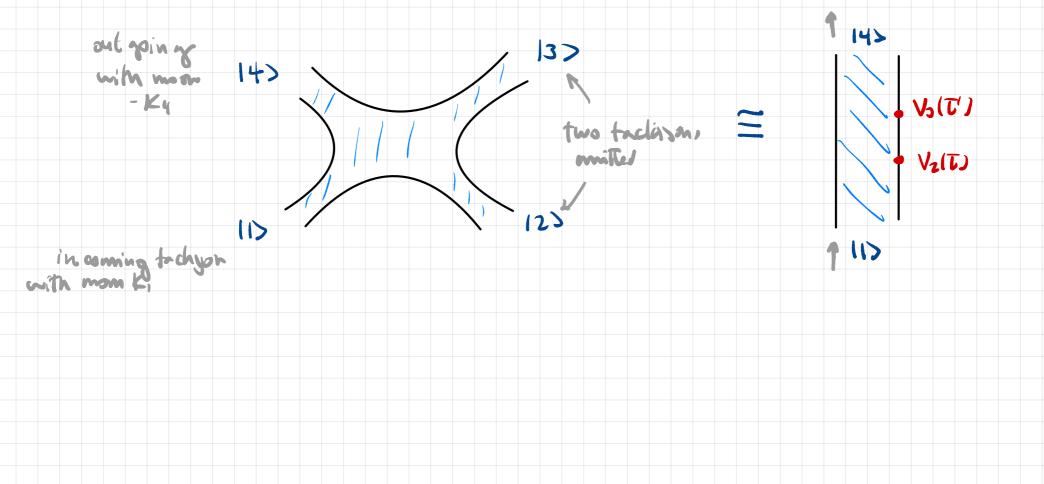
String Theory 1

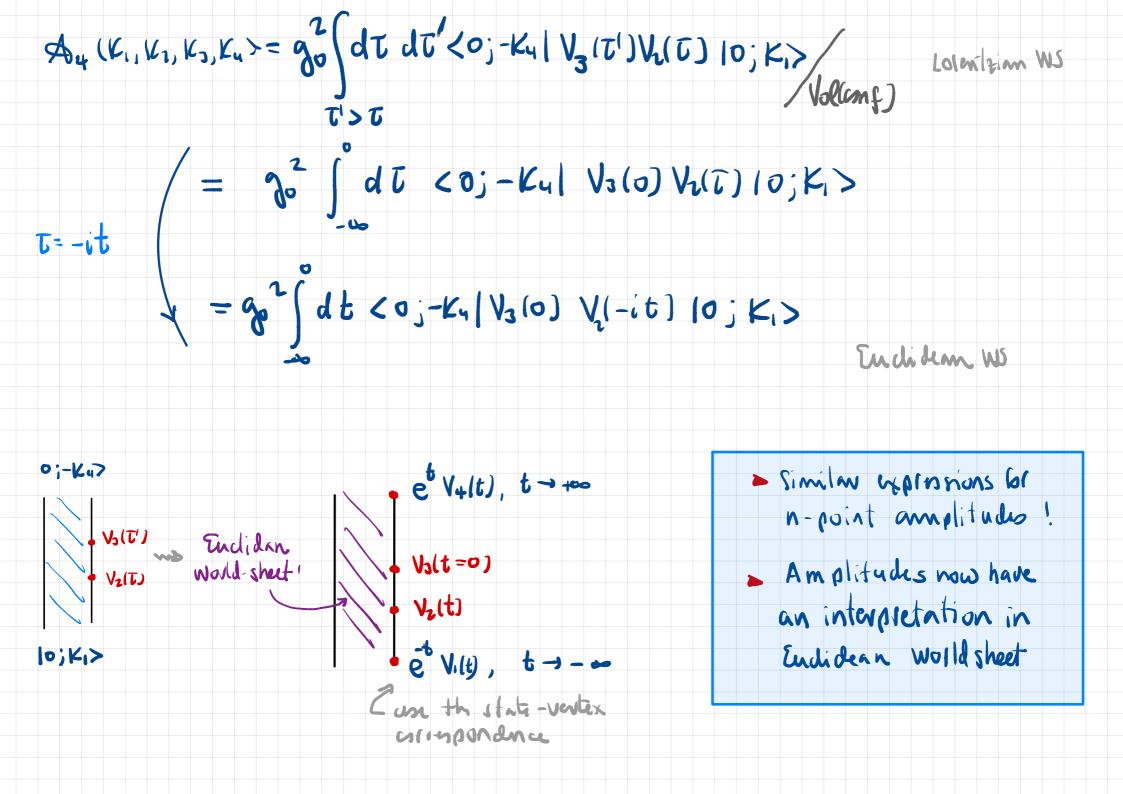
Lecture # 11

Generalities 3.1 Vertex operators: introduction 3.2 Vertex sperators: open string 3.3 The state vertex correspondence open strings 3.4 Vertex opwator: dond string 3.5 3-point interactions 3.6 4-point tachyon amplitude 3.7 Comments on the general sicture 3.8

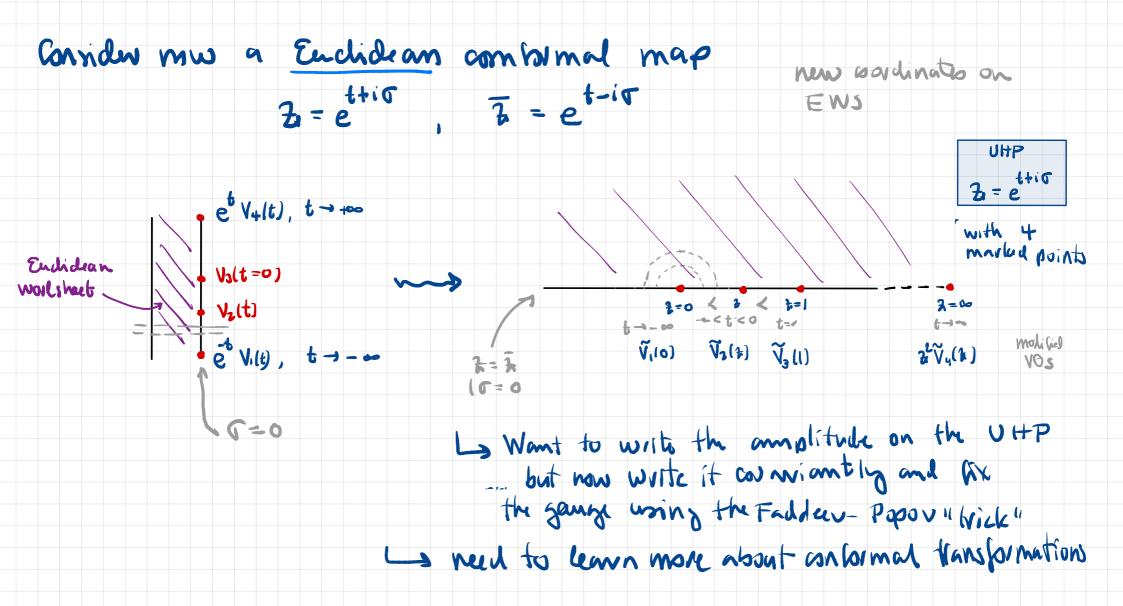
3.7 The Vonetiano amplitude antimed or 4-tachyon amplitude

[This section: Seatures of amplitudes than can be sinevaliand to n-point amplitudes in upon L cland iting amplitudes]





Next: rwork amplitues in Euclidean WS and • applient on formal symmetry to (to learn about growed properties of amplitudes)



The group of global combund from bunaion of the UHP is PSL (2, IR) Mobious group

 $h \longrightarrow \frac{ah+b}{ch+d}$, $ab, (d \in \mathbb{R}, det (ab) = 1$

This is a three dimensional group of revidual gange ymmetries.

 $(I-(mnpping) of Uttp \rightarrow Uttp growth by \{L-(Lo,L(1))) + \frac{2}{3} +$

Important properties of PSL(2;12)

▷ one can find a transformation which maps any distinct the point $\{\frac{2}{3}, \frac{2}{5}, \frac{2}{5}\}$ to the points $\{0, 1, \infty\}$

 $\frac{1}{2} \xrightarrow{1} \frac{1}{2} \xrightarrow{1} \frac{1$

One can can be prove this by collings which $\begin{pmatrix} a & b \\ c & b \end{pmatrix} \in PSL(2, \mathbb{R})$ maps $\overline{\mu}_{1} \rightarrow 0$, $\overline{\mu}_{1} \rightarrow 1$, $\overline{\mu}_{1} \rightarrow \infty$ $1 \quad 0 = \frac{\alpha \overline{\mu}_{1} + b}{c \overline{\mu}_{1} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\nu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\nu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\nu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\nu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\nu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\nu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\nu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\nu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\nu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{3} - (\alpha \overline{\mu}_{1})}{c \overline{\mu}_{3} + d}$ $v \quad 1 = \frac{\alpha \overline{\mu}_{$

On can use this to gange fix the three point amplitude

> Of particular interest for us is the fact that $PSL(2, \pi 2)$ pleaves the cyclic ordining of any four points on the boundary $(\sigma = 6)$

Consider the low points $(\pi_1, \pi_2, \pi_3, \pi_1)$ on the boundary st $\pi_1 < \pi_2 < \pi_3 < \pi_4$

Thin the map above maps

 $\frac{3}{21} \xrightarrow{1} \frac{3}{21} \frac{3}{43} = E(0,1) \qquad \text{conformal cross ratio}$

so it maps $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \longrightarrow (0, \frac{h_1, h_2}{h_3, h_4}, (, \infty)$

ic fixing three points (\$, \$, 3, 3, at 101004 the built point 0< \$z<1.

The premuction of the cyclic ordining of gour points on the

boundary implies a cydie symmetry of the me of

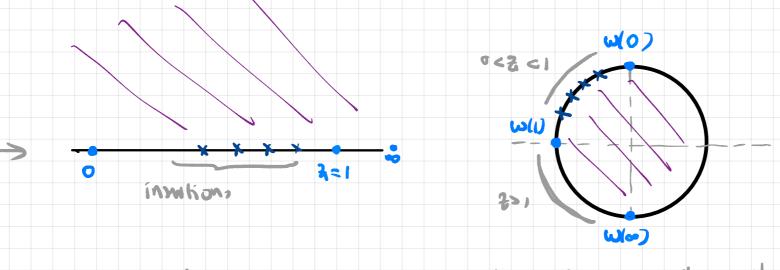
Nemark

0

(see GSW chapter 7)

cyclic symmetry: an elegant way to make the again symmetry of amplitudes manifest is by inhoducing the map $h \mapsto w = \frac{i-b}{1-i\frac{b}{4}}$

which maps UHP -> unit disk



bandang \longrightarrow bandang of the conit disk $\left(\frac{2}{4}\operatorname{red}\left(|\omega|^2 = \frac{3\overline{2}+1}{3\overline{2}+1} = 1\right)\right)$

Return to 4-point amplitude: 2=et+15

 $40_{4}(K_{1},K_{2},K_{3},K_{4}) = q_{0}^{2}\int_{-\infty}^{0}dt \langle o_{j}-K_{1}|V_{3}(o)|V_{2}(it)|O_{j}K_{1} \rangle$ $\lim_{t\to\infty} k^{1/2} \langle \widetilde{V}_{4}(t)|\widetilde{V}_{3}(l)|\widetilde{V}_{1}(t)|\widetilde{$

we have the interval on the boundary is it -----

We saw that the interval on the bamdar o (0,1) the is the moduli space of conformal structures on the UHP

with four marked prints.

We will return to this intron of moduli space later

Covariance and the Fadeer-Popor gauge Fixing:

We could have written the four-point amplitude covariantly.

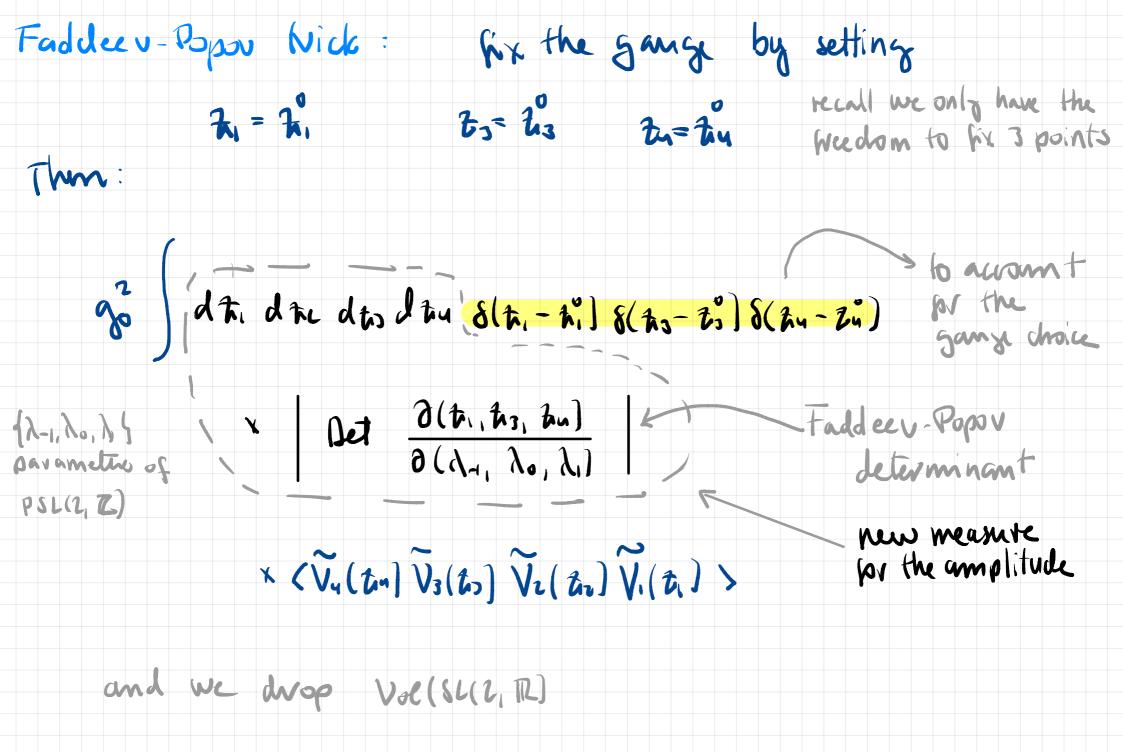
(if we had done the Wick votation & conformal Homsformation before ...)

$3\overline{3}$ $\int d\overline{n} d\overline{n} d\overline{n} d\overline{n} d\overline{n} d\overline{n} \langle \overline{V}_{4}(t_{1}) \overline{V}_{3}(t_{2}) \rangle \overline{V}_{1}(t_{1}) \overline{V}_{1}(t_{1}) \rangle / dd(su(2; \mathbb{R}))$

oversumts equivalent on high rations oversum ting of om (i gh rations

and then me the Faddeev-Popov Wick to fix the gauge, (that is to deal with any midual gauge symmetries).

see Peskin-Schroeder chapters for details (also in AQFT)



Det $\frac{\partial(\hat{\mathbf{h}}_{1}, \hat{\mathbf{h}}_{2}, \hat{\mathbf{h}}_{1})}{\partial(\lambda_{1}, \lambda_{0}, \lambda_{1})} = Jacobian of the Wanstomation$ $<math>\frac{\partial(\lambda_{1}, \lambda_{0}, \lambda_{1})}{\partial(\lambda_{1}, \lambda_{0}, \lambda_{1})} = Won \hat{\mathbf{h}}_{1}, \hat{\mathbf{h}}_{1}, \hat{\mathbf{h}}_{2}, \hat{\mathbf{h}}_{2}, \hat{\mathbf{h}}_{1}, \hat{\mathbf{h}}_{2}, \hat{\mathbf{h}}_{2}, \hat{\mathbf{h}}_{1}, \hat{\mathbf{h}}_{2}, \hat{\mathbf{h}}_{2}$

= Zyz Zzi Zu povomlie of the Sange guar

where $\delta \chi = \lambda_1 + \lambda_2 + \lambda_1 2^2$ in finitesimal Mobilians Vanf

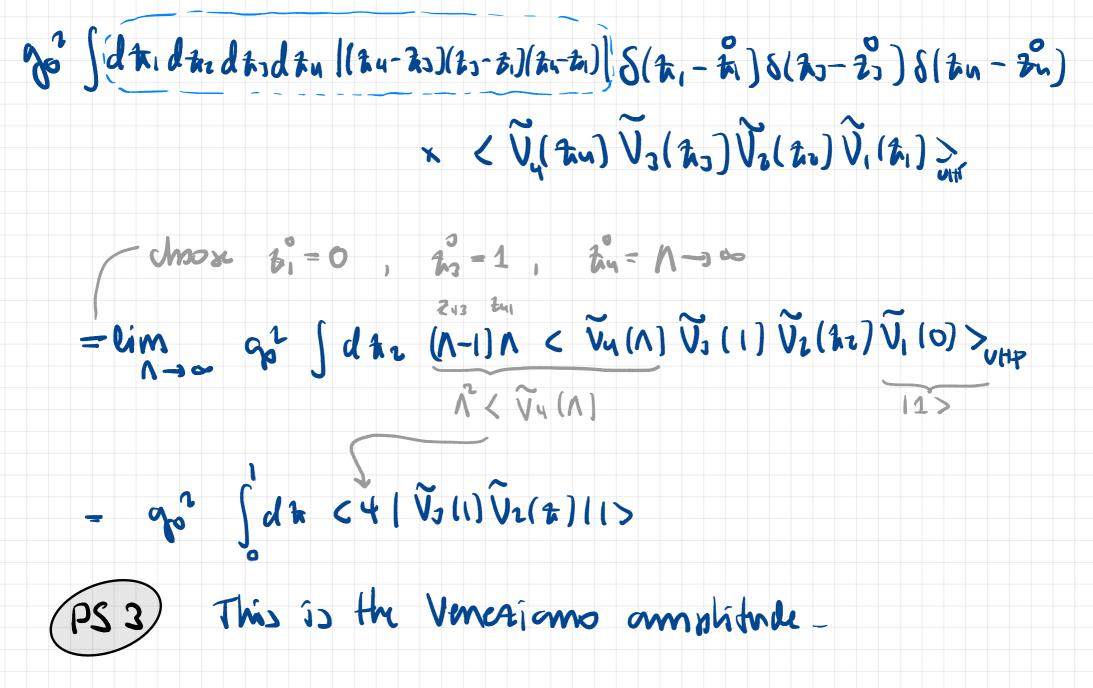
Cexpend is = azzb around identity matrix a= d=1 cord identity matrix b=c=0

 $\lambda_{-1} = 8b$, $\lambda_0 = 25n$, $\lambda_1 = -5c$ $\lambda_1 = 100$ $\lambda_1 = 100$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_1 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_2 = -5c$ $\lambda_3 = -5c$ $\lambda_4 = -5c$ λ

Det $\frac{\partial (\lambda_{-1}, \lambda_{0}, \lambda_{1})}{\partial (\lambda_{-1}, \lambda_{0}, \lambda_{1})} = \begin{vmatrix} 1 & 1 & 1 & e & \partial h_{1} / \partial \lambda_{-1} & i = 1, 3, 4 \\ \frac{\partial (\lambda_{-1}, \lambda_{0}, \lambda_{1})}{\partial (\lambda_{-1}, \lambda_{0}, \lambda_{1})} = \frac{1}{\lambda_{1}} \frac{1}{\lambda_{3}} \frac{1}{\lambda_{4}} \left| \frac{1}{\lambda_{1}} - \frac{1}{\lambda_{4}} \frac{1}{\lambda_{5}} \frac{1}{\lambda_{4}} \right| = \frac{1}{\lambda_{1}} \frac{1}{\lambda_{3}} \frac{1}{\lambda_{4}} \left| \frac{1}{\lambda_{1}} - \frac{1}{\lambda_{1}} \frac{1}{\lambda_{1}} \frac{1}{\lambda_{3}} \frac{1}{\lambda_{4}} \right|$

= $\hbar_3 \, \hat{F}_{11}^{1} + \hbar_1 \, \hat{t}_1^{1} + \tilde{K}_1 \, \hat{t}_1^{1} - (\tilde{a}_1^2 \, \hat{t}_3 + \tilde{a}_1^2 \, \hat{t}_1 + \tilde{h}_1^2 \, \hat{t}_1^2)$ = $(\hat{K}_{11} - \tilde{t}_3)(\tilde{h}_3 - \tilde{h}_1)(\tilde{h}_1 - \tilde{h}_1)$

du = meanie on the UHP



 $\begin{array}{l} & \left(K_{1}, K_{2}, K_{3}, K_{4} \right) = q_{0}^{2} \, \left\{ S(K_{1} + K_{2} + K_{3} + K_{4}) \right. \\ & \left(B(-\alpha(s), -\alpha(u)) + B(-\alpha(u)) - \alpha(t) + B(-\alpha(s), -\alpha(t)) \right) \end{array}$

A(s_it)

where d(x) = 1 + d'x

 $B(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$ Beta function

 $\Gamma(a) = \int_{a}^{a} dt t^{x} e^{-t} Euler's Gamma function$

Mandelitam $\begin{cases} S = -(K_1 + K_2)^2 \\ Uarriables \\ L = -(K_1 + K_3)^2 \\ L = -(K_1 + K_3)^2 \end{cases}$

Stutt = Zmi

Consider A(s,t) = B(-d(s), -d(t))

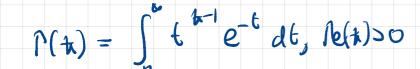
> pole at - d(s)= 0, -1, -2, - ; - d(t)= 0, -1, -2, ...

(hom numerators of the Gamma-function)

P(#) 17-

Hat is at $S = \frac{1}{4}(n-1)$, n = 0, 1, 7, -

precipely the mass of level a open string states (infinitely mones)



 $\Gamma(\mathbf{t}+\mathbf{i}) = \mathbf{t} \Gamma(\mathbf{t})$

(un to analytically ambinue P to the whole & plane)

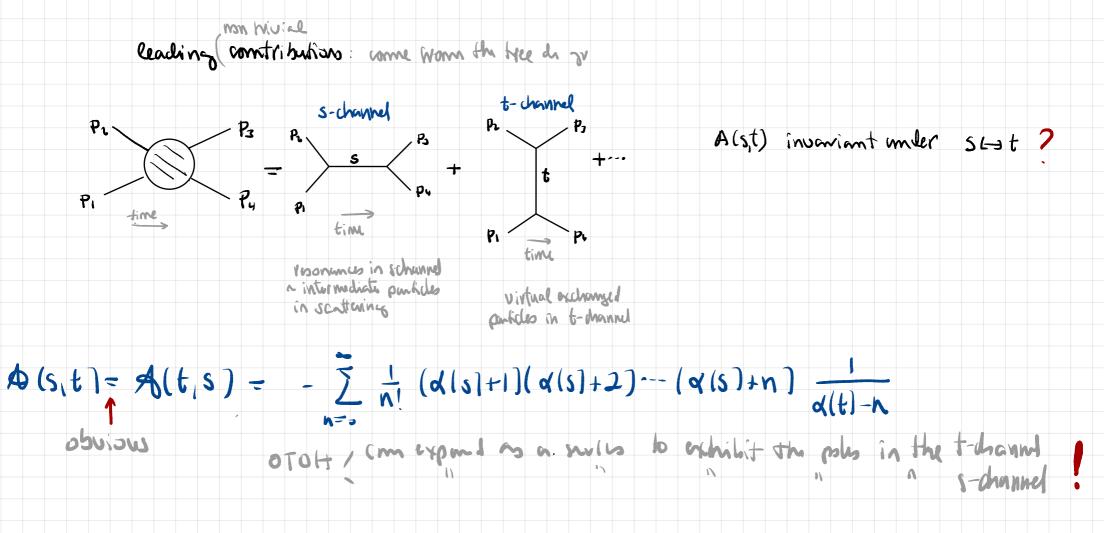
r(t) has no terrous

Behaviant new singularities: new t = -n n mon-negative $\Gamma(t) = \frac{\Gamma(t_{t+1} + 1)}{t_{t+1}} \sim \frac{(-1)^{n}}{n!} \frac{1}{t_{t+1}}$

Dolen-Horn-Schmid duality (see GSW chapter 1)

A (s,t) = A(t,s) obvious won mprime about in two of B-function

Compane with QFT



► UN permiour (see GSN chapter 1)

Compare QFT: fixed angle scattering of paint particle

exchange of spinjk M-particles
bad UV behaviour (1/6 it higher loop)
no s-channel colos! $\begin{array}{c|c} \overline{J}nvo & \overline{J}nvo \\ Alst & \overline{J}nvo \\ \overline{J}nvo \\ \overline{J}nvo & \overline{J}nvo \\ \overline{J}nvo &$

string introvertion: infinite toward states & hudiucignes "concelled

3.8 Comments on the opmerd nicture

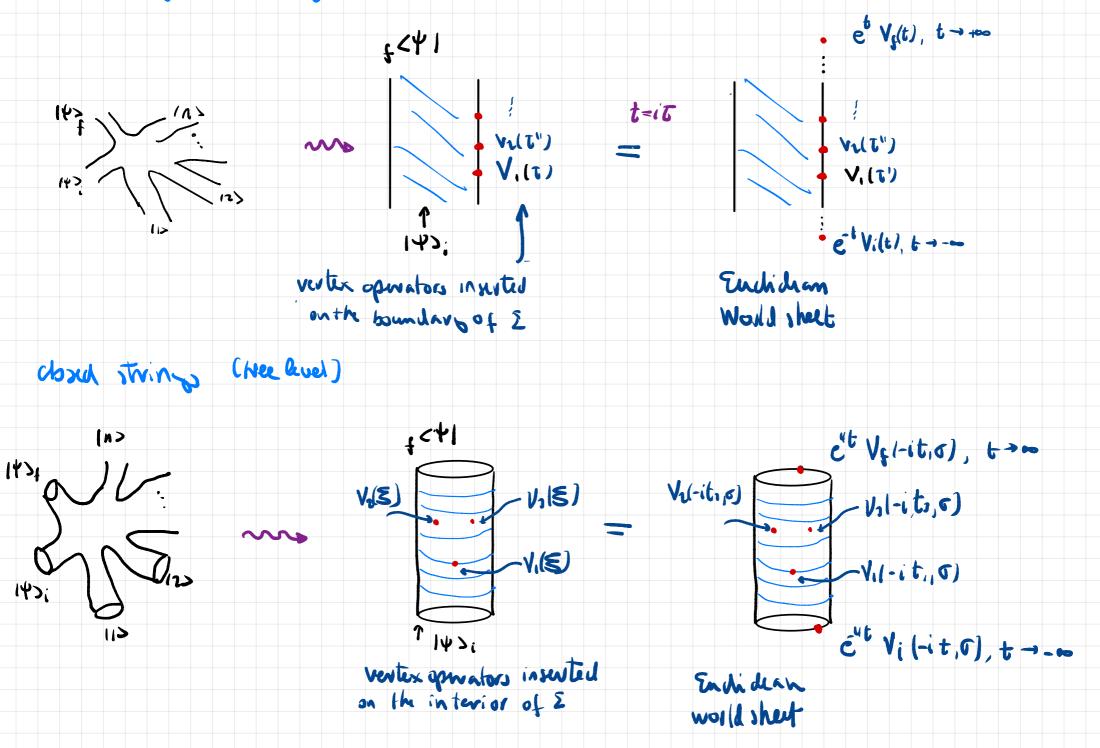
- In string perturbation theory we are interested in the amplitude for the scattering of asymptotic in and out states (the S-matrix)

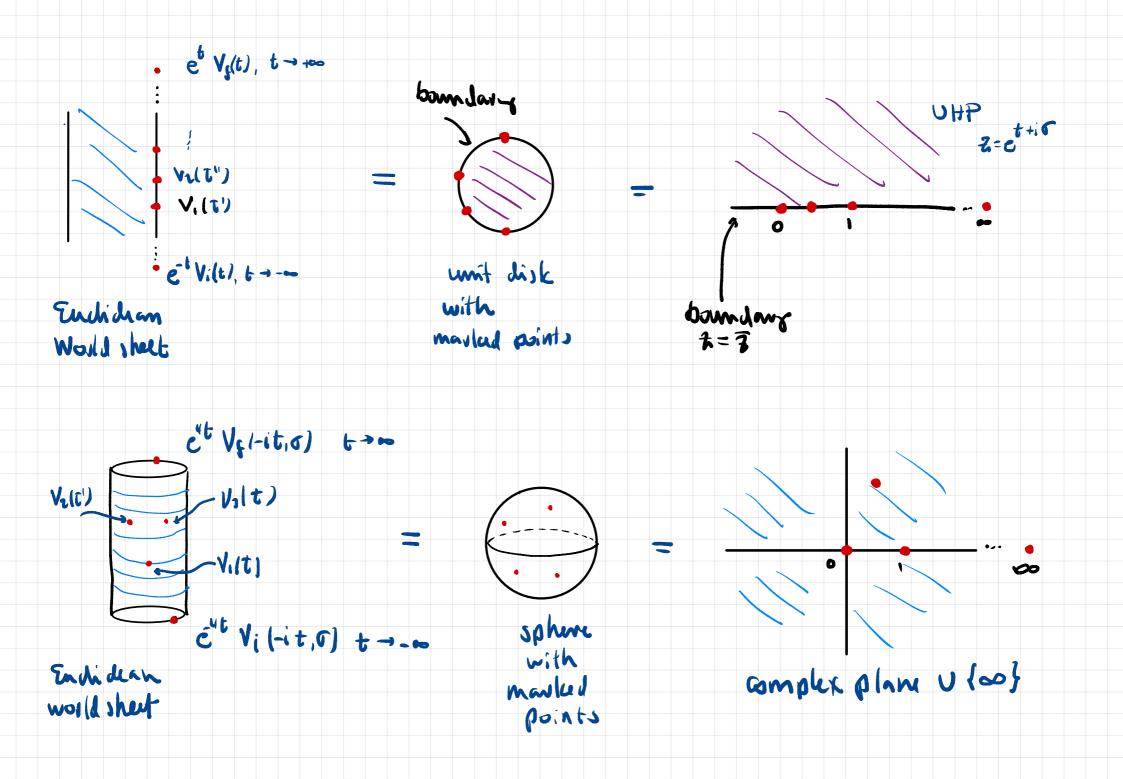
 - We have discussed a number of ideas and tools for computing amplitudes. (& so for the level os)

 - Wrap up this chapter on interactions with a month of comments on the lessons learned and

 - on the general picture for scattering amplitudes

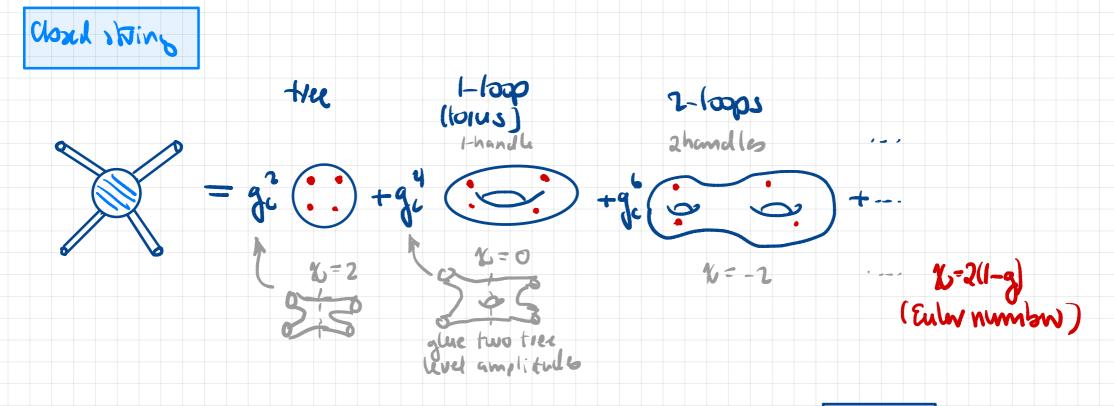
opm strings (Helevel)





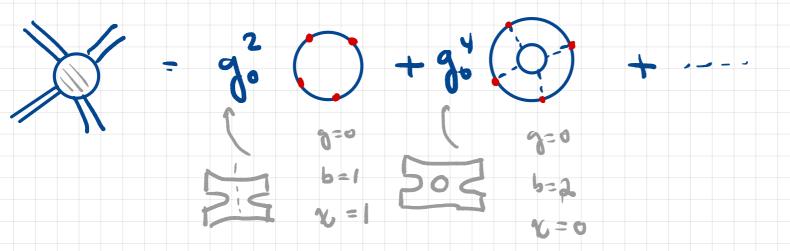
Beyond tree level no string perturbation theory:

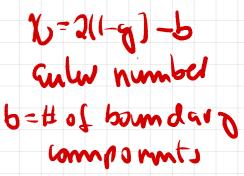
- The string perturbation sures is a zums expansion that is,
- a sum of Euclidean wolld theets with different topologro.



- sum over all to polo give (Riemann myfaces) without boundaries
 these myfaces are classified by the number of hundles g
- one diagram at each loop

Nee (annlus)



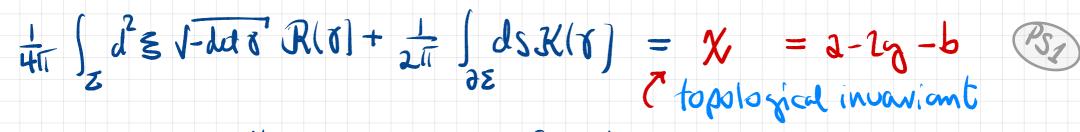


sum over all to polo give (licemonn metares) with boundaries
there metars are classified by the number of hundles g and the number of boundaries b

one diagram at each order in Auturbation thous

The relation between couplings

Recale: we cannot add any interaction Thims to Sp without breaking conformal and Wyl invariance exact for



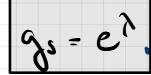
Consider than the action S= Sp + XV, 26 112

S has the same dynamics as Sp

integrated water However, in the path integral formalism intution forlis

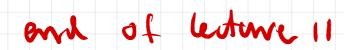
> $A(11), ..., (n) = \sum_{\text{bpologies}} \int \frac{Q[X, T]}{Vol(confred)} e^{-S[X, T]} n \int_{i=1}^{n} \int_{i=1}^{i$ $= \sum_{\text{topologies}} \left(e^{\lambda} \right) - \mathcal{V} \left\{ \underbrace{QEX, TI}_{Vol(confred)} e^{-\sum_{i=1}^{r} V_{ii}} \right\}$

some suis expansion as above with expansion pavameter gs = e?



Is next strings in badequand fields

string propagating in my trivial badagrames



To study string amplifudes we un

physical state and vertex correspondence

14>6 lips ~ > Vy operator of contained

Vy well def (co normal ordining) Los chos state cond.

Ve represents emission laboration of a physical string state 143 from a point on the world sheet

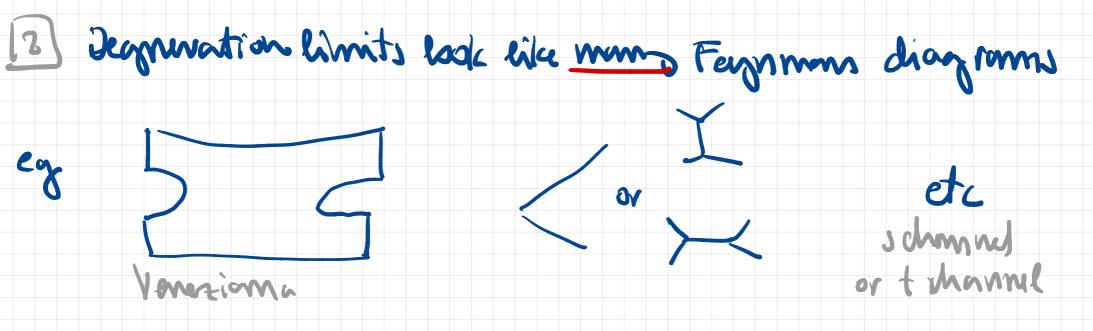
and incoming/outgoing states are represented by

 $|\Psi \rangle = \lim_{x \to 0} \frac{1}{x} \sqrt{\psi(t)} |0\rangle >$

action of Vy on zero nomintan vacuum statu in the infinite Euclidean past

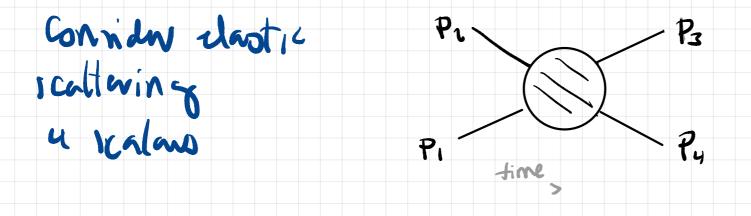
Endidian infinition $2\phi = \lim_{x \to \infty} \frac{1}{x} \cos \frac{1}{y} (\frac{1}{y})$

One diagrams on order is protubation those

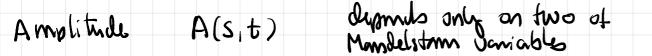


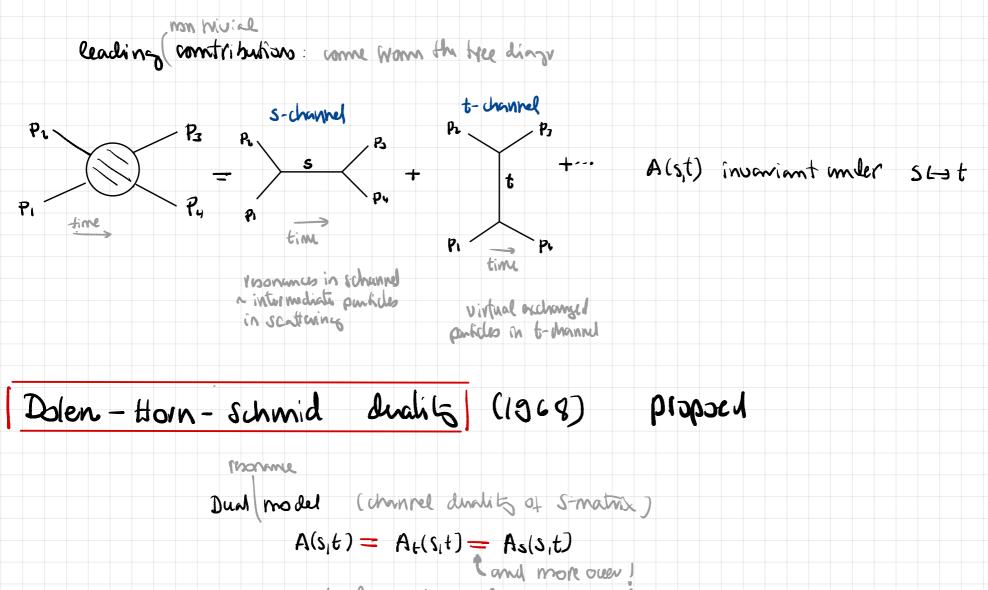
· · Generalization of DHS duality

Sving thory approved first in the los as a theory of strong interactions (the dual resonance modules)

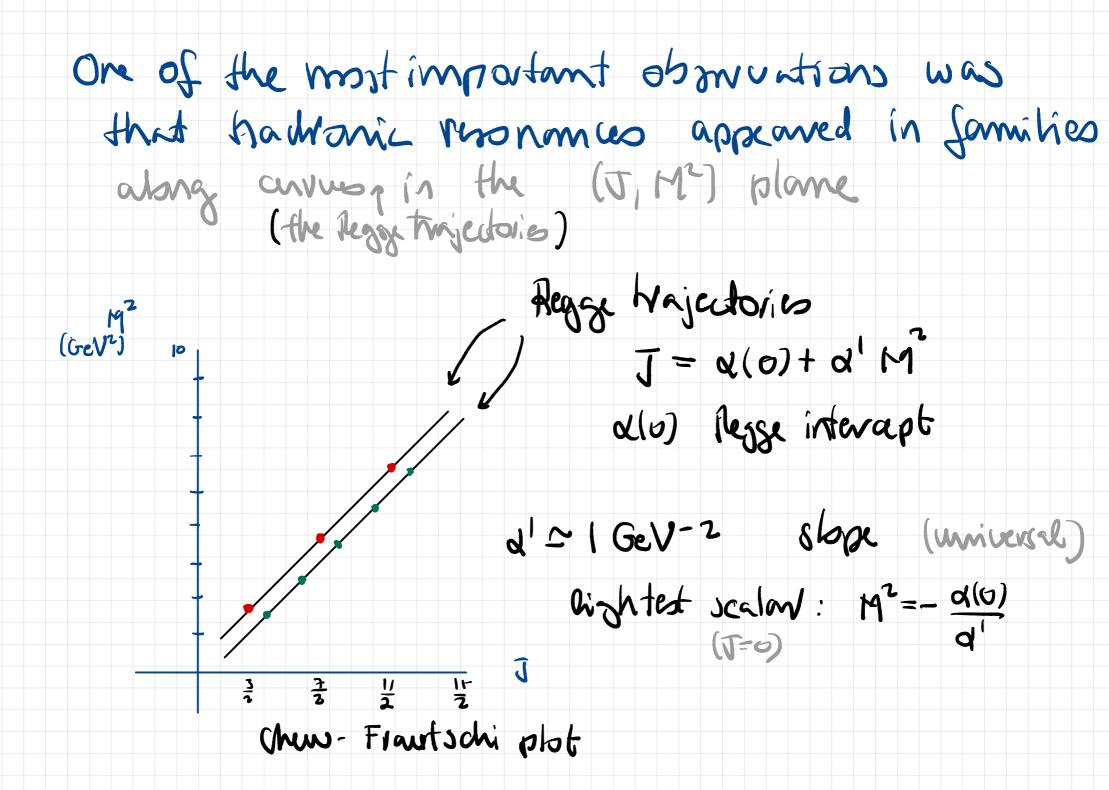


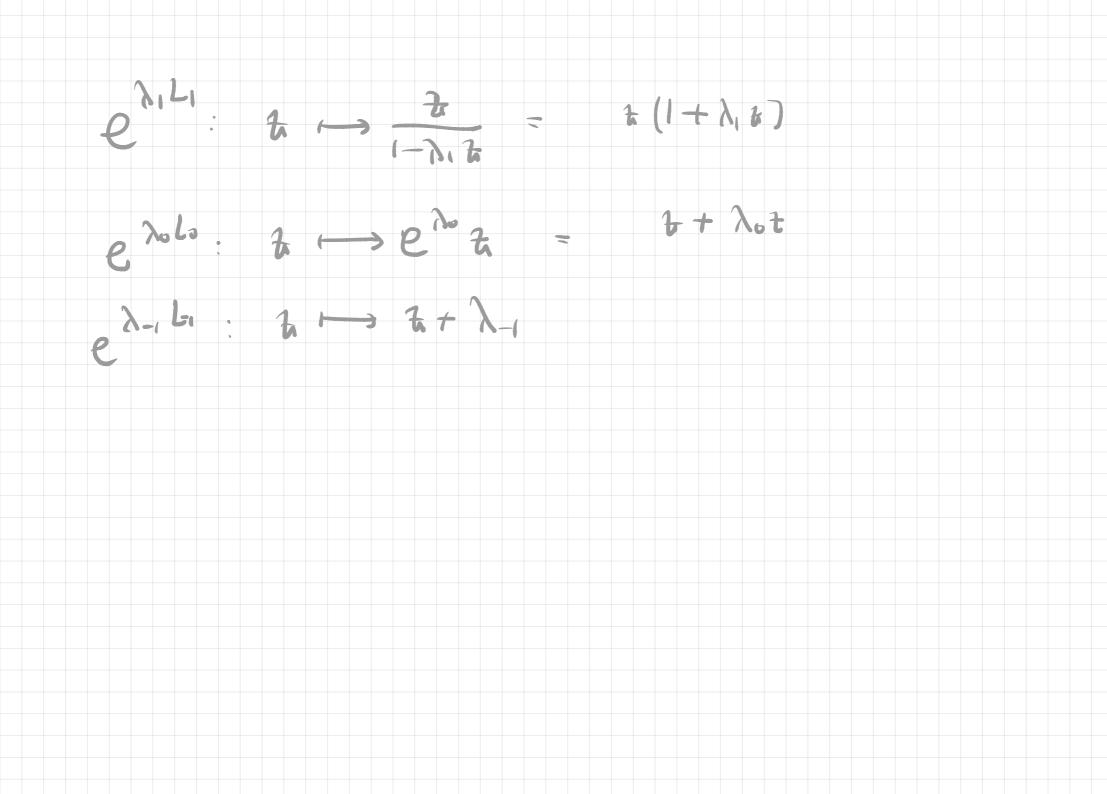
Mandelstam Variables $S = -(p, tp_1)^{2}$ (>0 for physical elastic scattering) $t = -(p, tp_2)^{2}$ (<0 for physical elastic scattering) $u = -(p, tp_3)^{2}$ (>0 for physical elastic scattering) with $S + t + u = \sum m_i^{2}$





- t & s channels give dual description
 - of the same phonics





5. Argue from the above result that the Einstein–Hilbert term on a closed string worldsheet would indeed be conformally invariant.

Note: By contrast, on an open string worldsheet Σ with boundary $\partial \Sigma$, only the combination

$$\chi := \frac{1}{4\pi} \int_{\Sigma} d^2 \xi \sqrt{-\det h} \mathcal{R} + \frac{1}{2\pi} \int_{\partial \Sigma} ds \mathcal{K}$$
(5)

is conformally invariant. Here, the *extrinsic curvature* \mathcal{K} is

 $n \cdot (t^* V_a t^b)$

$$\mathcal{K} = \pm t^a \, n_b \, \nabla_a t^b \,, \tag{6}$$

7 K

with t^a a unit vector tangent to the boundary, and n^a an outward pointing unit vector orthogonal to t^a . The sign choice corresponds to timelike/spacelike boundaries. This integral is the *Euler characteristic* for a 2d manifold Σ with boundary.