Chapter 2

Compactness etc.

2.4 Compactifications
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An application of the Stone-Cech Compactification

The material in this handout is taken from Algebra in the Stone-Cech Compact-
ification by Hindman and Strauss.

I'm going to prove a theorem about arithmetic on N, using the Stone-Cech
compactification. The application is, possibly, rather surprising.

Theorem 2.4.23 (The Finite Sums Theorem) Let N be divided into finitely
many disjoint sets Ay, ..., A,. Then there is an infinite subset B of N such
that, for some i, not only is B C A;, but, whenever ni,...,ng are distinct
elements of B, then their sum ny + ---+ni € A; also.

The first thing we do is embed N (with the usual discrete topology) into its
Stone-Cech compactification (h, SN), and then extend the operation of addition
to BN, using the Stone-Cech property. (Remember that, at the level of intuition,
we like to identify N with its image under h, so pretend that h is the identity.
But I will keep on writing h, for the sake of formal correctness.)

Actually, + is a function of two variables, and the Stone-Cech property
only talks about functions of one variable. So we split + into two parts: the
operation p, : m — m + n of adding a given constant value on the right, and
the corresponding operation of adding a given constant value on the left, and
extend them one at a time:

Definition 2.4.24 For each n € N, define p,, as a function from N to N by
pn(m) = m +n. Noticing that hop, : N — BN is continuous, we use the
Stone-Cech property to define a function Bp, : BN — BN so that for all m € N,
Bpn(h(m)) = h(pn(m)).

(Intuitively, at this stage Bp,(p), for p € BN, is a sum p + h(n): in other
words, we now know how to add a natural number on the right to any element
of fN.)

Now, for p € BN, and n € N, define A\y(n) = Bpn(p): so Ay : N — SN.
Use the Stone-Cech property to define BA, : BN — BN so that if n € N, then
BAp(h(n)) = Ap(n).

If p, g € BN, we define p+ q = SAp(q).

It turns out, rather surprisingly, that 4+ on the Stone-Cech compactification
is very unlike + on the natural numbers. For instance, it is not commutative;
worse than that, even though p + ¢ is certainly continuous as a function of g,
it turns out, bafflingly, not to be continuous as a function of p. (Exercise: why
can you not prove that p+ ¢ is continuous as a function of p?) One can, though,
show that + is associative on SN, and I will assume this without comment.

Another odd property of + on SN is that there are idempotents: elements
p # h(0) such that p +p = p. We will now set out to show that this is so.

Definition 2.4.25 Let Z = {A C SN\ {h(0)} : A+ A C A and A is compact
and non-empty}.
(By A+ A I mean, of course, {p+q:p, q€ A}.)
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We notice, first, that Z is non-empty, since SN\ {h(0)} is in Z, for {h(0)}
is open in AN (why?) and so its complement is closed.

Next, we can prove that any chain in Z has a lower bound (this is the point
where we use compactness, in the form that any family of closed sets with the
finite intersection property has a non-empty intersection); and Zorn’s Lemma
(suitably adapted) allows us to show that Z then has a minimal element.

Definition 2.4.26 Let A be some minimal element of Z.

Now in fact, A contains exactly one element, which is an idempotent. But
we only need the rather weaker:

Lemma 2.4.27 A contains an idempotent.

Proof. Let p € A. We will show that p +p = p.

First, we show that A+ p = A, which is clearly a step in the right direction.
(By A+ p, of course, we mean {¢g+p:q€ A}.)

For, let B = A + p.

Then B+ B=A+p+A+pC A+ A+ A+ p (since p € A) and, since
Ae Z weknowthat A+ AC A, soB+BCA+p=0B.

Hence B € Z.

Alsope A,and A+ AC A, soB=A+pC A+ A C A. But A is a minimal
element of Z, so B = A.

So, indeed, A+ p = A.

Our next step is to investigate those y € A such that y + p = p, in hopes
that p will turn out to be one of them.

So, let C = {y € A: y+p = p}; this is non-empty, since A+p = A. We will
show that C' = A, so that, indeed, p € C.

Now, ify, z € C, then y, z € A, so, since A+ A C A, it follows that y+2z € A.
Also, (y+2)+p=y+ (2+p) = y+p = p, using the fact that z, and then y, is
in C. Therefore y + z € C.

So C +C C C. Now also, C = AN (B\,)"{p} is closed in the compact
space SN, hence it is compact. So C' is an element of Z. But C' C A, so, since
A is minimal, C = A.

Hence, for ally € A, y € C, soy+p = p.

Hence in particular p € A implies p + p = p, as required. O

We now turn to the proof of the Finite Sums Theorem.

Suppose N is the disjoint union of finitely many sets A1, ..., A,.

By a question on the problem sheets, SN is the disjoint union of the sets
h(A1), ..., h(A;), which we can then prove are all also open, since each is the
complement of a finite union of closed sets.

Let p be an idempotent. Suppose p € h(4;).

Well, + is continuous on the right, by which I mean that the function g\,
is continuous for all 7.

So, applying continuity of 8\,, we note that whenever U > p is open, there
exists V 3 p which is also open such that V' C (8A,)"}(U); in other words,
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for all ¢ € V, BA,(¢) = p+q € U. (Actually, of course, I could have taken
V = (BA,)"H(U); but for my purposes I don’t care about the reverse inclusion.)

Also, while + is not always continuous on the left, we do know that if n € N,
the function SBp, is continuous. It then follows that if h(n) € V N h(N), by
continuity of Bp, at p, there is W 3 p open, depending on n, such that for all
r €W, Bpn(r) = A(n) = BA-(n) =7+ h(n) € U.

Now we proceed to the construction of B. We construct it as a sequence
nog, N1, -. ..

Let Uy = A;: recall that this was open. Find Vj open such that p € 1, and
for all g € Vi, p+ q € Up.

Now pick ng such that h(ng) € Up N Vh. (Remember that this is possible
because h(N) is dense.)

Now find open Wy 3 p such that for all r € Wy, r + h(ng) € Up.

Next, let Uy = Uy N Wy, noting that U; is open and p € U;. Find V3 5 p
open such that for all ¢ € Vi, p+q € Us.

Now pick ny > ng such that h(ny) € Uy NVi. (It is possible to choose
n1 > ng, because p is a limit point of h(N), and so each open neighbourhood of
it contains infinitely many values of h(m).)

Now find Wj > p such that for all r € Wy, r + h(ny) € Uy.

Let U = Uy N W71 N Wy, and continue.

Let B = {ny : k € N}. We show that any finite sum of distinct elements of
B, is in A;.

Suppose k1 < ka < -+ ky,. We show that ng,, + -+ 4+ ng, + ng, € 4.

Well, ny,, was chosen so that h(ny,, ) belongs to Uy, € Wy, _,. This means
that, by definition of Wy, ., h(ng,,)+h(ng,, ) € Uk, ,. Now Uy, _, is a subset
of Wy,,_,. Hence, since (h(ng,,) + h(ng,,_,)) € Wk,._,, (h(ng,,) + h(ng,,_,)) +
h(nknL—Z) c Uk, »-

Continuing in this way, we find that h(ng, )+ -+ h(ng,) + h(ng,) € Uk, -
Now ng Q Uk0,1 Q Q U1 g UO = h(AJ So h(nkm>+ . '+h(nkl)+h(nk0) €
h(A;).

We can now drop all the A’s, pulling back from AN to N, and see that
Nk, + -+ Nk, + Nk, € A;, as required.




