple, so we are done. Otherwise, we have dim(𝔞) < dim(𝔤). Then 𝔤 = 𝔞 ⊕𝔞⟂,
and by induction 𝔞⟂ is a direct sum of simple ideals, and hence clearly 𝔤 is also.
To show the moreover part, suppose that 𝔤 = 𝔤1 ⊕ 𝔤2 ⊕ … ⊕ 𝔤𝑘 is a decomposition as above and

𝔞 is a simple ideal of 𝔤. Now as 𝔷(𝔤) = {0}, we must have 0 ≠ [𝔤, 𝔞] ⊂ 𝔞, and hence by simplicity of
𝔞 it follows that [𝔤, 𝔞] = 𝔞. But then we have

𝔞 = [𝔤, 𝔞] = [
𝑘

⨁
𝑖=1

𝔤𝑖, 𝔞] = [𝔤1, 𝔞] ⊕ [𝔤2, 𝔞] ⊕ … ⊕ [𝔤𝑘, 𝔞],

(the ideals [𝔤𝑖, 𝔞] are contained in 𝔤𝑖 so the last sum remains direct). But 𝔞 is simple, so direct
sum decomposition must have exactly one nonzero summand and we have 𝔞 = [𝔤𝑖, 𝔞] for some 𝑖
(1 ≤ 𝑖 ≤ 𝑘). Finally, using the simplicity of 𝔤𝑖 we see that 𝔞 = [𝔤𝑖, 𝔞] = 𝔤𝑖 as required. To see that
𝔤 = 𝐷𝔤 note that it is now enough to check it for simple Lie algebras, where it is clear3.

□

3This is one reason for insisting simple Lie algebras are nonabelian.
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6.3 Weyl’s theorem

In this section we assume that our field is algebraically closed of characteristic zero.
In this section we study the representations of a semisimple Lie algebra. eviews the other basic

representation theory that we will need in this section. Our goal is to show, just as for representations
of a finite group over ℂ, that every representation is completely irreducible, that is, is a direct sum of
irreducible representations. Note that, as we check Lemma II.13 in the Appendix 2, 𝑉 is completely
reducible if and only if 𝑉 is the sum of its irreducible subrepresentations.

Definition 6.3.1. We say that a representation 𝑉 of a Lie algebra is semisimple if any subrepresen-
tation has a complement, that is, for any subrepresentation 𝑈 of 𝑉, there is a subrepresentation 𝑊
such that 𝑉 = 𝑈 ⊕ 𝑊.

Lemma 6.3.2. Let 𝔤 be a Lie algebra.

i) A representation 𝑉 is semisimple if and only if any short exact sequence

0 // 𝑈 𝑖 // 𝑉
𝑞 // 𝑊 // 0

splits.

iii) If the representations of 𝔤 are semisimple then they are completely reducible.

Proof. For the first part, suppose that any short exact sequence with 𝑉 as its middle term splits.
Then if 𝑈 is a subrepresentation of 𝑉, then if 𝑖 ∶ 𝑈 → 𝑉 denotes the inclusion map and 𝑊 = 𝑉/𝑈
with 𝑞∶ 𝑉 → 𝑊 the quotient map, we obtain a short exact sequence. A splitting of this short exact
sequence 𝑠 ∶ 𝑊 → 𝑉 is determined by its image, because 𝑞 restricts to an isomorphism on 𝑠(𝑊).
Now if 𝑣 ∈ 𝑈 ∩ 𝑠(𝑊) then 𝑣 = 𝑠(𝑤) for some 𝑤 ∈ 𝑊, then 0 = 𝑞(𝑣) = 𝑞 ∘ 𝑠(𝑤) = 𝑤, and hence
𝑠(𝑤) = 0. It follows that 𝑉 = 𝑈 ⊕ 𝑠(𝑊) and 𝑠(𝑊) is a complement to 𝑈.
Conversely, if 𝑉 is semisimple, then given any short exact sequence with 𝑉 as its middle term,

the subrepresentation 𝑖(𝑈) has a complement 𝑈′. Then 𝑞|𝑈′ ∶ 𝑈′ → 𝑊 is an isomorphism, hence we
may define 𝑠 ∶ 𝑊 → 𝑉 to be its inverse.
For the second part, use induction on dim(𝑉). If 𝑉 is irreducible then we are clearly done,

otherwise 𝑉 has a proper subrepresentation 𝑈. But then 𝑈 has a complement in 𝑉, say 𝑉 = 𝑈 ⊕ 𝑇.
But since dim(𝑈),dim(𝑇) < dim(𝑉), they are completely reducible, hence𝑉 is completely reducible
as required. □

Remark 6.3.3. hows that if a 𝔤-representation is semisimple, then all of its subrepresentations and
quotients are also semisimple. Knowing this, the above proof shows that if a representation is
semisimple then it is completely reducible (whereas in the above we showed that if all representations
of a Lie algebra 𝔤 are semisimple, then they are all completely reducible.)

Theorem 6.3.4. (Weyl’s theorem.) If 𝔤 is a semisimple Lie algebra, then any short exact sequence of
representations of 𝔤 splits. Equivalently any surjective map of 𝔤-representations has a splitting. Conse-
quently, every representation of 𝔤 is semisimple, and thus completely reducible.

Remark 6.3.5. We will establish this theorem by first showing that, for any representation of a
semisimple Lie algebra 𝔤, the invariants 𝑉𝔤 form a direct summmand of 𝑉. Then, using this de-
composition and the fact that, if 𝑉 and𝑊 are 𝔤-representations then Hom(𝑉, 𝑊) is also, to deduce
the semisimplicity result. The argument is similar, but not identical, to the one used in proving
representations of a finite group over the complex numbers are semisimple.

6.3.1 Casimir operators

Lemma 6.3.6. Suppose that 𝔤 is semisimple and (𝑉, 𝜌) is a representation of 𝔤. Then the radical of 𝑡𝑉
is precisely the kernel of 𝜌. In particular if (𝑉, 𝜌) is faithful then 𝑡𝑉 is nondegenerate.
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Proof. The image 𝔤1 = 𝜌(𝔤) ⊆ 𝔤𝔩(𝑉) of 𝔤 is a semisimple Lie algebra (since 𝔤 is) and the statement
of the Lemma is exactly that 𝑡𝑉 is nondegenerate on 𝔤1. But the radical 𝔯 = rad(𝑡𝑉) is an ideal of
𝜌(𝔤). Now Proposition 11.2 shows that if we let (𝐷𝑘𝔯)𝑘≥0 be the derived series of 𝔯, we must have
𝐷𝑘+1𝔯 ⊊ 𝐷𝑘𝔯 whenever 𝐷𝑘𝔯 ≠ {0}, thus 𝔯 must be solvable. Since 𝔤1 is semisimple, this forces the
radical to be zero as required. □

This allows us to make the following definition:

Definition 6.3.7. Let 𝔤 be a semisimple Lie algebra and (𝑉, 𝜌) a representation of 𝔤 with 𝜌(𝔤) ≠ 0.
Then we set 𝔤1 = 𝜌(𝔤) ⊆ 𝔤𝔩(𝑉), and, as above, write 𝜏 ∶ 𝔤1 → 𝔤∗

1 for the isomorphism induced by
𝑡𝑉 . We have a sequence of 𝔤1 (and 𝔤) -homomorphism

Hom(𝔤1, 𝔤1) // 𝔤∗
1 ⊗ 𝔤1 / / 𝔤1 ⊗ 𝔤1 // 𝔤𝔩(𝑉)

where the first map is 𝜃−1 (see Appendix I.2) the second is 𝜏−1 ⊗ 1 and the third is composition of
linear maps. These are all 𝔤-homomorphisms, and hence the image of Id𝔤1

under their composition
is a 𝔤-endomorphism of 𝑉, which we denote by 𝐶𝑉 , the Casimir operator of 𝑉. Note also that the
composite map Hom(𝔤1, 𝔤1) → 𝔤𝔩(𝑉) is compatible with the trace map, which implies that

tr𝑉(𝐶𝑉) = tr𝔤1
(Id𝔤1

) = dim(𝔤1) ≠ 0.

Remark 6.3.8. If 𝔤 is simple, rather than just semisimple, then by Schur’s Lemma (which holds
for representations of Lie algebras just as it does for groups – see Lemma II.2) Homk(𝔤, 𝔤)𝔤 =
Hom𝔤(𝔤, 𝔤) is one-dimensional (the scalar multiples of the identity). Since Homk(𝔤, 𝔤) ≅ 𝔤 ⊗ 𝔤 as
𝔤-representations, the invariants (𝔤 ⊗ 𝔤)𝔤 in 𝔤 ⊗ 𝔤 must also be one-dimensional (the image of the
scalar multiples of the identity under any isomorphism). If we pick a non-zero element 𝐶 ∈ (𝔤⊗𝔤)𝔤,
then, for any representation on which 𝔤 acts non-trivially, there is a non-zero scalar 𝜆𝑉 such that

𝐶𝑉 = 𝜆𝑉 .𝑚 ∘ (𝜌 ⊗ 𝜌)(𝐶)

Thus the Casimir operators 𝐶𝑉 , up to scaling, all come from the same element of 𝔤 ⊗ 𝔤.

Example 6.3.9. Let us take 𝔤 = 𝔰𝔩2. Then the trace form 𝑡(𝑥, 𝑦) = tr(𝑥.𝑦) is non-degenerate and
invariant, with

𝑡(𝑒, 𝑓 ) = 𝑡(𝑒, ℎ) = 1, 𝑡(ℎ, ℎ) = 2, 𝑡(𝑒, 𝑒) = 𝑡(𝑓 , 𝑓 ) = 𝑡(𝑒, ℎ) = 𝑡(𝑓 , ℎ) = 0

Thus the corresponding isomorphism 𝜏 ∶ 𝔰𝔩2 → 𝔰𝔩∗2 gives

(𝜏−1 ⊗ 1)𝜃−1(id) = 𝑓 ⊗ 𝑒 + 1
2ℎ ⊗ ℎ + 𝑒 ⊗ 𝑓 .

For any 𝔰𝔩2-representation (𝑉, 𝜌) we thus get a 𝔤-endomorphism of 𝑉 by applying 𝑚 ∘ (𝜌 ⊗ 𝜌) to this
element, namely 𝜌(𝑒)𝜌(𝑓 ) + 1

2𝜌(ℎ)2 + 𝜌(𝑓 )𝜌(𝑒). This is exactly the operator used in Sheet 3 of the
problem set.

Definition 6.3.10. Recall that if (𝑉, 𝜌) is a representation of 𝔤, then 𝑉𝔤 = {𝑣 ∈ 𝑉 ∶ 𝜌(𝑥)(𝑣) =
0, ∀𝑥 ∈ 𝔤} is the subrepresentation of invariants in 𝑉. We also define 𝔤.𝑉 = span{𝜌(𝑥)(𝑣) ∶ 𝑥 ∈
𝔤, 𝑣 ∈ 𝑉}. One can check directly that 𝔤.𝑉 is a subrepresentation, or note that it is the image of the
𝔤-homomorphism 𝑎 ∶ 𝔤 ⊗ 𝑉 → 𝑉 given by 𝑎(𝑥 ⊗ 𝑣) = 𝜌(𝑥)(𝑣). See Example 3.3.8 for more details.

The next Proposition shows that the invariants in a representation of semisimple Lie algebra
form a direct summand of 𝑉. This can be thought of as the analogue of Maschke’s theorem: The
key to that result of that, if𝐺 is a finite group, and (𝑉, 𝜌) is any representation of𝐺, then the operator
𝜋0 = |𝐺|−1 ∑𝑔∈𝐺 𝜌(𝑔) is a 𝐺-equivariant projection onto 𝑉𝐺 the invariants in 𝑉 and hence its kernel
gives a complementary subrepresentation, so that 𝑉 = 𝑉𝐺 ⊕ ker(𝜋0).

Proposition 6.3.11. Let (𝑉, 𝜌) be representation of a semisimple Lie algebra 𝔤. Then 𝑉 = 𝑉𝔤 ⊕ 𝔤.𝑉.
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Proof. We prove the statement by induction on dim(𝑉), the case dim(𝑉) = 0 being trivial). If
𝑉 = 𝑉𝔤 the certainly 𝔤.𝑉 = {0} and the statement holds. Thus we may assume that 𝑉 ≠ 𝑉𝔤, so that
𝜌(𝔤) ≠ {0}. Let 𝐶𝑉 be the Casimir operator of 𝑉. Since it is a 𝔤-endomorphism, if 𝑉 = ⨁ 𝑉𝜆 is the
decomposition of 𝑉 into the generalised eigenspaces of 𝐶𝑉 , each 𝑉𝜆 is a subrepresentations of 𝑉.
Since if the statement of the Lemma holds for representations 𝑈 and 𝑊 it certainly holds for their
direct sum 𝑈 ⊕ 𝑊, we are done by induction unless 𝐶𝑉 has exactly one generalised eigenspace, i.e.
𝑉 = 𝑉𝜆. But then dim(𝑉).𝜆 = tr(𝐶𝑉) = dim(𝜌(𝔤)), so that 𝜆 ≠ 04, and hence 𝐶𝑉 is invertible.
Since it is clear from the definition of 𝐶𝑉 that 𝑉𝔤 ⊆ ker(𝐶𝑉) we see that 𝑉𝔤 = {0}, and moreover
𝑉 = 𝐶𝑉(𝑉) ⊆ 𝜌(𝔤)(𝜌(𝔤)(𝑉)), so that 𝑉 = 𝔤.𝑉, and we are done. □

Definition 6.3.12. If 𝔤 is a semisimple Lie algebra and (𝑉, 𝜌) is a representation of 𝔤, then let
𝜋𝑉

0 ∶ 𝑉 → 𝑉𝔤 be the projection to𝑉𝔤 with kernel 𝔤.𝑉. To avoid cluttered notation, we will sometimes
just write 𝜋0. The following Corollary indicates shows this is unlikely to cause confusion:

Corollary 6.3.13. Let 𝑉 and 𝑊 be 𝔤-representations and let 𝜃 ∈ Hom𝔤(𝑉, 𝑊). Then 𝜋𝑊
0 ∘ 𝜃 = 𝜃 ∘ 𝜋𝑉

0 .

Proof. From the definitions it is clear that 𝜃(𝑉𝔤) ⊆ 𝑊𝔤 and similarly 𝜃(𝔤.𝑉) ⊆ 𝔤.𝑊. The result
follows immediately. □

We now prove that 𝔤-representations are semisimple following the same strategy as in the case
of finite groups:

Theorem 6.3.14. Let 𝑉 be a representation of a semisimple Lie algebra 𝔤. Then 𝑉 is semisimple, that
is, any subrepresentation has a complement.

Proof. Let 𝑖 ∶ 𝑈 → 𝑉 denotes the inclusion map and 𝑞∶ 𝑉 → 𝑊 = 𝑉/𝑈 the quotient map, so that
we have a short exact sequence:

0 // 𝑈 𝑖 // 𝑉
𝑞 // 𝑊 // 0

If 𝑠 ∶ 𝑊 → 𝑉 is any linear map satisfying 𝑞∘𝑠 = 1𝑊 , that is, a linear splitting of the quotient map 𝑞,
then im(𝑠) is a complement to im(𝑖) = ker(𝑞). Thus if 𝑠 is 𝔤-invariant for the 𝔤-action on Hom(𝑊, 𝑉)
so that 𝑠 ∈ Hom𝔤(𝑊, 𝑉), then im(𝑠) is a complementary subrepresentation to im(𝑖) = ker(𝑞) as
required.
Now the map 𝑞∗ ∶ Hom(𝑊, 𝑉) → Hom(𝑊, 𝑊) given by 𝑞∗(𝜓) = 𝑞 ∘ 𝜓 is a 𝔤-homomorphism

because 𝑞 is. Moreover, if 𝑠 is any linear splitting map, and 𝜙 ∈ Hom(𝑊, 𝑊), we have 𝑞∗(𝑠 ∘ 𝜙) =
(𝑞 ∘ 𝑠) ∘ 𝜙 = 1𝑊 ∘ 𝜙 = 𝜙, so that 𝑞∗ is surjective. But now note that 1𝑊 ∈ Hom(𝑊, 𝑊)𝔤 and hence
by Corollary 6.3.13 we have

𝑞∗(𝜋0(𝑠)) = 𝜋0(𝑞∗(𝑠)) = 𝜋0(𝑞 ∘ 𝑠) = 𝜋0(1𝑊) = 1𝑊 .

It follows that 𝜋0(𝑠) is the required splitting map, and 𝑉 = 𝑈 ⊕ im(𝜋0(𝑠)) as required.
□

6.4 The Jordan Decomposition

Unless explicitly stated to the contrary, in this section we work over a field k which is algebraically closed
of characteristic zero.

Definition 6.4.1. Let𝑉 be a k-vector space and suppose that 𝑥 ∈ End(𝑉). Then we say 𝑥 ∈ End(𝑉)
is semisimple if 𝑉 is a direct sum of eigenlines for 𝑥, that is, there are lines 𝐿1, … , 𝐿𝑛 such that
𝑉 = ⨁𝑛

𝑖=1 𝐿𝑖 and 𝑥(𝐿𝑖) ⊆ 𝐿𝑖. We say that 𝑥 is nilpotent if 𝑉 = 𝑉0, that is 𝑥 has 0 as its only
eigenvalue, and hence 𝑥𝑛 = 0 for sufficiently large 𝑛.

4This is where we use that the characteristic of the field is 0.
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By Proposition I.1 for any 𝑥 ∈ End(𝑉), then we may write

𝑉 = ⨁
𝜆∈k

𝑉𝜆,𝑥, where 𝑉𝜆,𝑥 = {𝑣 ∈ 𝑉 ∶ ∃𝑁 > 0, (𝑥 − 𝜆)𝑁(𝑣) = 0}.

That is, 𝑉𝜆,𝑥 is the generalized 𝜆-eigenspace of 𝑥. This direct sum decomposition can be used to
give a decomposition of the endomorphism 𝑥 in a semisimple (or diagonalisable) and nilpotent part:

Proposition 6.4.2. Let 𝑉 be a finite dimensional vector space 𝑥 ∈ End(𝑉). Then we may write 𝑥 =
𝑥𝑠 + 𝑥𝑛 where 𝑥𝑠 is semisimple and 𝑥𝑛 is nilpotent, and 𝑥𝑠 and 𝑥𝑛 commute, i.e. [𝑥𝑠, 𝑥𝑛] = 0. Moreover,
if 𝑈 is a subspace of 𝑉 preserved by 𝑥, it is also preserved by 𝑥𝑠, 𝑥𝑛.

A proof is given in Appendix I.1. In fact, given 𝑥 = 𝑥𝑠 + 𝑥𝑛, the conditions that 𝑥𝑠 is semisimple
and 𝑥𝑛 is nilpotent along with the fact that they commute, determines them uniquely. To see this
we use the following:

Lemma 6.4.3. Let 𝑉 be a k-vector space and 𝑥, 𝑛 ∈ End(𝑉) be such that [𝑥, 𝑛] = 0 and 𝑛 is nilpotent.
Then we have 𝑉𝜆,𝑥 = 𝑉𝜆,𝑥+𝑛.

Proof. It suffices to show that 𝑉𝜆,𝑥 ⊆ 𝑉𝜆,𝑥+𝑛 for all such pairs (𝑥, 𝑛) in End(𝑉). Indeed the lemma
follows once one also knows the reverse inclusion, but this follows by considering the pair (𝑥+𝑛, −𝑛).
To prove the claim, note that since [𝑥, 𝑛] = 0, we have 𝑛(𝑉𝜆,𝑥) ⊆ 𝑉𝜆,𝑥. But by definition (𝑥 − 𝜆)

is nilpotent on 𝑉𝜆,𝑥 and hence (𝑥 + 𝑛) − 𝜆 = (𝑥 − 𝜆) + 𝑛, when restricted to 𝑉𝜆,𝑥, is the sum of two
commuting nilpotent endomorphisms of 𝑉𝜆,𝑥. It follows from Lemma 5.3.14 that (𝑥 + 𝑛) − 𝜆 acts
nilpotently on 𝑉𝜆,𝑥, and hence 𝑉𝜆,𝑥 ⊆ 𝑉𝑥+𝑛,𝜆 as required. □

Corollary 6.4.4. The (naive or concrete) Jordan decomposition is unique, that is, given 𝑥 ∈ End(𝑉),
there is a unique pair (𝑥𝑠, 𝑥𝑛)with 𝑥𝑠 semisimple and 𝑥𝑛 nilpotent, such that 𝑥 = 𝑥𝑠 +𝑥𝑛 and [𝑥𝑠, 𝑥𝑛] = 0.

Proof. The previous Lemma shows that 𝑥𝑠 and 𝑥𝑠 + 𝑥𝑛 = 𝑥 have the same generalised eigenspaces.
But as 𝑥𝑠 is semisimple, its generalized eigenspaces are precisely its eigenspaces and hence it is
completely determined by these. It follows 𝑥𝑠 is unique, and hence 𝑥𝑛 = 𝑥 − 𝑥𝑠 is also. □

Lemma 6.4.5. Let 𝑉 be a vector space and 𝑥 ∈ End(𝑉). If 𝑥 is semisimple then

ad(𝑥) ∶ End(𝑉) → End(𝑉)

is also semisimple, and similarly if 𝑥 is nilpotent.

Proof. First note that the action of ad(𝑥) on 𝔤𝔩(𝑉) is just the action of 𝑥 on the tensor product
𝑉∗ ⊗ 𝑉. When 𝑥 is nilpotent, the result is proved in Lemma 5.3.15.
If 𝑥 is semisimple, then we may write 𝑉 = ⨁𝑛

𝑖=1 𝐿𝑖 and 𝑉∗ = ⨁𝑛
𝑗=1 𝐿∗

𝑗 . But then

𝑉∗ ⊗ 𝑉 = (
𝑛

⨁
𝑖=1

𝐿𝑖)∗ ⊗ (
𝑛

⨁
𝑗=1

𝐿𝑗) =
𝑛

⨁
𝑖,𝑗=1

𝐿∗
𝑖 ⊗ 𝐿𝑗,

and since dim(𝐿∗
𝑖 ⊗ 𝐿𝑗) = 1, it follows that the action of ad(𝑥) on 𝔤𝔩(𝑉) is semisimple also. □

Corollary 6.4.6. Let 𝑥 ∈ End(𝑉), and suppose 𝑥 = 𝑥𝑠 + 𝑥𝑛 is the Jordan decomposition of 𝑥. Then
ad(𝑥) = ad(𝑥𝑠) + ad(𝑥𝑛) is the Jordan decomposition of ad(𝑥).

Proof. By the previous Lemma, ad(𝑥𝑠) and ad(𝑥𝑛) are semisimple and nilpotent respectively, and
as ad is a representation, [ad(𝑥𝑠), ad(𝑥𝑛)] = ad([𝑥𝑠, 𝑥𝑛]) = 0. □

Wenow return to Lie algebras. The above linear algebra allows us to define an “abstract” Jordan
decomposition for the elements of any Lie algebra (over an algebraically closed field).
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Definition 6.4.7. Suppose that 𝔤 is a Lie algebra and 𝑥 ∈ 𝔤. The endomorphism ad(𝑥) ∈ 𝔤𝔩(𝔤)
has a unique Jordan decomposition ad(𝑥) = ad(𝑥)𝑠 + ad(𝑥)𝑛 in 𝔤𝔩(𝔤). Then if 𝑠, 𝑛 ∈ 𝔤 are such
that ad(𝑠) = ad(𝑥)𝑠 and ad(𝑛) = ad(𝑥)𝑛, we say the Lie algebra elements 𝑠, 𝑛 are an abstract Jordan
decomposition of 𝑥. Note that if 𝑧 ∈ 𝔷(𝔤) ≠ {0} then if (𝑠, 𝑛) is a Jordan decomposition of 𝑥 so is
(𝑠 + 𝑧, 𝑛 − 𝑧), thus the Jordan decomposition is unique if and only if 𝔷(𝔤) = {0}.

Note that that if 𝔤 = 𝔤𝔩(𝑉) for some vector space 𝑉, then Lemma 6.4.5 shows that the abstract
Jordan decomposition for an element 𝑥 ∈ 𝔤𝔩(𝑉) is just the naive one (i.e. the one for 𝑥 thought of
as a linear map from 𝑉 to itself).
For a Lie algebra 𝔤, the space Derk(𝔤) of k-derivations of 𝔤 is a Lie algebra, which wemay view as

a subalgebra of the Lie algebra 𝔤𝔩(𝔤). The map ad ∶ 𝔤 → 𝔤𝔩(𝔤) is in fact a Lie algebra homomorphism
from 𝔤 into Derk(𝔤). Its image is denoted Innk(𝔤).

Lemma 6.4.8. Let 𝔞 be a semisimple Lie algebra.

1. Suppose that 𝔞 is an ideal of a Lie algebra 𝔤. Then 𝔤 = 𝔞 ⊕ 𝔞⟂.

2. All derivations of 𝔞 are inner, that is, Derk(𝔞) = Innk(𝔞).

Proof. For the first part, let 𝜅 denote the Killing form for 𝔤 so that 𝔞⟂ = {𝑥 ∈ 𝔤 ∶ 𝜅(𝑥, 𝑦) = 0, ∀𝑦 ∈ 𝔞}
is an ideal in 𝔤. Now since 𝔞 is an ideal in 𝔤, the restriction 𝜅|𝔞 of the Killing form of 𝔤 to 𝔞 is the
Killing form 𝜅𝔞 of 𝔞. Since 𝔞 is semisimple, by Cartan’s Criterion 𝜅𝔞 is non-degenerate, hence 𝜅|𝔞 is.
But then Lemma I.17 shows that 𝔤 = 𝔞 ⊕ 𝔞⟂ as required.
For the second part, note that the Lie algebra of derivations𝐷 = Derk(𝔞) is a subalgebra of 𝔤𝔩(𝔞)

containing the image 𝐼 of ad as the subalgebra of “inner derivations” which, since it is isomorphic
to 𝔞, is semisimple. We first claim that this subalgebra is an ideal: indeed if ad(𝑥) is any inner
derivation, and 𝛿 ∈ 𝐷, then

[𝛿, ad(𝑥)](𝑦) = 𝛿[𝑥, 𝑦] − [𝑥, 𝛿(𝑦)] = [𝛿(𝑥), 𝑦] = ad(𝛿(𝑥))(𝑦)

thus [𝛿, ad(𝑥)] ∈ 𝐼, and hence 𝐼 is an ideal in 𝐷. Now since 𝐼 is semisimple, by the first part we see
that 𝐷 = 𝐼 ⊕ 𝐼⟂, thus it is enough to prove that 𝐼⟂ = {0}. Thus suppose that 𝛿 ∈ 𝐼⟂. Then since
[𝐼, 𝐼⟂] ⊂ 𝐼 ∩ 𝐼⟂ = {0} we see that

[𝛿, ad(𝑥)] = ad(𝛿(𝑥)) = 0, ∀𝑥 ∈ 𝔞,

so that, again by the injectivity of ad, we have 𝛿 = 0 and so 𝐼⟂ = {0} as required. □

Lemma 6.4.9. Let 𝔞 be a Lie algebra and Derk(𝔞) ⊂ 𝔤𝔩(𝔞) the Lie algebra of k-derivations on 𝔞. Let
𝛿 ∈ Derk(𝔞). If 𝛿 = 𝑠 + 𝑛 is the Jordan decomposition of 𝛿 as an element of 𝔤𝔩(𝔞), then 𝑠, 𝑛 ∈ Derk(𝔞).

Proof. We may decompose 𝔞 = ⨁𝜆 𝔞𝜆 where 𝔞𝜆 is the generalized eigenspace of 𝛿 with eigenvalue
𝜆 ∈ k say. Now since 𝛿 is a derivation the map 𝔞𝜆 ⊗ 𝔞𝜇 → 𝔞 given by 𝑥 ⊗ 𝑦 ↦ [𝑥, 𝑦] is compatible
with the action of 𝛿. But then by Lemma 5.3.22, if 𝑥 ∈ 𝔞𝜆 and 𝑦 ∈ 𝔞𝜇, we have [𝑥, 𝑦] ∈ 𝔞𝜆+𝜇. It
follows immediately that 𝑠 is a derivation on 𝔞, and since 𝑛 = 𝛿 − 𝑠 we see that 𝑛 is also. □

Theorem 6.4.10. Let 𝔤 be a semisimple Lie algebra. Then given any 𝑥 ∈ 𝔤 has an abstract Jordan
decomposition: that is, there exist unique elements 𝑠, 𝑛 ∈ 𝔤 such that 𝑥 = 𝑠 + 𝑛 and [𝑠, 𝑛] = 0, and ad(𝑠)
is semisimple, while ad(𝑛) is nilpotent.

Proof. As noted above, since 𝔤 is semisimple, ad ∶ 𝔤 → 𝔤𝔩(𝔤) is an embedding, and the conditions
on 𝑠 and 𝑛 show that if they exist, they must satisfy ad(𝑠) = ad(𝑥)𝑠 and ad(𝑛) = ad(𝑥)𝑛, where
ad(𝑥) = ad(𝑥)𝑠 + ad(𝑥)𝑛 is the Jordan decomposition of ad(𝑥) ∈ 𝔤𝔩(𝔤). Thus it remains to show
that ad(𝑥)𝑠 and ad(𝑥)𝑛 lie in the image of ad. But ad(𝑥) acts as a derivation on 𝐼 = im(ad), so by
Lemma 6.4.9 so do ad(𝑥)𝑠 and ad(𝑥)𝑛. But then by Lemma 6.4.8, we see that ad(𝑥)𝑠 = ad(𝑠) for
some 𝑠 ∈ 𝔤 and ad(𝑥)𝑛 = ad(𝑛) for some 𝑛 ∈ 𝔤. The conditions on 𝑠, 𝑛 ∈ 𝔤 then follow from the
injectivity of ad, and we are done. □

47



Remark 6.4.11. One can show that the Jordan decomposition is compatible with representations,
in the sense that if (𝑉, 𝜌) is a representation of a semsimple Lie algebra 𝔤 and 𝑥 = 𝑠 + 𝑛 is the
Jordan decomposition of 𝑥 ∈ 𝔤, then 𝜌(𝑥) = 𝜌(𝑠) + 𝜌(𝑛) is the (naive) Jordan decomposition of
𝜌(𝑥) ∈ 𝔤𝔩(𝑉). The main point, of course, is to show that 𝜌(𝑠) and 𝜌(𝑛) are, respectively, semisimple
and nilpotent endomorphisms of 𝑉. The proof, which we shall not give here, is similar to the proof
of the existence of the abstract Jordan form, except that one also needs to use Weyl’s theorem.
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Chapter 7

Root systems and the classification of
semisimple Lie algebras

7.1 The Cartan decomposition of a semisimple Lie algebra

In this section we work over an algebraically closed field k of characteristic zero.
Although the Cartan decomposition makes sense in any Lie algebra, we will now restrict at-

tention to semisimple Lie algebras 𝔤, where we can give much more precise information about the
structure of the root spaces than in the general case.

Proposition 7.1.1. Suppose that 𝔤 is a semisimple Lie algebra and 𝔥 is a Cartan subalgebra, and 𝔤 =
𝔥 ⊕ ⨁𝛼∈Φ 𝔤𝛼 the associated Cartan decomposition.

1. Let 𝜅 be the Killing form. Then 𝜅(𝔤𝜆, 𝔤𝜇) = 0 unless 𝜆 + 𝜇 = 0.

2. If 𝛼 ∈ Φ, then −𝛼 ∈ Φ.

3. The restriction 𝜅|𝔥 of 𝜅 to 𝔥 is nondegenerate.

Proof. For the first part, since [𝔤𝜆, 𝔤𝜇] ⊆ 𝔤𝜆+𝜇, if 𝑥 ∈ 𝔤𝜆, 𝑦 ∈ 𝔤𝜇, we see that ad(𝑥)ad(𝑦)(𝔤𝜈) ⊆
𝔤𝜆+𝜇+𝜈. But then picking a basis of 𝔤 compatible with the Cartan decomposition it is clear the
matrix of ad(𝑥)ad(𝑦) will have no non-zero diagonal entry unless 𝜆+𝜇 = 0, hence 𝜅(𝑥, 𝑦) = 0 unless
𝜆 + 𝜇 = 0 as required.
For the second part, recall that if 𝛼 is a root, then 𝛼 ≠ 0 and 𝔤𝛼 ≠ 0. If −𝛼 ∉ Φ then 𝔤−𝛼 = 0

and so 𝔤𝛼 ⊆ rad(𝜅) = 𝔤⟂ = {0}, which is impossible since 𝔤𝛼 is non-zero by assumption.
For the third part note that 𝔥⟂ contains all the 𝔤𝛼 for 𝛼 ∈ Φ by part (1). Since 𝜅 is nondegenerate,

by dimension counting this must be equal to 𝔥⟂. It follows that 𝜅|𝔥 must be nondegenerate as
claimed. □

Lemma 7.1.2. Let 𝔤 be a semisimple Lie algebra and 𝔥 a Cartan subalgebra. Then if 𝑥, 𝑦 ∈ 𝔥 we have

𝜅(𝑥, 𝑦) = ∑
𝛼∈Φ

dim(𝔤𝛼)𝛼(𝑥)𝛼(𝑦). (7.1)

Mooreover, 𝔥 is abelian.

Proof. The formula for 𝜅(𝑥, 𝑦) follows immediately from the Cartan Decomposition and the fact that
𝔤𝛼 has k𝛼 as its only composition factor. We show that [𝔥, 𝔥] = 𝐷𝔥 = 0. By part (3) of Proposition
7.1.1 it is enough to show that 𝐷𝔥 lies in the radical of 𝜅|𝔥. But for any 𝛼 ∈ Φ, 𝛼 is a one-dimensional
representation of 𝔥, so it vanishes on 𝐷𝔥. It is then immediate from Equation (7.1) that 𝜅(𝑥, 𝑦) = 0
for any 𝑥 ∈ 𝐷𝔥 and all 𝑦 ∈ 𝔥, and so if 𝑥 ∈ 𝐷𝔥 then 𝑥 ∈ rad(𝜅|𝔥) = {0} as claimed.

□
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Remark 7.1.3. Since the restriction of 𝜅 to 𝔥 is non-degenerate, it yields an isomorphism 𝜏 ∶ 𝔥∗ → 𝔥.
Indeed if 𝜆 ∈ 𝔥∗ then there is a unique 𝑡𝜆 ∈ 𝔥 such that 𝜅(𝑡𝜆, 𝑦) = 𝜆(𝑦) for all 𝑦 ∈ 𝔥, and the
assignment 𝜆 → 𝑡𝜆 is clearly linear. (See the notes on bilinear forms for more details.)

In the next Proposition need to use Lemma 6.1.6, applied to the adjoint representation. This
shows that, if 𝔥𝛼 = [𝔤𝛼, 𝔤−𝛼] then for each 𝛽 ∈ Φ there is a rational number 𝑟𝛽 ∈ ℚ such that
𝛽|𝔥𝛼

= 𝑟𝛽𝛼|𝔥𝛼
.

Proposition 7.1.4. Let (𝔤, 𝔥) be a pair consisting of a semisimple Lie algebra 𝔤 and a Cartan subalgebra
𝔥 ⊆ 𝔤, and let 𝔤 = 𝔥 ⨁𝛼∈Φ 𝔤𝛼 the associated Cartan decomposition. Write 𝔤𝑠

𝛼 = {𝑥 ∈ 𝔤𝛼 ∶ ad(ℎ)(𝑥) =
𝛼(ℎ).𝑥} ⊆ 𝔤𝛼 for the non-zero subrepresentation of 𝔤𝛼 on which 𝔥 acts by 𝛼.

i) If 𝑥 ∈ 𝔤𝑠
𝛼, 𝑦 ∈ 𝔤 and ℎ ∈ 𝔥 then

𝜅(ℎ, [𝑥, 𝑦]) = 𝛼(ℎ)𝜅(𝑥, 𝑦),

and hence [𝑥, 𝑦] = 𝜅(𝑥, 𝑦)𝑡𝛼.

ii) The set of roots Φ spans 𝔥∗.

iii) The subspace 𝔥𝑠
𝛼 = [𝔤𝑠

𝛼, 𝔤−𝛼] ⊆ 𝔥 is one-dimensional, and is spanned by 𝑡𝛼. Moreover 𝛼(𝔥𝑠
𝛼) ≠ 0.

iv) If 𝛼 ∈ Φ, we may find 𝑒𝛼 ∈ 𝔤𝑠
𝛼, 𝑓𝛼 ∈ 𝔤−𝛼 and ℎ𝛼 ∈ 𝔥𝑠

𝛼 so that the map 𝑒 ↦ 𝑒𝛼, 𝑓 ↦ 𝑓𝛼 and ℎ ↦ ℎ𝛼
gives an embedding 𝔰𝔩2 → 𝔤𝛼 ⊕ 𝔥𝛼 ⊕ 𝔤−𝛼.

Proof. For 𝑖), let 𝑥, 𝑦, ℎ be as in the statement of the Proposition. Then by invariance we have:

𝜅(ℎ, [𝑥, 𝑦]) = 𝜅([ℎ, 𝑥], 𝑦) = 𝜅(𝛼(ℎ)𝑥, 𝑦) = 𝛼(ℎ)𝜅(𝑥, 𝑦),

where the first equality uses the invariance of 𝜅, and the second follows from the fact that 𝑥 ∈ 𝔤𝑠
𝛼.

The identity 𝜅(𝑥, 𝑦)𝑡𝛼 = [𝑥, 𝑦] follows immediately from Proposition 7.1.1 the definitions.
For 𝑖𝑖), suppose that 𝔲 = span{Φ}. If 𝔲 is a proper subspace of 𝔥∗, then we may find a non-zero

ℎ ∈ 𝔲0 ⊆ 𝔥 ≅ 𝔥∗∗ such that 𝛼(ℎ) = 0 for all 𝛼 ∈ Φ. But then it follows from (7.1) that 𝜅(ℎ, 𝑥) = 0 for
all 𝑥 ∈ 𝔥, which contradicts the nondegeneracy of the form 𝜅|𝔥.
For 𝑖𝑖𝑖), as in Remark 7.1.3 above, since 𝜅|𝔥 is nondegenerate it yields an isomorphism 𝜏 ∶ 𝔥∗ → 𝔥,

where if 𝜏(𝜆) = 𝑡𝜆 then 𝜅(𝑡𝜆, ℎ) = 𝜆(ℎ) for all ℎ ∈ 𝔥. Since we know that Φ spans 𝔥∗, it follows that
{𝑡𝛼 ∶ 𝛼 ∈ Φ} spans 𝔥. Suppose that 𝑥 ∈ 𝔤𝑠

𝛼, 𝑦 ∈ 𝔤−𝛼. Then by 𝑖) we see that [𝑥, 𝑦] = 𝜅(𝑥, 𝑦)𝑡𝛼, so
that 𝔥𝑠

𝛼 ⊆ span{𝑡𝛼}. Since 𝜅 is nondegenerate on 𝔤𝛼 ⊕ 𝔤−𝛼, given 𝑥 ∈ 𝔤𝑠
𝛼, we may find 𝑦 ∈ 𝔤−𝛼 such

that 𝜅(𝑥, 𝑦) ≠ 0, hence 𝔥𝑠
𝛼 = span{𝑡𝛼} as required. Next we wish to show that 𝛼(𝔥𝑠

𝛼) ≠ 0. For this,
note that if we write 𝔥𝛼 = [𝔤𝛼, 𝔤−𝛼], then by Lemma 6.1.6, if 𝛽 ∈ Φ, then we have 𝛽|𝔥𝛼

= 𝑟𝛽.𝛼|𝔥𝛼
for

some 𝑟𝛽 ∈ ℚ. But then if 𝛼(𝔥𝑠
𝛼) = 0 it follows 𝛽(𝔥𝑠

𝛼) = 𝑟𝛽.𝛼(𝔥𝑠
𝛼) = 0 for all 𝛽 ∈ Φ, and hence by

Equation 7.1 we see that 𝔥𝑠
𝛼 ⊆ rad(𝜅) = {0}, which is impossible, as 𝑡𝛼 ∈ 𝔥𝑠

𝛼.
□

Lemma 7.1.5. Let 𝔤 be a semisimple Lie algebra and 𝔥 a Cartan subalgebra with Cartan decomposition
𝔤 = 𝔥 ⨁𝛼∈Φ 𝔤𝛼. Then

i) The root spaces 𝔤𝛼 are one-dimensional, in particular 𝔤𝛼 = 𝔤𝑠
𝛼 and thus 𝔥 acts on 𝔤 semisimply (i.e.

ad(ℎ) acts diagonalisably on 𝔤 for all ℎ ∈ 𝔥).

ii) We have [𝔤𝛼, 𝔤−𝛼] = 𝔥𝛼 = k.𝑡𝛼, and thus 𝔰𝔩𝛼 = 𝔤𝛼 ⊕𝔥𝛼 ⊕𝔤−𝛼 is a subalgebra isomorphic to 𝔰𝔩2(k).

iii) If 𝛼 ∈ Φ and 𝑐𝛼 ∈ Φ for some 𝑐 ∈ ℤ then 𝑐 = ±1.
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Proof. Choose a nonzero vector 𝑒𝛼 ∈ 𝔤𝑠
𝛼. Then as in the proof of Proposition 7.1.4 we may find an

element 𝑒−𝛼 ∈ 𝔤−𝛼 such that [𝑒𝛼, 𝑒−𝛼] = ℎ𝛼 ≠ 0 ∈ 𝔥. Rescaling 𝑒𝛼 if necessary we may assume that
𝛼(ℎ𝛼) = 2. Consider the subspace

𝑀 = k.𝑒𝛼 ⊕ k.ℎ𝛼 ⊕ ⨁
𝑝<0

𝔤𝑝𝛼

of 𝔤; this is a finite direct sum as 𝔤 is finite-dimensional. Then since ad(𝑒𝛼)(𝑒𝛼) = 0, and by 𝑖𝑖𝑖)
of Proposition 7.1.4 we know that [𝔤𝑠

𝛼, 𝔤−𝛼] = k.ℎ𝛼, and [ℎ𝛼, 𝑒𝛼] = 2𝑒𝛼, it is easy to see that 𝑀 is
stable under 𝑒𝛼, 𝑒−𝛼 and ℎ𝛼. We compute the trace of ℎ𝛼 on 𝑀 in two ways: on the one hand, it
is a commutator and so has trace zero. On the other hand it acts on each of the direct summands
defining 𝑀 so that we may compute

0 = tr(ℎ𝛼) = 𝛼(ℎ𝛼) + ∑
𝑝<0
dim(𝔤𝑝𝛼).𝑝𝛼(ℎ𝛼)

= 𝛼(ℎ𝛼) ⎛⎜⎜
⎝

1 − ∑
𝑝>0

𝑝.dim(𝔤−𝑝𝛼)⎞⎟⎟
⎠

.

Since we know that 𝛼(ℎ𝛼) ≠ 0, the only way the above equality can hold is if dim(𝔤−𝑝𝛼) = 0 for 𝑝 > 1
and dim(𝔤−𝛼) = 1. Since −𝛼 ∈ Φ if and only if 𝛼 ∈ Φ, it follows that dim(𝔤𝛼) = 1 for all 𝛼 ∈ Φ,
so that in particular 𝔤𝑠

𝛼 = 𝔤𝛼. Since we already know 𝔥 is abelian, it follows that ad(ℎ) ∈ 𝔤𝔩(𝔤) is a
semisimple (or diagonalisable) linear map for all ℎ ∈ 𝔤.
For 𝑖𝑖), note that by part 𝑖) since 𝔤𝛼 and 𝔤−𝛼 are one-dimensional it is clear that 𝔰𝔩𝛼 is spanned

by {𝑒𝛼, 𝑒−𝛼, ℎ𝛼}, and as these satisfy [ℎ𝛼, 𝑒𝛼] = 2𝑒𝛼, [ℎ𝛼, 𝑒−𝛼] = −2𝑒−𝛼 and [𝑒𝛼, 𝑒−𝛼] = ℎ𝛼, it follows
immediately that 𝔰𝔩𝛼 ≅ 𝔰𝔩2(k).
Finally, for 𝑖𝑖𝑖) note first that since Φ ⊆ 𝑉\{0}, if 𝑐𝛼 ∈ Φ then 𝑐 ≠ 0. We have shown in the

proof of 𝑖) that if 𝛼 ∈ Φ and 𝑝 > 0 then −𝑝.𝛼 ∈ Φ if and only if 𝑝 = 1. Since 𝛼 ∈ Φ if and only if
−𝛼 ∈ Φ, we may apply this to −𝛼 also, we find that if 𝑐 ∈ ℤ and 𝑐𝛼 ∈ Φ then 𝑐 = ±1 as claimed. □

Remark 7.1.6. A triple of elements {𝑒, 𝑓 , ℎ} in a Lie algebra 𝔤which obey the relations of the standard
generators of 𝔰𝔩2 (that is, [𝑒, 𝑓 ] = ℎ, [ℎ, 𝑒] = 2𝑒, [ℎ, 𝑓 ] = 2𝑓 ) is called an 𝔰𝔩2-triple. Specifying an 𝔰𝔩2-
triple is equivalent to giving a homomorphism 𝜑∶ 𝔰𝔩2 → 𝔤. Note that since 𝔰𝔩2 is simple, such a
homomorphism is injective whenever it is non-zero, and is unique up to a scalar.

In fact the techniques we have already used can be refined somewhat to give a finer information
about the set of roots associated to the Cartan decomposition of a semisimple Lie algebra. For this
we need the some more terminology:

Definition 7.1.7. Suppose that 𝛼, 𝛽 are two roots in 𝔤. Then we may consider the roots which
have the form 𝛽 + 𝑘𝛼. Clearly, since 𝔤 is finite dimensional, there are integers 𝑝, 𝑞 > 0 such that
𝛽 + 𝑘𝛼 ∈ Φ ∪ {0} for each 𝑘 with −𝑝 ≤ 𝑘 ≤ 𝑞, but neither 𝛽 − (𝑝 + 1)𝛼 nor 𝛽 + (𝑞 + 1)𝛼 are inΦ ∪ {0}.
This set of roots is called1 the 𝛼-string through 𝛽.

Proposition 7.1.8. Let 𝛼, 𝛽 ∈ Φ and suppose that 𝛽 − 𝑝𝛼, … , 𝛽 + 𝑞𝛼 is the 𝛼-string through 𝛽. Then we
have

i)

𝛽(ℎ𝛼) = 𝜅(ℎ𝛼, 𝑡𝛽) =
2𝜅(𝑡𝛼, 𝑡𝛽)
𝜅(𝑡𝛼, 𝑡𝛼) = 𝑝 − 𝑞.

In particular 𝛽 − 𝛽(ℎ𝛼).𝛼 ∈ Φ.

ii) If 𝑐 ∈ k, then 𝑐𝛼 ∈ Φ if and only if 𝑐 = ±1.
1Some references will impose the condition that 𝛼 and 𝛽 are linearly independent, in which case the 𝛼-string through

𝛽 will be a subset of Φ.
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iii) If 𝑆 = {𝑘 ∈ ℤ ∶ 𝛽 + 𝑘𝛼 ∈ Φ ∪ {0}, then 𝑆 = {𝑘 ∈ ℤ ∶ −𝑝 ≤ 𝑘 ≤ 𝑞}.
Proof. We consider the subspace 𝑀 = ⨁−𝑝≤𝑘≤𝑞 𝔤𝛽+𝑘𝛼, where if 𝛽 + 𝑘𝛼 = 0, we take 𝔤𝛽+𝑘𝛼 to be 𝔥𝛼
(rather than 𝔥). Let {𝑒𝛼, ℎ𝛼, 𝑒−𝛼} be an 𝔰𝔩2-triple corresponding to an isomorphism 𝜑∶ 𝔰𝔩2 → 𝔰𝔩𝛼 as in
Remark 7.1.6. Using Lemma 7.1.5 we see that 𝔰𝔩𝛼 preserves 𝑀, hence

tr𝑀(ad(ℎ𝛼)|𝑀) = tr𝑀([ad(𝑒𝛼)|𝑀, ad(𝑒−𝛼)|𝑀]) = 0.
Thus, using the fact root spaces are 1-dimensional, we obtain the identity:

0 = ∑
−𝑝≤𝑘≤𝑞

(𝛽 + 𝑘𝛼)(ℎ𝛼),

and so
0 = (𝑞(𝑞 + 1)/2 − 𝑝(𝑝 + 1)/2)𝛼(ℎ𝛼) + (𝑝 + 𝑞 + 1)𝛽(ℎ𝛼).

Hence since 𝑝+𝑞+1 ≠ 0 and 𝛼(ℎ𝛼) = 2, it follows that 𝛽(ℎ𝛼) = 𝑝−𝑞 as required. Since 𝛽−(𝑝−𝑞)𝛼 =
(𝛽−𝑝𝛼)+𝑞𝛼 is the 𝑞-th term in a string containing 𝑝+𝑞+1 terms starting with 𝛽−𝑝.𝛼, it is certainly
in the 𝛼-string through 𝛽 it follows that 𝛽 − 𝛽(ℎ𝛼).𝛼 ∈ Φ.
For 𝑖𝑖), taking 𝛽 = 𝑐𝛼 in part 𝑖) we find that 2𝑐 = 𝑝 − 𝑞. If 𝑝 − 𝑞 ∈ 2ℤ then we are done by part

𝑖𝑖𝑖) of Lemma 7.1.5. On the other hand, if 𝑝−𝑞 is odd, the 𝛼-string through 𝛽 = (𝑝−𝑞)
2 𝛼 has the form:

−(𝑝 + 𝑞)
2 𝛼, … , (𝑝 − 𝑞)

2 𝛼, … , (𝑝 + 𝑞)
2 𝛼,

which clearly then contains 1
2𝛼 so that 1

2𝛼 ∈ Φ. But then we get a contradiction as 𝛼 = 2(1
2𝛼).

Finally, for 𝑖𝑖𝑖), we may replace 𝛽 by 𝛽+𝑚𝛼where𝑚 = min(𝑆), so that 𝑆 ⊆ ℤ≥0 and in particular
𝑝 = 0 and 𝛽(ℎ𝛼) = −𝑞 for some integer 𝑞 ≥ 0. Let 𝑁 = ⨁𝑘∈ℤ 𝔤𝛽+𝑘𝛼 (where again we take 𝔤𝛽+𝑘𝛼 to
be 𝔥𝛼 if 𝛽 + 𝑘𝛼 = 0). If 𝑆 ≠ {0, 1, … , 𝑞}, then there is some 𝑡 > 𝑞 + 1 such that {𝑡, 𝑡 + 1, … , 𝑡 + 𝑟} ⊂ 𝑆
but 𝑡 + 𝑟 + 1 ∉ 𝑆 (where 𝑟 ∈ ℤ≥0). But then considering the 𝛼-string through 𝛽1 = 𝛽 + 𝑡𝛼 we find
that 𝛽1(ℎ𝛼) = −𝑟 ≤ 0. On the other hand 𝛽1(ℎ𝛼) = (𝛽 + 𝑡𝛼)(ℎ𝛼) = 2𝑡 − 𝑞 > 𝑡 + 1 > 0, which is a
contradiction. □

7.2 𝔥 and inner product spaces
Recall that since 𝜅|𝔥 is non-degenerate, it gives an isomorphism 𝜃 ∶ 𝔥∗ → 𝔥. For 𝜆 ∈ 𝔥∗, we

write 𝑡𝜆 for 𝜃(𝜆), so that 𝜅(𝑡𝜆, ℎ) = 𝜆(ℎ), (∀𝜆 ∈ 𝔥∗, ℎ ∈ 𝔥). Given a root 𝛼 ∈ Φ, we have seen that
𝔤𝛼 ⊕ 𝔤−𝛼 ⊕ [𝔤𝛼, 𝔤−𝛼] span a subalgebra isomorphic to 𝔰𝔩2. We will denote this subalgebra as 𝔰𝔩𝛼. We
note the following simple lemma.

Lemma 7.2.1. Let 𝛼 ∈ Φ and let ℎ𝛼 ∈ [𝔤𝛼, 𝔤−𝛼] = 𝔥𝛼 = k.𝑡𝛼 be such that 𝛼(ℎ𝛼) = 2. Then
i) We have

ℎ𝛼 = 2
𝜅(𝑡𝛼, 𝑡𝛼) 𝑡𝛼, 𝜅(𝑡𝛼, 𝑡𝛼).𝜅(ℎ𝛼, ℎ𝛼) = 4

ii) If 𝛼, 𝛽 ∈ Φ then 𝜅(ℎ𝛼, ℎ𝛽) ∈ ℤ and 𝜅(𝑡𝛼, 𝑡𝛽) ∈ ℚ.

Proof. For 𝑖) note that by 𝑖𝑖) of Lemma 7.1.5 we have ℎ𝛼 = 𝑐.𝑡𝛼 for some 𝑐 ∈ k, and 2 = 𝛼(ℎ𝛼) =
𝜅(𝑡𝛼, ℎ𝛼), it follows readily that 𝑐 = 2/𝜅(𝑡𝛼, 𝑡𝛼). Next, note that

𝜅(𝑡𝛼, 𝑡𝛼)𝜅(ℎ𝛼, ℎ𝛼) = 2𝜅(𝑡𝛼, ℎ𝛼) = 2𝛼(ℎ𝛼) = 4.

For part 𝑖𝑖), using the Cartan decomposition to compute 𝜅(𝑥, 𝑦) for 𝑥, 𝑦 ∈ 𝔥 we see that (since
we now know that root spaces are one-dimensional) by Proposition 7.1.8:

𝜅(ℎ𝛼, ℎ𝛽) = ∑
𝛾∈Φ

𝛾(ℎ𝛼)𝛾(ℎ𝛽) ∈ ℤ.

It thus follows from the identity in part 𝑖) that 𝜅(𝑡𝛼, 𝑡𝛼) ∈ ℚ, and hence 𝑡𝛼 ∈ ℚ.ℎ𝛼. Thus 𝜅(𝑡𝛼, 𝑡𝛽) ∈
ℚ as required. □
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Let (−, −) denote the bilinear form on 𝔥∗ which is obtained by identifying 𝔥∗ with 𝔥: that is

(𝜆, 𝜇) = 𝜅(𝑡𝜆, 𝑡𝜇).

Clearly it is a nondegenerate symmetric bilinear form, and via the previous Lemma, for all 𝛼, 𝛽 ∈ Φ
we have (𝛼, 𝛽) = 𝜅(𝑡𝛼, 𝑡𝛽) ∈ ℚ.

Lemma 7.2.2. The ℚ-span of the roots Φ is a ℚ-vector space of dimension dimk(𝔥∗).

Proof. We know thatΦ spans 𝔥∗, so we may pick a subset {𝛼1, 𝛼2, … , 𝛼𝑙}which forms a k-basis of 𝔥∗.
To prove the Lemma it is enough to show that every 𝛽 ∈ Φ lies in theℚ-span of the {𝛼𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑙}.
But now if we write 𝛽 = ∑𝑙

𝑗=1 𝑐𝑗𝛼𝑗 for 𝑐𝑗 ∈ k, then we see that (𝛼𝑖, 𝛽) = ∑𝑙
𝑖=1(𝛼𝑖, 𝛼𝑗)𝑐𝑗. But the

matrix 𝐶 = (𝛼𝑖, 𝛼𝑗)𝑖,𝑗 is invertible since (−, −) is nondegenerate, and its entries are in ℚ hence so
are those of 𝐶−1. But then we have (𝑐𝑖) = 𝐶−1((𝛼𝑖, 𝛽)), and the objects on the right-hand side all
have ℚ-entries, so we are done. □

Let 𝔥∗
ℚ denote the ℚ-span of the roots. Although you are perhaps more used to inner product

spaces over ℝ or ℂ, the definition of a positive definite symmetric bilinear form makes perfectly
good sense over ℚ. We now show that (−, −) is such an inner product on 𝔥∗

ℚ.

Proposition 7.2.3. The form (−, −) is positive definite on 𝔥∗
ℚ.

Proof. Using the root space decomposition to compute 𝜅 we have

(𝜆, 𝜆) = 𝜅(𝑡𝜆, 𝑡𝜆) = ∑
𝛼∈Φ

𝛼(𝑡𝜆)2 = ∑
𝛼∈Φ

(𝛼, 𝜆)2 ≥ 0,

and since we may have equality if and only if (𝛼, 𝜆) = 0 for all 𝛼 ∈ Φ, and the elements of Φ span
𝔥∗ it follows that the form is definite as required. □

7.3 Abstract root systems

In this section we study the geometry which we are led to by the configuration of roots associated
to a Cartan decomposition of a semisimple Lie algebra. These configurations will turn out to have
a very special, highly symmetric, form which allows them to be completely classified.
We will work with an inner product space, that is a vector space equipped with a positive

definite symmetric bilinear form (−, −). Such a formmakes sense over any field which has a notion of
positive elements, and so in particular overℝ andℚ, but not over arbitrary characteristic zero fields2.
Since the rootsΦ associated to a Cartan decomposition of a semisimple Lie algebra naturally live in
the ℚ-inner product space 𝔥∗

ℚ, we will assume our field is ℚ unless otherwise stated. We let O(𝑉)
denote the group of orthogonal linear transformations of 𝑉, that is the linear transformations which
preserve the inner product, so that 𝑔 ∈ O(𝑉) precisely when 𝑣, 𝑤 ∈ 𝑉 then (𝑣, 𝑤) = (𝑔(𝑣), 𝑔(𝑤))
for all 𝑣, 𝑤 ∈ 𝑉.

Definition 7.3.1. A reflection is a nontrivial element of O(𝑉) which fixes a subspace of codimension
1 (i.e. dimension dim(𝑉) − 1). If 𝑠 ∈ O(𝑉) is a reflection and 𝑊 < 𝑉 is the +1-eigenspace, then
𝐿 = 𝑊⟂ is a line preserved by 𝑠, hence the restriction 𝑠|𝐿 of 𝑠 to 𝐿 is an element of 𝑂(𝐿) = {±1},
which since 𝑠 is nontrivial must be −1. In particular 𝑠 has order 2. If 𝑣 is any nonzero element of 𝐿
then it is easy to check that 𝑠 is given by

𝑠(𝑢) = 𝑢 − 2(𝑢, 𝑣)
(𝑣, 𝑣) 𝑣.

Given 𝑣 ≠ 0 we will write 𝑠𝑣 for the reflection given by the above formula, and refer to it as the
“reflection in the hyperplane perpendicular to 𝑣”.

2Inner product spaces have, in addition to a notion of distance, a notion of angle. Their geometry is thus pretty much
that of Prelims Geometry I. Positive-definite forms do not make sense over characteristic zero fields such as ℂ, although
in the case of ℂ one can use Hermitian forms as a replacement.
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We now give the definition which captures the geometry of the root of a semisimple Lie algebra.

Definition 7.3.2. Let 𝑉 be aℚ-vector space equipped with an inner product (−, −). A finite subset
Φ ⊂ 𝑉\{0} is called a root system if it satisfies the following properties:

i) Φ spans 𝑉;

ii) If 𝛼 ∈ Φ then 𝑐𝛼 ∈ Φ if and only if 𝑐 = ±1;

iii) If 𝛼 ∈ Φ then 𝑠𝛼 ∶ 𝑉 → 𝑉 preserves Φ;

iv) If 𝛼, 𝛽 ∈ Φ and we define

⟨𝛼, 𝛽⟩ = 2(𝛼, 𝛽)
(𝛼, 𝛼) , (7.2)

then ⟨𝛼, 𝛽⟩ ∈ ℤ. We say ⟨𝛼, 𝛽⟩ is a Cartan integer.

This definition is, unsurprisingly, motivated by the following result.

Lemma 7.3.3. Let (𝔤, 𝔥) be a pair consisting of a semisimple Lie algebra 𝔤 together with a Cartan sub-
algebra 𝔥 ⊆ 𝔤. Let 𝔤 = 𝔥 ⊕ ⨁𝛼∈Φ 𝔤𝛼 be the associated Cartan decomposition and let 𝔥∗

ℚ be the ℚ-span
of Φ in 𝔥∗. Then (𝔥∗

ℚ, Φ) is an abstract root system.

Proof. Let (−, −) denotes the symmetric bilinear form on 𝔥∗ induced by the restriction of the Killing
form 𝜅|𝔥 as in §7.2. The results of that section show that (−, −) restricts to an inner product on 𝔥∗

ℚ.
Property 𝑖) for an abstract root system follows immediately from the definitions, and the remain-

ing properties follow from Proposition 7.1.8: Property 𝑖𝑖) of that Proposition establishes property
𝑖𝑖), while part 𝑖) establishes properties 𝑖𝑖𝑖) and 𝑖𝑣).

□

Remarkably, the finite set of vectors given by a root system has both a rich enough structure
that it captures the isomorphism type of a semisimple Lie algebra, but is also explicit enough that
we can completely classify them, and hence classify semisimple Lie algebras.

Definition 7.3.4. Let (𝑉, Φ) be a root system. Then theWeyl group of the root system is the group
𝑊 = ⟨𝑠𝛼 ∶ 𝛼 ∈ Φ⟩. Since its generators preserve the finite set Φ and these vectors span 𝑉, it follows
that it is a finite subgroup of O(𝑉).

Example 7.3.5. Let 𝔤 = 𝔰𝔩𝑛, Then let 𝔡𝑛 denote the diagonal matrices in 𝔤𝔩𝑛 and 𝔥 the (traceless)
diagonal matrices in 𝔰𝔩𝑛. As you saw in the problem sets, 𝔥 forms a Cartan subalgebra in 𝔰𝔩𝑛. Let
{𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} be the basis of 𝔡∗

𝑛 dual to the basis {𝐸𝑖𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} of 𝔡𝑛 in 𝔤𝔩𝑛. Then 𝔥∗
ℚ is the

quotient space

𝔥∗
ℚ =

⎧{
⎨{⎩

𝑛
∑
𝑖=1

𝑐𝑖𝜀𝑖 ∶ 𝑐𝑖 ∈ ℚ
⎫}
⎬}⎭

/{ℚ.(𝜀1 + … + 𝜀𝑛)},

the roots in 𝔥∗
ℚ are the (images of the) vectors {𝜀𝑖 − 𝜀𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗}. TheWeyl group𝑊 in this

case is the group generated by the reflections 𝑠𝛼 which, for 𝛼 = 𝜀𝑖 − 𝜀𝑗 interchange the basis vectors
𝜀𝑖 and 𝜀𝑗, so it is easy to see that 𝑊 is just the symmetric group on 𝑛 letters.

The first crucial point about the geometry of root systems is that the angles between roots are
highly constrained.

Lemma 7.3.6. Let (𝑉, Φ) be a root system and let 𝛼, 𝛽 ∈ Φ be such that 𝛼 ≠ ±𝛽. Then ⟨𝛼, 𝛽⟩⟨𝛽, 𝛼⟩ ∈
{0, 1, 2, 3}. It follows that the angle between two such roots 𝛼, 𝛽 lies in the set

{𝜋/2, 𝜋/3, 2𝜋/3, 𝜋/4, 3𝜋/4, 𝜋/6, 5𝜋/6}.

Moreover, the ratios of root lengths which are not perpendicular must be 1, 2, 1/2, 3 or 1/3.
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Proof. By assumption, we know that both ⟨𝛼, 𝛽⟩ and ⟨𝛽, 𝛼⟩ are integers. On the other hand, by the
cosine formula (i.e. by Cauchy-Schwarz) we see that if 𝜃 denotes the angle between 𝛼 and 𝛽, then:

⟨𝛼, 𝛽⟩⟨𝛽, 𝛼⟩ = 4cos(𝜃)2 < 4. (7.3)

Since cos(𝜃)2 determines the angle between the two vectors (or rather the one which is less than
𝜋) and ⟨𝛽, 𝛼⟩/⟨𝛼, 𝛽⟩ = ||𝛼||2/||𝛽||2 (where we write ||𝑣||2 = (𝑣, 𝑣)), the rest of the Lemma follows by a
case-by-case check as we see from the following table:

⟨𝛼, 𝛽⟩ ⟨𝛽, 𝛼⟩ 𝜃 ||𝛼||2/||𝛽||2
0 0 𝜋/2 undetermined
1 1 𝜋/3 1

−1 −1 2𝜋/3 1
1 2 𝜋/4 2

−1 −2 3𝜋/4 2
1 3 𝜋/6 3

−1 −3 5𝜋/6 3

□

7.3.1 Root systems and bases Since the set of rootsΦ spans 𝑉, it certainly contains (many) subsets
which form a basis of 𝑉. The key to the classification of root systems is to show that there is a special
class of such bases which capture enough of the geometry of the set of roots that the entire root
system can be recovered from the bases of this form. Although it is not immediate that this should
be the correct definition, the distinguishing property of these bases is a kind of positivity property:

Definition 7.3.7. Given a set of vectors 𝑋 in a vector space 𝑉, we will write

ℕ.𝑋 =
⎧{
⎨{⎩

∑
𝑠∈𝐽

𝑐𝑠.𝑠 ∶ 𝐽 ⊆ 𝑋 finite, 𝑐𝑠 ∈ ℕ
⎫}
⎬}⎭

.

The set ℕ.𝑋 is closed under vector addition and multiplication by elements of ℕ.

Definition 7.3.8. Let (𝑉, Φ) be a root system, and let Δ be a subset of Φ. We say that Δ is a base
(or a set of simple roots) for Φ if Δ is a basis of 𝑉 and for each 𝛼 ∈ Φ, exactly one of 𝛼 or −𝛼 lies in
ℕ.Δ.
Given a base ofΦwe may declare a root positive or negative according to the sign of the nonzero

coefficients which occur when we write it in terms of the base. We write Φ+ for the set of positive
roots and Φ− for the set of negative roots.

The obvious drawback with the above definition at first sight, is that it is not at all obvious that
a root system necessarily contains a base. In order to show that this is indeed the case however, we
use the following:

Definition 7.3.9. Let 𝑉 be aℚ-vector space. A positive set 𝒫 in 𝑉 is a subset 𝒫 ⊆ 𝑉\{0} such that

• For each 𝑣 ∈ 𝑉\{0}, exactly one of 𝑣 or −𝑣 lies in 𝒫.

• if 𝑣1, 𝑣2 ∈ 𝒫 then 𝑣1 + 𝑣2 ∈ 𝒫.

• If 𝜆 ∈ ℚ satisfies 𝜆 > 0 and 𝑣 ∈ 𝒫 then 𝜆.𝑣 ∈ 𝒫.

If 𝒫 is a positive set, then we define a total order < on 𝑉 by 𝑣1 < 𝑣2 if and only if 𝑣2 − 𝑣1 ∈ 𝒫.
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Example 7.3.10. If 𝑉 is aℚ-vector space and 𝐵 = {𝑒1, … , 𝑒𝑛} is an ordered basis of 𝑉, then it is easy
to check that

𝒫𝐵 =
⎧{
⎨{⎩

𝑛
∑
𝑖=𝑘

𝜆𝑖𝑒𝑖 ∶ 𝑘 ∈ {1, 2, … , 𝑛}, 𝜆𝑘 > 0
⎫}
⎬}⎭

is a positive system. Note that, with respect to the total order 𝒫 defines, 𝑒1 > 𝑒2 > … > 𝑒𝑛.

Definition 7.3.11. Let (𝑉, Φ) be a root system, and fix a positive set 𝒫 in 𝑉. Let Φ+
𝒫 = Φ ∩ 𝒫 and

Φ−
𝒫 = Φ ∩ (−𝒫) (where the positive set 𝒫 is understood from context, we will simply write Φ+).

We say that 𝛼 ∈ Φ+ is decomposable if 𝛼 = 𝛽 + 𝛾 for some 𝛽, 𝛾 ∈ Φ+. A root is indecomposable if it
is not decomposable. Let Δ = Δ𝒫 ⊆ Φ+ be the set of indecomposable roots in Φ+.

Remark 7.3.12. If we assume that Δ ⊆ Φ is a base, then picking an arbitrary orderingΠ = {𝛼1, … , 𝛼𝑙}
say, we obtain an ordered basis of 𝑉 and hence a positive set 𝒫Δ as in Example 7.3.10. It is easy to
see that in this situation we must have Δ = Δ𝒫 . Thus if bases exist, it must be the case that they
arise as the set of indecomposable roots corresponding to the choice of a positive set in 𝑉.

Lemma 7.3.13. Let Δ ⊆ Φ+ be the set of indecomposable roots as above. Then for all 𝛼, 𝛽 ∈ Δ we have
(𝛼, 𝛽) ≤ 0.

Proof. Suppose that (𝛼, 𝛽) > 0. Then ⟨𝛼, 𝛽⟩ > 0. Since 𝛼, 𝛽 ∈ Φ+, they are not linearly dependent,
and hence ⟨𝛼, 𝛽⟩.⟨𝛽, 𝛼⟩ ∈ {1, 2, 3}. It follows one of ⟨𝛼, 𝛽⟩ or ⟨𝛽, 𝛼⟩ = 1. By symmetry we may assume
⟨𝛼, 𝛽⟩ = 1, and hence 𝑠𝛼(𝛽) = 𝛽 − 𝛼 ∈ Φ. But then one of 𝛼 − 𝛽 or 𝛽 − 𝛼 lies in Φ+. But as
𝛼 = (𝛼 − 𝛽) + 𝛽 and 𝛽 = (𝛽 − 𝛼) + 𝛼, one of 𝛼 or 𝛽 is decomposable, which is a contradiction. □

Lemma 7.3.14. Suppose that 𝑉 is an inner product space equipped with a positive set 𝒫. If 𝑆 ⊂ 𝒫 is
such that (𝑠1, 𝑠2) ≤ 0 for all 𝑠1 ≠ 𝑠2 in 𝑆, then 𝑆 is linearly independent.

Proof. Suppose that ∑𝑠∈𝑇 𝑐𝑠𝑠 = 0 is a linear dependence between elements of 𝑆, where 𝑇 ⊆ 𝑆 is
some finite subset. Then let 𝑄 = {𝑠 ∈ 𝑆 ∶ 𝑐𝑠 > 0} and set 𝑧 = ∑𝑠∈𝑄 𝑐𝑠𝑠 = ∑𝑡∈𝑇\𝑄 |𝑐𝑡|𝑡. Now
as 𝑇 ⊆ 𝒫, the sum ∑𝑠∈𝑄 𝑐𝑠𝑠 equals zero if and only if all the coefficients 𝑐𝑠 vanish. Similarly
∑𝑡∈𝑇\𝑄 |𝑐𝑡|𝑡 = 0 if and only if all the 𝑐𝑡 vanish. Thus it suffices to show 𝑧 = 0. But we have

0 ≤ (𝑧, 𝑧) = ⎛⎜⎜
⎝

∑
𝑠∈𝑄

𝑐𝑠𝑠, ∑
𝑡∈𝑇\𝑄

|𝑐𝑡|𝑡
⎞⎟⎟
⎠

= ∑
𝑠∈𝑄

𝑡∈𝑇\𝑄

𝑐𝑠|𝑐𝑡|(𝑠, 𝑡) ≤ 0.

since each term 𝑐𝑠|𝑐𝑡|(𝑠, 𝑡) ≤ 0. By positive definiteness, it follows 𝑧 = 0 as required. □

Proposition 7.3.15. Let (𝑉, Φ) be a root system and suppose that 𝒫 is a positive system. Then the
indecomposable roots Δ in Φ+ form a base of (𝑉, Φ). In particular, any root system has a base.

Proof. Lemma 7.3.13 and 7.3.14 show that Δ is linear independent, so it only remains to check that
Φ+ ⊆ ℕ.Δ (since Φ spans 𝑉 and Φ = Φ+ ⊔ −Φ+, this clearly implies that Δ spans 𝑉). To see this,
suppose for the sake of a contradiction that it is not the case, and take 𝛼 ∈ Φ+ minimal with respect
to the total order defined by 𝒫 such that 𝛼 ∉ ℕ.Δ. Since Δ clearly lies in ℕ.Δ, it follows that 𝛼 is
decomposable, and hence 𝛼 = 𝛽 + 𝛾. But then by the minimality of 𝛼, we must have 𝛽, 𝛾 ∈ ℕΔ,
and hence 𝛼 = 𝛽 + 𝛾 ∈ ℕ.Δ, which is a contradiction. □

It turns out that we can recover the entire root system provided we know a base for it. Before
we can show this, we first show that any two bases of Φ are conjugate under the action of 𝑊.

Lemma 7.3.16. Let Δ be a base of (𝑉, Φ) and let Φ+ be the corresponding set of positive roots. Then if
𝛼 ∈ Δ and 𝛽 ∈ Φ+ where 𝛽 ≠ 𝛼, then 𝑠𝛼(𝛽) ∈ Φ+.
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Proof. Let Δ = {𝛼1, … , 𝛼𝑙} where 𝛼 = 𝛼1. Now if 𝛽 = ∑𝑙
𝑟=1 𝑛𝑟𝛼𝑟 where 𝑛𝑟 ≥ 0, and 𝛽 ≠ 𝛼1, hence

there must be some 𝑡 > 1 with 𝑛𝑡 > 0. But the

𝑠𝛼(𝛽) = 𝛽 − ⟨𝛼, 𝛽⟩𝛼 = (𝑛1 − ⟨𝛼1, 𝛽⟩)𝛼1 + ∑
𝑟≥2

𝑛𝑟𝛼𝑟,

and since Δ is a base and 𝑛𝑡 > 0, it follows that 𝑠𝛼(𝛽) ∈ Φ+ as required. □

With this Lemma in hand, we can now show that the Weyl group acts transitively on the set of
possible bases of the root system. In fact we will show more: Let us fix Δ0 = {𝛾1, … , 𝛾𝑙} a particular
(ordered) base, let𝒫0 be the corresponding positive set, andΦ+

0 the associated set of positive roots.
Let 𝑊0 be the subgroup of the Weyl group 𝑊 generated by the reflections {𝑠𝛾 ∶ 𝛾 ∈ Δ0}.

Proposition 7.3.17. Suppose that Δ1 is any base of (𝑉, Φ) and letΦ+
1 be the corresponding set of positive

roots (and𝒫1 the associated positive set). Then there is some𝑤 ∈ 𝑊0 such that𝑤(Φ+
1 ) = Φ+

0 , and hence
𝑤(Δ1) = Δ0.

Proof. We prove this by induction on 𝑑 = |Φ+
0 ∩ Φ−

1 |. If this 𝑑 = 0 then Φ+
1 = Φ+

2 and hence
Δ0 = Δ1 (hence we may take 𝑤 = 𝑒 the identity element of the Weyl group). Next suppose that
𝑑 > 1. Now if Δ0 ⊆ Φ+

1 = Φ ∩ 𝒫1, then since any element of Φ+
0 is a positive integer combination

of Δ0, it follows Φ+
0 ⊆ 𝒫+

1 and hence Φ+
0 ∩ Φ−

1 = ∅, which contradicts the assumption that 𝑑 > 0.
Thus there is some 𝛼 ∈ Δ0 such that 𝛼 ∈ Φ−

2 . But then by the previous Lemma we have

𝑠𝛼(Φ+
0 ) ∩ Φ−

1 = ({−𝛼} ∪ (Φ+
0 \{𝛼}) ∩ Φ−

1 = (Φ+
0 \{𝛼}) ∩ Φ−

1 ,

which shows that 𝑠𝛼(Φ+
0 ) ∩ Φ−

1 has 𝑑 − 1 elements, and hence so does Φ+
0 ∩ 𝑠𝛼(Φ−

1 ) (as 𝑠𝛼 is an
involution). But then by induction there is a 𝑤 ∈ 𝑊0 with 𝑤𝑠𝛼(Φ1)+ = Φ+

0 . Since 𝑤𝑠𝛼 ∈ 𝑊0 we
are done. □

Proposition 7.3.18. Suppose that 𝛽 ∈ Φ. Then there is a 𝑤 ∈ 𝑊0 and an 𝛼 ∈ Δ0 such that 𝑤(𝛽) = 𝛼.

Proof. By Proposition 7.3.17, it suffices to show that there is a base of (𝑉, Φ) which contains 𝛽. Pick
a basis 𝐵 ⊂ Φ of 𝑉 which contains 𝛽, and then if we write 𝐵 = {𝛼1, 𝛼2, … , 𝛼𝑙} where 𝛽 = 𝛼𝑙, and let
𝒫𝐵 denote the positive set for 𝑉 associated with it as in Example 7.3.10. Let Φ+ = Φ ∩ 𝒫𝐵 and
Δ𝐵 ⊆ Φ+ the set of indecomposable roots in Φ+, a base of (𝑉, Φ).
We claim that 𝛽 = 𝛼𝑙 ∈ Δ𝐵. Indeed suppose that Δ𝐵 = {𝛾𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑙} and let 𝛼 = ∑𝑙

𝑖=1 𝑛𝑖𝛾𝑖,

where 𝑛𝑖 ∈ ℤ≥0. Then if 1 ≤ 𝑘 ≤ 𝑛 has 𝑛𝑘 > 0 we must have 𝛾𝑘 ≤ 𝛽 = 𝛼𝑙. But if 𝛾𝑖 = ∑𝑙
𝑟=𝑠 𝑐𝑟𝛼𝑟

for 1 ≤ 𝑠 ≤ 𝑙, since 𝛾 ∈ Φ+, 𝑐𝑠 > 0, hence if 𝛼𝑙 − 𝛾𝑖 > 0 we must have 𝑠 = 𝑙. But then 𝛾𝑖 = 𝑐𝑙𝛼𝑙,
and as 𝑐𝑙𝛼𝑙 ∈ Φ if and only if 𝑐 = ±1. Since 𝛾𝑖, 𝛼𝑙 are both positive, it follows that 𝛾𝑖 = 𝛼𝑙 ∈ Δ𝐵 as
required. □

Corollary 7.3.19. TheWeyl group 𝑊 is generated by the reflections {𝑠𝛾 ∶ 𝛾 ∈ Δ0}, that is 𝑊 = 𝑊0.

Proof. If 𝛽 ∈ Φ then we have just shown in the previous proposition that there is a 𝑤 ∈ 𝑊1 such
that 𝑤(𝛽) = 𝛾 for some 𝛾 ∈ Δ0. But the clearly 𝑠𝛽 = 𝑤−1𝑠𝛾𝑤 ∈ 𝑊0, and so since𝑊 is generated by
the 𝑠𝛽s we have 𝑊 = 𝑊0 as required. □

Remark 7.3.20. In fact 𝑊 acts simply transitively on the bases of (𝑉, Φ), that is, the action is tran-
sitive and, if Δ is a base and 𝑤 ∈ 𝑊 is such that 𝑤(Δ) = Δ, then 𝑤 = 1. The proof (which we will
not give) consists of examining the minimal length expression for 𝑤 in terms of these generators
{𝑠𝛼 ∶ 𝛼 ∈ Δ0}.
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7.3.2 Cartan matrices and Dynkin diagrams In this section we describe the data which is used
in the classification of semisimple Lie algebras.

Definition 7.3.21. Let (𝑉, Φ) be a root system. TheCartanmatrix associated to (𝑉, Φ) is the matrix

𝐶 = (⟨𝛼𝑖, 𝛼𝑗⟩)𝑙
𝑖,𝑗=1.

where {𝛼1, 𝛼2, … , 𝛼ℓ} = Δ is a base of (𝑉, Φ). Since the elements of 𝑊 are isometries, and 𝑊 acts
transitively on bases of Φ, the Cartan matrix is independent of the choice of base (though clearly
determined only up to reordering the base Δ).
Definition 7.3.22. The entries 𝑐𝑖𝑗 of the Cartan matrix are all integer with diagonal entries equal to
2, and off-diagonal entries 𝑐𝑖𝑗 ∈ {0, −1, −2, −3} (where 𝑖 ≠ 𝑗) such that if 𝑐𝑖𝑗 < −1 then 𝑐𝑗𝑖 = −1 so
that the pair {𝑐𝑖𝑗, 𝑐𝑗𝑖} is determined by the product 𝑐𝑖𝑗.𝑐𝑗𝑖 and the relative lengths of the two roots (e.g.
see the table in the Lemma about angles between roots). As a result, the matrix can be recorded
as a kind of graph: the vertex set of the graph is labelled by the base {𝛼1, … , 𝛼𝑙}, and one puts
⟨𝛼𝑖, 𝛼𝑗⟩.⟨𝛼𝑗, 𝛼𝑖⟩ edges between 𝛼𝑖 and 𝛼𝑗, directing the edges so that they go from the larger root to
the smaller root. Thus for example if ⟨𝛼𝑖, 𝛼𝑗⟩ = −2 and ⟨𝛼𝑗, 𝛼𝑖⟩ = −1 so that ||𝛼𝑗||2 > ||𝛼𝑖||2, that is, 𝛼𝑗
is longer than 𝛼𝑖, we record this in the graph as:

𝛼𝑖• ks •𝛼𝑗

The resulting graph is called the Dynkin diagram.

For the next theoremwe need to formulate what it means to have an isomorphism of root systems.
This is given in the natural way: if (𝑉, Φ) and (𝑉′, Φ′) are root systems, a linear map 𝜙∶ 𝑉 → 𝑉′ is
an isomorphism of root systems if

1. The map 𝜙 is an isomorphism of vector spaces.

2. 𝜙(Φ) = Φ′, and ⟨𝛼, 𝛽⟩ = ⟨𝜙(𝛼), 𝜙(𝛽)⟩ for all 𝛼, 𝛽 ∈ Φ.
Note that 𝜙 need not be an isometry (e.g. we could scale 𝑉 by a nonzero constant 𝑐 ∈ ℚ to obtain
(𝑉, 𝑐Φ) a distinct, but isomorphic root system to (𝑉, Φ).
Theorem 7.3.23. Let (𝑉, Φ) be a root system. Then (𝑉, Φ) is determined up to isomorphism by the
Cartan matrix, or Dynkin diagram associated to it.

Proof. Given root systems (𝑉, Φ) and (𝑉′, Φ′) with the same Cartan matrix, we may certainly pick
a base Δ = {𝛼1, … , 𝛼ℓ} of (𝑉, Φ) and a base Δ′ = {𝛽1, … , 𝛽ℓ} of (𝑉′, Φ′) such that ⟨𝛼𝑖, 𝛼𝑗⟩ = ⟨𝛽𝑖, 𝛽𝑗⟩
for all 𝑖, 𝑗, (1 ≤ 𝑖, 𝑗 ≤ ℓ). We claim the map 𝜙∶ Δ → Δ′ given by 𝜙(𝛼𝑖) = 𝛽𝑖 extends to an isomorphism
of root systems. Clearly, since Δ and Δ′ are bases of 𝑉 and 𝑉′ respectively, 𝜙 extends uniquely to
an isomorphism of vector spaces 𝜙∶ 𝑉 → 𝑉′, so we must show that 𝜙(Φ) = Φ′, and ⟨𝜙(𝛼), 𝜙(𝛽)⟩ =
⟨𝛼, 𝛽⟩ for each 𝛼, 𝛽 ∈ Φ.
Let 𝑠𝑖 = 𝑠𝛼𝑖

∈ O(𝑉) and 𝑠′
𝑖 = 𝑠𝛽𝑖

∈ O(𝑉′) be the reflections in the Weyl groups 𝑊 and 𝑊′

respectively. Then from the formula for the action of 𝑠𝑖 it is clear that 𝜙(𝑠𝑖(𝛼𝑗)) = 𝑠′
𝑖(𝛽𝑗) = 𝑠′

𝑖(𝜙(𝛼𝑖)),
so since Δ is a basis it follows 𝜙(𝑠𝑖(𝑣)) = 𝑠′

𝑖(𝜙(𝑣)) for all 𝑣 ∈ 𝑉. But then since the 𝑠𝑖s and 𝑠′
𝑖s generate

𝑊 and 𝑊′ respectively, 𝜙 induces an isomorphism 𝑊 → 𝑊′, given by 𝑤 ↦ 𝑤′ = 𝜙 ∘ 𝑤 ∘ 𝜙−1. But
then given any 𝛼 ∈ Φwe know there is a 𝑤 ∈ 𝑊 such that 𝛼 = 𝑤(𝛼𝑗) for some 𝑗, (1 ≤ 𝑗 ≤ ℓ). Thus we
have 𝜙(𝛼) = 𝜙(𝑤(𝛼𝑗)) = 𝑤′(𝜙(𝛼𝑗)) = 𝑤′(𝛽𝑗) ∈ Φ′, so that 𝜙(Φ) ⊆ Φ′. Clearly the same argument
applied to 𝜙−1 shows that 𝜙−1(Φ′) ⊆ Φ so that 𝜙(Φ) = Φ′.
Finally, note that it is clear from the linearity of 𝜙 and of ⟨𝛼, 𝛾⟩ in the second variable, that

⟨𝛼, 𝛾⟩ = ⟨𝜙(𝛼), 𝜙(𝛾)⟩ for all 𝛼 ∈ Δ, 𝛾 ∈ Φ. In the same fashion as above however, if 𝛼 ∈ Φ is
arbitrary, then we may find 𝑤 ∈ 𝑊 such that 𝛼 = 𝑤(𝛼𝑗) ∈ Δ, and thus 𝜙(𝛼) = 𝑤′(𝛽𝑗), whence we
have

⟨𝜙(𝛼), 𝜙(𝛾)⟩ = ⟨𝑤′(𝛽𝑗), 𝜙(𝛾)⟩ = ⟨𝛽𝑗, (𝑤′)−1𝜙(𝛾)⟩
= ⟨𝛼𝑗, 𝑤−1(𝛾)⟩ = ⟨𝑤(𝛼𝑗), 𝛾⟩ = ⟨𝛼, 𝛾⟩.

as required. □
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Thus to classify root systems up to isomorphism it is enough to classify Cartan matrices (or
Dynkin diagrams).

Definition 7.3.24. We say that a root system (𝑉, Φ) is reducible if there is a partition of the roots
into two non-empty subsets Φ1 ⊔ Φ2 such that (𝛼, 𝛽) = 0 for all 𝛼 ∈ Φ1, 𝛽 ∈ Φ2. Then if we set
𝑉1 = span(Φ1) and 𝑉2 = span(Φ2), clearly 𝑉 = 𝑉1 ⊕ 𝑉2 and we say (𝑉, Φ) is the sum of the root
systems (𝑉1, Φ1) and (𝑉2, Φ2). This allows one to reduce the classification of root systems to the
classification of irreducible root systems, i,e. root systems which are not reducible. It is straight-
forward to check that a root system is irreducible if and only if its associated Dynkin diagram is
connected.

Definition 7.3.25. (Not examinable.) The notion of a root system makes sense over the real, as well
as rational, numbers. Let (𝑉, Φ) be a real root system, and let Δ = {𝛼1, 𝛼2, … , 𝛼𝑙} be a base of Φ. If
𝑣𝑖 = 𝛼𝑖/||𝛼𝑖|| (1 ≤ 𝑖 ≤ 𝑙) are the unit vectors in 𝑉 corresponding to Δ, then they satisfy the conditions:

1. (𝑣𝑖, 𝑣𝑖) = 1 for all 𝑖 and (𝑣𝑖, 𝑣𝑗) ≤ 0 if 𝑖 ≠ 𝑗,

2. If 𝑖 ≠ 𝑗 then 4(𝑣𝑖, 𝑣𝑗)2 ∈ {0, 1, 2, 3}. (This is the reason we need to extend scalars to the real
numbers – if you want you could just extend scalars toℚ( √2, √3), but it makes no difference
to the classification problem).

Such a set of vectors is called an admissible set.

It is straightforward to see that classifying ℚ-vector spaces with a basis which forms an admis-
sible set is equivalent to classifying Cartan matrices, and using elementary techniques it is possible
to show that that the following are the only possibilities (we list the Dynkin diagram, a description
of the roots, and a choice of a base):

• Type 𝐴ℓ (ℓ ≥ 1):
• • ⋅ ⋅ ⋅ • •

𝑉 = {𝑣 =
ℓ

∑
𝑖=1

𝑐𝑖𝑒𝑖 ∈ ℚℓ ∶ ∑ 𝑐𝑖 = 0}, Φ = {𝜀𝑖 − 𝑒𝑗 ∶ 1 ≤ 𝑖 ≠ 𝑗 ≤ ℓ}

Δ = {𝜀𝑖+1 − 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ − 1}

• Type 𝐵ℓ (ℓ ≥ 2):
• • ⋅ ⋅ ⋅ • +3 •

𝑉 = ℚℓ, Φ = {±𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ ℓ, 𝑖 ≠ 𝑗} ∪ {𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ},
Δ = {𝜀1, 𝜀𝑖+1 − 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ − 1}

• Type 𝐶ℓ (ℓ ≥ 3):
• • ⋅ ⋅ ⋅ • ks •

𝑉 = ℚℓ, Φ = {±𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ ℓ, 𝑖 ≠ 𝑗} ∪ {2𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ},
Δ = {2𝜀1, 𝜀𝑖+1 − 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ − 1}

• Type 𝐷ℓ (ℓ ≥ 4):
•

iiiii
i

• • ⋅ ⋅ ⋅ • •
•

UUUUUU

𝑉 = ℚℓ, Φ = {±𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ ℓ, 𝑖 ≠ 𝑗},
Δ = {𝜀1 + 𝜀2, 𝜀𝑖+1 − 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ − 1}
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• Type 𝐺2.
• _jt •

Let 𝑒 = 𝜀1 + 𝜀2 + 𝜀3 ∈ ℚ3, then:

𝑉 = {𝑣 ∈ ℚ3 ∶ (𝑣, 𝑒) = 0}, Φ = {𝜀𝑖 − 𝜀𝑗 ∶ 𝑖 ≠ 𝑗} ∪ {±(3𝜀𝑖 − 𝑒) ∶ 1 ≤ 𝑖 ≤ 3}
Δ = {𝜀1 − 𝜀2, 𝑒 − 3𝜀1}

• Type 𝐹4:
• • +3 • •

𝑉 = ℚ4,

Φ = {±𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 4} ∪ {±𝜀𝑖 ± 𝑒𝑗 ∶ 𝑖 ≠ 𝑗} ∪ {1
2(±𝜀1 ± 𝜀2 ± 𝜀3 ± 𝜀4)}

Δ = {𝜀2 − 𝜀3, 𝜀3 − 𝜀4, 𝜀4, 1
2(𝜀1 − 𝜀2 − 𝜀3 − 𝜀4)}.

• Type 𝐸𝑛 (𝑛 = 6, 7, 8).
•

• • • • •
•

• • • • • •
•

• • • • • • •
These can all be constructed inside 𝐸8 by taking the span of the appropriate subset of a base,
so we just give the root system for 𝐸8.

𝑉 = ℚ8, Φ = {±𝜀𝑖 ± 𝜀𝑗 ∶ 𝑖 ≠ 𝑗} ∪ {1
2

8
∑
𝑖=1

(−1)𝑎𝑖𝜀𝑖 ∶
8

∑
𝑖=1

𝑎𝑖 ∈ 2ℤ},

Δ = {𝜀1 + 𝜀2, 𝜀𝑖+1 − 𝜀𝑖,
1
2(𝜀1 + 𝜀8 − (𝜀2 + 𝜀3 + … + 𝜀7)) ∶ 1 ≤ 𝑖 ≤ 6}.

Note that the Weyl groups of type 𝐵ℓ and 𝐶ℓ are equal. The reason for the restriction on ℓ in
the types 𝐵,𝐶,𝐷 is to avoid repetition, e.g. 𝐵2 and 𝐶2 are the same up to relabelling the vertices.

Remark 7.3.26. I certainly don’t expect you to remember the root systems of the exceptional types,
but you should be familiar with the ones for type 𝐴, 𝐵, 𝐶 and 𝐷. The ones of rank two (i.e. 𝐴2, 𝐵2
and 𝐺2) are also worth knowing (because for example you can draw them!)

7.4 The Classification of Semisimple Lie algebras

Only the statements of the theorems in this section are examinable, but it is important to know these
statements!
Remarkably, the classification of semisimple Lie algebras is identical to the classification of root

systems: each semisimple Lie algebra decomposes into a direct sum of simple Lie algebras, and it
is not hard to show that the root system of a simple Lie algebra is irreducible. Thus to any simple
Lie algebra we may attach an irreducible root system.
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A first problem with this as a classification strategy is that we don’t know our association of a
root system to a semisimple Lie algebra is canonical. The difficulty is that, because our procedure for
attaching a root system to a semisimple Lie algebra involves a choice of Cartan subalgebra, we don’t
currently know it is a bijective correspondence – possibly the same Lie algebra has two different
Cartan subalgebras which lead to different root systems. The theorem which ensures this is not the
case is the following, where the first part is the more substantial result (though both require some
work):

Theorem 7.4.1. Let 𝔤 be a Lie algebra over any algebraically closed field k.

1. Let 𝔥, 𝔥′ be Cartan subalgebras of 𝔤. There is an automorphism 𝜙∶ 𝔤 → 𝔤 such that 𝜙(𝔥) = 𝔥′.

2. Let 𝔤1, 𝔤2 be semisimple Lie algebras withCartan subalgebras 𝔥1, 𝔥2 respectively, and suppose now
k is of characteristic zero. Then if the root systems attached to (𝔤1, 𝔥1) and (𝔤2, 𝔥2) are isomorphic,
there is an isomorphism 𝜙∶ 𝔤1 → 𝔤2 taking 𝔥1 to 𝔥2.

Once you know that the assignment of a Dynkin diagram captures a simple Lie algebra up to
isomorphism, we still need to show all the root systems we construct arise as the root system of a
simple Lie algebra. That is exactly the content of the next theorem.

Theorem 7.4.2. There exists a simple Lie algebra corresponding to each irreducible root system.

There are a number of approaches to this existence theorem. A concrete strategy goes as follows:
one can show that the first four infinite families 𝐴, 𝐵, 𝐶, 𝐷 correspond to the classical Lie algebras,
𝔰𝔩ℓ+1, 𝔰𝔬2ℓ+1, 𝔰𝔭2ℓ, 𝔰𝔬2ℓ, whose root systems can be computed directly (indeed you did a number
of these calculations in the problem sets). This of course also requires checking that these Lie
algebras are simple (or at least semisimple) but this is also straight-forward with the theory we have
developed. It then only remains to construct the five ”exceptional” simple Lie algebras. This can be
done in a variety of ways – given a root system where all the roots are of the same length there is an
explicit construction of the associated Lie algebra by forming a basis from the Cartan decomposition
(and a choice of base of the root system) and explicitly constructing the Lie bracket by giving the
structure constants with respect to this basis (which, remarkably, can be chosen for the basis vectors
corresponding to the root subspaces to lie in {0, ±1}). This gives in particular a construction of
the Lie algebras of type 𝐸6, 𝐸7, 𝐸8 (and also 𝐴ℓ and 𝐷ℓ though we already had a construction of
these). The remaining Lie algebras can be found by a technique called “folding” which studies
automorphisms of simple Lie algebras, and realises the Lie algebras 𝐺2 and 𝐹4 as fixed-points of an
automorphism of 𝐷4 and 𝐸6 respectively.
There is also an alternative, more a posteriori approach to the uniqueness result which avoids

showing Cartan subalgebras are all conjugate for a general Lie algebra: one can check that for
a classical Lie algebra 𝔤 ⊂ 𝔤𝔩𝑛 as above, the Cartan subalgebras are all conjugate by an element
of Aut(𝔤) (in fact you can show the automorphism is induced by conjugating with a matrix in
GL𝑛(k)) using the fact that a Cartan subalgebra of a semisimple Lie algebra is abelian and consists
of semisimple elements. This then shows the assignment of a root system to a classical Lie algebra
is unique, so it only remains to check the exceptional Lie algebras. But these all have different
dimensions, and the dimension of the Lie algebra is captured by the root system, so we are done.3

We conclude by mentioning another, quite different, approach to the existence result, using
the Serre’s presentation: just as one can describe a group by generators and relations, one can also
describe Lie algebras in a similar fashion. If 𝔤 is a semisimple Lie algebra and Δ = {𝛼1, … , 𝛼ℓ} is
a base of the corresponding root system with Cartan matrix 𝐶 = (𝑎𝑖𝑗) then picking bases for the
𝔰𝔩𝛼𝑖
-subalgebras corresponding to them, it is not too hard to show that 𝔤 is generated by the set

{𝑒𝛼, 𝑓𝛼, ℎ𝛼 ∶ 𝛼 ∈ Δ}.
The Serre presentation gives an explicit realisation, given an arbitrary root system, of the rela-

tions which one needs to impose on a set of generators for a Lie algebra labelled {𝑒𝛼, 𝑓𝛼, ℎ𝛼 ∶ 𝛼 ∈ Φ}
3This is completely rigorous, but feels like cheating (to me).
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as above obtain a semisimple Lie algebra whose associated root system is the one we started with.
This approach has the advantage of giving a uniform approach, though it takes some time to develop
the required machinery.
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Appendices

I (Multi)-linear algebra

I.1 Primary Decomposition

Definition I.1. Let k be an algebraically closed field. If 𝑉 is a k-vector space and 𝑥 ∈ Endk(𝑉) and
𝜆 ∈ k, the generalized eigenspace for 𝑥 with eigenvalue 𝜆 is

𝑉𝜆 = {𝑣 ∈ 𝑉 ∶ ∃𝑛 ≥ 0, (𝑥 − 𝜆)𝑛(𝑣) = 0},

Thus 𝑉𝜆 ≠ {0} if and only if 𝑥 has an eigenvector 𝑣 ∈ 𝑉\{0} with eigenvalue 𝜆. The subspace 𝑉𝜆
are clearly invariant under the action of 𝑥, that is 𝑥(𝑉𝜆) ⊆ 𝑉𝜆.
We say that 𝑥 is nilpotent is 𝑉 = 𝑉0, or equivalently, if 𝑥𝑛 = 0 for some 𝑛 ≥ 0. We say that 𝑥 is

semisimple (or sometimes diagonalisable if each 𝑉𝜆 is in fact an eigenspace, that is, for all 𝑣 ∈ 𝑉𝜆,
we have (𝑥 − 𝜆)(𝑣) = 0.

The following basic result is proved in Part A Linear Algebra. We provide a proof for the sake
of convenience.

Proposition I.2. Let 𝑥 ∶ 𝑉 → 𝑉 be a linear map. There is a canonical direct sum decomposition

𝑉 = ⨁
𝜆∈k

𝑉𝜆,

of𝑉 into the generalized eigenspaces of 𝑥. Moreover, for each 𝜆, the projection to 𝑎𝜆 ∶ 𝑉 → 𝑉𝜆 (with kernel
the remaining generalized eigenspace of 𝑥) can be written as a polynomial in 𝑥.

Proof. Let 𝑚𝑥 ∈ k[𝑡] be the minimal polynomial of 𝑥. Then if 𝜙∶ k[𝑡] → End(𝑉) given by 𝑡 ↦ 𝑥
denotes the natural map, we have k[𝑡]/(𝑚𝑥) ≅ im(𝜙) ⊆ End(𝑉). If 𝑚𝑥 = ∏𝑘

𝑖=1(𝑡 − 𝜆𝑖)𝑛𝑖 where the
𝜆𝑖 are the distinct eigenvalues of 𝑥, then the Chinese Remainder Theorem and the first isomorphism
theorem shows that

im(𝜙) ≅ k[𝑡]/(𝑚𝑥) ≅
𝑘

⨁
𝑖=1

k[𝑡]/(𝑡 − 𝜆𝑖)𝑛𝑖 ,

It follows that we may write 1 ∈ k[𝑡]/(𝑚𝑥) as 1 = 𝑒1 +…+𝑒𝑘 according to the above decomposition.
Now clearly 𝑒𝑖𝑒𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝑒2

𝑖 = 𝑒𝑖, so that if 𝑈𝑖 = im(𝑒𝑖), then we have 𝑉 = ⨁1≤𝑖≤𝑘 𝑈𝑖.
Moreover, each 𝑒𝑖 can be written as polynomials in 𝑥 by picking any representative in k[𝑡] of 𝑒𝑖
(thought of as an element of k[𝑡]/(𝑚𝑥)). Note in particular this means that each 𝑈𝑖 is invariant
under im(𝜙).
It thus remains to check that 𝑈𝑖 = 𝑉𝜆𝑖

. Now the characteristic polynomial of 𝑥|𝑉𝜆𝑖
is clearly

just (𝑡 − 𝜆𝑖)𝑑𝑖 where 𝑑𝑖 = dim(𝑉𝜆𝑖
), and evidently this divides 𝜒𝑥(𝑡) the characteristic polynomial of

𝑥 ∈ End(𝑉). But if 𝑛𝑖 = dim(𝑈𝑖) it is immediate from the definitions that 𝜒𝑥(𝑡) = ∏𝑘
𝑖=1(𝑡 − 𝜆𝑖)𝑛𝑖 ,

and hence 𝑑𝑖 ≤ 𝑛𝑖. Since 𝑈𝑖 ⊆ 𝑉𝜆𝑖
we also have 𝑛𝑖 ≤ 𝑑𝑖, and hence they must be equal, so 𝑉𝜆𝑖

= 𝑈𝑖
as required.

□
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Corollary I.3. Let 𝑥 ∶ 𝑉 → 𝑉 be a linear map. Then there exists a diagonalisable linear map 𝑥𝑠 and a
nilpotent linear map 𝑥𝑛 such that 𝑥 = 𝑥𝑠 + 𝑥𝑛 and [𝑥𝑠, 𝑥𝑛] = 0.

Proof. Let 𝑉 = ⨁𝜆∈k 𝑉𝜆 be the generalised eigenspace decomposition of 𝑉 given by the action of
𝑥. Suppose that {𝜆1, … , 𝜆𝑘} are the distinct eigenvalues of 𝑥, and let (𝑒𝑖)𝑘

𝑖=1 be the projection maps

to 𝑉𝜆𝑖
. Then if 𝑥𝑠 = ∑𝑘

𝑖=1 𝜆𝑖.𝑒𝑖, clearly 𝑥𝑠 is semisimple, and [𝑥, 𝑥𝑠] = 0 (since this is evident on each
𝑉𝜆𝑘
). Setting 𝑥𝑛 = 𝑥 − 𝑥𝑠, and noting that on each 𝑉𝜆𝑖

the map 𝑥 − 𝑥𝑠 is equal to 𝑥 − 𝜆𝑖, which is
nilpotent, we conclude that 𝑥𝑛 is nilpotent as required. □

I.2 Tensor Products

I.2.1 Definition and construction : Tensor products were studied in Part B, Introduction to Rep-
resentation Theory. We review their basic properties here.

Definition I.4. If 𝑉1, 𝑉2, … , 𝑉𝑘 and 𝑈 are vector spaces over a field k, let

ℳ(𝑉1, … 𝑉𝑘, 𝑈) = {𝜃 ∶ 𝑉1 × … × 𝑉𝑘 → 𝑈 ∶ 𝜃 is 𝑘-linear}

be the vector space of all 𝑘-(multi-)linear maps on 𝑉1 × … × 𝑉𝑘 taking values in a vector space 𝑈.
Here we say that a function 𝜃 ∶ 𝑉1 × 𝑉2 × … × 𝑉𝑘 → 𝑈 is a 𝑘-linear if it is linear in each component
separately, that is, if for any 𝑘-tuples of vectors (𝑣𝑖)1≤𝑖≤𝑘, (𝑢𝑗)1≤𝑗≤𝑘 ∈ 𝑉1 × … × 𝑉𝑘 and any 𝜆 ∈ k,
we have for each 𝑖 ∈ {1, 2, … , 𝑘},

𝜃(𝑣1, … , 𝜆.𝑣𝑖 + 𝑢𝑖, … 𝑣𝑘) = 𝜆.𝜃(𝑣1, … , 𝑣𝑖, … 𝑣𝑘) + 𝜃(𝑣1, … , 𝑢𝑖, … 𝑣𝑘),

Pick a basis 𝐵𝑖 of 𝑉𝑖 for each 𝑖 (1 ≤ 𝑖 ≤ 𝑘), and let 𝐵∗
𝑖 denote the corresponding dual basis of 𝑉∗

𝑖 .
If 𝑏 ∈ 𝐵𝑖, let 𝛿𝑏 denote the corresponding element of the dual basis 𝐵∗

𝑖 , so that 𝐵∗
𝑖 = {𝛿𝑏 ∶ 𝑏 ∈ 𝐵𝑖}.

Let B = 𝐵1 × 𝐵2 × … × 𝐵𝑘

Proposition I.5. In the notation given above, the restriction to B gives an isomorphism

𝑟B ∶ ℳ(𝑉1, … , 𝑉𝑘; 𝑈) → 𝑈B = {𝑓 ∶ B → 𝑈}

from the space of all 𝑘-multilinear maps taking values in 𝑈 to the space of all 𝑈-valued functions on B.
Indeed 𝑟B has inverse given explicitly by

ℱB(𝑓 )(𝑣1, … , 𝑣𝑘) = ∑
b=(𝑏1,…,𝑏𝑘)∈B

𝛿𝑏1
(𝑣1) … 𝛿𝑏𝑘

(𝑣𝑘)𝑓 (b).

Proof. Note that if we pick b = (𝑏1, … , 𝑏𝑘) ∈ B then the product 𝛿b = 𝛿𝑏1
.𝛿𝑏2

… 𝛿𝑏𝑘
is a 𝑘-linear map

(since multiplication distributes over addition). Since it is easy to see that 𝛿b(b′) = 𝛿b,b′ (that is, is
zero unless b = b′ in which case it is equal to 1), it is immediate that 𝑟B(ℱB(𝑓 )) = 𝑓 , so we must
show that ℱB(𝑟B(𝜃)) = 𝜃 for any 𝜃 ∈ ℳ(𝑉1, … , 𝑉𝑘; 𝑈). Explicitly, we must show that

𝜃 = ∑
b∈𝐵1×…×𝐵𝑘

𝛿b𝜃(b) (I.4)

Indeed applying 𝜃 to a 𝑘-tuple b ∈ 𝐵1 × … 𝐵𝑘, we see that the coefficients on the right-hand side are
uniquely determined, so it remains to show the products 𝛿b of dual basis vectors do indeed span.
The case 𝑘 = 1 is simply the standard argument that the functions {𝛿𝑏1

}𝑏1∈𝐵1
are indeed a

basis of 𝑉∗
1 : if 𝑣1 ∈ 𝑉1 then we may write 𝑣1 = ∑𝑏1∈𝐵1

𝜆𝑏1
𝑏1 for unique scalars 𝜆𝑏1

∈ k. By the
definition of the functions 𝛿𝑏1

, it then follows that 𝛿𝑏1
(𝑣1) = 𝜆𝑏1

, so that 𝑣1 = ∑𝑏1∈𝐵1
𝛿𝑏1

(𝑣1).𝑏1.
Applying 𝜃 gives 𝜃(𝑣1) = ∑𝑏1∈𝐵1

𝛿𝑏1
(𝑣1).𝜃(𝑏1). But as this holds for all 𝑣1 ∈ 𝑉1, it follows that

𝜃 = ∑𝑏1∈𝐵1
𝜃(𝑏1).𝛿𝑏1

, as required.
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The general case then follows by an easy induction: Indeed for any 𝑘-tuple of vectors (𝑣𝑖)1≤𝑖≤𝑘
with 𝑣𝑖 ∈ 𝑉𝑖, using the case 𝑘 = 1, we may write 𝑣1 = ∑𝑏1∈𝐵1

𝛿𝑏1
(𝑣1).𝑏1 . But then if 𝜃 is 𝑘-linear

we have

𝜃(𝑣1, … , 𝑣𝑘) = 𝜃( ∑
𝑏1∈𝐵1

𝛿𝑏1
(𝑣1).𝑏1, 𝑣2, … , 𝑣𝑘) = ∑

𝑏1∈𝐵1

𝛿𝑏1
(𝑣1).𝜃(𝑏1, 𝑣2, … , 𝑣𝑘).

But for each 𝑏1 ∈ 𝐵1, the map (𝑣𝑖)2≤𝑖≤𝑘 ↦ 𝜃(𝑏1, 𝑣2, … , 𝑣𝑘) is a (𝑘 − 1)-linear map from 𝑉2 × … 𝑉𝑘 to
k, hence the result follows by induction. □

Remark I.6. Note that, for 𝑘 = 1, this says that a linear map is uniquely determined by its values
on a basis of 𝑉1, and the statement should be thought of as saying that a 𝑘-linear map is similarly
determined “by its values on bases” where the statement of the question gives the precise meaning
to the vague phrase in quotation marks.

The previous Proposition gives one way of constructing the tensor product: If 𝑉 and 𝑊 are
k-vector spaces and we pick bases 𝐵𝑉 and 𝐵𝑊 of 𝑉 and 𝑊 respectively, then by the Proposition, if
we set 𝐵 = 𝐵𝑉 × 𝐵𝑊 , then for any vector space 𝑈, we have

ℳ(𝑉, 𝑊; 𝑈) ≅ 𝑈𝐵 ≅ Homk(𝑆(𝐵), 𝑈), (I.5)

where 𝑆(𝐵) is the vector space with basis 𝐵, that is, the space of finite formal linear combinations
of elements of 𝐵. The first isomorphism above is a direct consequence of the Proposition where
we take 𝑘 = 2 and 𝑉1 = 𝑉, 𝑉2 = 𝑊, while the second is the case 𝑘 = 1 of the proposition with
𝑉1 = 𝑆(𝐵). Now taking 𝑈 = 𝑆(𝐵) in (I.5), the identity linear map from 𝑆(𝐵) to itself corresponds
to a bilinear map 𝑡 ∶ 𝑉 × 𝑊 → 𝑆(𝐵). It is easy to see that if 𝜃 ∶ 𝑉 × 𝑊 → 𝑈 is bilinear, then since
𝜃|𝐵 ∶ 𝐵 → 𝑈 extends to a linear map ̃𝜃 ∶ 𝑆(𝐵) → 𝑈, and ̃𝜃 = ̃𝜃𝑐𝑖𝑟𝑐id𝑆(𝐵), so that 𝜃 = ̃𝜃 ∘ 𝑡 as required.
Remark I.7. Note that there is a natural isomorphism 𝜎 ∶ 𝑉 ⊗ 𝑊 ≅ 𝑊 ⊗ 𝑉 given by 𝑣 ⊗ 𝑤 ↦ 𝑤 ⊗ 𝑣,
thus at least if 𝑉 ≠ 𝑊, we will normally abuse notation and identify these two spaces and thus write
𝑉⊗𝑊 = 𝑊⊗𝑉. If𝑉 = 𝑊 however, 𝜎 ∶ 𝑉⊗𝑉 → 𝑉⊗𝑉 is an involution on𝑉⊗𝑉, and more generally,
𝑉⊗𝑛 = 𝑉 ⊗ … ⊗ 𝑉, the tensor product of 𝑉 with itself 𝑛 times, has an action of 𝑆𝑛 the symmetric
group, which permutes the tensor factors: if 𝜏 ∈ 𝑆𝑛 then 𝜏(𝑣1 ⊗ … ⊗ 𝑣𝑛) ∶= 𝑣𝜏(1) ⊗ … ⊗ 𝜏𝜏(𝑛).

Example I.8. If 𝑉 = k and 𝑊 is an arbitrary k-vector space , then if 𝑠 ∶ k × 𝑊 → 𝑊 is scalar
multiplication map given by 𝑠(𝜆, 𝑤) = 𝜆.𝑤, it is clearly bilinear and it is straight-forward to check
that it has the universal property so that k ⊗ 𝑊 ≅ 𝑊.

Lemma I.9. Let𝑉 and𝑊 be vector spaces. There is a natural injective map 𝜃 ∶ 𝑉∗ ⊗𝑊 → Homk(𝑉, 𝑊)
which is an isomorphismwhen𝑉 is finite-dimensional. Moreover, if 𝜄 ∶ 𝑉∗⊗𝑉 → k is the contractionmap
given by 𝑓 ⊗ 𝑣 ↦ 𝑓 (𝑣), then if 𝑉 is finite dimensional, and 𝛼 ∈ Homk(𝑉, 𝑉), then (𝜄 ∘ 𝜃−1)(𝛼) = tr(𝛼).

Proof. The map (𝛼, 𝑤) ↦ [𝑣 ↦ 𝛼(𝑣).𝑤] is bilinear4, and so yields a linear map 𝜃 ∶ 𝑉∗ ⊗ 𝑊 →
Homk(𝑉, 𝑊). To see that it is injective, let {𝛿𝑖 ∶ 𝑖 ∈ 𝐼} be a basis of 𝑉∗, and {𝑓𝑘 ∶ 𝑘 ∈ 𝐾} be a basis
of𝑊. Then if 𝛾 ∈ 𝑉∗ ⊗ 𝑊, by definition we may write 𝛾 = ∑(𝑖,𝑘)∈𝑆 𝜆𝑖,𝑘𝛿𝑖 ⊗ 𝑓𝑘, where the pairs (𝑖, 𝑘)
run over a finite subset 𝑆 of 𝐼 × 𝐾. Now if we fix 𝑘 ∈ 𝐾 we have

∑
𝑖∈𝐼∶(𝑖,𝑘)∈𝑆

𝜆𝑖,𝑘𝛿𝑖 ⊗ 𝑓𝑘 = ⎛⎜⎜
⎝

∑
𝑖∈𝐼∶(𝑖,𝑘)∈𝑆

𝜆𝑖,𝑘𝛿𝑖
⎞⎟⎟
⎠

⊗ 𝑓𝑘,

thus setting 𝜙𝑘 = ∑𝑖∈𝐼∶(𝑖,𝑘)∈𝑆 𝜆𝑖,𝑘𝛿𝑖 it follows 𝛾 = ∑𝑘∈𝑆𝐾
𝜙𝑘 ⊗ 𝑓𝑘, where 𝑆𝐾 = {𝑘 ∈ 𝐾 ∶ ∃𝑖 ∈ 𝐼, (𝑖, 𝑘) ∈

𝑆}. But then for any 𝑣 ∈ 𝑉
0 = 𝜃(𝛾)(𝑣) = ∑

𝑘∈𝑆𝐾

𝜙𝑘(𝑣).𝑓𝑘,

4There is a lot of linearity going on here! The map (𝛼, 𝑤, 𝑣) ↦ 𝛼(𝑣).𝑤 is linear in all of 𝛼, 𝑣 and 𝑤. For fixed 𝛼, 𝑤,
this shows that the map 𝑣 ↦ 𝛼(𝑣).𝑤 is a linear map from 𝑉 to 𝑊, while the linearity in 𝛼 and 𝑤 show the map which
sends a pair (𝛼, 𝑤) to the corresponding map from 𝑉 to 𝑊 is bilinear in 𝛼 and 𝑤.
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and so by the linear independence of the 𝑓𝑘s we must have 𝜙𝑘(𝑣) = 0 for each 𝑘. Since this is true
for all 𝑣 ∈ 𝑉, it follows that 𝜙𝑘 = 0, for each 𝑘, and hence 𝛾 = 0 as required.
To see that 𝜃 is an isomorphism when 𝑉 is finite dimensional, note that in that case we can

assume our basis of 𝑉∗ is dual to a basis {𝑒𝑖 ∶ 𝑖 ∈ 𝐼} of 𝑉. But then if 𝛼 ∈ Homk(𝑉, 𝑊) it follows
that 𝛼 = 𝜃(∑𝑖∈𝐼 𝛿𝑖 ⊗ 𝛼(𝑒𝑖)), as the two sides agree on the basis {𝑒𝑖 ∶ 𝑖 ∈ 𝐼}.
Finally we consider the contraction map 𝜄 ∶ 𝑉∗ × 𝑉 → k. Since the map 𝑉∗ × 𝑉 → k given by

(𝑓 , 𝑣) ↦ k is clearly bilinear, it induces the linear map 𝜄, so 𝜄 is certainly well-defined. To compute
𝜄 ∘ 𝜃−1, note that when 𝑉 = 𝑊 is finite dimensional, we can chose the basis {𝛿1, … , 𝛿𝑛} of 𝑉∗ to
be dual to the basis {𝑒1, … , 𝑒𝑛} of 𝑉, and since, as before 𝜃−1(𝛼) = ∑𝑛

𝑖=1 𝛿𝑖.𝛼(𝑒𝑖), it follows that
𝜄(𝜃−1(𝛼)) = ∑𝑛

𝑖=1 𝛿𝑖(𝛼(𝑒𝑖)) = tr(𝛼). as required. □

Remark I.10. Since we only use the cases where 𝑉 and 𝑊 are finite dimensional, the reader is
welcome to ignore the generality the result is stated in and assume throughout that all vector spaces
are finite dimensional. Here one can be a bit more concrete: if {𝑒1, … , 𝑒𝑛} is a basis of 𝑉 and
{𝑓1, … , 𝑓𝑚} is a basis of𝑊, then taking the dual basis {𝛿1, … , 𝛿𝑛} of 𝑉∗ it is easy to see that the images
of 𝛿𝑖 ⊗ 𝑓𝑗 under 𝜃 correspond to the elementary matrices 𝐸𝑖𝑗 under the identification of Homk(𝑉, 𝑊)
given by the choice of bases for 𝑉 and 𝑊, hence 𝜃 is an isomorphism. In general the image of 𝜃 is
precisely the linear maps from 𝑉 to 𝑊 which have finite rank (as you can readily deduce from the
proof of Lemma I.9). Indeed when 𝑉 is infinite-dimensional, the trace map on Hom(𝑉, 𝑉) is only
defined for linear maps of finite rank, thus in a sense, then contraction map 𝜄 is more natural than
the trace map. (We will return to this point when discussing bilinear forms.)

I.2.2 Linear maps between tensor products. Let 𝛼∶ 𝑉1 → 𝑉2 and 𝛽∶ 𝑊1 → 𝑊2 be linear maps. If
𝑣 ∈ 𝑉1, 𝑤 ∈ 𝑊1, the map (𝑣, 𝑤) ↦ 𝛼(𝑣) ⊗ 𝛽(𝑤) from 𝑉1 × 𝑊2 → 𝑉2 ⊗ 𝑊2 is bilinear, and so induces
a linear map Hom(𝑉1 ⊗ 𝑊1, 𝑉2 ⊗ 𝑊2), which we denote by 𝛼 ⊗ 𝛽. In fact, the map (𝛼, 𝛽) ↦ 𝛼 ⊗ 𝛽
is itself bilinear, and so we even obtain a map

Hom(𝑉1, 𝑊1) ⊗Hom(𝑉2, 𝑊2) → Hom(𝑉1 ⊗ 𝑉2, 𝑊1 ⊗ 𝑊2). (I.6)

Moreover, it follows immediately from the definitions that (I.6) also respects composition. In more
detail, if 𝛼2 ∶ 𝑉2 → 𝑉3 and 𝛽2 ∶ 𝑊2 → 𝑊3 are linear maps to any vector spaces 𝑉3 and 𝑊3, then
(𝛼2 ⊗ 𝛽2) ∘ (𝛼1 ⊗ 𝛽1) = (𝛼2 ∘ 𝛼1) ⊗ (𝛽2 ∘ 𝛽1). Indeed, if 𝑣 ∈ 𝑉1, 𝑤 ∈ 𝑊1, then

(𝛼2 ⊗ 𝛽2) ∘ (𝛼1 ⊗ 𝛽1)(𝑣 ⊗ 𝑤) = (𝛼2 ⊗ 𝛽2)(𝛼1(𝑣) ⊗ 𝛽1(𝑤))
= (𝛼2 ∘ 𝛼1)(𝑣) ⊗ (𝛽2 ∘ 𝛽1)(𝑤)
= (𝛼2 ∘ 𝛼1) ⊗ (𝛽2 ∘ 𝛽1)(𝑣 ⊗ 𝑤).

When all the vector spaces 𝑉1, 𝑉2, 𝑊1, 𝑊2 are finite dimensional, the map (I.6) is actually an
isomorphism, indeed using Lemma I.9 you can check that

Hom(𝑉1, 𝑊1) ⊗Hom(𝑉2, 𝑊2) ≅ (𝑉∗
1 ⊗ 𝑊1) ⊗ (𝑉∗

2 ⊗ 𝑊2)
≅ (𝑉∗

1 ⊗ 𝑉∗
2) ⊗ (𝑊1 ⊗ 𝑊2)

≅ (𝑉1 ⊗ 𝑉2)∗ ⊗ (𝑊1 ⊗ 𝑊2)
≅ Hom(𝑉1 ⊗ 𝑉2, 𝑊1 ⊗ 𝑊2),

where the second isomorphism simply permutes the second and third tensor factors.

Example I.11. The map 𝜄 ∶ 𝑉∗ ⊗ 𝑉 → k also describes the composition of linear maps: Suppose we
have three vector spaces 𝑉, 𝑊 and 𝑈. The composition gives a bilinear map from Hom(𝑈, 𝑉) ×
Hom(𝑉, 𝑊) to Hom(𝑈, 𝑊), thus it is equivalent to a linear map 𝑚̃ ∶ Hom(𝑈, 𝑉) ⊗Hom(𝑉, 𝑊) →
Hom(𝑈, 𝑊).
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Hom(𝑈, 𝑉) ⊗Hom(𝑉, 𝑊) // (𝑈∗ ⊗ 𝑉) ⊗ (𝑉∗ ⊗ 𝑊)

sshhhhh
hhhhh

hhhhh
hhhh

𝑈∗ ⊗ (𝑉 ⊗ 𝑉∗) ⊗ 𝑊 // 𝑈∗ ⊗ k ⊗ 𝑊 // 𝑈∗ ⊗ 𝑊

where the first arrow is the induced by the isomorphism between Hom(𝑈, 𝑉) (resp. Hom(V,W)) and
𝑈∗ ⊗ 𝑉 (resp. 𝑉∗ ⊗ 𝑊), the second from the associativity of tensor products, and the third arrow
is 1𝑉 ⊗ 𝜄 ⊗ 1𝑉∗ . By Example I.8 scalar multiplication gives a natural isomorphism 𝑠 ∶ k ⊗ 𝑊 → 𝑊,
and the final arrow is just id𝑈∗ ⊗ 𝑠. Identifying the term 𝑈∗ ⊗ 𝑊 with Hom(𝑈, 𝑊) this becomes the
composition of linear maps.

Remark I.12. It is sometimes useful to have the following notational convention: Given a tensor
product of more than two vector spaces, such as 𝑈∗ ⊗ 𝑉 ⊗ 𝑉∗ ⊗ 𝑊, then it can be convenient to
write 𝜄32 for the map which acts via 𝜄 on the third and second factors (that is swapping the second
and third factors, applying 𝜄 and the repeating the swap) and by the identity on the remaining tensor
factors.

I.2.3 Tensor products and duality Suppose that 𝑉 and 𝑊 are finite dimensional vector spaces.
We wish to understand the relationship between the tensor product of the dual spaces 𝑉∗ ⊗𝑊∗ and
the dual space of the tensor product (𝑉 ⊗ 𝑊)∗. The map 𝜄 gives one way to do this: Let 𝑑 be the
composition

(𝑉 ⊗ 𝑊) ⊗ (𝑉∗ ⊗ 𝑊∗) ≅ (𝑉 ⊗ 𝑉∗) ⊗ (𝑊∗ ⊗ 𝑊) → k ⊗ k → k (I.7)

where the first isomorphism permutes the middle two factors, the second is, in the notation of
Remark I.12, the map 𝜄21⊗𝜄34 and the final isomorphism follows from the fact that the map 𝑣⊗1 → 𝑣
gives a natural isomorphism from 𝑉 ⊗ k to 𝑉 for any k-vector space 𝑉. Now the linear map 𝑑 can
be views as a k-valued bilinear pairing between 𝑉 ⊗ 𝑊 and 𝑉∗ ⊗ 𝑊∗, which in turn can be viewed
as a linear map from 𝑑 ∶ 𝑉∗ ⊗ 𝑊∗ → (𝑉 ⊗ 𝑊)∗. Viewed this way, 𝑑 is just the multiplication map: if
𝛿 ∈ 𝑉∗, 𝜂 ∈ 𝑊∗ and 𝑣 ∈ 𝑉, 𝑤 ∈ 𝑊, we have

𝑑(𝛿 ⊗ 𝜂)(𝑣 ⊗ 𝑤) = 𝛿(𝑣).𝜂(𝑤),

that is, 𝑑(𝛿 ⊗ 𝜂) is the element of (𝑉 ⊗ 𝑊)∗ which corresponds to the bilinear map 𝑉 × 𝑊 → k
given by the product 𝛿.𝜂. Moreover, again by permuting the factors, one can view 𝑑 as a map
Hom(𝑉, 𝑊) ⊗Hom(𝑊, 𝑉) → k. Viewed as a bilinear pairing, this is just the trace form.

(𝑎, 𝑏) ↦ tr(𝑎𝑏), ∀𝑎 ∈ Hom(𝑉, 𝑊), 𝑏 ∈ Hom(𝑊, 𝑉)

This description of the trace form also makes the symmetry property tr(𝑎𝑏) = tr(𝑏𝑎) is evident.
Remark I.13. Note that, if 𝑉 is finite dimensional, then we have Hom(𝑉, 𝑉) = 𝑉∗ ⊗ 𝑉, and

Hom(𝑉, 𝑉)∗ = (𝑉∗ ⊗ 𝑉)∗ ≅ 𝑉∗∗ ⊗ 𝑉∗ ≅ 𝑉 ⊗ 𝑉∗ ≅ Hom(𝑉, 𝑉),

so that Hom(𝑉, 𝑉) is canonically isomorphic to its dual. This is equivalent to the fact that the trace
pairing 𝑏𝑉 ∶ 𝔤𝔩(𝑉) ⊗ 𝔤𝔩(𝑉) → 𝔤𝔩(𝑉) is non-degenerate. Viewed in this way it is easy to see that the
duality map interchanges the identity 𝐼𝑉 ∈ 𝔤𝔩(𝑉) with the trace map tr ∈ 𝔤𝔩(𝑉)∗.

I.3 Symmetric bilinear forms In this section we review the basics of symmetric bilinear forms
over a field k. It is all material that is almost in Part A Algebra, but perhaps not quite phrased there
the way we use it. We shall work to begin with over an arbitrary field k.

Definition I.14. Let 𝑉 be a k-vector space. A function 𝐵∶ 𝑉 × 𝑉 → k is said to be bilinear if it is
linear in each factor, that is if

𝐵(𝜆1𝑣2 + 𝜆2𝑣2, 𝑤) = 𝜆1𝐵(𝑣1, 𝑤) + 𝜆2𝐵(𝑣2, 𝑤),
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and
𝐵(𝑣, 𝜆1𝑤1 + 𝜆2𝑤2) = 𝜆1𝐵(𝑣, 𝑤1) + 𝜆2𝐵(𝑣, 𝑤2),

for all 𝑣, 𝑣1, 𝑣2, 𝑤, 𝑤1, 𝑤2 ∈ 𝑉, 𝜆1, 𝜆2 ∈ k. We say that it is symmetric if 𝐵(𝑣, 𝑤) = 𝐵(𝑤, 𝑣). Let
Bil(𝑉) denote the vector space of bilinear forms on 𝑉, and5 SBil(𝑉) for the space of symmetric
bilinear forms on 𝑉.

Remark I.15. If 𝑉 is finite dimensional, then we have canonical isomorphisms

𝑉∗ ⊗ 𝑉∗ ≅ (𝑉 ⊗ 𝑉)∗ ≅ Bil(𝑉).

Combining with the isomorphism 𝜃 ∶ 𝑉∗ ⊗𝑉∗ ≅ Hom(𝑉, 𝑉∗) from Lemma I.9 we obtain an isomor-
phism Θ∶ Bil(𝑉) → Hom(𝑉, 𝑉∗). It follows that giving a bilinear form on 𝑉 is equivalent to giving
a linear map from 𝑉 to 𝑉∗. Note that the map 𝜎 ∶ 𝑉∗ ⊗ 𝑉∗ → 𝑉∗ ⊗ 𝑉∗ given by 𝑓1 ⊗ 𝑓2 ↦ 𝑓2 ⊗ 𝑓1
gives a second isomorphismΘ1 ∶ Bil(𝑉) → Hom(𝑉∗, 𝑉), whereΘ1 = Θ∘𝜎. For symmetric bilinear
forms the two maps agree, but for arbitrary bilinear forms they yield different isomorphisms.

Definition I.16. Given a bilinear form 𝐵, we set

rad(𝐵) = rad𝐿(𝐵) = {𝑣 ∈ 𝑉 ∶ Θ(𝐵)(𝑣) = 0} = {𝑣 ∈ 𝑉 ∶ 𝐵(𝑣, 𝑤) = 0, ∀𝑤 ∈ 𝑉}

(here the subscript “𝐿” denotes “left”). Similarly, we set

rad𝑅(𝐵) = ker(Θ1(𝐵)) = {𝑣 ∈ 𝑉 ∶ 𝐵(𝑤, 𝑣) = 0, ∀𝑤 ∈ 𝑉}.

If 𝐵 is symmetric rad𝐿(𝐵) = rad𝑅(𝐵), but this need not be true otherwise. We say that 𝐵 is non-
degenerate if rad𝐿(𝐵) = {0}. Note that, even though in general rad𝐿(𝐵) ≠ rad𝑅(𝐵), it is still the case
that rad𝐿(𝐵) = {0} if and only if rad𝑅(𝐵) = {0}.

From now on we will only work with symmetric bilinear forms. Fix 𝐵 ∈ SBil(𝑉). Then if 𝑈 is
a subspace of 𝑉, we define

𝑈⟂ = {𝑣 ∈ 𝑉 ∶ 𝐵(𝑣, 𝑤) = 0, ∀𝑤 ∈ 𝑈} = {𝑣 ∈ 𝑉 ∶ Θ(𝐵)(𝑣) ∈ 𝑈0}.

When 𝐵 is nondegenerate, so that Θ(𝐵) is an isomorphism, this shows that dim(𝑈⟂) = dim(𝑈0) =
dim(𝑉) − dim(𝑈). The next Lemma shows that this can be refined slightly.

Lemma I.17. Let 𝑉 be a finite-dimensional k-vector space equipped with a symmetric bilinear form 𝐵.
Then for any subspace 𝑈 of 𝑉 we have the following:

i) dim(𝑈) + dim(𝑈⟂) ≥ dim(𝑉).

ii) The restriction of 𝐵 to 𝑈 is nondegenerate if and only if 𝑉 = 𝑈 ⊕ 𝑈⟂.

Proof. Let 𝜙∶ 𝑉 → 𝑈∗ be given by 𝜙(𝑣)(𝑢) = 𝐵(𝑣, 𝑢), that is 𝜙(𝑣) = (Θ(𝐵)(𝑣))|𝑈. Clearly ker(𝜙) =
𝑈⟂, while im(𝜙) ≤ 𝑈∗ and hence dim(im(𝜙)) ≤ dim(𝑈). The inequality in 𝑖) now follows from
rank-nullity.
For the second part, note that 𝐵 is non-degenerate on 𝑈 if and only if 𝑈 ∩ 𝑈⟂ = {0}. But then

the inequality in 𝑖) shows that we must have 𝑈 ⊕ 𝑈⟂ = 𝑉 for dimension reasons. □

5This is not standard notation – it would be more normal to write something like Sym2(𝑉∗) but then I’d have to
explain why...
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I.3.1 *Classification of symmetric bilinear forms This subsection is not needed for the course6

but might be clarifying. There is a natual linear action of GL(𝑉) on the space Bil(𝑉): if 𝑔 ∈ GL(𝑉)
and 𝐵 ∈ Bil(𝑉) then we set 𝑔(𝐵) to be the bilinear form given by

𝑔(𝐵)(𝑣, 𝑤) = 𝐵(𝑔−1(𝑣), 𝑔−1(𝑤)), (𝑣, 𝑤 ∈ 𝑉),

where the inverses ensure that the above equation defines a left action. It is clear the action preserves
the subspace of symmetric bilinear forms.
Since we can find a invertible map taking any basis of a vector space to any other basis, the

next lemma says that over an algebraically closed field there is only one nondegenerate symmetric
bilinear form up to the action of GL(𝑉), that is, when k is algebraically closed the nondegenerate
symmetric bilinear forms are a single orbit for the action of GL(𝑉).

Lemma I.18. Let𝑉 be a k-vector space equipped with a nondegenerate symmetric bilinear form 𝐵. Then
if char(k) ≠ 2, there is an orthonormal basis of 𝑉, i.e a basis {𝑣1, … , 𝑣𝑛} of 𝑉 such that 𝐵(𝑣𝑖, 𝑣𝑗) = 𝛿𝑖𝑗.

Proof. We use induction on dim(𝑉). The identity7

𝐵(𝑣, 𝑤) = 1
2(𝐵(𝑣 + 𝑤, 𝑣 + 𝑤) − 𝐵(𝑣, 𝑣) − 𝐵(𝑤, 𝑤)),

shows that if 𝐵 ≠ 0we may find a vector 𝑣 ∈ 𝑉 such that 𝐵(𝑣, 𝑣) ≠ 0. Rescaling by a choice of square
root of 𝐵(𝑣, 𝑣) (which is possible since k is algebraically closed) we may assume that 𝐵(𝑣, 𝑣) = 1. But
if 𝐿 = k.𝑣 then since 𝐵|𝐿 is nondegenerate, the previous lemma shows that 𝑉 = 𝐿 ⊕ 𝐿⟂, and if 𝐵
is nondegenerate on 𝑉 it must also be so on 𝐿⟂. But dim(𝐿⟂) = dim(𝑉) − 1, and so 𝐿⟂ has an
orthonormal basis {𝑣1, … , 𝑣𝑛−1. Setting 𝑣 = 𝑣𝑛, it then follows {𝑣1, … , 𝑣𝑛} is an orthonormal basis
of 𝑉 as required. □

Remark I.19. Over the real numbers, for example, there is more than one orbit of nondegenerate
symmetric bilinear form, but the above proof can be modified to give a classification and it turns
out that there are dim(𝑉) + 1 orbits (“Sylvester’s law of inertia”).

6So in particular you don’t need to know it for any exam...
7Note that this identity holds unless char(k) = 2. It might be useful to remember this identity when understanding

the Proposition which is the key to the proof of the Cartan Criterion: it claims that if 𝔤 = 𝐷𝔤 then there is an element
𝑥 ∈ 𝔤 with 𝜅(𝑥, 𝑥) ≠ 0. Noting the above identity, we see this is equivalent to asserting that 𝜅 is nonzero.
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II Reminder on Representation theory

We recall here some basics of representation theory used in the course, all of which is covered (in
much more detail than we need) in the Part B course on Representation theory. Let 𝔤 be a Lie alge-
bra. The main body of the notes proves all that is needed in the course, but the material here might
help clarify some arguments. We will always assume our representations are finite dimensional
unless we explicitly say otherwise.

II.1 Basic notions

Definition II.1. A representation is irreducible if it has no proper nonzero subrepresentations. A
representation (𝑉, 𝜌) is said to be indecomposable if it cannot be written as a direct sum of two
proper subrepresentations. A representation is said to be completely reducible if is a direct sum of
irreducible representations.

Clearly an irreducible representation is indecomposable, but the converse is not in general true.
For example k2 is naturally a representation for the nilpotent Lie algebra of strictly upper triangular
matrices 𝔫2 ⊂ 𝔤𝔩2(k) and it is not hard to see that it has a unique 1-dimensional sub representation,
hence it is indecomposable, but not irreducible.
A basic observation about irreducible representations is Schur’s Lemma:

Lemma II.2. Let 𝔤 be a Lie algebra and let (𝑉, 𝜌), (𝑊, 𝜎) be irreducible representations of 𝔤. Then any
𝔤-homomorphism 𝜙∶ 𝑉 → 𝑊 is either zero or an isomorphism. In particular, if k is algebraically closed,
then Hom𝔤(𝑉, 𝑊) is one-dimensional.

Proof. The proof is exactly the same as the proof for finite groups. If 𝜙 is nonzero, then ker(𝜙) is a
proper subrepresentation of 𝑉, hence as 𝑉 is irreducible it must be zero. It follows 𝑉 is isomorphic
to 𝜙(𝑉), which is thus a nonzero subrepresentation of 𝑊. But then since 𝑊 is irreducible we must
have 𝑊 = 𝜙(𝑉) and 𝜙 is an isomorphism as claimed.
Thus if Homk(𝑉, 𝑊) is nonzero, we may fix some 𝜙∶ 𝑉 → 𝑊 an isomorphism from 𝑉 to 𝑊.

Then given any 𝔤-homomorphism 𝛼∶ 𝑉 → 𝑊, composing with 𝜙−1 gives a 𝔤-homomorphism from 𝑉
to 𝑉, thus it is enough to assume𝑊 = 𝑉. But then if 𝛼∶ 𝑉 → 𝑉 is a 𝔤-endomorphism of 𝑉, since k is
algebraically closed, it has an eigenvalue 𝜆 and so ker(𝛼 − 𝜆) is a nonzero subrepresentation, which
must therefore be all of 𝑉, that is 𝛼 = 𝜆.id𝑉 , so that Hom𝔤(𝑉, 𝑉) is one-dimensional as claimed. □

II.2 Exact sequences of representations Parallel to the notion for Lie algebras, there is also a
notion for representations. Let 𝔤 be a Lie algebra.

Definition II.3. A sequence of maps of 𝔤-representations

𝑈 𝛼 // 𝑉
𝛽 // 𝑊

is said to be exact at 𝑉 if im(𝛼) = ker(𝛽). A sequence of maps

0 // 𝑈 𝛼 // 𝑉
𝛽 // 𝑊 // 0

is called a short exact sequence if it is exact at each of 𝑈, 𝑉 and 𝑊, so that 𝛼 is injective and 𝛽 is
surjective and im(𝛼) = ker(𝛽). If 𝑉 is the middle term of such a short exact sequence, it contains a
subrepresentation isomorphic to 𝑈, such that the corresponding quotient representation is isomor-
phic to 𝑊, and hence, roughly speaking, 𝑉 is built by gluing together 𝑈 and 𝑊. Just as for Lie
algebras, an exact sequence

0 // 𝑈 𝛼 // 𝑉
𝛽 // 𝑊 // 0

is said to be split if 𝛽 admits a right inverse 𝑠 ∶ 𝑊 → 𝑉, that is, a 𝔤-homomorphism 𝑠 such that
𝛽 ∘ 𝑠 = id𝑊 .
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The next Lemma shows that the situation for representations is simpler than it is for Lie alge-
bras8:

Lemma II.4. Suppose that 𝔤 is a Lie algebra and

0 // 𝑈 𝛼 // 𝑉
𝛽 // 𝑊 // 0

is a short exact sequence of 𝔤-representations. Then the sequence is split if and only if 𝑉 is isomorphic to
𝑈 ⊕ 𝑊.

Proof. f the short exact sequence is split, then 𝑠(𝑊) ∩ 𝛼(𝑈) = {0}, since 𝛽 is injective on im(𝑠) and
im(𝛼) = ker(𝛽), as if 𝑣 ∈ 𝑉, then for any 𝑣 ∈ 𝑉 we have 𝑣 = (𝑣 − 𝑠 ∘ 𝛽(𝑣)) + 𝑠 ∘ 𝛽(𝑣)), where
𝑠 ∘ 𝛽(𝑣) lies in the image of 𝑠, and since 𝛽 ∘ 𝑠 = id𝑊 , 𝑣 − 𝑠 ∘ 𝛽(𝑣) ∈ ker(𝛽) = im(𝛼). It follows that
𝑉 = 𝛼(𝑈) ⊕ 𝑠(𝑊), and since 𝛼 and 𝑠 are injective, the result follows. □

The notion of a composition series has an analogue for representations of a given Lie algebra 𝔤.

Definition II.5. Let 𝑉 be a 𝔤-representation. A nested sequence 𝒞 = (𝑉 = 𝐹0 ⊃ 𝐹1 ⊃ … ⊃ 𝐹𝑑 = 0)
is said to be a composition series for 𝑉 if each 𝐹𝑖 is a subrepresentation, and the subquotients 𝐹𝑖−1/𝐹𝑖
are irreducible (for each 𝑖 ∈ {1, … , 𝑑}). The isomorphism classes of irreducibles in which occur as
one off these irreducible subquotients are called the composition factors, and the multiplicity with
which such an irreducible, say 𝑆, occurs is known as its composition multiplicity. We write [𝑆 ∶ 𝑉]
for the multiplicity of 𝑆 as a composition factor of 𝑉.

Remark II.6. A composition series can also be viewed as the vestige of how the representation 𝑉
was built up from its composition factor 𝑆𝑖 = 𝐹𝑖−1/𝐹𝑖. Indeed for each 𝑘 ∈ {1, … , 𝑑} we have

0 // 𝐹𝑘
𝛼 // 𝐹𝑘−1

𝛽 // 𝑆𝑘 // 0
Thus starting with 𝑆1 one constructs 𝐹0/𝐹2 by extending it by 𝑆2. One obtains 𝐹0/𝐹3 by extending
𝐹0/𝐹2 by 𝑆3 and so on, until finally we get 𝑉 by extending 𝐹0/𝐹1 by 𝐹1 = 𝑆1 to obtain 𝑉 itself!

Example II.7. To see a non-split extension, let 𝔤 = 𝔫2 be the one-dimensional Lie algebra, thought
of as the (nilpotent) Lie algebra of 2 × 2 strictly upper triangular matrices. Then its natural 2-
dimensional representation on k2 given by the inclusion 𝔫2 → 𝔤𝔩2(k) gives a non-split extension

0 // k0
𝑖 // k2 // k0 // 0

where k0 is the trivial representation, and 𝑖 ∶ k0 → k2 is the inclusion 𝑡 ↦ (𝑡, 0). The extension can-
not be trivial, because the image of 𝔫2 is non-zero. It is fact it’s easy to see using linear algebra that
for 𝔤𝔩1(k) = 𝔫2, an extension of one-dimensional representations k𝛼 and k𝛽 automatically splits if
𝛼 ≠ 𝛽 while there is, up to isomorphism, one non-split extension of k𝛼 with itself (𝛼, 𝛽 ∈ (𝔤𝔩1(k))∗).
The splitting statement is a special case of the following more general result, a special case of The-
orem 5.3.24.

Lemma II.8. Let 𝔤 be a nilpotent Lie algebra, and let 𝛼, 𝛽 ∈ (𝔤/𝐷𝔤)∗ be distinct. Any exact sequence of
𝔤-representations

0 // k𝛼 // 𝑉 // k𝛽 // 0
splits, that is, 𝑉 ≅ k𝛼 ⊕ k𝛽.

Thus non-isomorphic one-dimensional representations𝑈 and𝑉 of a nilpotent Lie algebra cannot
be “glued together” in any way other than by taking their direct sum.

The following result is shows that the composition factors are actually independent of the fil-
tration: If 𝐿 is a simple representation then write [𝐿, 𝑉] for the number of times 𝐿 occurs in the
composition series (i.e. [𝐿, 𝑉] = #{𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘, 𝑉𝑖/𝑉𝑖−1 ≅ 𝐿}.

Lemma II.9. (Jordan-Hölder). The numbers [𝐿, 𝑉] are independent of the composition series.
8In the sense that there are no non-trivial semi-direct products.
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Proof. Use induction on the dimension of 𝑉. If dim(𝑉) = 1, then 𝑉 is irreducible and the result is
clear. Now suppose that (𝑉𝑖)𝑘

𝑖=1 and (𝑊𝑖)𝑙
𝑖=1 are two composition series for 𝑉. There is a smallest 𝑗

such that 𝑊𝑗 ∩ 𝑉1 is nonzero, and then since 𝑉1 is irreducible we must have 𝑉1 ∩ 𝑊𝑗 = 𝑉1, that is,
𝑉1 ⊆ 𝑊𝑗. But then the induced map 𝑉1 → 𝑊𝑗/𝑊𝑗−1 must be an isomorphism by Schur’s Lemma.
Thus setting

𝑊′
𝑖 = { (𝑊𝑖 ⊕ 𝑉1)/𝑉1 if 𝑖 < 𝑗,

𝑊𝑖+1/𝑉1 if 𝑗 ≤ 𝑖 − 1.

we obtain a composition series of 𝑉/𝑉1, whose composition factors are those of the composition
series (𝑊𝑖)𝑙

𝑖=1 for 𝑉, with one fewer copy of the isomorphism class of 𝑉1 ≅ 𝑊𝑗/𝑊𝑗−1. By induction
it has the same composition factors as the filtration {𝑉𝑖/𝑉1 ∶ 1 < 𝑖 ≤ 𝑘}, and we are done. □

Remark II.10. Note that the proof of the Jordan-Hölder theorem in the case of representations is
a little easier than in the case of groups or Lie algebras. The reason is that, for representations,
you can quotient by any sub-representations, whereas for Lie algebras, a subalgebra which occurs
in a composition series is only necessarily an ideal in the smallest term of the series which strictly
contains it. Thus we cannot start “at the bottom” of the composition series as we do in the above
proof. Instead one must try to compare the terms “at the top” of the two composition series. The
resulting argument (described in Theorem 4.2.3) is similar, but somewhat more elaborate, hence it
seemed worthwhile to also give the simpler proof above for the case of representations.

II.3 Semisimplicity and complete reducibility

Definition II.11. A representation (𝑉, 𝜌) is said to be semisimple if any subrepresentation 𝑈 has a
complement, that is, there is a subrepresentation𝑊 such that 𝑉 = 𝑈 ⊕ 𝑊. A representation is said
to be completely reducible if it is a direct sum of irreducible representations. Note that Lemma II.4
shows that 𝑉 is semisimple if and only if every short exact sequence

0 // 𝑈 // 𝑉 // 𝑊 // 0
splits. Indeed this follows from Lemma II.4: the image of a splitting map 𝑠 ∶ 𝑊 → 𝑉 gives a
complement to the image of 𝑈, and 𝑠 is determined by its image.

Lemma II.12. If𝑉 is a semisimple representation, then any subrepresentation or quotient representation
of 𝑉 is semisimple.

Proof. Supose that 𝑞∶ 𝑉 → 𝑊 is a surjective map, and that 𝑉 is semisimple. We claim that 𝑊 is
semisimple. Indeed if 𝑊1 is a subrepresentation of 𝑊, the 𝑞−1(𝑊1) = 𝑉1 is a subrepresentation
of 𝑉, which has a complement 𝑉2. Then it follows easily that 𝑞(𝑉2) is a complement to 𝑊1 in 𝑊:
indeed it is clear that 𝑊 = 𝑊1 + 𝑞(𝑉2) since 𝑉 = 𝑞−1(𝑉1) ⊕ 𝑉2, and if 𝑤 ∈ 𝑞(𝑉2) ∩ 𝑊1, we may
write 𝑤 = 𝑞(𝑣) for some 𝑣 ∈ 𝑉2, but then 𝑣 ∈ 𝑞−1(𝑊1), hence 𝑤 ∈ 𝑞−1(𝑉1) ∩ 𝑉2 = {0}.
Next, if 𝑈 is a subrepresentation of 𝑉, then picking a complement 𝑈′ to 𝑈, so that 𝑉 = 𝑈 ⊕ 𝑈′,

the corresponding projection map 𝜋 ∶ 𝑉 → 𝑈 with kernel𝑈′ shows that𝑈 is isomorphic to a quotient
of 𝑉, and hence is also semisimple. □

Lemma II.13. Let (𝑉, 𝜌) be a representation. Then the following are equivalent:

i) 𝑉 is semisimple,

ii) 𝑉 is completely reducible,

iii) 𝑉 is the sum of its irreducible subrepresentations.

Proof. Once we know that any subrepresentation of a semisimple representation is again semisimple,
the proof of part 𝑖𝑖) of Lemma 6.3.2 shows that 𝑖) implies 𝑖𝑖). Certainly 𝑖𝑖) implies 𝑖𝑖𝑖) so it is enough
to show that 𝑖𝑖𝑖) implies 𝑖). For this, suppose that 𝑉 is the sum of its irreducible subrepresentations
and that 𝑈 is a subrepresentation of 𝑉. Let𝑊 be a subrepresentation of 𝑉 which is maximal (with
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respect to containment) subject to the condition that 𝑈 ∩ 𝑊 = {0}. We claim that 𝑉 = 𝑈 ⊕ 𝑊. To
see this, suppose that 𝑈 ⊕ 𝑊 ≠ 𝑉. Then by our assumption on 𝑉 there must be some irreducible
subrepresentation 𝑋 with 𝑋 not contained in 𝑊 ⊕ 𝑈, and hence 𝑋 ∩ (𝑊 ⊕ 𝑈) = {0}. But then we
certainly have9 (𝑋 ⊕ 𝑊) ∩ 𝑈 = {0}, which contradicts the maximality of 𝑊, so we are done. □

Remark II.14. IfWe write 𝔤 for the set of isomorphism classes of irreducible 𝔤-representations, then
any completely reducible representation can be written as

𝑉 = ⨁
𝜒∈𝔤

𝑉𝜒 , where 𝑉𝜒 = ∑
𝑆≤𝑉
𝑆∈𝜒

𝑆

Note that 𝑉𝜒 coincides with the isotypic subrepresentation of 𝑉 defined in Definition 5.3.18, since if
𝑉 is completely reducible, so is any subrepresentation, thus 𝑉𝜒 is semisimple, which by Lemma II.13
implies that it is the direct sum of its subrepresentations . This is called the isotypic decomposition
of 𝑉, and any 𝔤-homomorphism 𝜃 ∶ 𝑉 → 𝑊 between 𝔤-representations 𝑉 and 𝑊 is compatible with
this decomposition, in the sense that 𝜃(𝑉𝜒) ⊆ 𝑊𝜒 .
In particular, the isotypic summand of 𝑉 corresponding to the trivial representation 𝜒0 is 𝑉𝜒0

=
𝑉𝔤, the invariants of 𝑉. A consequence of the complete reducibility is that 𝑉𝔤 should be a direct
summand of 𝑉. In fact in the proof of Weyl’s theorem, we first established this by showing any
representation 𝑉 of a semisimple Lie algebra 𝔤 decomposes as 𝑉 = 𝑉𝔤 ⊕𝔤.𝑉, and deduced semisim-
plicity from this.

9Since both are just expressing the fact that the sum 𝑋 + 𝑊 + 𝑈 is direct.
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III *On the construction of simple Lie algebras

The classification of semisimple Lie algebras, as discussed in §7.4, relies on two key results: an
Isomorphism theorem, and an Existence theorem: the former ensures that the root system captures
enough information to determine the Lie algebra up to isomorphism, while the latter ensures that
every abstract root system arises as the root system of some semisimple Lie algebra.
This section outlines one approach to the existence theorem. Clearly it is enough to construct a

simple Lie algebra for each indecomposable root system, so wewill assume throughout the remainder
of this section that (𝑉, Φ) is indecomposable. We will establish the existence theorem in two steps.
In the first step we consider the case where all the roots inΦ have the same length, and in the second
step deduce from this the general case. An alternative elementary approach is described in [Gec17].

III.1 The simply-laced case

Definition III.1. Let (𝑉, Φ) be an (indecomposable) root system. We say that (𝑉, Φ) is simply-laced
if all the roots in Φ have the same length.
If Δ is a set of simple roots for Φ, since Φ = 𝑊.Δ (where 𝑊 is the Weyl group) it is equivalent

to the condition that all the roots in Δ have the same length. Since (𝑉, Φ) is indecomposable, this
in turn is equivalent to the condition that ⟨𝛼, 𝛽⟩ = ⟨𝛽, 𝛼⟩ for all 𝛼, 𝛽 ∈ Δ, that is, the Cartan matrix
is symmetric. By Lemma 7.3.6, this is equivalent to the condition that for all 𝛼, 𝛽 ∈ Φ the Cartan
integer ⟨𝛼, 𝛽⟩ ∈ {0, −1}. If we normalize the inner product on 𝑉 so that the roots have length √2,
then the Cartan integers are precisely the values of the inner product on pairs of simple roots.
From the classification of abstract root systems, one can check that the simply-laced indecom-

posable root systems are those of types 𝐴,𝐷 and 𝐸.

To construct a Lie algebra from such a root system, we need one additional ingredient: Let
𝜖 ∶ 𝑄 × 𝑄 → {±1} be a bimultiplicative function, that is, for all 𝛼, 𝛽, 𝛾 ∈ 𝑄,

𝜖(𝛼 + 𝛽, 𝛾) = 𝜖(𝛼, 𝛾).𝜖(𝛽, 𝛾),
𝜖(𝛼, 𝛽 + 𝛾) = 𝜖(𝛼, 𝛽).𝜖(𝛼, 𝛾).

and suppose also that it satisfies

𝜖(𝛼, 𝛼) = (−1)(𝛼,𝛼)/2, ∀𝛼 ∈ 𝑄 (I.8)

(note that since (𝛼, 𝛼) = 2 for all roots 𝛼 ∈ Φ, we must have (𝛽, 𝛽) ∈ 2ℤ for any 𝛽 ∈ 𝑄). Such a
function is called an asymmetric function. Since (𝛼, 𝛽) ∈ ℤ for any 𝛼, 𝛽 ∈ 𝑄 we can replace 𝛼 by
𝛼 + 𝛽 in the second condition (I.8) for an asymmetric function to obtain:

𝜖(𝛼, 𝛽)𝜖(𝛽, 𝛼) = (−1)(𝛼,𝛽). (I.9)

Note that the bimultiplicativity property means it is determined by its values on a base Δ and more-
over the second condition (I.8) requires 𝜖(𝛼𝑖, 𝛼𝑖) = −1 for any 𝛼𝑖 ∈ Δ. To construct such a function
on the rest of Δ × Δ, orient the edges of the Dynkin diagram, whose vertices are labelled by the base
Δ = {𝛼1, … , 𝛼𝑙}, arbitrarily, and then define for 𝛼𝑖 ≠ 𝛼𝑗

𝜖(𝛼𝑖, 𝛼𝑗) = { −1 if there is an edge going from 𝛼𝑖 to 𝛼𝑗,
+1 otherwise.

It the follows from this definition that Equation (I.9) holds for all roots in our base, and thus ex-
tending this 𝜖 bimultiplicatively, we obtain an asymmetric function on all of 𝑄.
We can now give a construction of the Lie algebra 𝔤𝑄 associated to our root system: Let 𝔥∗

denote the extension of scalars from ℚ to our field k of 𝑉, and similarly we can extend our inner
product to a symmetric bilinear form on 𝔥∗. Let 𝔥 be the dual of 𝔥.
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Definition III.2. Let 𝔤𝑄 = 𝔥 ⊕ ⨁𝛼∈Φ k.𝑒𝛼 as a vector space, and let ℎ𝛼 be the image of 𝛼 under the
isomorphism between 𝔥 and 𝔥∗ given by the nondegenerate symmetric bilinear form on 𝔥∗ induced
from the inner product on 𝑉. We define

[ℎ, ℎ′] = 0, ∀ℎ, ℎ′ ∈ 𝔥;
[ℎ, 𝑒𝛼] = 𝛼(ℎ)𝑒𝛼;

[𝑒𝛼, 𝑒𝛽] =
⎧{{
⎨{{⎩

−ℎ𝛼, if 𝛼 + 𝛽 = 0;
𝜖(𝛼, 𝛽).𝑒𝛼+𝛽 if 𝛼 + 𝛽 ∈ Φ;

0 otherwise.

We also extend the symmetric bilinear form on 𝔥 (obtained by identifying it with 𝔥∗) to all of 𝔤𝑄
by setting (𝑒𝛼, 𝑒𝛽) = −𝛿𝛼,−𝛽, and making 𝔥 orthogonal to ⨁𝛼∈Φ k.𝑒𝛼. (Note the minus signs in the
definition of the invariant form and in the bracket [𝑒𝛼, 𝑒−𝛼] are consistent.)

Proposition III.3. The definition above gives a Lie algebra which has 𝔥 as a Cartan subalgebra and
root system Φ, and the form on 𝔤𝑄 is invariant.

Proof. (Sketch): We must show that 𝔤𝑄 is a Lie algebra, that is, we must check that the bilinear map
[, ] defined above is a Lie bracket. To see that it is alternating, note that if {𝛼, 𝛽, 𝛼 + 𝛽} ⊆ Φ then,
since the root system is simply-laced, (𝛼, 𝛽) = −1, and hence (I.9) shows that 𝜖(𝛼, 𝛽) = −𝜖(𝛽, 𝛼).
It remains to check that [.] satisfies the Jacobi identity. It is enough to check this on three basis
elements, 𝑥, 𝑦 and 𝑧. If at least one of our basis elements is in 𝔥 this is easy (the properties of the
bimultiplicative function beyond the one already used for the alternating property are not involved).
For example, if 𝑥 = ℎ ∈ 𝔥, 𝑦 = 𝑒𝛼, 𝑧 = 𝑒𝛽 then (setting 𝑒𝛼+𝛽 = 0 if 𝛼 + 𝛽 ∉ Φ)

[ℎ, [𝑒𝛼, 𝑒𝛽]] + [𝑒𝛼, [𝑒𝛽, ℎ]] + [𝑒𝛽, [ℎ, 𝑒𝛼]]
= 𝜖(𝛼, 𝛽) ((𝛼 + 𝛽)(ℎ)𝑒𝛼+𝛽 − 𝛽(ℎ)𝑒𝛼+𝛽 − 𝛽(ℎ)𝑒𝛼+𝛽)
= 0.

If 𝑥, 𝑦, 𝑧 are of the form 𝑒𝛼, 𝑒𝛽, 𝑒𝛾 then there are a number of cases to check. Firstly, if none
of 𝛼 + 𝛽, 𝛼 + 𝛾, 𝛽 + 𝛾 lie in Φ ∪ {0}, then the Jacobi identity holds trivially. Thus let us suppose
that 𝛼 + 𝛽 ∈ Φ ∪ {0}. Note that 𝛼 ± 𝛽 ∈ Φ if and only if (𝛼, 𝛽) = ∓1. Moreover, it follows that
𝜖(𝛼, 𝛼) = −1 and 𝜖(𝛼, 𝛽)𝜖(𝛽, 𝛼) = −1.
There are four cases: 1) 𝛼 ± 𝛾 ∉ Φ ∪ {0}; 2) either 𝛼 + 𝛾 or 𝛼 − 𝛾 = 0; 3) 𝛼 + 𝛾 ∈ Φ and; 4)

𝛼 − 𝛾 ∈ Φ. Cases 1) and 2) are easy to check, case 3) follows from

𝜖(𝛾, 𝛼)𝜖(𝛾 + 𝛼, −𝛼) = (𝛼, 𝛼).

In this fashion one can reduce to the case where 𝛼 + 𝛽, 𝛼 + 𝛾 and 𝛽 + 𝛾 all lie in Φ. But then
(𝛼, 𝛽) = (𝛼, 𝛾) = (𝛽, 𝛾) = −1 and so (𝛼 + 𝛽 + 𝛾, 𝛼 + 𝛽 + 𝛾) = 0 so that 𝛼 + 𝛽 + 𝛾 = 0. In this case
the Jacobi identity

[𝑒𝛼, [𝑒𝛽, 𝑒𝛾]] + [𝑒𝛽, [𝑒𝛾 , 𝑒𝛼]] + [𝑒𝛾 , [𝑒𝛼, 𝑒𝛽]] = 0

reduces to

𝜖(𝛽, 𝛾)𝜖(𝛼, 𝛽 + 𝛾) + 𝜖(𝛾, 𝛼)𝜖(𝛽, 𝛼 + 𝛾) + 𝜖(𝛼, 𝛽)𝜖(𝛾, 𝛼 + 𝛽) = 0

which can be checked using the properties of 𝜖.
It is similar, though more straight-forward, to check that the symmetric bilinear form we have

defined is invariant. □
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III.2 The non-simply-laced cases One can also use the construction of the simply-laced Lie simple
Lie algebras to give a construction of all simple Lie algebras: We do this as follows: Given a simply-
laced Dynkin diagram 𝐷, a admissible diagram automorphism is a graph automorphism 𝜎 ∶ 𝐷 → 𝐷
with the property that the orbit of a vertex is discrete, that is, there is no edge between a vertex 𝑖
and 𝜎𝑘(𝑖) for any 𝑘 ∈ ℤ.
Given such an automorphism, we claim that 𝜎 induces an automorphism of 𝔤𝑄 the associated

simple Lie algebra. To see this, note that we can pick the orientation of our Dynkin diagram so that
it is invariant under the diagram automorphism (we will check this shortly for the automorphisms
we need). Clearly 𝜎 induced an isometry of 𝑉 to itself preserving the roots Φ (it clearly preserves 𝑄
and hence Φ since Φ is the set of norm 2 vectors in 𝑄). Moreover, it preserves the bimultiplicative
function 𝜖 because it preserved the orientation of our Dynkin diagram (by our choice of orientation).
Defining 𝜎 on 𝔤𝑄 by letting 𝜎(𝑒𝛼) = 𝑒𝜎(𝛼) and letting it act on 𝔥 by extension of scalars of its

action on 𝑉, it is then clear that 𝜎 is a Lie algebra homomorphism. It follows that its fixed point set
is a sub-Lie algebra.

Theorem III.4. The Lie algebra 𝔤𝜎
𝑄 is a simple Lie algebra with Dynkin diagram 𝐷𝜎 given as follows:

the vertices of𝐷𝜎 are the orbits of 𝜎 on the vertex set of𝐷, and, for any two orbits, they are joined if there
were edges joining a vertex in one orbit to a vertex in the other, etc..
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