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Preface

These lecture notes were designed for the course Supersymmetry and Su-
pergravity in the Mathematical and Theoretical Physics Master program in
Oxford, initially given in Hilary term 2024. I have strived to make these lec-
ture notes self-contained and well-structured, within the limited scope of the
course. Nevertheless, it is critical to take the courses Groups and Represen-
tations, Quantum Field Theory (QFT), and General Relativity, prior to this
course, and Advanced QFT simultaneously at the latest. While these lec-
ture notes cover standard introductory material on supersymmetry, I chose
to also include certain advanced topics, such as the superconformal algebra,
and Kähler geometry. These topics are important in modern theoretical high
energy physics, and beyond their pedagogic value in the present course, they
serve as teasers to prospective studies in Conformal Field Theory, and Su-
pergravity. The latter is not covered in this course, as opposed to what its
title suggests, yet these lecture notes provide the foundation that is essential
to proceed in this advanced direction of study.

The recommended textbooks to consult in parallel to these lectures notes,
in order to broaden the view and deepen the understanding of the material
presented here, are the References by Weinberg [1], and Wess & Bagger
[2]. The last part of this course, specifically chapters 6, 7, 8, build on 3
topics, that ideally should have been encountered prior to this course within
some advanced QFT courses: Renormalization group, non-Abelian gauge
theories, and spontaneous symmetry breaking. Though these lecture notes
provide proper preliminaries to these topics, it is also recommended to consult
in parallel the QFT textbooks by Peskin & Schroeder[3], or Weinberg [4,
5]. Finally, this course does not cover the topic of Supersymmetry and the
Standard Model. This phenomenological topic is properly covered in the
dedicated courses Beyond the Standard Model I and II, which can be taken
following this course. For those interested to pursue the route of Supergravity,
it is recommended to refer to the textbook by Freedman and Van Proeyen
[6].
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1. Context and Motivation

Symmetries play an important role in physics. Continuous symmetries are
associated to conservation laws by Noether’s theorem. In a quantum field
theory (QFT) in D ” d` 1 spacetime dimensions with continuous Lie-group
symmetries, the conserved Noether currents jµI pxq are local operators, that
satisfy

Bµj
µ
I “ 0 . (1.1)

Thus, the generator of the symmetry on the Hilbert space of the QFT is the
charge operator:

QI “

ż

Σd

ddx j0I pxq ,
d

dt
QI “ 0 , (1.2)

where the integration is over a spatial slice Σd at constant time t.

What are the quantum field theories with the most extensive symme-
try possible? Supersymmetric theories. This was shown through key theo-
rems by Coleman and Mandula in 1967 [7], and by Haag et al. in 1975 [8],
where the latter significantly generalized the former to include supersymme-
try, that will be further discussed shortly as of section 3. Supersymmetric
theories also have more degrees of freedom than the quantum field theories
that form the Standard Model of Particle Physics. While the latter have
been well-confirmed in experiments, there is no experimental evidence for
supersymmetric theories. Yet, we expect to recover the Standard Model
from supersymmetry in the appropriate limit of the relatively low energies
that particle accelerators reach. Supersymmetry is then believed to sponta-
neously break in nature.

Historically, supersymmetry first appeared in few various publications
from 1971, with the seminal Wess-Zumino model published in 1974 [9, 10].
This discovery launched a sustained investigation of supersymmetric QFTs
(and supergravity theories), which is still ongoing 50 years later.

7



8 1. CONTEXT AND MOTIVATION

1.1 Motivations for Supersymmetry

For the above noted reasons supersymmetry requires some good motivations.
We can broadly and historically classify them as follows:

1. Grand Unified Theory (GUT). This has been an attempt to unify
the gauge symmetries of the Standard Model, i.e. the symmetry group:

GSM “ Up1q ˆ SUp2q ˆ SUp3q . (1.3)

In the attempt to unify the coupling constants of the Standard Model,
better agreement is reached when supersymmetric versions of the Stan-
dard Model are considered. This motivation is concerned only with the
3 fundamental forces captured by the Standard Model.

2. Hierarchy Problem. The characteristic energy scale of electroweak in-
teraction is “unnaturally” far from the Planck scale of quantum gravity.
A new scale, such as a GUT scale with supersymmetry, can serve as the
“natural” intermediate scale. This motivation is concerned with some
missing link between the Standard Model and gravity, which is the only
fundamental force that is not captured by the Standard Model.

3. Qunatum Gravity. Supergravity theories, which incorporate local su-
persymmetry, and are the supersymmetric generalization of the Gen-
eral Theory of Relativity, are useful in searching for a candidate theory
of quantum gravity. For example, supergravity is an essential compo-
nent in the gauge-gravity duality and in string theory. This motivation
is concerned with uncovering a complete theory of gravity.

1.2 Coleman-Mandula Theorem

We then come back to the intriguing question: What is the most general sym-
metry of the S-matrix consistent with quantum field theory? We stated that
it is supersymmetry. The proof of this statement is based on the Coleman-
Mandula theorem (1967) [7], a powerful no-go theorem about the possible
symmetries of the S-matrix. This theorem assumes Poincaré invariance in
D “ 4 spacetime, that is the symmetry group:

ISOp1, 3q – SOp1, 3q ˙ R1,3 , (1.4)

with the following further assumptions:
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1. Only a finite number of particles are associated with one-particle states
of a given mass.

2. There are one-particle states of non-vanishing mass.

3. The S-matrix is analytic, i.e. scattering amplitudes are analytic func-
tions of invariants/observables.

Let G be a symmetry generator of the theory, and consider its action on
physical states to be as follows:

• G|0y “ 0, i.e. G keeps the vacuum state invariant (no spontaneous
symmetry breaking).

• G|iy “
ř

i1 Gi1i|i
1y, that is one-particle states are taken into other one-

particle states.

• G|ijyin “ Gi1i|i
1jy ` Gj1j|ij

1y, i.e. G acts on an in-state of more than
one particle, e.g. two-particle state |ijyin “ |iy|jy, as a direct sum of
acting on the one-particle states in turn.

To further explain the last point, let us recall that the symmetry generators
are the conserved charges, which are obtained according to Noether’s theorem
as a spatial integral of some current, G “

ş

d3x jIpxq. The state |ijyin is when
there is a wave packet of particle i, apart from another wave packet of particle
j (everywhere else is vacuum), so that we can split space into 2 parts, one
with i, the other with j, such that

G|ijyin “

ż

d3x jIpxq|ijy “

ż

i

d3x jIpxq|ijy `

ż

j

d3x jIpxq|ijy

“ Gi1i|i
1
y|jy ` Gj1j|iy|j1

y . (1.5)

The generalization to a multi-particle state is straightforward.
The action of a commutator of such operators on a multi-particle state is

similar. Consider H, another operator that acts similarly on particle states.
Then, we get:

GH|ijy “ G
`

Hi1i|i
1jy ` Hj1j|ij

1
y
˘

“ Hi1iGi2i1 |i
2jy ` Hj1jGj2j1 |ij2

y ` Hi1iGj1j|i
1j1

y ` Hj1jGi1i|i
1j1

y .
(1.6)

The last 2 terms drop, if we act with the commutator rG,Hs:

rG,Hs|ijy “ rG,Hsi2i|i
2jy ` rG,Hsj2j|ij

2
y . (1.7)
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If G satisfies such form of action on physical states, and commutes with
the S-matrix, i.e. rG,Ss “ 0 (that is the symmetry is preserved through the
scattering), then the Coleman-Mandula theorem asserts that:

• Either G is some Poincaré generator, P ;

• Or G commutes with the Poincaré algebra, i.e. rG,P s “ 0, that is G is
also a Lorentz scalar.

G can obviously also be a linear combination of these 2 options. Thus the
most general symmetry group of the S-matrix is the product:

GP ˆ Ginternal , (1.8)

where Ginternal stands for some internal symmetries (as opposed to spacetime
symmetries), that must commute with the Poincaré group, GP.

Note that if we drop our second assumption on the existence of massive
particles, and consider a theory where all particles are massless, then the
most general symmetry possible is more extensive. The Poincaré algebra,
gP, is extended then to the conformal algebra, gC:

tPµ,Mµνu Ď gP ÝÑ tPµ,Mµν , D,Kµu Ď gC , (1.9)

where Pµ represents the 4 translation generators, and the antisymmetric
Mµν , consists of the 6 Lorentz generators, whereas in the conformal algebra
there are in addition the dilatation generator, D, and the 4 special conformal
generators, Kµ. In this case, the most general symmetry group possible is
extended to the product:

GC ˆ Ginternal . (1.10)

We will return to the massless case later on, in section 3.2, where we will
learn about the superconformal algebra.

Yet, there is a more critical generic loophole in the Coleman-Mandula
theorem. If G is an operator of half-integral spin, rather than a bosonic op-
erator, then the assumption about the action on multi-particle states should
be modified according to the Dirac statistics. If G is a fermionic operator,
then its action on a two-particle state, e.g., reads:

G|ijyin “ Gi1i|i
1jy ` p´1q

fiGj1j|ij
1
y , fi ”

"

0 i boson;
1 i fermion.

(1.11)

It turns out that the Coleman-Mandula theorem did not treat the case of
fermionic generators!
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Thus, for G, H, some fermionic generators we get:

GH|ijy “ G
`

Hi1i|i
1jy ` p´1q

fiHj1j|ij
1
y
˘

“ Hi1iGi2i1 |i
2jy ` p´1q

fiHj1jp´1q
fiGj2j1 |ij2

y

` Hi1ip´1q
fi1Gj1j|i

1j1
y ` p´1q

fiHj1jGi1i|i
1j1

y , (1.12)

where
p´1q

fi1 “ p´1q
fi`1 , (1.13)

since if H is fermionic, then when it acts on i, it flips its statistics, so for
i fermionic, i1 is bosonic, and vice versa. Then the last 2 terms drop, if we
take the anti-commutator tG,Hu:

tG,Hu|ijy “ tG,Hui2i|i
2jy ` tG,Huj2j|ij

2
y . (1.14)

It is important to note that the anti-commutator itself is then a bosonic
operator, that satisfies the Coleman-Mandula theorem.

To recap, the Coleman-Mandula theorem can be bypassed by fermionic
symmetry generators, which are not Lorentz scalars, and are not forbidden by
the theorem. As we shall see shortly, these would be the new supersymmetry
generators!



2. Spinors Preliminary

Spinors play a starring role in supersymmetry, whose generators, as we shall
see shortly in chapter 3, are fermionic. For this reason, it is essential to first
make here a technical preliminary, in order to recall the spinorial representa-
tions of the Lorentz group, set up some notation and conventions, and enable
algebraic manipulations of spinors.

2.1 Spinorial Lorentz Representations

We recall that the Lorentz generators encapsulated in the Lorentz tensor
Mµν , can be traded for the Euclidean vector generators of rotations Ji, and
of boosts Ki, where i “ 1, 2, 3, whose commutation relations read:

rJi, Jjs “ iϵijkJk , rJi, Kjs “ iϵijkKk , rKi, Kjs “ ´iϵijkJk , (2.1)

where the latter relation is the famous Wigner rotation. To construct the
spinorial representations of the Lorentz group, we note that we can consider
instead the combinations:

Li ”
1

2
pJi ` iKiq , Ri ”

1

2
pJi ´ iKiq . (2.2)

In this basis we get the commutation relations:

rLi, Ljs “ iϵijkLk , rRi, Rjs “ iϵijkRk , rLi, Rjs “ 0 . (2.3)

We see then that the representations of Li, Ri, are each representations of
angular momentum, of the form |j,my characterized by j, and of dimension
2j ` 1 as ´j ď m ď j, where Li ` Ri “ Ji. So the spinorial representation
of the Lorentz group is of the form pj1, j2q characterized by j1,2 P 1

2
N0 with

j1 ` j2 “ j, and is of dimension p2j1 ` 1q ˆ p2j2 ` 1q, where Li, Ri, act
only on m1, m2, respectively. Under conjugation Li Ñ Ri, Ri Ñ Li, or
pj1, j2q˚ “ pj2, j1q. The smallest non-trivial representations are of dimension
2: p1

2
, 0q and its conjugate representation p0, 1

2
q.

12



2.1. SPINORIAL LORENTZ REPRESENTATIONS 13

Let us construct these representations explicitly. Consider the group of
2 ˆ 2 complex matrices, M , with detM “ 1, i.e. SLp2,Cq. We show that
SLp2,Cq is homomorphic to the restricted Lorentz group SO`p1, 3q (the
component of the Lorentz group connected to the identity element), through
the use of the Pauli matrices, σµ. They are defined here as

σ0
” ´I2 , σ1

”

ˆ

0 1
1 0

˙

, σ2
”

ˆ

0 ´i
i 0

˙

, σ3
”

ˆ

1 0
0 ´1

˙

.

(2.4)
The σ matrices span 2 ˆ 2 Hermitian matrices, such that any Hermitian
matrix can be written as

H “ vµσ
µ

“

ˆ

´v0 ` v3 v1 ´ iv2
v1 ` iv2 ´v0 ´ v3

˙

, (2.5)

with vµ real. The transformation H Ñ H 1 “ MHM :, with M P SLp2,Cq,
keeps H 1 Hermitian, so we can also write H 1 “ v1

µσ
µ. Moreover, there is an

invariance of the determinants under the transformation:

detH “ v20 ´ v21 ´ v22 ´ v23

“ detpMHM :
q “ pv1

0q
2

´ pv1
1q

2
´ pv1

2q
2

´ pv1
3q

2 . (2.6)

Thus H Ñ MHM : transforms a 4-vector vµ to a 4-vector v1
µ, and keeps the

invariance of ηµνv
µvν “ ηµνv

1µv1ν . This is similar to a Lorentz transformation,
Λ4ˆ4:

v1
“ Λv Ø Mvµσ

µM :
“ v1

µσ
µ , M˚vµσ

µMT
“ v1

µσ
µ , (2.7)

where we also noted another transformation with M˚, which acts similarly,
but is not equivalent. Thus this is the homomorphism between the SO`p1, 3q

and SLp2,Cq groups, where each element in the restricted Lorentz group
corresponds to 2 elements in SLp2,Cq, so that

SLp2,Cq{Z2 – SO`
p1, 3q . (2.8)

Furthermore, the Lie algebra of the group SLp2,Cq is spanned by traceless
2 ˆ 2 matrices: 1 “ det eA “ etrA ùñ trA “ 0. Such matrices are spanned
by 6 generators, which can be taken as: σi, iσi. Let us consider M close to
the identity matrix:

M “ I2 ` ipθiσ
i

´ iηiσ
i
q . (2.9)

Then, the change in H Ñ MHM : reads:

δH “ MHM :
´ H “ ipσiH ´ Hσiqθi ` pσiH ` Hσiqηi , (2.10)
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with

rσi, Hs “ rσi, vµσ
µ
s “ 2iϵijkvjσ

k , (2.11)

tσi, Hu “ tσi, vµσ
µ
u “ ´2pv0σ

i
` viσ

0
q , (2.12)

where we used the identity:

σiσj “ δijI2 ` iϵijkσk . (2.13)

We see then that there is a rotation of vµ in eq. (2.11), and a boost of vµ
in eq. (2.12). So if we map the Lorentz generators J i Ñ 1

2
σi, Ki Ñ ´ i

2
σi,

then Li Ñ 1
2
σi, Ri Ñ 0, and we land in the representation p1

2
, 0q, whereas if

we make the conjugate map, we land in the p0, 1
2
q representation, so we also

have that
SLp2,Cq – SUp2q ˆ SUp2q

˚ . (2.14)

2.2 Spinor Notation and Conventions

With the spinorial Lorentz representations at hand, it is time to introduce the
Van der Waerden notation: The right-handed Weyl spinors, that sit in the
conjugate representation p0, 1

2
q, carry a dotted spinor index, e.g. 9α, whereas

the left-handed spinor indices are undotted. The matrices M P SLp2,Cq

represent the action of the Lorentz group on left- and right-handed Weyl
spinors, such that

ψ1
α “ M β

α ψβ , ψ̄1
9α “ pM˚

q
9β
9α ψ̄ 9β . (2.15)

Thus, the spinors with undotted indices transform under the p1
2
, 0q repre-

sentation, whereas those with dotted indices transform under the conjugate
representation p0, 1

2
q. The left-handed Weyl spinor, ψα, that sits in p1

2
, 0q,

has then the following connection to a right-handed one:

pψαq
˚

“ ψ̄ 9α , pψαq
:

“ ψ̄ 9α . (2.16)

Note that an undotted lower index is a row index, while an undotted up-
per index is a column index, whereas the dotted indices follow the opposite
convention: an upper index is a row one, and a lower index is a column
one. From eqs. (2.7) and (2.15) we then infer that σµ has the spinor index
structure σµα 9α.

It is also easy to see that the totally antisymmetric tensors in 2D, defined
here as

ϵ12 “ ´ϵ21 ” 1 , ϵ12 “ ´ϵ21 ” 1 , (2.17)
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or

ϵαβ ”

ˆ

0 1
´1 0

˙

, ϵαβ ”

ˆ

0 ´1
1 0

˙

, (2.18)

are invariant under the action of SLp2,Cq, since

ϵγδMα
γM

β
δ “ ϵαβ detM “ ϵαβ , (2.19)

as detM “ 1, which is similar for lower and/or dotted indices. As the ϵ
tensors are invariant tensors of SLp2,Cq, they are used to raise and lower
spinor indices:

ψα “ ϵαβψβ , ψα “ ϵαβψ
β , (2.20)

where ϵαβϵβγ “ δ γα . The ϵ tensor can then also be used to raise the indices
of the σ matrices:

σ̄µ 9αα
” ϵ 9α 9βϵαβσµ

β 9β
, (2.21)

where it can be easily verified that

σ̄µ “ pσ0,´σiq . (2.22)

From the definition of the σ matrices, we find:

`

σµσ̄ν ` σν σ̄µ
˘ β

α
“ ´2ηµνδ βα ,

`

σ̄µσν ` σ̄νσµ
˘ 9α

9β
“ ´2ηµνδ 9α

9β
, (2.23)

where
ηµν ” diagp´1, 1, 1, 1q , (2.24)

as well as the completeness relations:

tr
`

σµσ̄ν
˘

“ ´2ηµν , (2.25)

σµα 9ασ̄
9ββ
µ “ ´2δ βα δ

9β
9α . (2.26)

Eqs. (2.23) make it easy to relate two-component to four-component
spinors through the following realization of the Dirac γ matrices:

γµ ”

ˆ

0 σµ

σ̄µ 0

˙

, (2.27)

which satisfy the Clifford algebra:

tγµ, γνu “ ´2ηµνI4 . (2.28)

This is the Weyl basis, in which Dirac spinors contain two Weyl spinors:

ΨD ”

ˆ

ψα
χ̄ 9α

˙

. (2.29)
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The Lorentz generators are then given in terms of

σµν β
α ”

1

4

`

σµα 9ασ̄
ν 9αβ

´ σνα 9ασ̄
µ 9αβ

˘

, σ̄µν 9α
9β

”
1

4

`

σ̄µ 9αασν
α 9β

´ σ̄ν 9αασµ
α 9β

˘

, (2.30)

as

Mµν
”
i

4
rγµ, γνs “ i

ˆ

σµν 0
0 σ̄µν

˙

, (2.31)

thus iσµν and iσ̄µν are the Lorentz generators on left- and right-handed Weyl
spinors, respectively.

Finally, we note that the completeness relation in eq. (2.25) can be used
to convert a vector to a bispinor, and vice versa:

vα 9α “ σµα 9αvµ , vµ “ ´
1

2
σ̄µ 9ααvα 9α “ ´

1

2
trpσ̄µvq . (2.32)

2.2.1 Spinor Algebra

In line with the conventions on lower/upper indices being row/column ones
for undotted indices, and vice versa for dotted indices, as noted e.g. following
eq. (2.16), we shall use the following spinor contraction convention:

ψχ ” ψαχα “ ´ψαχ
α

“ χαψα “ χψ , (2.33)

ψ̄χ̄ ” ψ̄ 9αχ̄
9α

“ ´ψ̄ 9αχ̄ 9α “ χ̄ 9αψ̄
9α

“ χ̄ψ̄ , (2.34)

where we used the fact that spinors anticommute. This is also in line with

pχψq
:

“ pχαψαq
:

“ ψ̄ 9αχ̄
9α

“ ψ̄χ̄ “ χ̄ψ̄ . (2.35)

Note that conjugation reverses the order of the spinors.
We conclude with some selected useful spinor identities, that can be easily

verified (as in, e.g., the problem sheets):

θαθβ “ ´
1

2
ϵαβθθ , θαθβ “ `

1

2
ϵαβθθ , (2.36)

θ̄ 9αθ̄
9β

“ `
1

2
ϵ 9α 9β θ̄θ̄ , θ̄ 9αθ̄ 9β “ ´

1

2
ϵ

9α 9β θ̄θ̄ , (2.37)

`

θϕ
˘`

θψ
˘

“ ´
1

2

`

ϕψ
˘

θθ , (2.38)

θσµθ̄θσν θ̄ “ ´
1

2
θθθ̄θ̄ηµν , (2.39)

the flip identity
χσµψ̄ “ ´ψ̄σ̄µχ , (2.40)

and finally the Fierz rearrangement formula
`

ψϕ
˘

χ̄ 9α “ ´
1

2

`

ϕσµχ̄
˘`

ψσµ
˘

9α
. (2.41)



3. Supersymmetry Algebra

Picking up the discussion from the end of section 1.2, in order to bypass the
limitations of the Coleman-Mandula theorem, let us generalize the notion of
a Lie algebra to include anti-commutators as well as commutators.

Let us define the super-commutator:

rÔa, Ôbu ” ÔaÔb ´ p´1q
fafbÔbÔa , fa,b P t0, 1u “ Z2 , (3.1)

where fa,b is the Z2 grading of the operators, with 0 for bosonic (or even)
elements of the algebra, and 1 for fermionic (or odd) ones. The brackets are
then taken as square or curly, according to the grading of operators therein.
Such an algebra is called a graded Lie algebra or a super-algebra, and its
Jacobi identities read:

p´1q
fcfarrÔa, ÔbuÔcu ` p´1q

fafbrrÔb, ÔcuÔau ` p´1q
fbfcrrÔc, ÔauÔbu “ 0 ,

(3.2)
also called super-Jacobi identities.

Let us denote bosonic operators by B, and fermionic ones by F , that is
B P g0, F P g1, where g0 and g1 are the even and odd parts, respectively, of
the graded Lie algebra, g:

g “ g0 ‘ g1. (3.3)

Then schematically, the super-algebra takes the form:

rB,B1
s “ B2 , rB,F s “ F 2 , tF, F 1

u “ B , (3.4)

which can also be encapsulated as follows:

rgi, gjs Ď gi`j , i, j P Z2 . (3.5)

It is evident that the bosonic algebra is a sub-algebra of the super-algebra.

With these new definitions we can now proceed to construct the super-
algebra for a QFT in D “ 4 spacetime dimensions.

17
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3.1 Super-Poincaré Algebra

To go beyond the Coleman-Mandula theorem, let us then consider some
fermionic generator Q. It can be decomposed into a sum of spinorial irre-
ducible representations of the Lorentz group, Qj1,m1; j2,m2 , with j1`j2 “ k` 1

2
,

k P N0. We will show now that k must be 0. Let us consider the anti-
commutator of Q, and its hermitian conjugate, with the highest projections
m1, m2, in each:

tQj1,j1; j2,j2 , pQj1,j1; j2,j2q
:
u “ tQj1,j1; j2,j2 , Q̄j2,j2; j1,j1u “ Ôj1`j2,j1`j2 , (3.6)

from the addition of angular momenta. As we already noted at the end of
section 1.2, Ô is a bosonic operator, and thus satisfies the Coleman-Mandula
theorem. Therefore it is either a Poincaré generator or it is vanishing. In
order to identify Ô, let us then recall the spinorial Lorentz representations
of the Poincaré generators, P “ tPµ, Li, Riu:

• The energy-momentum 4-vector Pµ transforms in the representation
p1
2
, 1
2
q, i.e. it carries the spinorial indices Pα 9β.

• The Lorentz generators Li and Ri are 3-vectors, which commute, thus
they sit in the representations p1, 0q and p0, 1q, respectively. In terms
of spinorial indices they are represented as the bispinors Mαβ, M 9α 9β,
respectively, where the bispinors are symmetric in their indices.

Then for j1 ` j2 ą 1
2
, Ô must vanish. But Ô “ QQ: ` Q:Q is a positive-

definite operator with Q the “square root” of Ô. So for j1 ` j2 ą 1
2
, we

infer that Q “ 0. Since the operator with the highest projections vanish,
all other projections in the irreducible representation vanish as well, i.e. the
whole irreducible representation vanishes.

We conclude then that the fermionic generators can only be Qj1,j2 with
j1 ` j2 “ 1

2
, so that we can only have the pair Qα, Q̄ 9α “ pQαq:, sitting in the

representations p1
2
, 0q, p0, 1

2
q, respectively, and we can have N P N such pairs.

Thus the most extended symmetry possible for a general QFT in D “ 4 is
generated by the algebra:

gSP “ gP ‘ ginternal ‘ QI
α, Q̄

I
9α, I P t1, . . . ,N u , (3.7)

called the super-Poincaré algebra, which constitutes supersymmetry! This is
the celebrated result of the Haag, Lopuszanski, and Sohnius theorem (1975)
[8]. More precisely, for N “ 1 this is called simple supersymmetry, whereas
for N ą 1 this is called extended supersymmetry. As we shall see later
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in section 3.4, N actually has maximal values, dependent on the spacetime
dimensionality D.

Let us press on to uncover the (anti-)commutation relations of the super-
Poincaré algebra. From representation considerations, we can infer:

tQI
α, Q̄

J
9β
u “ HIJ Pα 9β , (3.8)

since the anti-commutator must sit in the representation p1
2
, 1
2
q, and as noted

the Coleman-Mandula theorem then asserts that this bosonic operator must
be a Poincaré generator. Through conjugation of the anti-commutator, we
can see that HIJ is a hermitian matrix, so it can be diagonalized and nor-
malized by a proper choice of basis. Thus the anti-commutator is taken
as:

tQI
α, Q̄

J
9β
u “ 2δIJ Pα 9β . (3.9)

Let us check the commutation relations of the new fermionic generators
with the Poincaré generators. We start with the energy-momentum genera-
tor:

rPα 9β, Q
I
γs “ ϵαγX

IJQ̄J
9β

ùñ rPβ 9α, Q̄
I
9γs “ ϵ 9α 9γpX˚

q
IJ 1

QJ 1

β , (3.10)

where from representation considerations the commutators must sit in p0, 1
2
q,

p1
2
, 0q, respectively, since we saw that a spin 3{2 operator, as in e.g. p1, 1

2
q,

does not exist in the extended supersymmetric algebra, and the second com-
mutator is obtained from the first by conjugation. We will now show that
the matrix of coefficients X must be equal to 0. On the one hand, we can
easily write:

rPα 9β, rPα 9β, tQ
I
γ, Q̄

J
9δ
uss “ 0 . (3.11)

On the other hand, using the super-Jacobi identity:

rP, tQ,Q1
us “ tQ, rP,Q1

su ` tQ1, rP,Qsu , (3.12)

we can also write:

rPα 9β, rPα 9β, tQ
I
γ, Q̄

J
9δ
uss “ rPα 9β,

`

tQI
γ, rPα 9β, Q̄

J
9δ
su ` tQ̄J

9δ
, rPα 9β, Q

I
γsu

˘

s

“ rPα 9β,
`

ϵ 9β 9δpX
˚
q
JK

tQI
γ, Q

K
α u ` ϵαγX

IL
tQ̄J

9δ
, Q̄L

9β
u
˘

s

“ ϵ 9β 9δpX
˚
q
JK

`

tQI
γ, rPα 9β, Q

K
α su ` tQK

α , rPα 9β, Q
I
γsu

˘

` ϵαγX
IL

`

tQ̄J
9δ
, rPα 9β, Q̄

L
9β
su ` tQ̄L

9β
, rPα 9β, Q̄

J
9δ
su

˘

“ ϵ 9β 9δϵαγpX˚
q
JKXIL

tQK
α , Q̄

L
9β
u

` ϵαγϵ 9β 9δX
IL

pX˚
q
JK

tQ̄L
9β
, QK

α u

“ 4ϵαγϵ 9β 9δPα 9βδKLX
IL

pX˚
q
JK

“ 4ϵαγϵ 9β 9δPα 9βpXX:
q
IJ .

(3.13)
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Comparing equations (3.11) and (3.13), we infer that XX: “ 0, but XX: is
positive-definite, thus X “ 0.

We can then infer:

rPα 9β, Q
I
γs “ rPα 9β, Q̄

I
9γs “ 0 , (3.14)

so the supersymmetric charges commute with the energy-momentum gener-
ator. Note that thus far these commutation relations of the new fermionic
generators are similar to those that the Coleman-Mandula would have im-
posed on bosonic generators.

To see the differences then, let us check the commutation relations of
the supersymmetric generators with the homogenous Lorentz generators, Li
and Ri. These relations are easier to find once we recall that the spinorial
representations of these generators are the symmetric bispinors Mαβ, M 9α 9β,
respectively. Then, we get for Li:

rMαβ, Q
I
γs “ i

`

ϵαγQ
I
β ` ϵβγQ

I
α

˘

, (3.15)

since from representation considerations the commutator must sit in p1
2
, 0q,

and we saw that a spin 3{2 operator, as in p3
2
, 0q, does not exist in the

extended supersymmetric algebra, whereas:

rMαβ, Q̄
I
9γs “ 0 , (3.16)

since from representation considerations a non-vanishing commutator would
sit in p1, 1

2
q, and as we noted a spin 3{2 operator does not exist in the extended

supersymmetric algebra. Similarly, for Ri we get:

rM
9α 9β, Q

I
γs “ 0 , rM

9α 9β, Q̄
I
9γs “ i

`

ϵ 9α 9γQ̄
I
9β

` ϵ 9β 9γQ̄
I
9α

˘

. (3.17)

Thus, this is where we see the difference in the fermionic supersymmetric gen-
erators, which do not commute with the Lorentz generators of the Poincaré
algebra. For completeness, we also include here the non-vanishing commu-
tation relations of the supercharges with the Lorentz generators in their ten-
sorial representation:

rMµν , Q
I
αs “ ipσµνQ

I
qα , rMµν , Q̄

I 9α
s “ ipσ̄µνQ̄

I
q

9α . (3.18)

Let us press on to uncover the new super-Poincaré algebra by also con-
sidering the commutation relations between the fermionic elements of the
algebra. For the anti-commutator of the supercharges, we have:

tQI
α, Q

J
βu “ ϵαβZ

IJ
������
`MαβY

IJ , (3.19)
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where the first and second terms are the anti-symmetric and symmetric parts,
respectively. From representation considerations and the Coleman-Mandula
theorem, the second term would sit in p1, 0q, that is the Lorentz generator
Li. However, due to eq. (3.14), the LHS commutes with Pµ, whereas on the
RHS the first term also does, but the second term does not commute with
Pµ, and thus the latter would be inconsistent. It is also easy to get:

ZIJ
“ ´ZJI , (3.20)

since the LHS is symmetric under the simultaneous interchange of both the
spinorial and supercharge indices. In particular for N “ 1, i.e. for simple
supersymmetry, ZIJ “ Z11 “ 0.

Let us consider the commutation relations of ZIJ (for N ą 1). First, we
can write:

rQ̄K
9γ , Z

IJ
s „ rQ̄K

9γ , tQ
I
α, Q

J
βus “ 0 , (3.21)

where the last equality is obtained from the Jacobi identity:

rQ̄K
9γ , tQ

I
α, Q

J
βus `((((((((

rQI
α, tQ

J
β , Q̄

K
9γ us `

��������
rQJ

β , tQ̄
K
9γ , Q

I
αus “ 0 , (3.22)

in which the last two terms drop due to eqs. (3.9) and (3.14). Next, we
consider:

rZIJ , QK
α s “ XIJK LQL

α , (3.23)

from representation considerations as ZIJ is a Lorentz scalar, and XIJK L is
some matrix of numerical coefficients. We will show now that X “ 0. First,
using Jacobi identity, we can write:

trZIJ , QK
α s, Q̄M

9β
u “ ´

(((((((((
rtQK

α , Q̄
M
9β

u, ZIJ
s `

(((((((((
trQ̄M

9β
, ZIJ

s, QK
α u “ 0 , (3.24)

where the first term drops due to eq. (3.9), and since ZIJ commutes with
the Poincaré algebra, and the second term drops due to eq. (3.21). From
eqs. (3.23), (3.24), we infer:

tXIJK LQL
α, Q̄

M
9β

u “ 0 , (3.25)

which is true for any spinor index, and any supercharge indices, so we can
write:

tXIJK LQL
α, pX

IJKM
q

˚Q̄M
9α u “ 0 . (3.26)

If we denote the first operator in the anti-commutator by Y , then we got
Y Y : ` Y :Y “ 0, and since this is a sum of positive-definite operators, we
infer that Y “ 0, and thus X “ 0. Therefore, we conclude:

rZIJ , QK
α s “ 0 , (3.27)
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and thus far we have seen then, that ZIJ commutes with all supercharges,
as well as with the Poincaré algebra.

Let us consider now the commutation relations of ZIJ among themselves.
First from eqs. (3.19), (3.27), and the use of a Jacobi identity, it is easy to
see:

rZIJ , ZKL
s “ rZIJ , tQK

1 , Q
L
2 us “ 0 ùñ rZ̄IJ , Z̄KL

s “ 0 , (3.28)

where the second equality is obtained from the first via conjugation (in the
supercharge indices), using Z̄ ” Z:, and we also have:

tQ̄I
9α, Q̄

J
9β
u “ ϵ

9α 9βZ̄
IJ . (3.29)

Then similarly, from eqs. (3.21), (3.29), and the use of a Jacobi identity, we
get:

rZIJ , Z̄KL
s “ rZIJ , tQ̄K

91
, Q̄L

92
us “ 0 . (3.30)

To conclude, ZIJ and its conjugate, also commute among themselves.
According to the Coleman-Mandula theorem, the bosonic subalgebra

is gP ‘ ginternal, such that the generators of the internal symmetry group,
Ginternal, commute with the Poincaré algebra, i.e. they are also Lorentz scalars.
Let us then proceed to consider the commutators of the generators of Ginternal

with ZIJ . First, we denote the generators of Ginternal in some representation
r by Tprq, and thus we can write:

rTprq, Q
I
αs “ XIJQJ

α , (3.31)

from representation considerations. Using this together with eq. (3.19), and
a Jacobi identity, we can then write:

rTprq, Z
IJ

s “ rTprq, tQ
I
1, Q

J
2 us “ trTprq, Q

I
1s, QJ

2 u ` trTprq, Q
J
2 s, QI

1u

“ XIK
tQK

1 , Q
J
2 u ` XJK

tQK
2 , Q

I
1u

“ XIKZKJ
´ XJKZKI

“ M IJ KLZKL , (3.32)

where M is some matrix of coefficients between pairs of supercharge indices.
Thus we can already see that rginternal, Zs “ Z 1, and Z Ď ginternal, so the Z
operators form an Abelian subalgebra of ginternal. Furthermore, we will show
now that the Z operators commute with ginternal as well. We recall then, that
Tprq and Z are both represented by finite matrices in the same representation,
so we can consider the following trace:

tr
`

rTprq, Z
IJ

sZ̄KL
˘

“ tr
`

TprqZ
IJ Z̄KL

´ ZIJTprqZ̄
KL

˘

“ tr
`

ZIJ Z̄KLTprq ´ Z̄KLZIJTprq

˘

“ tr
`

rZIJ , Z̄KL
sTprq

˘

“ 0 , (3.33)
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where we used the cyclicity of the trace, and eq. (3.30). Using eqs. (3.32),
(3.33), we can now write:

tr
`

M IJ MNZMN
`

M IJ KL
˘˚
Z̄KL

˘

“ 0 . (3.34)

But pMZqpMZq: is positive-definite, and the trace is invariant, so we can
infer that MZ “ 0.

We can conclude then:

rTprq, Z
IJ

s “ 0 ùñ rginternal, Z
IJ

s “ 0 , I, J P t1, . . . ,N u , (3.35)

thus ZIJ commute with all of the generators of the super-Poincaré algebra,
so they belong to the center of the algebra, and are called central charges.
The central charges then form an Abelian subalgebra of the super-Poincaré
algebra, inside the algebra of the internal symmetry, ginternal.

3.1.1 R-Symmetry

Before we conclude our discussion on the super-Poincaré algebra for QFTs
with massive particles, let us note here that there is another possible sym-
metry, which is implicit in the super-Poincaré algebra, called R-symmetry.
This symmetry is an automorphism of the super-Poincaré algebra. In D “ 4
spacetime dimensions it can make unitary rotations among the supercharges
in the Weyl basis, while leaving the supersymmetric algebra invariant. Thus,
the maximal R-symmetry possible for a supersymmetry of N supercharges
is UpN q, with the supercharges transforming in the fundamental representa-
tion, and the conjugate supercharges in the anti-fundamental representation.

For example, in a simple supersymmetry with N “ 1 the maximal R-
symmetry is Up1qR. It acts on the supercharges as follows:

Qγ Ñ Q1
γ “ expp´iαqQγ , Q̄ 9γ Ñ Q̄1

9γ “ expp`iαqQ̄ 9γ , α P R , (3.36)

which clearly leaves the supersymmetric algebra invariant. We will get a
better understanding of how this symmetry may be realized as of chapter
5, after we have introduced the concepts of superspace and superfields in
chapter 4. Moreover, as we shall see shortly in section 3.2, when the super-
Poincaré algebra is extended to a superconformal algebra, R-symmetry shows
up explicitly as an additional generator in the algebra.

3.2 Superconformal Algebra

Let us now turn to the case of QFTs without massive particles, i.e. massless
QFTs. We already noted in section 1.2 on the Coleman-Mandula theorem,
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that the most general symmetry of a theory without massive particles, ex-
cluding fermionic generators, is extended as follows:

gP ‘ ginternal Ñ gC ‘ ginternal . (3.37)

With conformal symmetry there is no mass or length scale, hence there is an
invariance with respect to changes of scale, namely scale invariance. In D “

4 spacetime dimensions the conformal algebra has 5 additional generators
beyond the 10 Poincaré generators.

Before we proceed to uncover the extension of the conformal algebra to
a superconformal algebra by the addition of fermionic generators, let us get
a bit familiar with conformal symmetry by presenting its generators in dif-
ferential form. For the Poincaré algebra we recall that we have:

Pµ “ ´iBµ , (3.38)

Mµν “ i
`

xµBν ´ xνBµ
˘

. (3.39)

In the conformal algebra the following generators are added:

D “ ´ixνBν , (3.40)

Kµ “ i
`

x2Bµ ´ 2xµx
ν
Bν

˘

. (3.41)

The first equation shows the dilatation generator, a Lorentz scalar, that
generates rescaling transformations, e.g., xµ Ñ αxµ, where α ą 0 is some
rescaling factor. The second equation shows the generator of special confor-
mal transformations, such as inversion, xµ Ñ xµ{x2. Obviously, the special
conformal generator is a 4-vector.

Using this differential form of the generators, the conformal algebra can
be inferred, where we note only the non-vanishing commutation relations:

rMµν ,Mρσs “ i
`

ηµσMνρ ` ηνρMµσ ´ ηµρMνσ ´ ηνσMνρ

˘

, (3.42)

rMµν , Pρs “ ´i
`

ηµρPν ´ ηνρPµ
˘

, (3.43)

from the Poincaré algebra, and the additional relations:

rMµν , Kρs “ ´i
`

ηµρKν ´ ηνρKµ

˘

, (3.44)

rPµ, Kνs “ ´2i
`

ηµνD ` Mµν

˘

, (3.45)

where the last relation may be further understood in terms of the spinorial
representation:

rPα 9β, Kγ 9δs “ 2i
`

2ϵαγϵ 9β 9δD ´ ϵ 9β 9δMαγ ´ ϵαγM 9β 9δ

˘

, (3.46)



3.2. SUPERCONFORMAL ALGEBRA 25

since from representation considerations, we should get on the RHS p0, 0q,
p1, 0q and p0, 1q, but not p1, 1q, since a spin 2 operator does not exist in
the conformal algebra. Finally, the commutation relations with D can also
be easily fixed from the combination of dimensional considerations, where
rP s “ 1, rKs “ ´1, rDs “ 0, and the familiar considerations of spinorial
representations. Thus, the non-vanishing relations with D read:

rD,Pα 9βs “ ` iPα 9β , (3.47)

rD,Kα 9βs “ ´ iKα 9β . (3.48)

In a similar manner to the extension of the Poincaré algebra to a super-
Poincaré algebra, the conformal algebra can be even further extended to the
superconformal algebra through the addition of new fermionic generators.
We begin then by considering the commutation relations of the additional
bosonic generators in the conformal algebra with the Poincaré supercharges,
defined via eq. (3.9). Recalling that we are also guided now by dimensional
considerations, we note that from eq. (3.9), it is easy to infer that rQs “ 1{2.
Then again by combining dimensional and spinor-representation considera-
tions, it is easy to write the commutation relation with the dilatation gener-
ator:

rD,QI
αs “

i

2
QI
α , rD, Q̄I

9αs “
i

2
Q̄I

9α , (3.49)

where the second relation is obtained from the first by conjugation.

For the special conformal generator we write the commutation relation:

rKα 9β, Q
I
γs “ 2ϵαγS̄

I
9β
, (3.50)

where we uncover a new conformal supercharge! It has a new dimension of
rSs “ ´1{2, and sits in p0, 1

2
q, since the extension of a bosonic algebra to

include fermionic operators does not allow for operators of spin 3{2, as in
p1, 1

2
q. The new superconformal charge is then defined as follows:

S̄I9β ” ´
1

4
ϵαγrKα 9β, Q

I
γs . (3.51)

By conjugation of eq. (3.50) we obtain:

rKα 9β, Q̄
I
9γs “ 2ϵ 9β 9γS

I
α . (3.52)

Thus, the superconformal algebra doubles the supercharges with respect to
the super-Poincaré algebra.
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Let us check then the commutation relations of the new supercharges
with the Poincaré generators. First we consider:

rPα 9β, S̄
I
9γs “ ´

1

4
ϵρσrPα 9β, rKρ 9γ, Q

I
σss “ ´

1

4
ϵρσrrPα 9β, Kρ 9γs, QI

σs

“ ´
i

2
ϵρσ

`

2ϵαρϵ 9β 9γrD,QI
σs ´ ϵ 9β 9γrMαρ, Q

I
σs

˘

“
1

2
ϵ 9β 9γ

`

QI
α ´ ϵρσpϵασQ

I
ρ ` ϵρσQ

I
αq

˘

“ 2ϵ 9β 9γQ
I
α , (3.53)

where in the first line for the second equality we used the Jacobi identity
and eq. (3.14), in the second line we used eq. (3.46), and in the third line
for the first equality we used eqs. (3.49), (3.15). In fact, the combination of
dimensional, representation, and symmetry considerations, already fixes the
result, up to the numerical coefficient of proportionality, for which the above
computation was required. By conjugation of the last result we obtain:

rPα 9β, S
I
γs “ 2ϵαγQ̄

I
9β
. (3.54)

It is easy to verify that the commutation relations of the conformal su-
percharges with the Lorentz generators, Li, Ri, are analogous to those with
the Poincaré supercharges, e.g. for Li:

rMαβ, S
I
γs “ i

`

ϵαγS
I
β ` ϵβγS

I
α

˘

, rMαβ, S̄
I
9γs “ 0 , (3.55)

where the relations with Ri are simply obtained by conjugation.
In fact, it is also easy to verify that similar to the commutation relation

of Q with its conjugate Q̄, the new supercharges S, S̄, satisfy the following
relation:

tSIα, S̄
J
9β
u “ 2δIJKα 9β , (3.56)

so that the superconformal charges are the “square root” of the special con-
formal generator. Similar to the Poincaré supercharges in the absence of
central charges, which is necessarily implied in the superconformal algebra,
as shown in the problem sheet, for the conformal supercharges we also have
the relation:

tSI , SJu “ tS̄I , S̄Ju “ 0 . (3.57)

From dimensional and representation considerations it is also easy to infer:

rKρ 9σ, S̄
I
9β
s “ 0 , (3.58)

since there is no generator of dimension ´3{2. By conjugation we also get
rK,SIs “ rK, S̄Is “ 0, similar to rP,QIs “ rP, Q̄Is “ 0. Finally, it is also
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easy to find the commutation relations of the conformal supercharges with
D:

rD,SIαs “ ´
i

2
SIα , rD, S̄I9αs “ ´

i

2
S̄I9α . (3.59)

Our final task is to find the commutation relations between the Poincaré
and the conformal supercharges. First, it is easy to infer:

tQI
α, S̄

J
9β
u “ tQ̄I

9α, S
J
β u “ 0 , (3.60)

since there is no bosonic generator of dimension 0 that sits in p1
2
, 1
2
q. Pro-

ceeding to the last commutation relation between the supercharges, we write:

tQI
α, S

J
β u “ ϵαβ

`

c1T
IJ

` c2δ
IJD

˘

` c3δ
IJMαβ , (3.61)

where the first bracketed term, and the second one, are the anti-symmetric,
and symmetric parts, that sit in p0, 0q, and p1, 0q, respectively, where c1, c2,
c3, are some numerical coefficients.

What is T IJ? It turns out that we need to introduce a new symmetry
generator for the closure of the superconformal algebra. We shall see now
that T IJ is a Lorentz scalar, but unlike the dilatation generator, it actually
commutes with the whole (bosonic) conformal algebra. Yet, it does not
commute with the (fermionic) supercharges: neither with the super-Poincaré
charges, nor with the superconformal ones.

Let us define then:

T IJ ” ϵαβtQI
α, S

J
β u ` 4iδIJD . (3.62)

The contraction of eq. (3.61) with ϵαβ removes the symmetric part of it, and
by this definition: c1 “ ´1{2, c2 “ 2i. Since we are left with the p0, 0q part of
eq. (3.61), T IJ clearly commutes with the Lorentz generators. Let us check
the commutator with Pα 9β:

rT IJ , Pγ 9δs “ ϵαβrtQI
α, S

J
β u, Pγ 9δs ` 4iδIJ rD,Pγ 9δs

“ ´ϵαβtrPγ 9δ, S
J
β s, QI

αu ´ 4δIJPγ 9δ

“ 2
`

tQ̄J
9δ
, QI

γu ´ 2δIJPγ 9δ

˘

“ 0 , (3.63)

where in the second equality we used the Jacobi identity and eqs. (3.14),
(3.47), and in the third, and last equalities, we used eqs. (3.54), and (3.9),
respectively. It is easy to show that in addition:

rT IJ , Kα 9βs “ rT IJ , Ds “ 0 . (3.64)



28 3. SUPERSYMMETRY ALGEBRA

It remains to check the commutation relations of T IJ with the super-
charges, for example:

rT IJ , Q̄K
9α s “ ϵβγrtQI

β, S
J
γ u, Q̄K

9α s ` 4iδIJ rD, Q̄K
9α s

“ ´ϵβγrtQI
β, Q̄

K
9α u, SJγ s ´ 2δIJQ̄K

9α “ ´2ϵβγδIKrPβ 9α, S
J
γ s ´ 2δIJQ̄K

9α

“ ´4ϵβγϵβγδ
IKQ̄J

9α ´ 2δIJQ̄K
9α “ 8δIKQ̄J

9α ´ 2δIJQ̄K
9α , (3.65)

where in the second equality we used the Jacobi identity. So we see that T IJ

rotates the supercharges among themselves: Q̄K Ñ Q̄J . It is also easy to
show that T IJ is Hermitian, and then by conjugation find the commutator
with the supercharge QK , which similarly yields QI . Thus, T rotates Q, Q̄,
and it can be similarly shown to also rotate S, S̄.

This symmetry, acting on the supercharges, is called R-symmetry, as
we noted in section 3.1.1. The novelty here is that in the superconformal
algebra a generator of R-symmetry is included, whereas in non-conformal
supersymmetric theories R-symmetry is not a part of the algebra, nor does
it even always hold. Finally, we can fully fix the numerical coefficients in
eq. (3.61) by a proper computation.

To recap, our lessons in the transition from the super-Poincaré to the
superconformal algebra can be summarized as follows:

• The supersymmetry is “doubled”: For each of the N pairs QI , Q̄I , of
fermionic super-Poincaré charges, there is an additional pair of fermionic
superconformal charges, SI , S̄I , of dimension rSs “ ´1{2.

• The commutator between the two types of supercharges, QI and SJ ,
yields a new bosonic generator of R-symmetry, T IJ , which rotates each
set of fermionic supercharges, and of their conjugates, onto itself. Thus,
there is another generator, which is conformally invariant, in the inter-
nal symmetry algebra, T IJ P ginternal, of dimension rT s “ 0.

3.3 Supersymmetric Representations

We return to the super-Poincaré algebra, and ask what are the representa-
tions of its one-particle states?

Let us first recall the irreducible representations of the Poincaré algebra.
Using the Pauli-Lubanski pseudovector which is defined as follows:

Wµ ”
1

2
ϵµνρσPνMρσ , (3.66)
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the only Casimir operators of the Poincaré algebra can be shown to be:

C1 “ PµP
µ , C2 “ WµW

µ , (3.67)

which commute with every Poincaré generator. For the Poincaré algebra we
know then that there are two kinds of irreducible representations:

1. Massive Particles. For PµP
µ “ ´M2 ă 0 the representation is labelled

by its mass and spin, defined by the 2 Casimir operators in eq. (3.67).
For a massive particle of energy-momentum pµ we can then go to the
rest frame:

pµ “ pM, 0⃗q . (3.68)

These particles are then classified in terms of representations of the
“little group” that leaves eq. (3.68) invariant, namely SOp3q. We then
have:

W µ
“ p0,W i

q , W i
“ P0J

i , (3.69)

where Ji is the SOp3q spin operator, that satisfies:

J i ” ´
1

2
ϵijkMjk , rJ i, J js “ iϵijkJk . (3.70)

Therefore the massive particles are classified by their massM and their
spin j P 1

2
N0:

C1 “ ´M2 , C2 “ M2JiJ
i

“ M2jpj ` 1q , (3.71)

where j is the highest projection of angular momentum on the z axis.
Thus at a fixed mass M2 a representation of the Poincaré group is
a representation of SOp3q, or more precisely of SUp2q, since the spin
can be half-integer. The spin-j representation consists of 2j ` 1 states,
|j,my:

Jz|j,my “ m|j,my , ´j ď m ď j . (3.72)

2. Massless Particles. For PµP
µ “ 0 the representation is labelled by its

energy and helicity. For a massless particle we can go to the frame:

pµ “ pE, 0, 0, Eq , E ą 0 . (3.73)

These particles are then classified by their energy, and helicity, λ P 1
2
Z,

which is a representation of the little group SOp2q, or more precisely of
Up1q. The helicity operator corresponds to Jz “ ´Mxy by definition:

Jz|E, λy “ λ|E, λy , (3.74)

which amounts to having only 1 state in the representation. Yet, since
QFTs are typically CPT-invariant, and CPT reverses the sign of helic-
ity, we actually get 2 states: λ,´λ.
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Let us now build the supermultiplets, which are the collections of one-
particles states, that form representations of the super-Poincaré algebra.
First, we obviously have:

rC1, Qαs “ rPµP
µ, Qαs “ 0 , rC1, Q̄ 9αs “ rPµP

µ, Q̄ 9αs “ 0 , (3.75)

due to eq. (3.14), so all particles or irreducible representations in a super-
multiplet have the same invariant mass, M2. In other words, C1 is also a
Casimir of the full super-Poincaré algebra.

Yet, this is not the case for C2. The action of Jz on the supercharges can
be written in the compact form:

rJz, Qαs “ ´
1

2
pσzq βα Qβ “ `

p´1qα

2
Qα , (3.76)

rJz, Q̄ 9αs “ `
1

2
Q̄ 9βpσzq

9β
9α “ ´

p´1qα

2
Q̄ 9α , (3.77)

using eqs. (3.70), (3.18), (2.30), (2.21), (2.13), where α “ 1, 2.
Before we proceed then to treat each of the massive or massless cases, let

us prove first that any representation of the supersymmetric algebra contains
an equal number of bosonic and fermionic states, nB and nF , respectively,
regardless of whether it is massive or massless. To this end we introduce the
fermion number operator:

p´1q
F

”

"

p´1qF |by “ `|by
p´1qF |fy “ ´|fy

, (3.78)

where |by or |fy are bosonic or fermionic states, respectively. We are then
interested to compute:

trpp´1q
F

q “ nB ´ nF , (3.79)

where the trace is over the whole finite-dimensional Hilbert space of the su-
persymmetric representation. Since Pµ is fixed for the whole supersymmetric
representation due to eq. (3.14), we can write:

2δ11Pα 9β tr
`

p´1q
F

˘

“ tr
`

p´1q
F2δ11Pα 9β

˘

“ tr
`

p´1q
F

tQ1
α, Q̄

1
9β
u
˘

“ tr
`

p´1q
F

`

Q1
αQ̄

1
9β

` Q̄1
9β
Q1
α

˘˘

“ tr
`

p´1q
FQ1

αQ̄
1
9β

` Q1
αp´1q

F Q̄1
9β

˘

“ tr
`

p´1q
F

`

Q1
αQ̄

1
9β

´ Q1
αQ̄

1
9β

˘˘

“ 0 , (3.80)

where for the third line we used the cyclicity of the trace, and in the fourth
line we used:

p´1q
FQ “ ´Qp´1q

F , (3.81)
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from the definition in eq. (3.78). Thus, for a non-vanishing pµ of the super-
multiplet we infer from eqs. (3.79), (3.80):

pµ ‰ 0 ùñ tr
`

p´1q
F

˘

“ nB ´ nF “ 0 . (3.82)

3.3.1 Massive Supermultiplets

Let us first construct representations of supersymmetry for massive one-
particle states, P 2 “ ´M2. Boosting to the rest frame, where P µ “ pM, 0⃗q,
the supersymmetric algebra takes the form:

tQI
α, Q̄

J
9β
u “ 2Mδα 9βδ

IJ , (3.83)

tQI
α, Q

J
βu “ tQ̄I

9α, Q̄
J
9β
u “ 0 , (3.84)

where we treat here the simple case without central charges. Let us define
the rescaled generators:

aIα ”
1

?
2M

QI
α , paIαq

:
”

1
?
2M

Q̄I
9α , (3.85)

which satisfy the following commutation relations:

taIα, pa
J
βq

:
u “ δαβδ

IJ , (3.86)

tpaIαq
:, paJβq

:
u “ taIα, a

J
βu “ 0 . (3.87)

This is similar to the Clifford algebra of 2N fermionic creation and annihi-
lation operators of Dirac fields, paIαq: and aIα, respectively.

The representations of this algebra are well-known. They are constructed
from the so-called Clifford vacuum Ω, defined by aIαΩ “ 0 for any aIα, where
in contrast to the usual vacuum, Ω satisfies P 2Ω “ ´M2Ω. The states are
built by applying the creation operators paIαq: to Ω:

Ω
pnq

pI1α1q¨¨¨pInαnq
“

1
?
n!

paI1α1
q

:
¨ ¨ ¨ paInαn

q
:Ω . (3.88)

Each pair of indices pIiαiq can take one of 2N different values, since the paIiαi
q:

anti-commute, and Ωpnq is anti-symmetric in the exchange of 2 such pairs of
indices pIiαiq, pIjαjq. For any given n, there are then

`

2N
n

˘

different states,
and summing over all possible n gives the dimension of the representation:

2N
ÿ

n“0

ˆ

2N
n

˙

“ p1 ` 1q
2N

“ 22N . (3.89)
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Since there is always an equal number of bosonic and fermionic states, then
in this massive representation there are 22N´1 bosonic states, and 22N´1

fermionic states, adding up to the total 22N .

Note that from eqs. (3.77), (3.85), we have:

rJz, paI1q
:
s “ `

1

2
paI1q

: , rJz, paI2q
:
s “ ´

1

2
paI2q

: , (3.90)

which implies:

JzpaI1q
:
|j,my “ pm ` 1

2
qpaI1q

:
|j,my , JzpaI2q

:
|j,my “ pm ´ 1

2
qpaI2q

:
|j,my .
(3.91)

So the state with the highest spin in the representation is obtained by sym-
metrizing in as many supercharge indices as possible, pa11q

: ¨ ¨ ¨ paN1 q:|jy:

Jzpa11q
:

¨ ¨ ¨ paN1 q
:
|jy “

`

j ` N
2

˘

pa11q
:

¨ ¨ ¨ paN1 q
:
|jy . (3.92)

For example, for N “ 1, acting with paαq: on a spin-j set of states, where
j ą 0, we obtain the states:

j b 1
2

“ pj ´ 1
2
q ‘ pj ` 1

2
q . (3.93)

Acting with the two creation operators, we obtain ϵαβpaαq:paβq:|j,my, which
is of the same spin as |jy. Thus the massive supermultiplet has the form:

|jy
loomoon

2j`1

, a:
α|jy „ |j ´ 1

2
y

loomoon

2j

‘ |j ` 1
2
y

loomoon

2j`2

, a:

1a
:

2|jy
loomoon

2j`1

, (3.94)

where we noted the number of states in each set. As expected, the number
of bosonic or fermionic states, each adds up to 4j` 2, which then adds up to
the expected total of p2j`1qˆ22ˆpN“1q “ 8j`4 states in the supermultiplet.
Let us further specify this example to two key multiplets.

Massive chiral multiplet. Consider the spin-0 case for the Clifford vac-
uum. Then we get 2 scalar bosons, and a spin-1

2
fermion in the multiplet:

bosons: |0y , a:

1a
:

2|0y ,

fermions: a:
α|0y „ |1

2
y ,

(3.95)

with 2 bosonic and 2 fermionic states, thus 4 states in total, as expected.
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Massive vector multiplet. This multiplet starts from a spin-1
2
fermion.

We then get:
fermions: |1

2
y , a:

1a
:

2|
1
2
y ,

bosons: a:
α|1

2
y „ |0y ‘ |1y ,

(3.96)

thus this multiplet contains 2 spin-1
2
fermions, as well as a scalar and a SOp3q

vector, adding up to 4 fermionic and 4 bosonic states, as expected.

3.3.2 Massless Supermultiplets

Note that at high enough energies all massive particles seem massless. Let us
proceed then to consider massless supersymmetric representations. First we
go to the frame where P µ “ pE, 0, 0, Eq, E ą 0. Then the supersymmetric
algebra becomes:

tQI
α, Q̄

J
9β
u “ 2

ˆ

2E 0
0 0

˙

δIJ ùñ

#

tQI
1, Q̄

J
91
u “ 4EδIJ ,

tQI
2, Q̄

J
92
u “ 0 ,

(3.97)

and the rest of the algebra vanishes. The vanishing relation of QI
2 and Q̄J

92
implies that these operators as well as central charges must vanish on mass-
less multiplets. So in this case we can only define N pairs of creation and
annihilation operators:

aI1 ”
1

2
?
E
QI

1 , paI1q
:

”
1

2
?
E
Q̄I

91
, (3.98)

which yield the following algebra:

taI1, pa
J
1 q

:
u “ δIJ , (3.99)

tpaI1q
:, paJ1 q

:
u “ taI1, a

J
1 u “ 0 . (3.100)

From eqs. (3.76), (3.77), (3.98), we have:

rJz, paI1q
:
s “ `

1

2
paI1q

: , rJz, aI1s “ ´
1

2
aI1 , (3.101)

so the operators paI1q:, aI1, raise and lower the helicity of a state by 1
2
, respec-

tively. So aI1Ωλ “ 0, where λ is the state of lowest helicity, and Ωλ is the
Clifford vacuum. As we already noted, for QI

2 we get from eq. (3.97):

QI
2|E, λy “ Q̄I

92
|E, λy “ 0 , (3.102)

on any state. The states in the multiplet are then built from Ωλ:

Ω
pnq

λ pI1q¨¨¨pInq
“

1
?
n!

paI11 q
:

¨ ¨ ¨ paIn1 q
:Ωλ . (3.103)
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These states have helicity λ ` n
2
, and they are

`N
n

˘

degenerate. The state of
the highest helicity is λ ` N

2
, and the representation has dimension 2N .

For example, for N “ 1, acting on a state of lowest helicity λ, the super-
multiplets consist of pairs of states:

|E, λy , a:

1|E, λy “ |E, λ ` 1
2
y . (3.104)

We shall further specify below the N “ 1 example to notable multiplets.

Let us note that for CPT invariance the number of states must in general
be doubled (since CPT reverses the sign of helicity), unless the multiplets
are automatically CPT-complete. So in general, if ´λ ‰ λ` N

2
, we also need

to add the CPT-conjugate multiplet.

Massless chiral multiplet. The chiral multiplet, starting from λ “ 0, is
an important example. It consists of a massless scalar boson and a massless
λ “ 1

2
fermion:

boson: |E, 0y , fermion: |E, 1
2
y “ a:

1|E, 0y . (3.105)

A λ “ ˘1
2
particle is a massless Weyl fermion, which is left-chiral, ψα, or

right-chiral, ψ̄ 9α, respectively. Thus the multiplet in eq. (3.105), which con-
tains ψα, is referred to as the chiral multiplet, while the CPT-conjugate that
contains ψ̄ 9α, is called the anti-chiral multiplet:

boson: |E, 0y , fermion: |E,´1
2
y “ a1|E, 0y . (3.106)

It is also common to just refer to the CPT-complete pair of multiplets as the
chiral multiplet.

Massless vector multiplet. Also known as the gauge multiplet, starting
from λ “ 1

2
, we obtain the pair:

fermion: |E, 1
2
y , boson: |E, 1y “ a:

1|E,
1
2
y . (3.107)

The λ “ 1 particle together with its CPT-conjugate, λ “ ´1, yield a massless
vector. Thus a massless vector multiplet contains the on-shell DOFs of a
4-dimensional gauge field Aµ. Its fermionic superpartner in the multiplet,
generally denoted by λα, λ̄

9α, is called the gaugino.
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Supergravity multiplet. Starting from λ “ 3
2
, and its CPT-conjugate,

we get the states:

fermion: |E,˘3
2
y , boson: |E,˘2y . (3.108)

A massless particle of helicity 2 is a graviton, which can only appear in
a supersymmetric theory of gravity, known as a supergravity theory. The
fermionic superpartner of the graviton in the multiplet is of helicity 3

2
, and is

called the gravitino. This also promotes the supersymmetry from being global
to local, as supersymmetric theories without massless particles of helicities
|λ| ą 1, are also called global supersymmetric theories.

3.4 Bounds on Extended Supersymmetry

To conclude this chapter, it is easy to infer important critical bounds for
extended supersymmetry at 4-dimensional spacetime from the above analysis
of massive and massless representations of supersymmetry.

We know that for renormalizable QFTs in the free limit the only allowed
fields of elementary particles are massive of spin 0 and 1

2
, and massless of

spin 1.
For a massive multiplet we found the maximal spin to be j ` N

2
, thus a

renormalizable QFT with supersymmetry should have:

N “ 1 . (3.109)

For a massless multiplet we found that the maximal helicity is λ` N
2
, so

starting from λ “ ´1, we can only have:

N global
max “ 4 , (3.110)

for a renormalizable theory with global supersymmetry.
If we are interested to also incorporate gravity, then we must allow for

a non-renormalizable QFT, and switch on local supersymmetry, so starting
from λ “ ´2, we find:

N local
max “ 8 . (3.111)



4. Superspace and Superfields

We uncovered the super-Poincaré algebra with N pairs of fermionic super-
charges QI , Q̄I , I P t1, . . . ,N u. We found its one-particle representations
in terms of on-shell supermultiplets, yet we would like to formulate super-
symmetric QFTs in terms of fields. In order to require that such a QFT
has supersymmetric invariance, we need to know the variation of fields un-
der the action of the generators of supersymmetry Q, Q̄, where from now
on we specialize to N “ 1. To that end, the supersymmetric generators
need to be represented as differential operators on some manifold, on which
supersymmetric fields would be defined.

4.1 Coset Spaces

Let us then illustrate how to generically arrive at such a manifold, that is a
domain of fields, specializing first to the familiar case of ordinary QFTs with
Poincaré invariance, defined on Minkowski spacetime.

Consider a Lie group G with its Lie algebra g “ LiepGq. The Hermitian
generators of g, denoted by TA, are closed under commutation:

rTA, TBs “ iCABCTC , (4.1)

with the indices A, . . . P t1, . . . , dim gu. The group elements g P G are unitary
operators which are obtained via the exponential map:

g “ exp
`

itATA
˘

, (4.2)

where tA are some real parameters, called the group parameters in parameter
space. Consider then that the group G has a Lie subgroup H Ă G, with its
Lie algebra h “ LiepHq. We can write then the Lie algebra as the direct sum:

g – h ‘ K , (4.3)

where K is the complement of h. Let us denote the generators of h and
K, by Ma and KI , respectively, with the indices a P t1, . . . , dim hu, and

36
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I P t1, . . . , dimKu. Then we can also write general group elements g P G
from eq. (4.2), and h P H, in the form:

g “ exp
`

iωaMa ` iαIKI

˘

, h “ exp piω̃aMaq , (4.4)

where tA “ pωa, αIq, and ω̃a, are all real parameters.
The quotient space of left cosets, G{H, is defined as the set of equivalence

classes under group multiplication of H from the left:

G{H “ tgH : g P G , g1
„ g ðñ Dh P H|g1

“ ghu . (4.5)

The group acts on this coset space, which is a differentiable manifold, also
called the coset manifold, and is known as a homogenous space. We also
have:

rh,Ks Ă K , (4.6)

or in terms of the generators:

rMa,Mbs “ iCabcMc , rMa, KIs “ iCaIJKJ . (4.7)

Let us denote the representatives of cosets that make up the coset space by
gc. Then we take such a representative:

gcpzq “ exp
`

izIKI

˘

P G , (4.8)

with z some local coordinates on the coset manifold.
The induced action of the group on coset space is read from:

g gcpzq “ gcpz
1
qhpg, zq , (4.9)

such that the group multiplication from the left on the LHS yields another
element of an equivalence class in coset space. In order to evaluate this
action from eq. (4.9), we need the Baker-Campbell-Hausdorff formula for the
product of exponentiated generators:

exppAq exppBq “ exp
`

A ` B ` 1
2
rA,Bs ` 1

12
rA, rA,Bss ` ¨ ¨ ¨

˘

, (4.10)

where only the first commutator on the RHS is actually needed in what
follows. The group multiplication in eq. (4.9) implies an induced shift of the
coordinates on coset space, g : z Ñ z1. Thus for g near the identity, at first
order in an infinitesimal group parameter, ϵA, we can write:

g “ exp
`

iϵATA
˘

» 1 ` iϵATA ùñ z1I
´ zI » ϵA

Bz1I

BϵA
. (4.11)
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Then, the action of the group G is realized on scalar fields, e.g. ϕpzq, that is
on functions of the coset space, via the generators represented as differential
operators:

TA “ ´i
Bz1I

BϵA
B

BzI
, (4.12)

where this form is easily inferred from eqs. (4.9), (4.11). Thus the group
element, which is a unitary operator, acts on such a field that depends on
coset space, in terms of these differential operators:

Upgqϕpzq “ exp
`

iϵATA
˘

ϕpzq “ p1 ` iϵATA ` ¨ ¨ ¨ qϕpzq “ ϕpz1
q . (4.13)

In fact, the familiar Minkowski spacetime is a coset space. For the
Poincaré group:

ISOp1, 3q – SOp1, 3q ˙ R1,3 , (4.14)

any group element can be written in the form:

g “ exp

ˆ

i

2
ωµνMµν ` ixµPµ

˙

, (4.15)

for some real parameters ωµν , xµ. Then Minkowski spacetime can be viewed
as a coset space, with G “ ISOp1, 3q, and the Lorentz subgroup, H “

SOp1, 3q:

R1,3
– ISOp1, 3q{SOp1, 3q . (4.16)

Here, the generators KI from eq. (4.8) are simply the translation generators,
Pµ. Let us parametrize the coset space with the coordinates xµ:

gcpx
µ
q “ exp pixµPµq . (4.17)

Using eqs. (4.9), (4.12), it is then easy to find the induced action of
translations, and of Lorentz transformations, on coset space:

gT ” exp piaµPµq , gL ” exp

ˆ

i

2
ωµνMµν

˙

, (4.18)

from which we can recover their form as differential operators to be that
which is given in eqs. (3.38), (3.39), respectively, as expected. It can be
readily verified that the differential operators for the Poincaré generators
satisfy the Poincaré algebra on scalar fields, ϕpxq, defined on R1,3.
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4.2 Superspace and Supergroups

With this notion of coset spaces in mind, we thus look for a manifold, on
which supersymmetry transformations are represented “geometrically”. We
first consider then the so-called supergroup, obtained from exponentiating the
super-Poincaré algebra, denoted by ISOp1, 3|N q, for N pairs of supercharges
QI , Q̄I , I P t1, . . . ,N u. A supergroup element, where we specialize here to
N “ 1, reads then:

g “ exp

ˆ

i

„

1

2
ωµνMµν ` xµPµ ` θαQα ` θ̄ 9αQ̄

9α

ȷ˙

P ISOp1, 3|1q , (4.19)

where the contraction conventions of eqs. (2.33), (2.34), are used for the
spinors. This can work, if the supergroup parameters θα, θ̄ 9α, are Grassmann
numbers, which by definition anti-commute, e.g.:

tθα, θβu “ tθα, θ̄
9β
u “ tθα, Qβu “ 0 . (4.20)

These anti-commuting supersymmetry parameters turn the anti-commutation
relations of the supersymmetric algebra into commutation relations:

”

θαQα, θ̄ 9βQ̄
9β
ı

“ ´θαQαθ̄
9βQ̄ 9β ` θ̄

9βQ̄ 9βθ
αQα “ θαθ̄

9β
´

QαQ̄ 9β ` Q̄ 9βQα

¯

“ 2θασµ
α 9β
θ̄

9βPµ , (4.21)
“

θQ, θQ
‰

“
“

θ̄Q̄, θ̄Q̄
‰

“ 0 . (4.22)

This guarantees the closure of the supergroup.
Thus now, similar to Minkowski spacetime as viewed in eq. (4.16), we

define superspace as the following coset space:

R1,3|4
– ISOp1, 3|1q{SOp1, 3q . (4.23)

The representative element of the quotient space is of the form:

gcpx
µ, θα, θ̄ 9αq “ exp

`

i
“

´xµPµ ` θαQα ` θ̄ 9αQ̄
9α
‰˘

, (4.24)

over superspace coordinates:

z “ pxµ, θα, θ̄ 9αq . (4.25)

Superspace then contains the 4 ordinary bosonic spacetime coordinates, as
well as 4 new fermionic coordinates θα, θ̄ 9α. Thus this coset manifold, which
is sometimes called a supermanifold, has even and odd coordinates.
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Let us then check the action of the supersymmetry “group element”,
which reads:

gSUSY “ exp
`

i
“

ηQ ` η̄Q̄
‰˘

“ exp
`

i
“

ηαQα ` η̄ 9αQ̄
9α
‰˘

“ gcp0, η
α, η̄ 9αq .

(4.26)
Let us start by applying on coset space the piece with Q:

exp piηαQαq exp
`

i
“

´xµPµ ` θQ ` θ̄Q̄
‰˘

“ exp
`

i
“

´x1µPµ ` θ1Q ` θ̄1Q̄
‰˘

.
(4.27)

We find:

exp piηαQαq exp
´

i
”

´xα
9βPα 9β ` θαQα ` θ̄ 9βQ̄

9β
ı¯

“ exp
´

i
”

´xα
9βPα 9β ` pθα ` ηαqQα ` θ̄ 9βQ̄

9β
ı

´ 1
2

”

ηαQα, θ̄ 9βQ̄
9β
ı¯

“ exp
´

i
”

´xα
9βPα 9β ` pθα ` ηαqQα ` θ̄ 9βQ̄

9β
ı

´ ηαθ̄
9βPα 9β

¯

“ exp
´

i
”

´pxα
9β

´ iηαθ̄
9β
qPα 9β ` pθα ` ηαqQα ` θ̄ 9βQ̄

9β
ı¯

, (4.28)

where we used eq. (4.21) for the second equality. Thus we can see that
exp piηαQαq induces the following action on superspace coordinates:

exp piηαQαq :
´

xα
9β, θα, θ̄ 9β

¯

Ñ

´

xα
9β

´ iηαθ̄
9β, θα ` ηα, θ̄ 9β

¯

. (4.29)

Similarly, we can find that the action of exp
`

´iη̄ 9αQ̄ 9α

˘

induces the motion:

exp
`

´iη̄ 9αQ̄ 9α

˘

:
´

xα
9β, θα, θ̄ 9β

¯

Ñ

´

xα
9β

` iθαη̄
9β, θα, θ̄ 9β ` η̄ 9β

¯

. (4.30)

Taking ηα Ñ ϵα, that is as an infinitesimal Grassmannian parameter, we
can infer from eq. (4.12) and eq. (4.29), that the induced motion in superspace
is generated by Qα as the differential operator:

Qα “ ´i

ˆ

B

Bθα
´ iθ̄

9β B

Bxα 9β

˙

“ ´i

ˆ

B

Bθα
´ iσµ

α 9β
θ̄

9β
Bµ

˙

, (4.31)

and similarly, using also eq. (4.30), we infer that the differential operator for
Q̄ 9α reads:

Q̄ 9α
“ ´i

ˆ

B

Bθ̄ 9α

´ iθασµ
α 9β
ϵ

9β 9α
Bµ

˙

ðñ Q̄ 9α “ ´i

ˆ

´
B

Bθ̄ 9α
` iθβσµβ 9αBµ

˙

,

(4.32)
where some basic Grassmannian calculus, which is provided in section 4.2.1
below, was used. Using the differential form of the generators, we can check



4.2. SUPERSPACE AND SUPERGROUPS 41

that the supersymmetric algebra is satisfied, with the non-vanishing com-
mutation relation in eq. (3.9), where the energy-momentum operator, Pµ,
is realized in superspace as in eq. (3.38). Note that while the differential
form of Pµ in superspace remains the same as that in Minkowski spacetime,
due to its trivial commutators with the supercharges, this is not the case for
the Lorentz generators. The latter are represented differently on superspace
compared to Minkowski spacetime (as shall be demonstrated in the problem
sheet).

4.2.1 Grassmannian Calculus in Superspace

In this brief section we provide some basics of Grassmannian calculus essen-
tial for the treatment of superspace coordinates in what follows. First let us
introduce the shorthand notation:

Bα ”
B

Bθα
, B

α
”

B

Bθα
, B̄ 9α ”

B

Bθ̄ 9α
, B̄

9α
”

B

Bθ̄ 9α

. (4.33)

Then, we define Grassmannian differentiation:

Bαθ
β

“ δβα , B̄ 9αθ̄
9β

“ δ
9β
9α , (4.34)

which implies:
B
αθβ “ ´δαβ , B̄

9αθ̄ 9β “ ´δ 9α
9β
. (4.35)

Grassmannian derivatives are taken from the left, so we must always move
the relevant differentiated Grassmann number to the left, incurring possible
minus signs along the way, before taking the derivative. In particular:

Bαθθ “ 2θα , B̄ 9αθ̄θ̄ “ ´2θ̄ 9α . (4.36)

We can expand functions of superspace coordinates in θα and θ̄ 9α in
a Taylor expansion, which truncates, since Grassmann numbers are anti-
commuting, so higher powers of θ, θ̄, vanish. For example, a function of xµ

and only a single Grassmann number, θ, reads:

F px, θq “ f0pxq ` θf1pxq , (4.37)

where f0 and f1 are arbitrary functions of x.
We also need to define integration over Grassmann numbers (in order to

construct actions as of chapter 5), also known as Berezin integration:

ż

dθ θ “ 1 ,

ż

dθ “ 0 , (4.38)
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so that in fact Grassmannian integration and differentiation act similarly.
For N “ 1 we then define:

ż

d2θ ”
1

2

ż

dθ1dθ2 ,

ż

d2θ̄ ”
1

2

ż

dθ̄2dθ̄1 , d4θ “ d2θd2θ̄ , (4.39)

and since θθ “ 2θ2θ1, θ̄θ̄ “ 2θ̄1θ̄2, then we have:

ż

d2θ θθ “ 1 ,

ż

d2θ̄ θ̄θ̄ “ 1 . (4.40)

In particular, an integral over the 4 Grassmannian coordinates is equivalent
to collecting the θθθ̄θ̄ coefficient in the Taylor expansion of the integrand:

ż

d2θd2θ̄ F px, θ, θ̄q “ F px, θ, θ̄q
ˇ

ˇ

θθθ̄θ̄
. (4.41)

4.3 Superfields and Component Fields

In supersymmetric QFTs there can then be expected some kind of fields,
that are not only dependent on spacetime, but rather in superspace coordi-
nates, z “ px, θ, θ̄q. Such functions, that depend on superspace, are called
superfields, denoted by Spzq. They should transform under infinitesimal
translations and supersymmetry transformations, as follows:

exp
`

i
“

aµPµ ` ϵQ ` ϵ̄Q̄
‰˘

Spx, θ, θ̄q “ Spx1, θ1, θ̄1
q

“ Spx ` a ´ iϵσθ̄ ` iθσϵ̄, θ ` ϵ, θ̄ ` ϵ̄q ,
(4.42)

i.e. the induced motion of their coordinates follows from eqs. (4.29), (4.30).
It is thus clear that linear combinations of superfields are superfields, and
that products of superfields are superfields, since the translations and super-
symmetry generators are linear differential operators.

These functions should be understood in terms of their power series ex-
pansion in the Grassmannian coordinates, θ, θ̄, which as noted in section 4.2.1
truncates since θ, θ̄, are anti-commuting, so higher powers of θ, θ̄, vanish.
Let us then write down a general superfield:

Spx, θ, θ̄q “ Bpxq ` iθχpxq ´ iθ̄ω̄pxq ` i
2
θθF pxq ´ i

2
θ̄θ̄Gpxq ´ θασµ

α 9β
θ̄

9βAµpxq

` iθθθ̄λ̄pxq ´ iθ̄θ̄θρpxq ` 1
2
θθθ̄θ̄Dpxq . (4.43)
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The coefficients in these expansions of superfields are called component fields,
and they are ordinary fields, as they depend only on spacetime. The compo-
nent fields are assigned dimension and spin according to the θ and θ̄ powers
that they accompany. Let us then fix the dimension of θ:

Q „ θ´1 , rQs “ 1
2

ùñ rθs “ ´1
2
. (4.44)

The components of lowest and highest dimension in a superfield, denoted
here as Bpxq and Dpxq, are referred to as bottom and top components,
respectively. Assuming, e.g., that B is bosonic, then F , G, Aµ, and D, are
also bosonic, whereas χ, ω̄, λ̄, and ρ, are fermionic.

From eq. (4.42) we then define the supersymmetry variation of a superfield
as follows:

δSrCs “ i
`

ϵQ ` ϵ̄Q̄
˘

SrCs ” SrδCpϵ, ϵ̄qs , (4.45)

where C stands for the component fields, and δC stands for the variations of
the component fields. It is a straightforward though tedious task to derive the
variation in components for general superfields, so we do not include it here.
Yet, simply from dimensional considerations of ϵ, ϵ̄, as noted for θ, it is easily
inferred that δC with rCs “ x, always consists of the next-higher component
fields, i.e. with dimension x` 1

2
, or of spacetime derivatives of the next-lower

component fields, i.e. with dimension x ´ 1
2
. From similar dimensional and

spin considerations, there is still an additional freedom to redefine the higher
component fields of the superfield, in particular λ̄, ρ, and D, in eq. (4.43),
by adding terms with a spacetime derivative of χ, ω̄, and even 2 spacetime
derivatives of B, respectively. In any case, this discussion implies that the
supersymmetric variation of the top component of a superfield, δCtoppϵ, ϵ̄q,
is necessarily a linear combination of spacetime derivatives of lower compo-
nents. Since in global supersymmetry the supersymmetric parameters, ϵ, ϵ̄,
are constant, then the variation δCtop is simply a total spacetime derivative
altogether. This is a critical point for the formulation of supersymmetric
actions, as we shall see soon in section 5.2.

Yet, general superfields, as off-shell representations of supersymmetry
(SUSY), are highly reducible – they contain too many extra component fields,
i.e. DOFs. For example, if we take the bottom component of the general
superfield to be real, then it is easy to verify in eq. (4.43), that the superfield
has 8 bosonic plus 8 fermionic DOFs. Such extra DOFs can be eliminated
by imposing SUSY-covariant constraints, i.e. some appropriate constraints,
which preserve supersymmetric invariance.
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4.3.1 R-Symmetry in Superspace

We encountered R-symmetry at the level of supersymmetry algebra in section
3.1.1 as a Up1qR rotation of the supercharges in eq. (3.36). It is easy to see
that R-symmetry is also realized in superspace as Q „ θ´1, via the following
transformation:

θ Ñ θ1
“ exppiαqθ , θ̄ Ñ θ̄1

“ expp´iαqθ̄ . (4.46)

From the definition of Grassmannian integration in eq. (4.38), we can then
infer:

d2θ1
“ d2θ expp´2iαq , d2θ̄1

“ d2θ̄ expp`2iαq . (4.47)

Accordingly, the action of R-symmetry on superfields is defined as follows:

S 1
pθ1

q “ exppiqR αqSpθq , (4.48)

where qR is the R-symmetry charge that is assigned to S.

4.4 Supersymmetric Covariant Derivatives

Going back to eq. (4.9), one can also study the induced motion on super-
space, due to the right multiplication by the supergroup element in eq. (4.26),
instead of the left multiplication in eq. (4.9).

It is easy to verify that such an analysis yields 2 additional differential
operators of interest:

Dα “ ´i
´

Bα ` iσµ
α 9β
θ̄

9β
Bµ

¯

, D̄ 9α “ ´i
`

´B̄ 9α ´ iθβσµβ 9αBµ
˘

. (4.49)

It is also easy to verify that these new operators satisfy the supersymmetry
algebra:

tDα, D̄ 9βu “ ´2Pα 9β , (4.50)

tDα, Dβu “ tD̄ 9α, D̄ 9βu “ 0 , (4.51)

with the opposite sign for the non-vanishing relation. Furthermore impor-
tantly, it is easy to verify that these differential operators anti-commute with
the supercharges:

tDα, Qβu “ tD̄ 9α, Q̄ 9βu “ 0 , (4.52)

tDα, Q̄ 9βu “ tD̄ 9α, Qβu “ 0 . (4.53)
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From eqs. (4.52), (4.53), we see that the operators Dα, D̄ 9α, do not affect
the action of SUSY transformations, i.e. they preserve supersymmetric invari-
ance, which is why Dα, D̄ 9α, are called SUSY-covariant derivatives. Naively,
we could have just considered the partial derivatives Bα, B̄ 9α, as the supersym-
metric differentiation operators, but e.g. rηQ, B̄ 9αs ‰ 0, unlike eq. (4.53), so
the partial derivatives do not preserve SUSY invariance. Accordingly, BαS
or B̄ 9αS are not superfields, whereas DαS and D̄ 9αS are both superfields.



5. Chiral Superfields and
Supersymmetric Actions

We already noted that general superfields contain extra off-shell DOFs, which
can be eliminated by imposing SUSY-covariant constraints. With the SUSY
covariant derivatives at hand let us then consider the following constraint on
a general superfield:

D̄Φ “ 0 . (5.1)

Superfields which satisfy this condition are called chiral superfields. One can
require instead that general superfields satisfy:

DΦ̄ “ 0 , (5.2)

and then they are called anti-chiral superfields. Naively, we could have simply
required that B

Bθ̄ 9αΦ “ 0, i.e. that Φ depends only on θ, and not on θ̄, but
similar to what was explained in section 4.4, such a derivative of the superfield
would not preserve SUSY invariance, whereas due to eqs. (4.52), (4.53), the
conditions in eqs. (5.1), (5.2), are SUSY covariant.

Note that Φ is trivial, if the 2 constraints in eqs. (5.1), (5.2), are imposed
at the same time:

D̄Φ “ DΦ “ 0 ùñ Φ “ const , (5.3)

due to eq. (4.50). Moreover, since eq. (5.1) leads to eq. (5.2), then such a
constrained superfield Φ cannot be real, or else it is trivial, as in eq. (5.3).
Thus the chiral superfield must be complex, and corresponds to the on-shell
chiral multiplets from sections 3.3.1, 3.3.2.

5.1 Chiral Superfields

Let us see the consequences of the chiral constraint, which is expected to
reduce DOFs in the general superfield. From the definition of D̄ in eq. (4.49),

46
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we get:

$

&

%

D̄ 9αθ
β “ 0

D̄ 9αx
µ “ ´θβσµβ 9α

D̄ 9αθ̄
9β “ iδ

9β
9α

ùñ D̄ 9αp´θβσµβ 9γ θ̄
9γ
q “ iθβσµβ 9α “ ´iD̄ 9αx

µ , (5.4)

where for the first equality on the right, there was a sign flip in order to take
the Grassmannian derivative. From this we see that it is useful to introduce
the so-called chiral coordinates:

yµ ” xµ ` iθασµ
α 9β
θ̄

9β
ùñ D̄ 9αy

µ
“ 0 . (5.5)

Similarly, it is useful to define the anti-chiral coordinates:

ȳµ ” xµ ´ iθασµ
α 9β
θ̄

9β
ùñ Dαȳ

µ
“ 0 . (5.6)

Thus a superfield Φ, that depends only on py, θq, satisfies D̄Φ “ 0. An
expansion in θ of a chiral superfield in chiral coordinates is then simple:

Φpyµ, θαq “ ϕpyq `
?
2θψpyq ` θθF pyq . (5.7)

Similarly, for an anti-chiral superfield in anti-chiral coordinates we have:

Φ̄pȳµ, θ̄ 9αq “ ϕ̄pȳq `
?
2θ̄ψ̄pȳq ` θ̄θ̄F̄ pȳq . (5.8)

It is easy to see then that the chiral superfield has significantly less DOFs
than a general one in eq. (4.43). Yet, we are interested to express the chiral
superfield in terms of ordinary spacetime coordinates xµ, rather than the
chiral ones yµ. To that end, we use an expansion in θ, θ̄, and in y around x:

Φpx, θ, θ̄q “ ϕpxq ` iθσµθ̄Bµϕpxq ´
1

2
θσµθ̄θσν θ̄BµBνϕpxq

`
?
2θψpxq ` i

?
2θσµθ̄θBµψpxq ` θθF pxq

“ ϕpxq ` iθσµθ̄Bµϕpxq `
1

4
θθθ̄θ̄BµB

µϕpxq

`
?
2θψpxq `

i
?
2
θθθ̄σ̄µBµψpxq ` θθF pxq, (5.9)

where for the second equality we used the spinor identities in eq. (2.39), and
eqs. (2.38), (2.40), to simplify the third, and fifth terms, respectively. A
similar form for the conjugate Φ̄ can be easily inferred. We can identify then
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the component fields in the chiral superfield by matching powers of θ, θ̄, in
eq. (5.9) to the components of a general superfield in eq. (4.43):

ϕ Ñ ϕ , ψ Ñ ´i
?
2ψ , F Ñ ´2iF , χ̄ “ G “ ρ “ 0 ,

Aµ “ ´iBµϕ , λ̄ “
1

?
2
σ̄µBµψ , D “

1

2
B
2ϕ . (5.10)

Thus out of the component fields of a general superfield, for the chiral
superfield we are left with:

Φ “ pϕ, ψα, F q , (5.11)

namely only 3 fields that are spacetime-dependent:

• ϕ – a complex scalar field, which amounts to 2 bosonic scalar DOFs,

• ψα – a Weyl spinor, that is left-chiral, with 4 fermionic DOFs,

• F – a complex scalar field with 2 extra off-shell bosonic DOFs. This
is an auxiliary field rather than a physical one (as we shall see shortly
in section 5.3), which maintains the equality of bosonic and fermionic
DOFs in the off-shell superfield, similar to that of the on-shell super-
multiplet.

This is in agreement with our findings for the chiral multiplets in sections
3.3.1, 3.3.2.

If 2 superfields are chiral, then their sum and their product are chiral as
well:

D̄ 9αΦ1 “ D̄ 9αΦ2 “ 0 ùñ D̄ 9αpΦ1 ` Φ2q “ D̄ 9αpΦ1Φ2q “ 0 . (5.12)

If a superfield is chiral, then its conjugate is anti-chiral:

D̄ 9αΦ “ 0 ùñ DαΦ̄ “ 0 . (5.13)

Yet, the product of a chiral superfield and its conjugate, Φ̄Φ, is not chiral, nor
is it anti-chiral, as it depends both in θ and θ̄. It is however a real superfield:

pΦ̄Φq
:

“ Φ̄Φ . (5.14)
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5.2 Supersymmetric Actions

In order to construct a proper action, we need to first recall Grassmannian
integration over superspace, as provided in section 4.2.1. First, obviously the
action should be real. Second, in order to construct an action from chiral
superfields as integrands, we might have considered to integrate as follows:

ż

d4xd2θd2θ̄Φ
`

x, θ, θ̄
˘

“

ż

d4yd2θd2θ̄Φ py, θq “ 0 , (5.15)

where Φ is some chiral superfield, and in the first equality we changed in-
tegration variables from standard superspace to chiral coordinates. Thus,
there are in fact only 2 possibilities to construct an action:

1. D-term. Take as an integrand a general superfield that is not chiral, yet
is required to be real, and integrate over the whole superspace:

ż

d4xd2θd2θ̄ S
`

x, θ, θ̄
˘

“

ż

d4x S
`

x, θ, θ̄
˘
ˇ

ˇ

θθθ̄θ̄
“

1

2

ż

d4xDpxq , (5.16)

so the Lagrangian density reads:

L “ 1
2
Dpxq . (5.17)

Since this formulation picks up the top component, D, of the general real
superfield, as the Lagrangian density in an ordinary spacetime integration,
this formulation is called the “D-term” Lagrangian.

2. F-term. Consider the integration of some chiral superfield Φ over “half”
superspace:

ż

d4yd2θΦpy, θq “

ż

d4y Φpy, θq|θθ “

ż

d4y F pyq “

ż

d4xF pxq . (5.18)

Note that if this route is taken, then in order for the action to be real, we
also need to add in the action the Hermitian conjugate:

ż

d4yd2θΦpy, θq ` H.C. “

ż

d4yd2θΦpy, θq `

ż

d4ȳd2θ̄ Φ̄pȳ, θ̄q

“

ż

d4x
“

F pxq ` F̄ pxq
‰

, (5.19)

where H.C. stands for the Hermitian conjugate. This yields the Lagrangian
density:

L “
“

F pxq ` F̄ pxq
‰

. (5.20)
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Since this formulation picks up the top components, F , F̄ , of the chiral and
anti-chiral superfields, as the Lagrangian density, this is called the “F-term”
Lagrangian.

Recalling our discussion at the end of section 4.3 on the supersymmet-
ric variation of superfields, defined in eq. (4.45), the variation of the top
component, δCtop, is always a total spacetime derivate in global supersym-
metry. Therefore for the supersymmetric variation of the action, due to the
Grassmannian integration, we obtain:

δS “

ż

d4x δL “

ż

d4x δCtoppϵ, ϵ̄q “

ż

d4x BµXpϵ, ϵ̄q “ 0 , (5.21)

where X is some linear combination of lower component fields multiplied by
ϵ or ϵ̄, and the spacetime integration of a total spacetime derivative simply
vanishes. For this reason the supersymmetric variation of generic actions, as
formulated above, automatically vanishes, and thus these actions properly
preserve supersymmetric invariance.

5.3 Actions of Chiral Superfields

Let us consider then the following superspace integral of the real superfield
from eq. (5.14):

ż

d4xL “

ż

d4xd2θd2θ̄
`

Φ̄Φ
˘

“

ż

d4x
`

Φ̄Φ
˘
ˇ

ˇ

θθθ̄θ̄
, (5.22)

where we substitute in the general expression for Φ from eq. (5.9), and collect
only the θθθ̄θ̄ term, which then yields an ordinary Lagrangian density. As we
shall see, this is the simplest supersymmetric action constructed from chiral
superfields.

It is straightforward to compute the Lagrangian density in eq. (5.22) as
noted above, using the spinor identities in eqs. (2.39), (2.38), (2.40), and
integration by parts. This computation yields the following Lagrangian den-
sity:

L “ ´Bµϕ̄B
µϕ ´ iψ̄σ̄µBµψ ` F̄F . (5.23)

We are left then only with derivative terms, except for F , which is thus an
auxiliary field. This is therefore a kinetic action of the component fields, or
an action of 2 free massless scalar particles in ϕ, ϕ̄, and 2 free massless Weyl
fermions, ψ, ψ̄. Recall that when we constructed massless SUSY representa-
tions in section 3.3.2, for N “ 1 we found supermultiplets with only 2 states:
λ “ t0, 1

2
u or t´1

2
, 0u, each of which is SUSY complete. Yet, CPT invariance
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must also hold in a QFT, and we see here that both multiplets, which taken
together are CPT complete, are automatically included in our theory.

Let us now turn to some dimensional analysis in order to consider the
renormalizability of our QFT. Taking the action as dimensionless, then L is
renormalizable, if and only if any of its operators is of a classical dimension
that is less than or equal to 4, which ensures that the coupling constants
have non-negative mass dimensions. Consider the dimensions in our action:

rθs “ ´1
2
,

ż

d2θ θθ “ 1 ùñ rd2θs “ 1 , (5.24)

rϕs “ 1 ,

ż

d4x d4θ
`

Φ̄Φ
˘

ùñ rΦs “ 1 , (5.25)

ùñ rψs “ 3
2
, rF s “ 2 . (5.26)

We can then in principle put in the action higher powers of the real product
ΦΦ̄, but from dimensional analysis we see that such higher powers would be
non-renormalizable.

It is thus straightforward to write the most general basic action for n
chiral superfields, which is still renormalizable:

Lkin “

ż

d2θd2θ̄
`

GabΦ̄
aΦb

˘

, a, b P t1, . . . , nu , (5.27)

where Gab is a constant Hermitian matrix, so that the integrand can also be
recast in the form Φ̄aΦa, referred to as the canonical kinetic term. More gen-
erally, if we allow for non-renormalizability, then the kinetic part of the action
of n chiral superfields can be generalized to the so-called Kähler potential,
KpΦa, Φ̄aq, on which we shall elaborate in the following section 5.4.

Let us then proceed to consider further contributions to a supersymmetric
action of chiral superfields. As we noted in section 5.2, there is another way
to construct a supersymmetric action, rather than the “D-term” formulation,
which we implemented in eq. (5.22) thus far. We can take the “F-term” route,
which is to integrate a chiral integrand over “half” superspace, together with
the Hermitian conjugate of this integral. We take then as an integrand
W pΦaq, which is a holomorphic function of the chiral superfields, namely it
depends only on Φa, analytically. Then we have:

ż

d4x

„
ż

d2θW pΦa
q `

ż

d2θ̄ ĎW pΦ̄a
q

ȷ

“

ż

d4x
“

W pΦa
q|θθ ` ĎW pΦ̄a

q
ˇ

ˇ

θ̄θ̄

‰

,

(5.28)
where the function ĎW is anti-holomorphic in Φ̄a. The superfield W pΦaq is
called the superpotential, and as we shall see shortly, it encodes the interac-
tions of the theory.
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We can then expand W pΦaq around the bottom component ϕa, using
eq. (5.7), which amounts to an expansion in θ, and then collect only the top
component of the integrand, as follows:

ż

d2θW pΦa
q “

„

W pϕaq ` BaW pϕaq pΦa
´ ϕaq

`
1

2
BaBbW pϕaqpΦa

´ ϕaqpΦb
´ ϕbq

ȷˇ

ˇ

ˇ

ˇ

θθ

“ BaW pϕaqF a
´

1

2
BaBbW pϕaqψaψb , (5.29)

where we introduced the notation:

Ba ”
B

Bϕa
, (5.30)

and in the second equality in eq. (5.29) we used the spinor identity from
eq. (2.38). Therefore, eq. (5.28) for the superpotential yields:

LSPot “

ż

d2θW pΦa
q ` H.C. “

ˆ

BaWF a
´

1

2
BaBbWψaψb

˙

`

ˆ

BāĎWF̄ a
´

1

2
BāBb̄

ĎWψ̄aψ̄b
˙

, (5.31)

where similar to eq. (5.30), we use:

Bā ”
B

Bϕ̄a
. (5.32)

The total action for chiral superfields is then the sum of the canonical
kinetic terms as in eq. (5.22), and the superpotential in eq. (5.31). From
this total action we can solve for the auxiliary fields F a, F̄ a, using their
Euler-Lagrange equations:

Fa “ ´BāĎW , F̄a “ ´BaW . (5.33)

Using this to eliminate F a, F̄ a, from the total Lagrangian, we finally obtain:

L “

ż

d2θd2θ̄
`

Φ̄aΦa
˘

`

ż

d2θW pΦa
q `

ż

d2θ̄ ĎW pΦ̄a
q

“

„

´ Bµϕ̄
a
B
µϕa ´ iψ̄aσ̄µBµψ

a

´ BaWBāĎW ´
1

2
BaBbWψaψb ´

1

2
BāBb̄

ĎWψ̄aψ̄b
ȷ

, (5.34)
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from which we can identify the scalar potential of ϕa:

V0pϕ
a, ϕ̄aq ” BaWBāĎW “ |BaW |

2
“ |F a

|
2

ě 0 , (5.35)

which is non-negative. The total potential in eq. (5.34), which involves both
bosons and fermions, then reads:

V “ V0pϕ
a, ϕ̄aq `

1

2
BaBbWψaψb `

1

2
BāBb̄

ĎWψ̄aψ̄b . (5.36)

Considering eqs. (5.24), (5.28), we get from dimensional analysis that the
dimension of any operator in the superpotential is bound:

rW s ď 3 , (5.37)

for a renormalizable theory. Due to the locality property of QFTs, the
holomorphic potential must be a polynomial, and as we already noted in
eq. (5.25), rΦas “ 1, so the polynomial is up to cubic order in the chiral
superfields, namely it is of the general form:

W pΦaq “ faΦ
a

` mabΦ
aΦb

` λabcΦ
aΦbΦc , (5.38)

where fa, mab, λabc, are some complex coupling constants, whose mass dimen-
sions are non-negative. Substituting this into eq. (5.34), we can obtain after
a straightforward computation the most general renormalizable Lagrangian
for a supersymmetric theory of chiral superfields.

5.3.1 R-Symmetry in Chiral Models

Using the definition of R-symmetry charge in eq. (4.48), let us assign to the
chiral superfield the R-charge qRrΦas “ 1, so that the action of R-symmetry
reads:

Φa
Ñ expp`iαqΦa , Φ̄a

Ñ expp´iαqΦ̄a , (5.39)

and it is easy to see that the canonical kinetic term in eq. (5.27) always
remains invariant under R-symmetry. From this R-charge assignment to the
superfield, and due to eq. (4.46), we can fix the R-charges of the component
fields of any chiral superfield from eq. (5.7):

qRrϕas “ 1 , qRrψas “ 0 , qRrF a
s “ ´1 . (5.40)

From eq. (4.47) for the R-symmetry transformation of the Grassmannian
integration measure, and eq. (5.28), it is easy to see that R-symmetry con-
strains the R-charge of the superpotential:

qRrW s “ 2 , (5.41)

in order for the supersymmetric action to be R-symmetric.
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5.4 Chiral Models and Kähler Geometry

More generally, for a possibly non-renormalizable theory, which can represent
an effective field theory (EFT) at low energies, we can write the following
general D-term Lagrangian of chiral superfields:

LK “

ż

d2θd2θ̄ K
`

Φa, Φ̄a
˘

, a P t1, . . . , nu , (5.42)

where K is a real superfield called the Kähler potential, which is some func-
tion of n chiral superfields, Φa, Φ̄a. This function encodes the kinetic part of
the theory, and it has a geometrical interpretation, as we shall see shortly.

To that end, let us then expand this function around the bottom compo-
nent ϕa, which amounts to an expansion in θ, θ̄, as follows:

ż

d2θd2θ̄ K
`

Φa, Φ̄a
˘

“

„

Kpϕa, ϕ̄aq

` BaKpϕa, ϕ̄aq pΦa
´ ϕaq ` BāKpϕa, ϕ̄aq pΦ̄a

´ ϕ̄aq

`
1

2
BaBb̄Kpϕa, ϕ̄aqpΦa

´ ϕaqpΦ̄b
´ ϕ̄bq ` ¨ ¨ ¨

`
1

4
BaBbBc̄Bd̄Kpϕa, ϕ̄aqpΦa

´ ϕaqpΦb
´ ϕbqpΦ̄c

´ ϕ̄cqpΦ̄d
´ ϕ̄dq

ȷˇ

ˇ

ˇ

ˇ

θθθ̄θ̄

.

(5.43)

This is a tedious but straightforward computation, and it is easy to see that
the lowest derivative of K that survives in the result reads:

BaBb̄K ”
B2K

BϕaBϕ̄b
. (5.44)

Let us then define this derivative of K as a metric:

gab̄ ” BaBb̄K . (5.45)

This represents a metric on an n-dimensional complex manifold, called a
Kähler manifold, which is parametrized in terms of complex coordinates,
that are in this case the scalar fields, ϕa:

pza, z̄aq “ pϕa, ϕ̄aq . (5.46)

The Kähler manifold is then endowed with a Hermitian metric gab̄:

ds2 “ BaBb̄Kdϕ
adϕ̄b . (5.47)
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The higher derivatives of K determine the associated connection and
curvature, where the non-vanishing components of the connection are defined
as follows:

gab̄,c ” gdb̄Γ
d
ac , gab̄,c̄ ” gad̄Γ

d̄
b̄c̄ , (5.48)

and the only non-vanishing curvature component reads:

Rab̄cd̄ “ ged̄ pΓeacq, b̄ . (5.49)

We can then eliminate the auxiliary fields, F a, F̄ a, from the result of
eq. (5.43), using their Euler-Lagrange equations. The resulting Lagrangian
reads:

LK “ ´gab̄Bµϕ
a
B
µϕ̄b ` igab̄Dµψ

aσµψ̄b ` 1
4
Rab̄cd̄ψ

aψcψ̄bψ̄d , (5.50)

where the covariant derivative of the spinor fields is defined as follows:

Dµψ
a

” Bµψ
a

` Γabc Bµϕ
b ψc , (5.51)

namely it is a covariant spacetime derivative, with the spinor fields, ψa,
transforming as contravariant tensors in the tangent space of the Kähler
manifold.

To get a better geometric interpretation of the latter, let us highlight
the analogy with General Relativity (GR). In GR we are used to think of
a worldline, which maps a real curve parameter, λ, to local coordinates on
a Lorentzian manifold, that is spacetime (Minkowski spacetime in special
relativity):

xµ : R Ñ R1,3 ; λ ÞÑ xµ . (5.52)

A curve on our Kähler manifold is then the following mapping:

ϕa : R1,3
Ñ Cn ; xµ ÞÑ ϕa . (5.53)

Thus the spinor field is parallel transported in eq. (5.51), using a covariant
derivative along a curve, similar to the covariant derivative of a tensor, say
of a particle’s spin, Sµpλq, that is defined only along a curve, xµpλq:

DSµ

dλ
”
dSµ

dλ
` Γµνρ

dxν

dλ
Sρ , (5.54)

which is familiar from GR. So in our case the points of spacetime along a
curve, x Ñ x`∆x, play the role of the curve parameter, λ Ñ λ`∆λ, and the
scalar field, ϕa, plays the role of the a-th coordinate of the Kähler manifold.
To recap, in eq. (5.50) we obtained the most general D-term Lagrangian of
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chiral superfields, and we uncovered its geometric interpretation in terms of
a Kähler manifold.

Yet, the F-term Lagrangian of chiral superfields can also be further gen-
eralized from the superpotential in eq. (5.31), using the notion of Kähler
manifolds. This is achieved by promoting summations over indices of conju-
gate superfields to Kähler metric contractions, and partial derivatives, as in
eqs. (5.30), (5.32), to Kähler covariant derivatives, namely:

XaY ā
Ñ gab̄X

aY b̄ , (5.55)

Ba Ñ Da , Bā Ñ Dā , (5.56)

with gab̄ in eq. (5.45), and Kähler covariant derivatives, which are defined as
expected, in particular, for a Kähler scalar s, and a Kähler vector va, the
covariant derivatives read, respectively:

Das “ Bas , (5.57)

Davb “ Bavb ´ Γcabvc . (5.58)

If we apply these upgrades in eqs. (5.31), (5.34), then the interaction potential
of chiral superfields in eq. (5.36) is generalized to the following form:

VK “ gab̄DaWDb̄
ĎW ` 1

2
DaDbWψaψb ` 1

2
DāDb̄

ĎWψ̄aψ̄b . (5.59)

To conclude, adding up eq. (5.50) and eq. (5.59) yields the most general
supersymmetric coupling of chiral superfields, and constitutes a supersym-
metric version of the non-linear sigma model, expressed in geometrical terms.

By definition the metric gab̄ is Hermitian, thus it can be locally diagonal-
ized. But if it represents a flat Kähler manifold, then it can be diagonalized
globally, and we get:

BaBb̄K “ gab̄ “ δab̄ ùñ K
`

Φa, Φ̄a
˘

“ Φ̄aΦa , (5.60)

which is just a summation over n superfield indices. The latter is called the
canonical Kähler potential, as noted after eq. (5.22), and it constitutes the
simplest (kinetic) action of chiral superfields, as already discussed in section
5.3.

In fact, the chiral theory is renormalizable, only if the Kähler manifold is
flat. This can be seen from the curvature term in the Lagrangian in eq. (5.50),
wherein the curvature plays the role of a coupling constant, and it is easy to
see that its dimension is negative, since as we saw in eq. (5.26), rψs “ 3

2
. If

the Kähler manifold is flat, then the general interaction potential of chiral
superfields in eq. (5.59) also reduces in form to eq. (5.36), yet as noted in
eq. (5.37), this is not sufficient for the theory to be renormalizable. To
conclude, the flatness of the Kähler manifold is a necessary, yet insufficient
condition for the renormalizability of the chiral theory.



6. Renormalization in Chiral Models

We saw that a renormalizable theory of chiral superfields must have a canon-
ical Kähler potential as its kinetic action. Such N “ 1 supersymmetric theo-
ries are referred to as Wess-Zumino models [10, 9], since in 1974 (which marks
the birth of supersymmetry) Wess and Zumino first presented such a model,
which is the simplest supersymmetric theory in 4 spacetime dimensions. In
order to get a good sense of the powerful quantum renormalization properties
of supersymmetric theories compared to non-supersymmetric QFTs, we shall
consider the original Wess-Zumino model.

6.1 Renormalization in Wess-Zumino Model

Let us briefly review first the 2 types of quantum corrections to the effective
action, which can be referred to more simply as the renormalized action for
the purpose of the present analysis, at some renormalization scale, µ.

1. Field strength. The field strength is the quantum correction that is
fixed from the field’s kinetic term in the renormalized Lagrangian, for exam-
ple:

Leff
kin “ ´ZϕBµϕ̄B

µϕ ´ iZψψ̄σ̄
µ
Bµψ , (6.1)

where the field strength is a function of the renormalization scale µ:

Zϕ “ Zϕpµq , Zψ “ Zψpµq . (6.2)

We can then define the renormalized fields:

ϕR ”
a

Zϕ ϕ , ψR ”
a

Zψ ψ , (6.3)

to rescale the kinetic terms back to their canonical form.
With the field strength we also define the so-called anomalous dimension

of the field:

γ ” µ
B

Bµ
log

?
Z . (6.4)

57
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The quantum or scaling dimension of the field is then defined as follows:

∆ ” ∆cl ´ γ , (6.5)

where ∆cl is the classical or engineering dimension of the field, which is fixed
from dimensional analysis.

2. Coupling constants. There are independent quantum corrections to
any operator in the renormalized Lagrangian, that is preceded by some cou-
pling constant, including mass terms, of the form:

Lg “ gOpxq Ñ Leff
g “ ZggOpxq “ gp1 ` ¨ ¨ ¨ qOpxq . (6.6)

In the Wess-Zumino (WZ) model the superpotential reads:

WWZpΦq “
m

2
Φ2

`
λ

3
Φ3 , (6.7)

with a single chiral superfield, and we take m,λ P R for simplicity.
After we eliminate the auxiliary fields, F , F̄ , using the Euler-Lagrange

equations, the full Lagrangian of this model reads:

LWZ “ ´ Bµϕ̄B
µϕ ´ m2ϕ̄ϕ ´ iψ̄σ̄µBµψ ´

m

2

`

ψψ ` ψ̄ψ̄
˘

´ mλ
`

ϕ̄ϕ2
` ϕ̄2ϕ

˘

´ λ2ϕ̄2ϕ2
´ λ

`

ϕψψ ` ϕ̄ψ̄ψ̄
˘

. (6.8)

The first line can be rewritten in the form:

Lfree
WZ “ ϕ̄

`

BµB
µ

´ m2
˘

ϕ ´
1

2

`

ψα, ψ̄ 9α

˘

˜

mδ βα iσµ
α 9β

Bµ

iσ̄µ 9αβBµ mδ 9α
9β

¸

ˆ

ψβ
ψ̄

9β

˙

. (6.9)

From this form it is easy to read the scalar propagator:

φ̄ φ “
´i

p2 ` m2
, (6.10)

and the fermion propagators:

ψ̄ ψ “
´iσ̄µpµ
p2 ` m2

, ψ ψ̄ “
´iσµpµ
p2 ` m2

, (6.11)

ψ ψ “
´im

p2 ` m2
, ψ̄ ψ̄ “

´im

p2 ` m2
, (6.12)

where the fermion propagators are given here in the 2-component Weyl no-
tation, unlike the 4-component Dirac notation usually seen in common QFT
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textbooks. Note that the xψψy and xψ̄ψ̄y propagators reverse the fermion
chirality.

The Feynman rules of the interaction vertices are easily read from the
second line of the Lagrangian in eq. (6.8). There are 2 cubic scalar vertices:

φ

φ̄

φ

“

φ̄

φ

φ̄

“ ´imλ , (6.13)

2 Yukawa couplings:

ψ

φ

ψ

“

ψ̄

φ̄

ψ̄

“ ´iλ , (6.14)

and a single quartic vertex:

φ̄ φ

φ̄ φ

“ ´iλ2 . (6.15)

Let us evaluate then the n-point functions of our simple Wess-Zumino
model at one-loop order, so as to identify the above quantum corrections.

Scalar tadpole. To evaluate the 1-point function xϕy at one-loop order,
we note that there are 2 contributing Feynman diagrams. The first diagram,
that contains a scalar loop, reads:

φ “ ´imλ

ż

d4q

p2πq4

´i

q2 ` m2
, (6.16)

and the second diagram, that contains a fermion loop, reads:

φ “ p´1qp´iλq

ż

d4q

p2πq4

´im

q2 ` m2
, (6.17)

where we recall that a fermion loop accounts for an additional minus sign.
It is easy to see that eqs. (6.16) and (6.17) cancel each other, adding up
to a vanishing scalar tadpole. The overall cancellation of the tadpole is
due to supersymmetry, where the bosonic and fermionic loops cancel each
other. Note that in non-supersymmetric QFT, we usually have to put in a
counterterm, in order to cancel the tadpole.
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Scalar self-energy. To evaluate the 2-point function xϕ̄ϕy at one-loop or-
der, we need to consider 3 contributing Feynman diagrams:

φ̄ φ “ p´imλq
2

ż

d4q

p2πq4

ˆ

´i

q2 ` m2

˙2

, (6.18)

φ̄ φ “ ´p´iλq
21

2

ż

d4q

p2πq4

tr p´σµσ̄νq qµqν

pq2 ` m2q
2 , (6.19)

φ̄ φ
“ ´iλ2

ż

d4q

p2πq4

´i

q2 ` m2
, (6.20)

where the so-called BPHZ renormalization scheme is used here, namely tak-
ing the limit, where the external momentum goes to 0. It is easy to verify
that when the 3 diagrams are added up, the sum vanishes:

lim
p2Ñ0

Πϕ̄ϕpp2q “ 0 . (6.21)

Thus, there is no renormalization of the scalar field-strength or mass m2,
thanks to supersymmetry.

Interaction vertices. One can similarly study the higher-point functions
xϕ̄ϕϕy and xϕ̄ϕ̄ϕϕy with some more work, and verify that the one-loop cor-
rections to the scalar cubic and quartic vertices also vanish in the renormal-
ization scheme of vanishing external momentum.

To get a better understanding of the renormalization in the WZ model, let
us consider the model, when the auxiliary fields are kept at the Lagrangian:

LWZ “ ´ Bµϕ̄B
µϕ ´ iψ̄σ̄µBµψ ` F̄F ` m

`

Fϕ ` F̄ ϕ̄
˘

´
m

2

`

ψψ ` ψ̄ψ̄
˘

` λ
`

Fϕ2
` F̄ ϕ̄2

˘

´ λ
`

ϕψψ ` ϕ̄ψ̄ψ̄
˘

. (6.22)

In this formulation of the model there are additional scalar propagators in-
cluding the auxiliary fields, where the former propagators are unchanged.
The second line of eq. (6.22) yields only cubic vertices of 2 types, so in that
sense this perturbation theory for the WZ model seems simpler.
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In this formulation one finds at one-loop order that the 2-point functions
are renormalized, but all with the same field-strength factor:

ZΦ ” Zϕ “ Zψ “ ZF . (6.23)

Moreover, the mass m and the cubic coupling constant λ are also renormal-
ized in terms of this single factor, ZΦ:

mR ” Z´1
Φ m, λR ” Z

´ 3
2

Φ λ . (6.24)

Accordingly, there is a single anomalous dimension, γΦ, for the components
of the chiral superfield, such that the quantum dimensions of the component
fields read:

∆ϕ “ 1 ´ γΦ , ∆ψ “
3

2
´ γΦ , ∆F “ 2 ´ γΦ . (6.25)

The renormalization results that we have seen at one-loop order, gener-
alize to all orders in perturbation theory. In fact, the effective action can
always be written in the form:

Leff
WZ “ZΦ

`

´Bµϕ̄B
µϕ ´ iψ̄σ̄µBµψ ` F̄F

˘

` m
`

Fϕ ` F̄ ϕ̄
˘

´
m

2

`

ψψ ` ψ̄ψ̄
˘

` λ
`

Fϕ2
` F̄ ϕ̄2

˘

´ λ
`

ϕψψ ` ϕ̄ψ̄ψ̄
˘

, (6.26)

so that the part with coupling constants remains unchanged. Further, with
the definition:

ΦR ”
a

ZΦΦ , (6.27)

the effective action takes the form:

Leff
WZ “ ´ Bµϕ̄RB

µϕR ´ iψ̄Rσ̄
µ
BµψR ` F̄RFR

` mR

`

FRϕR ` F̄Rϕ̄R
˘

´
mR

2

`

ψRψR ` ψ̄Rψ̄R
˘

` λR
`

FRϕ
2
R ` F̄Rϕ̄

2
R

˘

´ λR
`

ϕRψRψR ` ϕ̄Rψ̄Rψ̄R
˘

, (6.28)

which is identical to the initial form of the bare Lagrangian in eq. (6.22)!

6.2 Non-Renormalization in Chiral Models

Our analysis of the renormalization of the WZ model can be generalized to
any theory of chiral superfields with a canonical kinetic term. In fact, there
is a more general famous theorem for N “ 1 supersymmetric theories, which
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says that the effective (or renormalized) action of a chiral theory is always
of the form:

Leff
chiral “

ż

d2θd2θ̄
ÿ

a

ZΦaΦ̄aΦa
`

ż

d2θW pΦa
q `

ż

d2θ̄ W pΦ̄a
q . (6.29)

This form only has a field-strength renormalization factor for each chiral
superfield, whereas the superpotential, W pΦaq, is not renormalized at all!
This result for supersymmetric theories is the non-renormalization theorem,
elegantly proven by Seiberg in 1993 [11, 12], based entirely on symmetry
arguments.

Before we outline the proof of this theorem, let us first shed some light
on the concept of Wilsonian effective actions, see also, e.g. [3], for a useful
introduction to the Wilsonian approach to renormalization.

Wilsonian effective action. The idea is to start with a theory which has
an action defined at a UV energy scale µ0 “ ΛUV , which might be sent to
infinity if the theory is renormalizable. Then the objective is to compute the
effective action, Seff

µ , at a scale µ ă µ0 by “integrating out” all degrees of
freedom from µ0 down to µ. In momentum space the fields are split into high
and low momentum modes:

φpqq ”

"

φHpqq µ ă |q| ď µ0

φLpqq |q| ď µ
, (6.30)

so that the functional integral can be written in terms of the 2 distinct modes:
ż

Dφ exp piSrφsq “

ż

DφLDφH exp piSrφL, φHsq . (6.31)

The Wilsonian effective action is then explicitly defined by functional
integration only over the high momentum modes:

exp
`

iSeff
µ rφLs

˘

”

ż

DφH exp piSrφL, φHsq . (6.32)

On the other hand, the effective action at low energy µ can also be written
as a generic sum over infinitely many operators:

Seff
µ “

ż

d4x
ÿ

iPN

gipµ;µ0qOipxq , (6.33)

where the Oi operators are constrained by the symmetries that survive at
low energies, and the coupling constants gi encapsulate the dependence in
the UV scale, which was suppressed.



6.2. NON-RENORMALIZATION IN CHIRAL MODELS 63

Returning to the proof of Seiberg’s non-renormalization theorem, super-
symmetric invariance constrains the effective theory to also have the form:

Leff
µ “

ż

d2θd2θ̄ Φ̄a
RΦ

a
R `

„
ż

d2θW eff
µ pΦa

q ` H.C.

ȷ

. (6.34)

Recall that the superpotential at the UV scale reads:

Wµ0pΦa
q “ λaΦ

a
` λabΦ

aΦb
` λabcΦ

aΦbΦc , (6.35)

where λa, λab, λabc, are some complex coupling constants.
A critical point is that the coupling constants can also be regarded as

chiral superfields. In fact coupling constants can generally be considered as
dynamical fields of some very massive particles in a more complete theory
at higher energies. The couplings then appear as background or dormant
fields, that are “frozen” in their vacuum expectation values (VEVs, see also
in chapter 8).

Thus, the superpotential is holomorphic in the chiral superfields, and in
the coupling constants, which also holds for the effective superpotential, that
has the general form:

W eff
µ pΦa

q “
ÿ

mPN

ÿ

ta1¨¨¨amu

ga1¨¨¨amΦ
a1 ¨ ¨ ¨Φam , (6.36)

where ga1¨¨¨am are some coupling constants preceding monomials of m-th
power, denoted by a set ta1 ¨ ¨ ¨ amu of m indices, where m can be any pos-
itive integer. The effective coupling constants are holomorphic functions of
the coupling constants at the scale µ0:

ga1¨¨¨am “ ga1¨¨¨ampλa, λab, λabcq . (6.37)

We can thus consider further symmetries beyond supersymmetry, say
Up1q ˆ Up1qR, with some global Up1q symmetry, and Up1qR R-symmetry.
This Up1qˆUp1qR symmetry, which clearly holds in the free theory, when the
superpotential vanishes, also persists in the superpotential, if the couplings
are regarded as fields, and further then in the effective theory. Let us then
consider each of these symmetries at a time.

Global Up1q symmetry. Consider some global Up1q symmetry group, for
simplicity, which transforms any superfield as follows:

Φa
Ñ exppiqaαqΦa , (6.38)
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where qa is some arbitrary symmetry charge that we assign to Φa. Clearly,
Φ̄aΦa is invariant under this symmetry. Since we regard the coupling con-
stants as superfields, we can assign to them symmetry charges as well, so
that they transform under the Up1q group as follows:

λa Ñ λa expp´iqaαq , (6.39)

λab Ñ λab expp´ipqa ` qbqαq , (6.40)

λabc Ñ λabc expp´ipqa ` qb ` qcqαq . (6.41)

With this assignment of charges to the chiral superfields and coupling con-
stants, it is evident that the UV superpotential in eq. (6.35) is invariant
under the global Up1q symmetry.

The effective superpotential is also invariant under this global Up1q sym-
metry, which we write in the following short form:

W eff
µ pg1,Φ1

q “ W eff
µ pg,Φq , (6.42)

where g, Φ, are just shorthand notations for the sets of coupling constants
and superfields, respectively, in the superpotential. Similarly to eqs. (6.39)-
(6.41), we assign Up1q charges to the coupling constants in the effective
superpotential, so that they transform as follows:

ga1¨¨¨am Ñ exp p´ipqa1 ` ¨ ¨ ¨ ` qamqαq ga1¨¨¨am , (6.43)

so that the monomial terms in eq. (6.36) are also each invariant under this
symmetry, and indeed the effective superpotential is altogether invariant.

Combining eqs. (6.37), (6.39)-(6.43), we get the following equation for the
coupling constants in the effective superpotential:

ga1¨¨¨am pλa expp´iqaαq, λab expp´ipqa ` qbqαq, λabc expp´ipqa ` qb ` qcqαqq

“ ga1¨¨¨am pλa, λab, λabcq exp p´ipqa1 ` ¨ ¨ ¨ ` qamqαq ,
(6.44)

where the LHS is obtained by first transforming under Up1q, and then inte-
grating out down to the scale µ, and the RHS is obtained by first integrating
out and then transforming. From eq. (6.44) we infer that g must be a linear
combination of products of λ couplings, where the set of indices of g is repli-
cated in each such product by the disjoint union of its λ indices as subsets,
each denoted here by taiu:

ga1¨¨¨am “
ÿ

j

nj

„

ź

taiu

λtaiu

ȷ

j

, ta1, . . . , amu “ \taiu , (6.45)
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where nj stand for some numerical coefficients of such products. So for
example, a certain g coupling can be of the form:

g1124 “ n1λ
2
1λ24 ` n2λ12λ14 ` n3λ2λ114 . (6.46)

There can only be positive powers of λ in the products, since in the weak-
coupling limit, when we take each λ Ñ 0, the theory should be free.

Up1q R-symmetry. We already saw in section 5.3.1 that the canonical
kinetic term in chiral models is R-symmetric, regardless of the R-charges
that are assigned to the superfields. Following the definitions in section
4.3.1, in particular in eq. (4.48), let us assign to the superfields Φa arbitrary
R-charges qaR. Recall that due to eq. (4.47), Up1q R-symmetry also affects
the Grassmannian integration measure in the integral of the superpotential,
which fixes the R-charge of the superpotential in eq. (5.41).

Here too, we can assign R-charges to the coupling constants, so that they
transform under the Up1qR R-symmetry as follows:

λa Ñ λa exppiαr2 ´ qaRsq , (6.47)

λab Ñ λab exppiαr2 ´ pqaR ` qbRqsq , (6.48)

λabc Ñ λabc exppiαr2 ´ pqaR ` qbR ` qcRqsq . (6.49)

With this assignment of R-charges to the chiral superfields and coupling
constants, it is evident that the action of the superpotential in eq. (6.35) is
R-symmetric, and in agreement with eq. (5.41) the superpotential transforms
as follows:

Wµ0pλ1,Φ1
q “ expp2iαqWµ0pλ,Φq , (6.50)

where λ, Φ, are again just for shorthand notation.
The effective action of the superpotential is also R-symmetric, so we have:

W eff
µ pg1,Φ1

q “ expp2iαqW eff
µ pg,Φq . (6.51)

Similarly to eqs. (6.47)-(6.49), we assign R-charges to the coupling constants
in the effective superpotential, so that they transform as follows:

ga1¨¨¨am Ñ exp piαr2 ´ pqa1R ` ¨ ¨ ¨ ` qamR qsq ga1¨¨¨am , (6.52)

so that the monomial terms in eq. (6.36) each yield the proper R-charge of
the superpotential. Combining eqs. (6.37), (6.47)-(6.49), (6.52), we get that
the coupling constant g must be linear in the λ couplings:

ga1¨¨¨am “ na1¨¨¨amλa1¨¨¨am , (6.53)
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Up1q Up1qR

Φ `1 `1
m̃ ´2 0
λ ´3 ´1

Table 6.1: The charges assigned to the superfields and couplings under the
respective symmetries of the action.

where na1¨¨¨am is some numerical coefficient.
Combining the implications of both symmetries, Up1q ˆ Up1qR, as for-

mulated in eqs. (6.45), (6.53), we obtain for each coupling constant in the
effective superpotential:

ga1¨¨¨am ”

"

na1¨¨¨amλa1¨¨¨am m ď 3
0 m ą 3

. (6.54)

Finally, to find the numerical proportion coefficients na1¨¨¨am , we just take the
weak-coupling limit, namely the limit of vanishing coupling constants, and
match by comparison in perturbation theory. The numerical coefficients are
found to equal 1, from matching with the free theory, that is when the super-
potential vanishes, and with the tree-level theory. All in all then, the effective
superpotential is found to be identical in form to the UV superpotential:

W eff
µ “ Wµ0 . (6.55)

Although we outlined here the general proof of Seiberg’s theorem, let us
specialize to our simple Wess-Zumino model as an example, in order to get
a better sense of how this powerful result is obtained. Let us first write the
model in eq. (6.7) in terms of dimensionless coupling constants:

m̃pµq ” m{µ ùñ rm̃s “ rλs “ 0 , (6.56)

so that the UV model in eq. (6.7) takes the form:

WWZpµ0q “ µ0
m̃

2
Φ2

`
λ

3
Φ3 . (6.57)

The free theory, where W “ 0, has our Up1q ˆ Up1qR symmetry. The sym-
metry charges that are assigned here to the superfields and couplings are
listed in table 6.1. With these symmetry charges the superpotential is also
Up1q ˆ Up1qR invariant.

Then the most general form for the effective superpotential at scale µ ă µ0

reads:

W eff
WZpµq “ µm̃Φ2f

ˆ

λΦ

µm̃
,
µ

µ0

˙

, (6.58)
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where f is a holomorphic function of dimensionless, uncharged parameters.
This form keeps the action Up1qˆUp1qR invariant, and of the correct dimen-
sion. The function f should be analytic in its first argument, and regular in
the weak-coupling limit, m̃, λ Ñ 0. Expanding f accordingly, we find:

W eff
WZpµq “

8
ÿ

i“0

cipµ{µ0q
λi

pµm̃qi´1
Φi`2 , (6.59)

where the ci coefficients are functions of µ{µ0 to be matched with the UV
theory.

From the regularity of m̃ Ñ 0, i ą 1 is eliminated, and we are left with:

W eff
WZpµq “ c0µm̃Φ2

` c1λΦ
3 . (6.60)

From λ Ñ 0, the theory is free and classical, and the mass terms at the scales
µ0 and µ can be matched:

m̃pµq ” m{µ “ m̃pµ0qµ0{µ . (6.61)

This fixes c0 “ 1{2. At λ ‰ 0 we can match c1 by comparing perturbation
theory at tree level. This fixes c1 “ 1{3. In conclusion we found:

W eff
WZpµq “

m

2
Φ2

`
λ

3
Φ3 . (6.62)



7. Supersymmetric Gauge Theories

We proceed to consider the supersymmetric versions of gauge theories. As
the Standard Model of Particle Physics, which has been well-confirmed, is
comprised of gauge theories, with the symmetry group in eq. (1.3), this is a
first essential step towards the real world.

7.1 Gauge Theory Primer

Before we delve into the incorporation of gauge symmetry in supersymmetric
theories, let us review first the basics of gauge theory without supersymmetry.

Consider a Lie group G with its Lie algebra g “ LiepGq, and TA its
Hermitian generators, which satisfy the commutation relations:

rTA, TBs “ ifABCTC , (7.1)

where fABC are the structure constants. The orthogonality condition of the
normalized generators reads:

tr pTATBq “ cprqδAB , cprq ą 0 , (7.2)

where cprq is a positive constant, that depends on the representation r of the
Lie group.

Let Aµ denote a gauge field related with the gauge group G. It is a
covector field, which is valued in the adjoint representation of G:

Aµpxq “ AAµ pxqTA . (7.3)

Let g(x) be a group-valued function:

gpxq : R1,3
Ñ G . (7.4)

Then a gauge transformation on the gauge field reads:

A1
µ “ gpxq pAµ ` iBµq g´1

pxq , (7.5)

68
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which keeps A1
µ physically equivalent to Aµ. Consider then a general group

element:

gpxq “ exp piαpxqq , αpxq ” αApxqTA P ig , (7.6)

where αA are the group parameters. Then if we consider a gauge transfor-
mation of the gauge field to first order in the group parameters, we get:

δAµ “ A1
µ ´ Aµ “ Bµα ` irα,Aµs . (7.7)

The field-strength of the gauge field is then defined as follows:

Fµν ” BµAν ´ BνAµ ´ irAµ, Aνs “ FA
µνTA , (7.8)

so that by construction its gauge transformation reads:

F 1
µν “ gFµνg

´1 , (7.9)

and to first order in the gauge parameters we obtain:

δFµν “ F 1
µν ´ Fµν “ irα, Fµνs . (7.10)

A gauge theory based on a compact Lie group, such as a special unitary
group, SUpNq, is called a Yang-Mills (YM) theory, and its Lagrangian reads:

LYM “ tr

ˆ

´
1

4g2
FµνF

µν

˙

“ ´
cprq

4g2
FA
µνF

µν
A , (7.11)

where g2 is the YM gauge coupling, and in the second equality we used the
orthogonality condition in eq. (7.2). Considering eq. (7.9) and the cyclicity
of trace, it is easy to see that the YM action is gauge-invariant. The YM
action is the canonical kinetic term for a gauge field, and it is easy to see
that for the gauge group Up1q, YM theory turns into Maxwell’s theory, if we
just make the replacement:

cprq{g
2

Ñ 1 . (7.12)

Given a gauge group G, we can introduce charged matter fields φi, which
might be scalars or spinors, in a representation r of G, so that they sit in
m-plets of dimension:

i P t1, . . . ,m ” dim ru . (7.13)

Under the gauge transformation in eq. (7.5), the matter field φi transforms
as follows:

φ1
i “ rgprqsijφj , (7.14)
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where rgprqsij is the group element as a matrix in the representation r. To
first order in the group parameters, we have then:

δφi “ φ1
i ´ φi “ iαijφj “ iαArTAprqsijφj , (7.15)

where TAprq are the generators in the representation r of φi.
The gauge-covariant derivative is defined as follows:

Dµφi ” pBµ ´ iAµqφi , (7.16)

with Aµ a matrix in the representation r of φi. This is the so-called “minimal
coupling” of the gauge field to the matter fields. By construction Dµφi
transforms covariantly in the same representation of φi:

δDµφi “ iαDµφi . (7.17)

Finally, the gauge-invariant kinetic terms of matter fields can easily be
written by replacing ordinary derivatives with gauge-covariant derivatives,
e.g. for a scalar ϕ we have:

Lmatter “ ´Dµϕ̄D
µϕ . (7.18)

7.2 Abelian Vector Superfields

We would like to consider first the N “ 1 supersymmetric version of QED,
a supersymmetric QFT with the Abelian gauge group:

G “ Up1q . (7.19)

Such a theory contains a gauge field Aµ, subject to gauge transformations of
the form:

A1
µpxq ” Aµpxq ` Bµαpxq , (7.20)

where the commutator term in eq. (7.7) drops out.
Recall from eq. (4.43), that a general superfield includes a notable term,

θσµθ̄Aµ, which seems natural to yield a gauge field. Since a gauge field is
real, let us then first require such a vector superfield, which we denote by V ,
to be real:

V “ V : . (7.21)

Applying this reality condition to the general superfield in eq. (4.43), we get:

V px, θ, θ̄q “ Bpxq ` iθχpxq ´ iθ̄χ̄pxq ` i
2
θθGpxq ´ i

2
θ̄θ̄Ḡpxq ´ θσµθ̄Aµpxq

` iθθθ̄
`

λ̄pxq ` i
2
σ̄µBµχpxq

˘

´ iθ̄θ̄θ
`

λpxq ` i
2
σµBµχ̄pxq

˘

` 1
2
θθθ̄θ̄

`

Dpxq ` 1
2
B
2Bpxq

˘

, (7.22)
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where as we noted at the end of section 4.3, we incorporated here the freedom
to redefine the higher component fields, λ, λ̄, and D, by adding terms with a
spacetime derivative of χ, χ̄, and 2 spacetime derivatives of B, respectively.
Thus for a real superfield, the bottom component, B, is taken to be real, as
well as the vector field, Aµ, and the top component, D, whereas the compo-
nent fields χ, G, λ, and χ̄, Ḡ, λ̄, are conjugates of each other, respectively,
as implied by their notation. We then call the above a vector superfield after
its real component field Aµ.

Yet, to actually combine gauge invariance with supersymmetry, we should
find a superfield generalization of the gauge transformation of the gauge field.
Thus, let us consider the difference between a chiral superfield, Ω, and its
conjugate, using eq. (5.9):

i
2

`

Ω ´ Ω:
˘

“ i
2

´

`

ϕ ´ ϕ̄
˘

`
?
2

`

θψ ´ θ̄ψ̄
˘

`
`

θθF ´ θ̄θ̄F̄
˘

` iθσµθ̄Bµ
`

ϕ ` ϕ̄
˘

` i?
2

`

θθθ̄σ̄µBµψ ´ θ̄θ̄θσµBµψ̄
˘

` 1
4
θθθ̄θ̄ B

2
`

ϕ ´ ϕ̄
˘

¯

. (7.23)

This difference is clearly real, and we identify the gradient in the gauge
transformation in eq. (7.20), as the 4-vector component field. This motivates
us to define the vector superfield transformation as follows:

V 1
” V `

i

2

`

Ω ´ Ω̄
˘

, (7.24)

which is the supersymmetric generalization of eq. (7.20).

Under this transformation with the chiral superfield:

Ω “ pϕ, ψα, F q , (7.25)

the component fields of the vector superfield in eq. (7.22) become:

B Ñ B `
i

2

`

ϕ ´ ϕ̄
˘

, (7.26)

χ Ñ χ `
1

?
2
ψ , χ̄ Ñ χ̄ `

1
?
2
ψ̄ , (7.27)

G Ñ G ` F , Ḡ Ñ Ḡ ` F̄ , (7.28)

Aµ Ñ Aµ ` Bµ

ˆ

ϕ ` ϕ̄

2

˙

, (7.29)

λ Ñ λ , λ̄ Ñ λ̄ , (7.30)

D Ñ D . (7.31)
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It is easy to see then, that B, χ, χ̄, G, Ḡ, are pure gauge, i.e. they can be
made to vanish by a proper choice of Ω, whereas λ, λ̄, and D, are gauge-
invariant. As to the gauge of the vector field from eq. (7.20), we can identify
the real gauge function as follows:

αpxq ”
ϕpxq ` ϕ̄pxq

2
. (7.32)

It is useful then to specify the so-called Wess-Zumino (WZ) gauge [13]:

B “ χ “ χ̄ “ G “ Ḡ “ 0 , (7.33)

in which there is still residual gauge invariance left of the vector field, as in
eq. (7.29) via eq. (7.32), with the chiral superfield:

ΩWZ “ Ω̄WZ “ pα, 0, 0q . (7.34)

The vector superfield in the WZ gauge is then of the form:

VWZ “ pAµ, λα, λ̄ 9α, Dq , (7.35)

and its expansion reads:

VWZ “ ´θσµθ̄Aµ ` iθθθ̄λ̄ ´ iθ̄θ̄θλ `
1

2
θθθ̄θ̄D . (7.36)

In this superfield we identify the bosonic component Aµ as the photon, and
the components λ, λ̄, as its fermionic superpartner, referred to as the photino.
More generally, for a general (e.g. non-Abelian) gauge group, these compo-
nents are referred to as the gauge boson, and gaugino, respectively. As we
shall see shortly in section 7.3, the bosonic component D is an auxiliary field.

Finally, let us briefly comment on the compatibility of the WZ gauge
with supersymmetric invariance. It can be easily verified that a supersym-
metric transformation does not preserve the WZ gauge. Yet, one can then
define a proper gauge transformation that restores the WZ gauge, so that
the combined supersymmetric and gauge transformations preserve the WZ
gauge.

7.3 Supersymmetric Abelian Gauge Theories

Let us now turn to consider a fully gauge-invariant superfield, rather than
the vector superfield in the WZ gauge in eq. (7.36). Since λ, λ̄, and D, are
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already gauge-invariant, let us just switch from Aµ to the field-strength from
eq. (7.8):

Fµν “ BµAν ´ BνAµ , (7.37)

where the commutator term drops in an Abelian gauge group, and the field-
strength is then gauge-invariant.

Thus, in order to construct a superfield from λ, λ̄, D, and Fµν , we first
note their dimensions:

rDs “ rFµνs “ rλs `
1

2
. (7.38)

The field λ could then be a bottom component of some chiral spinor super-
field, Wα, of the form:

Wα “ pϕα, ψαβ, Fαq , (7.39)

with the components:

ϕα ” λα , (7.40)

ψαβ ” iϵαβD ` ϵβγpσµνq
γ
α Fµν , (7.41)

Fα ” ipσµBµλ̄qα , (7.42)

where the bispinor component, ψαβ, and the top component, Fα, can be
constructed from dimensional and spinorial considerations, and we recall that
this is in the WZ gauge, and in chiral coordinates.

It can be verified that the above representation of Wα also matches the
following definition, using the generic vector superfield V :

Wα ” ´
i

4
D̄D̄DαV , W 9α ” `

i

4
DDD̄ 9αV . (7.43)

This spinor superfield is chiral and gauge-invariant by construction. Chirality
can also be seen to follow immediately from the definition in eq. (7.43):

D̄ 9βWα “ DβW 9α “ 0 . (7.44)

Gauge invariance can also be easily shown from the definition in eq. (7.43):

W 1
α “ ´

i

4
D̄D̄Dα

ˆ

V `
i

2

`

Ω ´ Ω̄
˘

˙

“ Wα ´
1

8
D̄

9β
tD̄ 9β, DαuΩ “ Wα , (7.45)

where we used the chirality, and anti-chirality, of Ω, Ω̄, respectively, and in
the last equality we also used the identity:

rD̄, tD̄,Dus “ 0 . (7.46)
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In addition, this spinor superfield also satisfies the identity:

DαWα “ D̄ 9αW
9α
, (7.47)

which can be verified from the definition in eq. (7.43).
Since Wα is chiral, its Lorentz scalar is also chiral, and we can take the

gauge-invariant F-term Lagrangian as follows:

L “
1

4

´

WαWα|θθ ` W 9αW
9α
ˇ

ˇ

ˇ

θ̄θ̄

¯

, (7.48)

which is the supersymmetric generalization of the Lagrangian for a free vector
field. After direct computation of this Lagrangian with some integration
by parts at the level of the action, we get the supersymmetric version of
Maxwell’s theory:

LSMaxwell “ ´
1

4
F µνFµν ´ iλ̄σ̄µBµλ `

1

2
D2 , (7.49)

where as before, we identify the first and second terms as the kinetic terms
of the photon and photino, respectively, and D as an auxiliary field.

Finally, one can also add the mass term m2V 2 to the free Lagrangian in
eq. (7.48). This mass term is not gauge-invariant, so it should be computed
from the general form of V (rather than in the WZ gauge). We then get for
a mass term in the Lagrangian:

V 2
ˇ

ˇ

θθθ̄θ̄
“ ´

1

2
AµA

µ
´ χλ ´ χ̄λ̄ ´ iχ̄σ̄µBµχ `

1

2
BlB ` BD `

1

2
ḠG . (7.50)

Note that this term not only gives mass to the vector field, but also introduces
the additional degrees of freedom, B and χ, that are required for a massive
multiplet, tB,χ, χ̄, λ, λ̄, Aµu, with all component fields of an equal mass. It
is easy to see that G is just an additional auxiliary field. We shall see in
section 8.3.1, and in the problem sheet, when symmetry breaking in the
ground states of gauge theories is considered, that the spontaneous breaking
of Up1q gauge symmetry is in fact characterized by the vector field acquiring
a mass.

Let us now turn our attention to matter fields in N “ 1 supersymmet-
ric gauge theories. They sit in chiral multiplets that are charged with the
generators of the gauge group, which constitute the conserved charges of the
gauge symmetry. For Up1q symmetry, a chiral superfield Φ is transformed
under Up1q rotations as follows:

Φ1
“ exp piΩT qΦ , D̄ 9αΩ “ 0 , (7.51)
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where T is the real Up1q charge of Φ, and Ω constitutes the rotation pa-
rameter. Ω is also taken to be a chiral superfield, in order to assure that Φ
remains chiral.

Let us check then what happens with the canonical kinetic term of chiral
superfields in supersymmetric gauge theories, considering Up1q gauge trans-
formations:

Φ̄1Φ1
“ Φ̄Φ exp

`

iT
`

Ω ´ Ω̄
˘˘

, (7.52)

which is not gauge-invariant. Yet, an Abelian vector superfield transforms
according to eq. (7.24), so we can take the kinetic term as follows:

Φ̄1 exp p´2TV 1
qΦ1

“ Φ̄ exp p´2TV qΦ , (7.53)

which is clearly gauge-invariant. This is the so-called “minimal coupling”
of the vector superfield to the chiral superfields, which is analogous to the
replacement of ordinary derivatives by gauge-covariant derivatives on matter
fields, for example:

Bµϕ Ñ Dµϕ “ Bµϕ ´ iAµϕ , (7.54)

which is similar to eq. (7.16) in non-supersymmetric gauge theories.

At first, the term in eq. (7.53) may seem non-renormalizable, due to the
high and infinite powers of V , coming from the power series of the exponen-
tial. Yet, it is easy to verify that in the WZ gauge:

pVWZq
n

“ 0 , @n ě 3 , (7.55)

i.e. the powers of V vanish as of the third power. Thus, when evaluated in
the WZ gauge, the minimal coupling of chiral superfields in the Lagrangian
takes the form:

LSMC “ Φ̄ exp p´2TV qΦ
ˇ

ˇ

θθθ̄θ̄

“ ´Dµϕ̄Dµϕ ´ iψ̄σ̄µDµψ ` F̄F ´ T ϕ̄Dϕ ´ i
?
2T

`

ϕ̄λψ ´ ϕλ̄ψ̄
˘

,
(7.56)

wherein in addition to Aµ, the vector superfield components, λ and D, also
couple to matter. It is thus easy to verify that this Lagrangian is in fact
renormalizable.

Thus, the supersymmetric extension of QED is constructed with 2 chiral
superfields:

Φ1
` “ exp p´ieΩqΦ` , Φ1

´ “ exp p`ieΩqΦ´ , (7.57)
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so that the supersymmetric QED Lagrangian reads:

LSQED “
1

4

´

WαWα|θθ ` W 9αW
9α
ˇ

ˇ

ˇ

θ̄θ̄

¯

`
“

Φ̄` exp p`2eV qΦ` ` Φ̄´ exp p´2eV qΦ´

‰
ˇ

ˇ

θθθ̄θ̄

` m
`

Φ`Φ´|θθ ` Φ̄`Φ̄´

ˇ

ˇ

θ̄θ̄

˘

, (7.58)

where the Weyl spinors, ψ`, ψ´, combine to form one massive Dirac spinor,
the electron, and the scalars, ϕ`, ϕ´, constitute the electron’s bosonic super-
partner – the so-called selectron.

7.4 Non-Abelian Vector Superfields

It is straightforward to generalize the gauge transformations of vector and
chiral superfields to a compact non-Abelian gauge group, with its Lie algebra
g. As the generalization of vector superfields is motivated by their coupling
to chiral superfields, we start with the latter by generalizing eq. (7.51). The
chiral superfield multiplet, Φi, is transformed as follows:

Φ1
i “ rexp piΩqsijΦj , (7.59)

with an algebra-valued Ωij:

Ω : R1,3|4
Ñ ig , rΩsij ” ΩA rTAsij , (7.60)

where ΩA are chiral superfields, and the generators are in the representation
r of the chiral field Φi.

For the minimal coupling of the chiral superfields in eq. (7.53) to remain
gauge-invariant for a non-Abelian gauge group, the gauge transformation of
the non-Abelian vector superfield is extended from eq. (7.24) as follows:

exp p´2V 1
q “ exp

`

iΩ̄
˘

exp p´2V q exp p´iΩq , (7.61)

with Ω and V valued in the adjoint representation of the algebra:

Ω, V : R1,3|4
Ñ ig , Ω ” rΩsij ” ΩA rTAsij , V ” rV sij ” VA rTAsij ,

(7.62)
where ΩA, VA, are chiral and real superfields, respectively, and the generators
that are in the adjoint representation of dimension m:

i P t1, . . . ,m “ dimGu . (7.63)
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In computing the product of exponentials in eq. (7.61), using the Baker-
Campbell-Hausdorff formula, we encounter only commutators of group gen-
erators, evaluated via eq. (7.1), which allows to express the transformed V 1

in the same form as in eq. (7.62):

V 1
” rV 1

sij ” V 1
ArTAsij . (7.64)

In the problem sheet we show that to linear order in the “group parameter”
Ω, the gauge transformation of V in eq. (7.61) yields the shift:

δV “ V 1
´ V “

i

2

`

Ω ´ Ω̄
˘

`
i

2
rΩ ` Ω̄, V s ` OpΩ2

q , (7.65)

which reduces to eq. (7.24) in the Abelian case, as required.
This gauge transformation still allows a WZ gauge, similar to the Abelian

case, where eq. (7.55), which becomes a matrix equation in the non-Abelian
case, still holds, and VWZ is identical in form to eq. (7.36), only that now
VWZ is valued in the adjoint representation of the non-Abelian Lie algebra.

From eqs. (7.59), (7.61), it is also clear now that the generalization of the
minimal coupling of the chiral superfield multiplet to general vector super-
fields reads:

LSMC “ Φ̄ exp p´2V qΦ
ˇ

ˇ

θθθ̄θ̄

“ ´Dµϕ̄Dµϕ ´ iψ̄σ̄µDµψ ` F̄F ´ ϕ̄Dϕ ´ i
?
2

`

ϕ̄λψ ´ ϕλ̄ψ̄
˘

, (7.66)

wherein all the representation indices, both of the chiral superfield multiplets
and of the vector superfield matrices, are suppressed, and similar to the
Abelian case in eq. (7.56), D and λ of the vector superfield also couple to
matter. For n chiral multiplets, n such minimal-coupling terms should be
included for each of the chiral multiplets.

7.5 Supersymmetric Gauge Theories

We now look to generalize the Abelian field-strength superfield in eq. (7.43)
to non-Abelian gauge groups. We then define the non-Abelian field-strength
superfield as follows:

Wα ”
i

8
D̄D̄ exp p2V qDα exp p´2V q , (7.67)

which properly reduces to the Abelian case, and satisfies chirality as in
eq. (7.44), i.e. D̄ 9βWα “ 0.
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Under non-Abelian gauge transformations this field-strength superfield is
transformed as follows:

W 1
α “

“
i

8
D̄D̄

“

exp piΩq exp p2V q exp
`

´iΩ̄
˘

Dα

“

exp
`

iΩ̄
˘

exp p´2V q exp p´iΩq
‰‰

“ exp piΩqWα exp p´iΩq `
i

8
exp piΩq D̄tD̄,Dαu exp p´iΩq

“ exp piΩqWα exp p´iΩq , (7.68)

where we used the chirality and anti-chirality of Ω, Ω̄, respectively, and in
the last equality also the identity in eq. (7.46). Yet, note that the chirality of
Wα is maintained, thanks to the chirality of both exponents to the left and
right.

The explicit form of Wα in chiral coordinates is identical to the Abelian
case in eqs. (7.39)-(7.42), except that in the latter equation, which is of the
top component, the ordinary derivative should be explicitly replaced by the
gauge-covariant derivative:

Fα “ i
`

σµDµλ̄
˘

α
, Dµλ̄ “ Bµλ̄ ´ irAµ, λ̄s , (7.69)

since λ̄ is in the adjoint representation, in which the gauge-covariant deriva-
tive from eq. (7.16) is equal to the ordinary derivative in the Abelian case
(unlike matter fields), but has to be modified in the non-Abelian case.

Let us consider then the gauge transformation of the trace of the Lorentz
scalar of the field-strength:

tr pW 1αW 1
αq “ tr pexp piΩqWαWα exp p´iΩqq “ tr pWαWαq , (7.70)

where the last equality is due to the trace cyclicity. Thus, this trace is gauge-
invariant.

We are now ready to write the super Yang-Mills (SYM) Lagrangian, that
holds in particular for a simple gauge group SUpNq, by taking the above
trace as the gauge-invariant F-term Lagrangian:

LSYM “ ´
τ

16πi
tr pWαWαq|θθ `

τ̄

16πi
tr

´

W 9αW
9α
¯

ˇ

ˇ

ˇ

θ̄θ̄
, (7.71)

where we introduced a complex coupling constant, τ , defined as follows:

τ ”
4πi

g2
`

Θ

2π
, (7.72)

which enters the Lagrangian holomorphically, namely it is a holomorphic
gauge coupling, with g2 the real YM coupling, and Θ the so-called theta
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angle. After direct computation and some integration by parts at the level
of the action, we get for the SYM Lagrangian:

LSYM “
1

g2
tr

ˆ

´
1

4
F µνFµν ´ iλ̄σ̄µDµλ `

1

2
D2

˙

`
Θ

64π2
tr pϵµνρσFµνFρσq ,

(7.73)
where the last term is the topological Chern-Pontryagin density, which is
a total spacetime derivative that can have a non-vanishing integral, due to
the existence of instanton solutions in non-Abelian gauge theories. For each
gauge group, there is such a theory with an independent gauge coupling, as
in eq. (7.72).

It is easy to verify that the SYM Lagrangian preserves Up1qR R-symmetry,
where the superfieldWα, and similarly its bottom component, λ, are assigned
the R-charge 1.

Finally, we are ready to write down the most general Lagrangian for
a renormalizable supersymmetric gauge theory, with a simple compact Lie
group, consisting of scalar, spinor and vector fields:

L “ ´
τ

16πi
tr pWαWαq|θθ `

τ̄

16πi
tr

´

W 9αW
9α
¯

ˇ

ˇ

ˇ

θ̄θ̄
` Φ̄ exp p´2V qΦ

ˇ

ˇ

θθθ̄θ̄

`

”´mab

2
ΦaΦb `

gabc
3

ΦaΦbΦc

¯
ˇ

ˇ

ˇ

θθ
` H.C.

ı

, (7.74)

where H.C. stands for the anti-holomorphic superpotential of the anti-chiral
superfields. Note that here the superpotential, with the interactions among
chiral superfields and their coupling constants, are further subject to the
constraints of gauge symmetry.



8. Spontaneous Symmetry Breaking

When a symmetry is preserved at the level of the action, but the ground
state is not invariant under the action of the corresponding charges, we
say that spontaneous symmetry breaking (SSB) takes place. As noted al-
ready in the opening chapter 1, there is no experimental evidence for su-
persymmetry as yet. None of the supersymmetric partners to the particles,
which comprise the Standard Model, has ever been observed. Thus, it is
believed that supersymmetry holds at very high energies, whereas in our
presently-accessible real-world low energies, supersymmetric theories are in
their ground state, and supersymmetry is spontaneously broken. This final
chapter is thus clearly a critical step in connecting supersymmetry to the
real world.

We normally first learn about SSB in non-supersymmetric QFTs with
gauge symmetry. Here we add supersymmetry to various theories, first with-
out gauge symmetry, and then also with gauge symmetry. Thus, in the follow-
ing we first study about ground states of supersymmetric theories in section
8.1, and analyse these vacua in various supersymmetric models. Then, we
consider the simple case of SSB in supersymmetric theories without gauge
symmetry, namely in chiral models, in section 8.2, in order to understand
spontaneous breaking of supersymmetry by itself. Finally, we proceed to
consider SSB in supersymmetric gauge theories in section 8.3, where there
can be SSB of the gauge symmetry, or of supersymmetry, or of both symme-
tries at the same time.

8.1 Supersymmetric Vacuum

From the N “ 1 supersymmetry algebra, we have for any state |Ψy:

xΨ|2σµ
α 9β
Pµ|Ψy “ xΨ|QαQ̄ 9β ` Q̄ 9βQα|Ψy . (8.1)

80
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Taking the trace on spinorial indices, we get:

tr
´

2σµ
α 9β
Pµ

¯

“

2
ÿ

α“1

`

|Q:
α|Ψy|

2
` |Qα|Ψy|

2
˘

“ ´4xΨ|P0|Ψy “ 4E ě 0 , (8.2)

so the energy of any state is non-negative. We can infer then that zero-energy
states, |0y, are supersymmetric ground states of the theory.

First, zero-energy states are ground states since their vanishing expecta-
tion value of H, is the smallest one possible:

x0|H|0y “ x0|P 0
|0y “ 0 . (8.3)

Second, zero-energy states are supersymmetric since eq. (8.2) yields:

xΨ|H|Ψy “ 0 ðñ Qα|Ψy “ Q̄ 9α|Ψy “ 0 , (8.4)

thus a state is left invariant under the supersymmetry group, if and only if
it is a zero-energy state. Therefore, whereas ground states of zero energy
preserve supersymmetry, those of positive energy, spontaneously break su-
persymmetry. This actually holds in any global supersymmetric theory in
any spacetime dimension.

8.1.1 Supersymmetric Vacuum and the Superpotential

For N “ 1 supersymmetric theory of n chiral superfields, we obtained an in-
teraction potential, which contains a scalar potential, V0pϕ

a, ϕ̄aq, in eq. (5.35).
For zero-energy ground states the scalar potential must vanish, and as the
latter is a sum of squares, a supersymmetric vacuum exists, if and only if:

BaW “ F a
“ 0 , @a , (8.5)

where we recall that these derivatives are evaluated on the bottom compo-
nents ϕa. This system of n equations is therefore called the supersymmetric
vacuum equations. The solutions to these equations determine the possible
vacuum expectation values (VEVs) for the scalar fields ϕa. A supersymmetric
vacuum is then a configuration of constant VEVs:

ϕa “ xϕay “ x0|ϕa|0y , (8.6)

which solve eqs. (8.5), and thus yield V0 “ 0.
The supersymmetric vacuum equations thus constitute n equations for n

unknowns. Depending on the superpotential W , there are 3 possibilities:
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1. There are no solutions. In this case supersymmetry is spontaneously
broken.

2. There is a finite number of solutions, k, corresponding to k discrete
supersymmetric vacua, local minima of the scalar potential with V0 “ 0.

3. There is a continuum of solutions, which is called a supersymmetric
vacuum moduli space.

In the problem sheet we consider several chiral models that demonstrate each
of these 3 possibilities.

In the case of a vacuum moduli space, if the solutions of the vacuum
equations are not related by a symmetry of the action, then the physics
around each local minimum is different. In an ordinary QFT any such “flat
directions” in the classical potential would generally be lifted by the quantum
corrections in renormalization. In supersymmetric theories however, due to
the non-renormalization theorem that we proved in section 6.2 for chiral
models, supersymmetry actually preserves the moduli space to all orders in
perturbation theory.

Let us consider an illustrative example for such a moduli space, via a
model of 3 chiral superfields with the superpotential:

W “
m

2
Φ2

3 ` λΦ1Φ2Φ3 . (8.7)

The supersymmetric vacuum equations in eq. (8.5) then yield:

$

&

%

B1W “ λϕ2ϕ3 “ 0
B2W “ λϕ1ϕ3 “ 0
B3W “ mϕ3 ` λϕ1ϕ2 “ 0

ùñ

$

&

%

ϕ1 “ ϕ3 “ 0
or

ϕ2 “ ϕ3 “ 0
, (8.8)

so the solution is a union of 2 complex planes, where the scalar potential
vanishes:

tϕ1 “ ϕ3 “ 0, @ϕ2u Y tϕ2 “ ϕ3 “ 0, @ϕ1u , (8.9)

which is the vacuum moduli space. The corresponding scalar potential reads:

V0 “ |BaW |
2

“ |λ|
2
|ϕ2ϕ3|

2
` |λ|

2
|ϕ1ϕ3|

2
` |λϕ1ϕ2 ` mϕ3|

2 . (8.10)

Let us take the plane tϕ2 “ ϕ3 “ 0, @ϕ1u, and expand the scalar poten-
tial around it. Since on the vacuum plane the potential is at its minimum:

BaV0 “ BāV0 “ 0 , @a , (8.11)
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then we need to go beyond first order, and expand the potential by going to
second order in all fields, which yields:

∆V0 “ |λ|
2
|∆ϕ2∆ϕ3|

2
` |λ|

2
|pϕ1 ` ∆ϕ1q∆ϕ3|

2
` |λpϕ1 ` ∆ϕ1q∆ϕ2 ` m∆ϕ3|

2

“ |λ|
2
|ϕ1∆ϕ3|

2
` |λ|

2
|ϕ1∆ϕ2|

2
` |m|

2
|∆ϕ3|

2

` λm̄ϕ1∆ϕ2∆ϕ3 ` λ̄mϕ̄1∆ϕ2∆ϕ3 , (8.12)

so we recover the massive fields ∆ϕ2, ∆ϕ3, whereas ∆ϕ1 is massless, since a
change in ϕ1 remains in the vacuum plane. The masses of ∆ϕ2, ∆ϕ3, depend
on |ϕ1|

2, which shows that this vacuum moduli are not physically equivalent
– in each point ϕ1 there is different physics (different spectrum).

Why is there a flat direction? The superpotentialW has a symmetry, but
it is not a symmetry of the Kähler potential, and thus it is not a symmetry of
the whole action. W depends on ϕ1 and ϕ2 together, rather than separately.
Consider then ϕ1 Ñ cϕ1, ϕ2 Ñ ϕ2{c, ϕ3 Ñ ϕ3. If c ‰ 1, then |ϕ1|

2 ` |ϕ2|
2 `

|ϕ3|
2 is not invariant. So, on the vacuum moduli all points have the same

physics, since there is a symmetry there on the whole action, yet around the
moduli the physics is different near different points.

8.2 SSB in Chiral Models

Let us consider the case, where there is spontaneous symmetry breaking
(SSB) in the simplest supersymmetric theories, namely in chiral models.
This is when there is no solution to the supersymmetric vacuum equations
in eq. (8.5). If the number of unknowns is actually less than the number of
equations, it can be that there is no solution. When R-symmetry holds, then
this is the case. Thus R-symmetry entails SSB.

Possibly the simplest example of such a theory, where supersymmetry is
spontaneously broken, is the O’Raifeartaigh model (1975) [14] with 3 chiral
superfields and the superpotential:

WO’R “ αΦ1 ` βΦ2Φ3 ` γΦ1Φ
2
2 . (8.13)

The supersymmetric vacuum equations yield:
$

&

%

B1W “ α ` γϕ2
2 “ 0

B2W “ βϕ3 ` 2γϕ1ϕ2 “ 0
B3W “ βϕ2 “ 0

, (8.14)

and it is easy to see that the first and third equations clash, so that there is
no solution. The corresponding scalar potential reads:

V0 “ |α ` γϕ2
2|

2
` |βϕ3 ` 2γϕ1ϕ2|

2
` |βϕ2|

2 . (8.15)
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The second term can be made to vanish, but those with only ϕ2 cannot.
Since the minimum of V0 ‰ 0, then supersymmetry is spontaneously broken.
Classically, there is the pseudo vacuum moduli:

tϕ2 “ ϕ3 “ 0, @ϕ1u , (8.16)

so any VEV of ϕ1 is allowed, but since supersymmetry is broken, this “de-
generacy” is lifted at one-loop quantum corrections.

Note that such models of supersymmetry breaking always seem very fine-
tuned. Let us recall R-symmetry, its transformation of Grassmannian inte-
gration measure in eq. (4.47), and the definition of R-charges in eq. (4.48):
If the chiral superfields Φ1, Φ2, Φ3, are assigned the R-charges q1 “ 2,
q2 “ 0, q3 “ 2, respectively, then it is easy to see that the O’Raifeartaigh
model is R-symmetric. Yet, if we only add, e.g. the mass term mΦ2

3, to the
O’Raifeartaigh model in eq. (8.13), then it is easy to verify that supersym-
metric vacuum can be restored, whereas R-symmetry no longer holds.

8.2.1 Goldstino and the Mass Sum Rule

Let us now consider the Lagrangian of a general chiral model in eq. (5.34),
and extract only the contribution with fermions:

LF “ ´iψ̄aσ̄µBµψ
a

´
1

2
BaBbWψaψb ´

1

2
BāBb̄Wψ̄aψ̄b , (8.17)

where the interaction terms can be recast using a matrix as follows:

LF Ą ´
1

2

`

ψ̄a, ψa
˘

ˆ

0 BāBb̄W
BaBbW 0

˙ ˆ

ψb

ψ̄b

˙

, (8.18)

which defines the mass matrix of the fermions:

rmF sab ”

ˆ

0 BāBb̄W
BaBbW 0

˙

. (8.19)

To find the mass spectrum of the fermions, we thus need to diagonalize the
mass matrix.

Let us assume that supersymmetry is spontaneously broken:

Da , BaW “ ´F̄ a
‰ 0 ðñ Da , BāW “ ´F a

‰ 0 . (8.20)

Since the potential is at its minimum in the ground state, as in eq. (8.11) we
can write:

BbV0 “ Bb
`

BaWBāW
˘

“ BbBaWBāW “ 0 , (8.21)
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where in the second equality we used the fact that W , W , are holomorphic
and anti-holomorphic, respectively. Similarly, we also have:

Bb̄V0 “ Bb̄

`

BaWBāW
˘

“ BaWBb̄BāW “ 0 . (8.22)

Eqs. (8.21) and (8.22) can be put together into the matrix equation:

ˆ

0 BāBb̄W
BaBbW 0

˙ ˆ

BāW
BaW

˙

“ 0 , (8.23)

or using eqs. (8.19), (8.20):

rmF sab

ˆ

F a

F̄ a

˙

“ 0 . (8.24)

Recall that SSB is generally characterized by the appearance of a so-
called Goldstone particle, which is massless. In non-supersymmetric QFTs
we encounter Goldstone bosons (specifically scalars), corresponding to the
SSB of some gauge symmetry, namely of some bosonic (scalar) symmetry.
Here we find a Goldstone fermion:

χ ”

ˆ

F aψa

F̄ aψ̄a

˙

, (8.25)

as χ is an eigenvector of the fermion mass-matrix with an eigenvalue 0.
The Goldstone fermion, called the goldstino, which characterizes the SSB of
supersymmetry, is a spinor spanned by the chiral spinor fields with scalar
coefficients F a, as the VEV of F a does not vanish, xF ay ‰ 0, see eq. (8.20).
Thus, here we see a Goldstone fermion of spin 1{2, corresponding to the SSB
of supersymmetry, namely of fermionic spin 1{2 symmetries.

Note that the square of the fermion mass matrix in eq. (8.19) reads:

rm2
F sab ”

ˆ

BāBc̄W BcBbW 0
0 BaBcW Bc̄Bb̄W

˙

. (8.26)

Let us then consider in comparison the square-mass matrix of the bosons
in a general chiral model. The latter can be identified from the Lagrangian
in eq. (5.34), by expanding the scalar potential to second order, similar to
our arguments around eq. (8.12), so that its contribution to the Lagrangian
is written as follows:

LB Ą ´
1

2

`

ϕ̄a, ϕa
˘

ˆ

BāBbV0 BāBb̄V0
BaBbV0 BaBb̄V0

˙ ˆ

ϕb

ϕ̄b

˙

, (8.27)
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with the square-mass matrix of the bosons defined as follows:

rm2
Bsab ”

ˆ

BāBbV0 BāBb̄V0
BaBbV0 BaBb̄V0

˙

. (8.28)

Using eq. (5.35), the boson square-mass matrix is then rewritten as follows:

rm2
Bsab “

ˆ

BāBb
`

BcWBc̄W
˘

BāBb̄

`

BcWBc̄W
˘

BaBb
`

BcWBc̄W
˘

BaBb̄

`

BcWBc̄W
˘

˙

“

˜

BbBcW BāBc̄W BcW BāBb̄Bc̄W

BaBbBcW Bc̄W BaBcW Bb̄Bc̄W

¸

, (8.29)

where in the second equality we applied the derivatives onW orW , according
to their holomorphic or anti-holomorphic nature, respectively. Notice that
the diagonal blocks of the square of the fermion mass-matrix in eq. (8.26),
and of the boson square-mass matrix in eq. (8.29), are identical!

Therefore, if supersymmetry is not broken, then it is easy to see from the
supersymmetric vacuum equations in eq. (8.5), substituted into eqs. (8.26),
(8.29), that the mass spectrum of bosons and fermions in the ground state is
identical. This is similar to what we have already seen for non-zero energy
states, when we discussed supermultiplets in section 3.3, in particular from
eqs. (3.75) and (3.82). On the other hand, if supersymmetry is broken, then
in the ground state the mass spectrum of bosons is different than that of
fermions, due to the non-vanishing off-diagonal blocks in eq. (8.29).

Yet, whether supersymmetry is broken or not, the invariant trace of the
square-mass matrices of bosons and of fermions is equal:

tr
`

m2
B

˘

“ tr
`

m2
F

˘

, (8.30)

which amounts to the following:

ÿ

bosons

m2
B “

ÿ

fermions

m2
F , (8.31)

where the sum is over all bosonic or fermionic vacuum states, respectively.
This is the supersymmetric mass sum rule, which says that even if supersym-
metry gets spontaneously broken, the average square masses of bosons is still
equal to that of fermions. This is a remainder of the supersymmetry that
got broken. Such mass sum rules are common in general supersymmetric
theories.
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8.3 SSB in Supersymmetric Gauge Theories

Once there is gauge symmetry as well as supersymmetry, there are in general
3 possibilities with SSB:

1. Only gauge symmetry gets broken, but supersymmetry is not broken.

2. Only supersymmetry gets broken, but gauge symmetry is not broken.

3. Both gauge symmetry and supersymmetry get broken.

An example of the first possibility is treated in the problem sheet as the
supersymmetric Higgs mechanism in SQED. The 2 latter possibilities are
discussed in what follows.

Let us then extend our analysis of the supersymmetric vacuum and SSB
to supersymmetric gauge theories, which contain both vector and chiral su-
perfields. First, we should extract the extended scalar potential, which now
has 2 additional contributions, beyond that from the superpotential of chiral
superfields in eq. (5.35):

V0pϕi, ϕ̄iq Ă ´
`

LSYM ` LSMC ` LW`W

˘

, (8.32)

that is the addition to the scalar potential arises from the SYM Lagrangian
in eq. (7.73), and from the minimal coupling Lagrangian in eq. (7.66). Thus,
all in all, the scalar potential now reads:

V0pϕi, ϕ̄iq ” |BiW |
2

` ϕ̄Dϕ ´
1

2g2
tr

`

D2
˘

, (8.33)

where here the indices i sit in some representation r:

i P t1, . . . , dim ru , (8.34)

and D is the auxiliary field valued in the adjoint representation:

D ” DArTAsij , i, j P t1, . . . , dimGu . (8.35)

We can solve forD via its Euler-Lagrange equations from theD-dependent
terms in eqs. (7.73), (7.66):

LSYM ` LSMC Ą
cprq

2g2
D2
A ´ DA ϕ̄ TAϕ , (8.36)

where we also used the orthogonality condition of the generators in eq. (7.2).
The solution of Euler-Lagrange equations yields:

DA “
g2

cprq

ϕ̄ TAϕ . (8.37)
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Substituting this back in eq. (8.33), we get for the scalar potential:

V0 “ |BiW |
2

`
g2

2cprq

ÿ

A

`

ϕ̄ TAϕ
˘2
. (8.38)

Thus, in the presence of vector superfields the scalar potential is still a
sum of squares, so the conditions for a supersymmetric vacuum read:

BiW “ 0 , @i and ϕ̄ TAϕ “ 0 , @A . (8.39)

Thus, these are now the supersymmetric vacuum equations, so that to the
eqs. (8.5) from the superpotential, there is an additional requirement for the
real operators D̃A to vanish:

D̃A ” ϕ̄ TAϕ “ 0 , (8.40)

due to the minimal coupling of gauge fields to matter fields. Yet, it is easy to
see that any two solutions of ϕi to the supersymmetric vacuum eqs. (8.39),
which are related by constant gauge transformations, are physically equiva-
lent:

ϕ1
i – ϕi , if DωA P CdimG , ϕ1

i “ exppiωATAqϕi , (8.41)

where ωA constitute complex groups parameters.
In fact, the supersymmetric vacuum manifold of a supersymmetric gauge

theory takes the general form:

Mvac “ tϕi P Cn
|BiW “ 0, @iu{G , (8.42)

where the quotient by the gauge group corresponds to the equivalence rela-
tion in eq. (8.41): It was proved that if the supersymmetric vacuum equations
in eq. (8.5) from the superpotential have a solution, then thanks to gauge
symmetry, there is always an equivalent solution that also satisfies the ad-
ditional eqs. (8.40). Thus, the SSB of supersymmetric gauge theories seems
to also be determined solely by the VEVs of the chiral auxiliary fields, Fi.
This general statement is in fact entirely true for non-Abelian gauge theo-
ries, whereas for Abelian theories, as we shall discuss shortly in section 8.3.1,
there exists a unique exception to it.

Consider now that supersymmetry is spontaneously broken, so that the
vacuum has non-zero energy. Let us denote the VEVs associated with the
auxiliary fields as follows:

fi ” BīW , dA ” ϕ̄ TAϕ , (8.43)

with the VEVs for the scalars, ϕi “ xϕiy. Supersymmetry is broken, if some
fi or dA are non-vanishing. Consider then any classical vacuum, where the
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scalar potential is minimized, so that applying eq. (8.11) on the extended
scalar potential in eq. (8.38) yields the equations:

BiBjWfj `
g2

cprq
ϕ̄jrTAsjidA “ 0 , @i , (8.44)

and their Hermitian conjugate. In addition, from the gauge invariance of the
superpotential, which amounts to the constraint:

δW

δΩ
“
δW

δΩ̄
“ 0 , (8.45)

with the gauge transformations of the chiral superfield multiplet in eq. (7.59),
we also get:

f̄jrTAsjiϕi “ 0 , @A , ðñ ϕ̄jrTAsjifi “ 0 , @A . (8.46)

Now, let us extract the fermion mass terms of a general supersymmetric
gauge theory, in particular from eqs. (5.36) and (7.66), which yields:

LmF
“

ˆ

´
1

2
BiBjWψiψj ´ i

?
2ϕ̄iλArTAsijψj

˙

` H.C. , (8.47)

that with the fermion mass-matrix defined as follows:

mF ”

ˆ

BiBjW i
?
2ϕ̄krTBski

i
?
2ϕ̄krTAskj 0

˙

, (8.48)

can also be written as follows:

LmF
“ ´

1

2
pψi, λAqmF

ˆ

ψj
λB

˙

` H.C. . (8.49)

Thus, eqs. (8.44), (8.46), can also be written as follows:

mF

ˆ

fj
d̃B

˙

“ 0 , d̃B ” ´i
g2

?
2cprq

dB , (8.50)

so that any non-supersymmetric vacuum satisfies the following:

ˆ

fj
d̃B

˙

‰ 0 , mF

ˆ

fj
d̃B

˙

“ 0 , (8.51)

that is the fermion mass matrix has at least one eigenvector of eigenvalue
0. Therefore, we see that similar to SSB in chiral models, in particular as
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in eqs. (8.24), (8.25), the SSB of supersymmetry in general supersymmetric
gauge theories also gives rise to a Goldstone fermion of spin 1{2:

χ “ fiψi ` d̃AλA , (8.52)

that is the goldstino. This is a massless spinor, which corresponds to the
broken fermionic supersymmetry. It is spanned by the chiral spinor fields
and the gaugino fields, with the VEVs of the corresponding scalar auxiliary
fields, Fi and DA, respectively, fixing their coefficients.

8.3.1 SSB in Supersymmetric Abelian Gauge Theories

As noted after eq. (8.42), if the supersymmetric vacuum eqs. (8.5) from the
superpotential have a solution, then the additional eqs. (8.40) for supersym-
metric vacuum with gauge symmetry, can always be solved as well. Therefore
it seems that SSB cannot occur, if eqs. (8.5) are satisfied, but eqs. (8.40) are
not, namely if the VEVs of the chiral auxiliary fields, xFay, vanish, but the
VEVs of the vector auxiliary fields, xDAy, do not. Yet, Abelian gauge groups
present another route for SSB to occur.

For an Abelian gauge group we can add to the Lagrangian the following
term, which was introduced by Fayet and Iliopoulos (FI) (1974) [15]:

LFI “ 2

ż

d2θd2θ̄ κV “ κD , (8.53)

where V in an Abelian vector superfield, and κ is some real coupling constant.
This term clearly preserves supersymmetry being a D-term Lagrangian, and
it is also gauge-invariant:

ż

d4x V 1
|θθθ̄θ̄ “

ż

d4x

„

V `
i

2

`

Φ ´ Φ̄
˘

ȷ
ˇ

ˇ

ˇ

ˇ

θθθ̄θ̄

“
1

2

ż

d4x

„

D `
i

4
B
2

`

ϕ ´ ϕ̄
˘

ȷ

“
1

2

ż

d4xD “

ż

d4x V |θθθ̄θ̄ ,

(8.54)

where in the third equality the total spacetime derivative term can be dropped
via integration by parts.

For non-Abelian gauge groups V is a matrix, and such a term is not
gauge-invariant, so a possible generalization to consider would be a trace.
Yet, we get:

ż

d4x rtr pV qs|θθθ̄θ̄ „

ż

d4x tr pDq “

ż

d4xrDA tr pTAqs “ 0 , (8.55)
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where the last equality is due to the tracelessness of SUpNq generators. Thus
a FI term is only relevant to a Up1q gauge group.

Let us then add the FI term to the SQED Lagrangian in eq. (7.58):

LSQED+FI “
1

4

´

WαWα|θθ ` W 9αW
9α
ˇ

ˇ

ˇ

θ̄θ̄

¯

`
“

Φ̄` exp p`2eV qΦ` ` Φ̄´ exp p´2eV qΦ´

‰
ˇ

ˇ

θθθ̄θ̄

` m
`

Φ`Φ´|θθ ` Φ̄`Φ̄´

ˇ

ˇ

θ̄θ̄

˘

` 2κ V |θθθ̄θ̄ . (8.56)

We can obtain the explicit scalar potential of this model by solving for the
auxiliary fields F`, F´, and D, which yields:

V0 “ F̄`F` ` F̄´F´ `
1

2
D2

“
e2

8

`

ϕ̄`ϕ` ´ ϕ̄´ϕ´

˘2
`

ˆ

m2
`

1

2
eκ

˙

ϕ̄`ϕ` `

ˆ

m2
´

1

2
eκ

˙

ϕ̄´ϕ´

`
1

2
κ2 , (8.57)

where in the first equality we used eqs. (8.38), (8.37), and eq. (7.12) to switch
from a non-Abelian to the Abelian case. There is no value of the scalar fields
that makes V0 “ 0, so supersymmetry is spontaneously broken in this model.

We can then distinguish between 2 cases of SSB in this model, according
to the relations among the coupling constants:

1. 1
2
eκ ď m2. In this case only supersymmetry is broken. D acquires a

non-zero VEV, xDy “ ´κ, and the photino λ is also the Goldstone
fermion (or goldstino). The minimum of V0 at the ground state is
V0pϕ` “ ϕ´ “ 0q “ 1

2
κ2.

2. 1
2
eκ ą m2. In this case both supersymmetry and the Up1q gauge sym-

metry are spontaneously broken. The vector gauge field Aµ also ac-
quires a mass, as the Goldstone boson, which depends on the (dynam-
ical) chiral scalar with a non-zero VEV that arises, is being “eaten”.

One can analyse the second case in detail, using the definition:

C ”

d

4

e2

ˆ

1

2
eκ ´ m2

˙

, (8.58)

to find that the minimum of V0 at the ground state reads:

V0pϕ` “ 0, ϕ´ “ Cq “
2m2

e2
`

eκ ´ m2
˘

, (8.59)

and the model comprises:
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• 2 spinors of mass
b

m2 ` 1
2
e2C2,

• 1 vector and 1 real scalar of mass
b

1
2
e2C2,

• 1 complex scalar of mass
?
2m2,

• 1 massless Goldstone spinor.

Note that the sum of squared masses, weighed by the number of DOFs,
is identical for the bosonic and fermionic modes, on the LHS and RHS,
respectively:

2 ˆ 2m2
` 4 ˆ 1

2
e2C2

“ 4
`

m2
` 1

2
e2C2

˘

. (8.60)

This equality relationship also holds in the first Up1q gauge-symmetric case,
and it just provides a more elaborate example for the supersymmetric mass
sum rule from eq. (8.31), that we proved in chiral models.

To recap, as a generic rule, non-zero VEVs of auxiliary fields induce SSB
of supersymmetry, while non-zero VEVs of dynamical scalar fields lead to
the breaking of gauge symmetry.
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