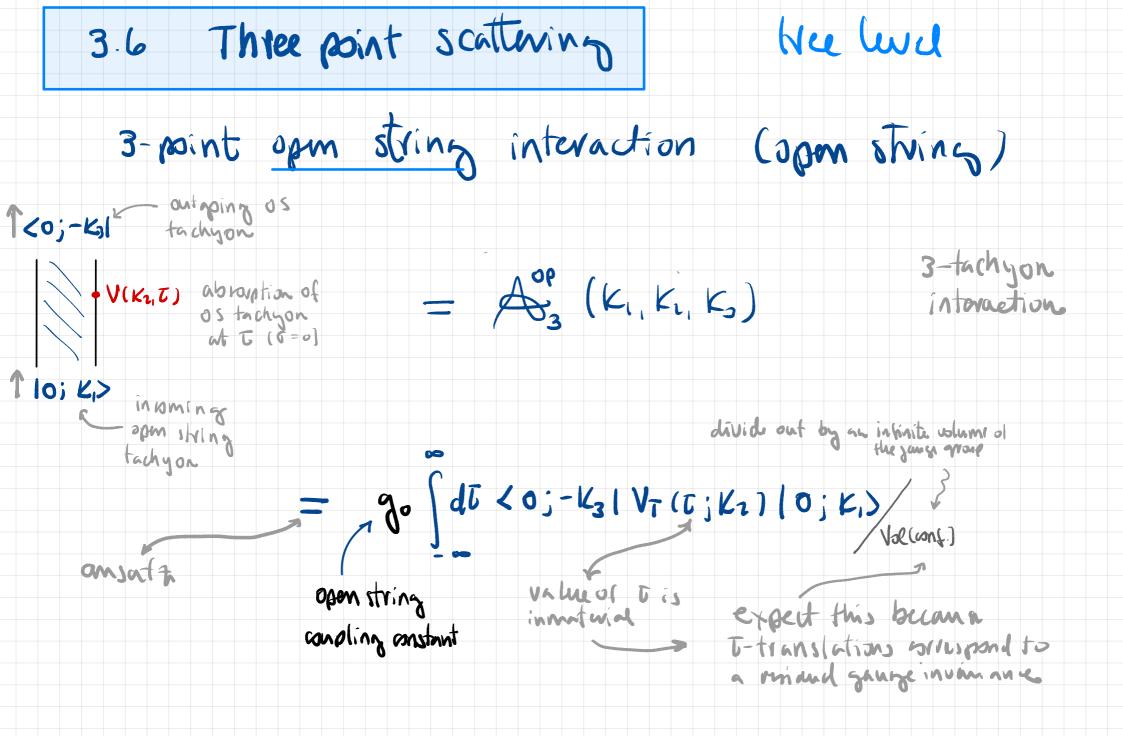
String Theory 1

Lecture # 10

3 Interactions

- 3.1 Generalities
- 3.2 Vertex operators: introduction
- 3.3 Vertex sperators: opens string
- 3.4 The state vertex corrapondance open strings
- 3.5 Vertex opmator: dond string
 - 3.6 3-point interactions
- 3.7 4-point tachyon amplitude
- 3.8 Comments on the general nicture

state-virtex como pondon a Last lutur opm string: T=-it incomming) (4>= lim 1 V+ (-ibq 2) 10;0> z = e' = e t (is report an insuming state 1+> to acting in infinite Euclidean past with a VO) < pl = him & (0;0| V4(-ibg2) (is recover an outgoing state col by acting in infinite Enchidean Suture with a VO dond string he eist he eist he et he (4) = lim (22) Vy (-it, 5) 10 jo>



$$\frac{\mathcal{A}_{3}^{e}(K_{1},K_{1},K_{3})}{\mathcal{A}_{3}^{e}(K_{1},K_{1},K_{3})} = \frac{1}{90}\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}\left(\frac{1}{9}\right)\left($$

$$\mathcal{A}_{3}^{\circ}(\mathcal{K}_{1},\mathcal{K}_{2},\mathcal{K}_{3}) = \mathcal{A}_{6} \quad \mathcal{C}_{0}; -\mathcal{K}_{3} \mid 0; \quad \mathcal{K}_{1} + \mathcal{K}_{2} > \left(\int d\vec{t} \quad \text{Vol(conf.)}\right)$$

alternatively:
Sample fix at 5=0

(more late: use
Fader - Popor pording)

expected runt won Feynman rules for a 3-point vertex interaction tree point tree level closed string dingrams
(tachyon aborbing a tachyon) 20;K1 $V_{T}^{c}(K_{1}, \xi^{t}) = A_{3}^{cc}(K_{1}, K_{1}, K_{3})$ $= gu \int d^{3} \xi^{\pm} (0; -K_{3}) V_{T}^{\alpha}(K_{1}, \xi^{\pm}) (0; K_{1})$ cloadstring aupling

Recall Hamiltonian: H~ (Lo+2)~20 $\mathcal{A}_{3}(\mathcal{L}_{1},\mathcal{K}_{2},\mathcal{K}_{3})$ $\mathcal{L}_{0}-\mathcal{L}_{0}-\partial \mathcal{L}_{1}$ $\mathcal{L}_{1}-\mathcal{L}_{0}-\partial \mathcal{L}_{2}$ $\mathcal{L}_{1}-\mathcal{L}_{2}-\mathcal{L}_{3}-\partial \mathcal{L}_{4}$ $\mathcal{L}_{1}-\mathcal{L}_{2}-\mathcal{L}_{3}-\mathcal{L}_{4}$ = ga fd = (0; - K) e Lo+ 2: E Lo+ 2: E Lo V((0, K) e Lo- 2: E Lo- 2: E Lo (0; K) / Vol(conf.)

 -2: E Lo- 2: E Lo- 2: E Lo (0; K)
 -2: E Lo- 2: E Lo (0; K)
 -2: E Lo- 2: E Lo (0; K)
 Vol(conf.) = gae $\int d^2 \xi^{\pm} c_0 j - k_3 | V_T(k_1, 0) | 0; k_1 > V_2(conf.)$ (1+ creation): e : (1+ annihilation)

$$40_{3}(K_{1},K_{1},K_{3}) = 9ce \int d^{2} \xi^{\pm}(0_{1}-K_{3}|0_{1},K_{1})/\sqrt{Val(conf.)}$$

$$= 9ce \delta(K_{1}+K_{2}+K_{3}) \int d^{2} \xi^{\pm}/\sqrt{Val(conf.)}$$

(PS3) 3 point amplitudes with tachyons k

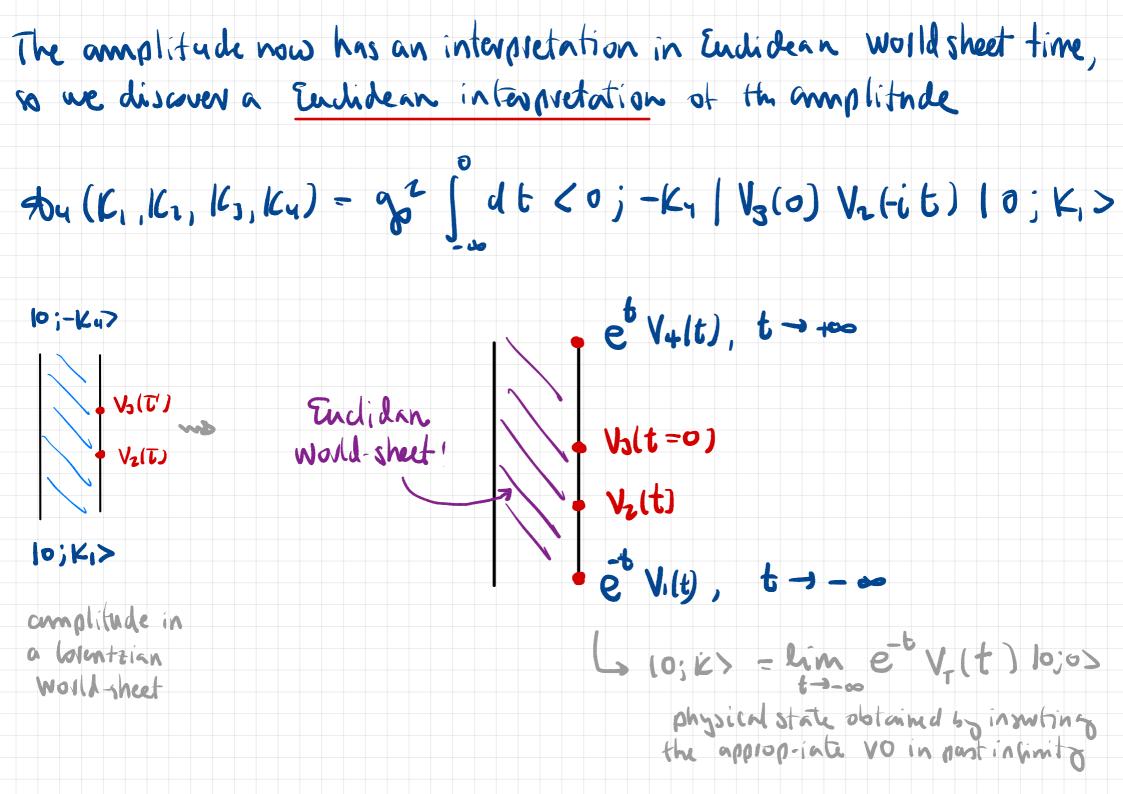
3.7 The Vonetiamo amplitude or 4-point tachyon amplitude [This section: Seatures of amplitudes than can be surveiled to n-point amplitudes in upon L about thing amplitudes] in coming to chypn In mom (2) In mom (2)

Use the renducel gunge weedom to fix T'=0 404 (K, K2, K3, K4) = 30 J od T < 0j - K4 | V3(0) V2(T) 10; K1>
(so no need to divide by Vol(10n4)) = $90 \int dt C0, -K_{1} V_{3}(0) e^{itL_{0}} V_{2}(0) e^{itC_{0}} (0; K_{1})$ éic lo; KID = 92 (dt (0;-Ky | V3(0) e i 5(60-1) V2(0) | 0; K,> $= g_0^{2} < 0; -K_4 / V_3(0) \left(\int_{-\infty}^{0} d^{7} e^{it(L_0 - 1)} \right) V_1(0) (0; K_1 > 0)$ how nowe deal with this? - propagator!

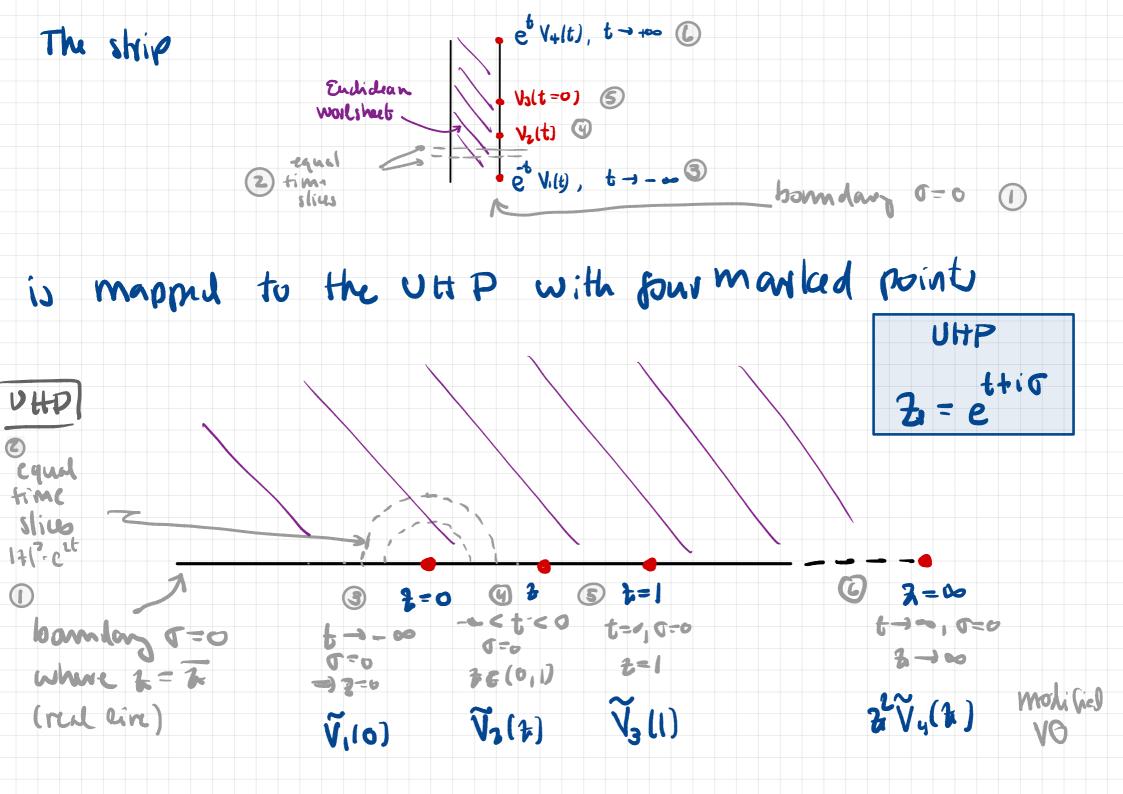
- Comprue with original apprenion

We never manipulated amplitude it we work in the muliture in Endiden we time)

4 Next: We will remork this in Euclidean WS



Consider mu a Enclidean combinal map Z=et-ir new wordinate on What happens to the trip ! (West equivalent to dt +d52) $dzd\bar{z} = e^{2t}(dt^1 + d\sigma^2)$ metris: dada - dt+do2 metris on the upper-half 80 plane (UHP) Indeed: Imt = 1 (4-2) = 1 et (eif eif) = et not



Modification of the vertex operators due to the compound from humation:

Recall that a vertex operator V(t) framsons as

$$V(\overline{L}) \longrightarrow V(\overline{L}) = \left(\frac{d\overline{L}}{d\overline{L}}\right)^{1} V(\overline{L}) \quad \text{with } h=1$$

Thin

$$\nabla(\lambda = \overline{\lambda}) = \frac{dt}{d\lambda} \quad \forall (t) = \lambda^{-1} \quad \forall (t)$$

$$\overline{\lambda} = 0$$

$$\overline{\lambda} = 0$$

$$\overline{\lambda} = 0$$

$$\overline{\lambda} = 0$$

So, the conformal remogramation modify the Vo according to V(t= T) = 1V(t) · inaming state 10; K, > = lim e = V, (t) 10; >> | &= & $\Rightarrow \lim_{t \to 0} e^{-t} V_{i}(t) = \lim_{t \to 0} \widetilde{V}_{i}(\lambda)$ • $V_2(t)$: $V_1(t) dt = t \tilde{V}_1(t) + dt = \tilde{V}_2(t) dt$ we have this in $V_1(t) dt = dt dt = dt dt = dt dt$ the amplitude $V_3(t=0)=1.V_3(1)$ · Va(t=0): as t=0 -> 1=1 - outoping state $\langle \sigma_j - K_{1}| = \lim_{t \to \infty} e^{t} V_{t}(t)$ $\Rightarrow \lim_{t\to\infty} e^t V_{4}(t) = \lim_{t\to\infty} 2^t \tilde{V}_{4}(2)$ We can now write the amphitude on the strip as an amplitude on the UHP ...

	Let	' 2	lib	mn	613	t	10 no	mal	vwv	horm	ntion) (M	d the	gan &	haina
	Mo	ad	Mr	in	wo	K	gree	"alit	6 (w	n w	12	mm	Who	compi	wing
	VVQ	W.	300	MM	5 W	mel	tuda)							
													UHP	is PS	ous group
	4				41	+ 1		9	b, (, d	6 R		let (9 6]	= 1	
-	Thi.	s is	a	thu	u d	M	ngion	nal	Anch	of	rend	ud	gang	Mmm	itvis.
														ito it	
														loim	
		4	->	えけ	ì	(anal	Stic	. Jun	chan	2 01	6.			
	H	Wc		PS	L(2,	a)	63	a mi	M3V4	2 0 1	the	MI	Comp	mul	group
3 \	Gn	M	y To h	2 0 4	PS	L	a, 2)		2-1:		一方				
									Lo:	7	- a	2			
									L ₁ :	1	→ .	3		and m	1 hunshrunte

Important properties of PSL(2;12)

Indeed 2 2 331 3-21 3u-3

where bij = ti - bj

Cone can can't prove this by aslands which (\$ \$) & PSL(2, 12)

One can are this to gange hix the three point amplitude

L> Next proportion of PUL (2, 2)
covariant amplitudes & the Fadder-Poppy tick