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About this course

Welcome to the 2024-2025 edition of Quantum Field Theory in Curved Space-Time of the Oxford
Mathematical and Theoretical Physics master course. This course builds on the courses Quantum
Field Theory, Advanced Quantum Field Theory and General Relativity I and II. In these courses, the
fundamental concepts of quantum field theory and general relativity were introduced. This course
aims to develop these subjects more broadly by applying the tools of quantum field theory in some
of the curved space-times encountered in general relativity. Along the way several concepts from
differential geometry, representation theory as well as special functions will arise. Familiarity with
these topics is not required but will be helpful.

Synopsis
The course will consist of the following topics:

* Lorentzian geometry and causality

* Quantum field theory in flat space-time

* Quantum field theory in curved space-time

* Quantum field theory in cosmological backgrounds
* Thermal quantum field theory

* The Unruh effect

* Hawking Radiation

* Quantum fields in Anti-de Sitter space and holography
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Part 1

FUNDAMENTAL ASPECTS



Chapter 1

Why you should take this course

One of the most pressing open questions in modern theoretical physics is the reconciliation of gravity
with quantum mechanics. On one hand, Einstein’s general relativity — rooted in the geometry of
Lorentzian manifolds — provides a stunningly accurate description of spacetime and gravitational
dynamics. On the other, the standard model of particle physics, built on quantum field theory (QFT),
successfully explains the fundamental forces and interactions of elementary particles. Yet, these two
frameworks are inherently incompatible. This inconsistency becomes particularly glaring in extreme
regimes, such as the early universe or the vicinity of black holes, where both quantum effects and
gravity must be taken into account.

Early attempts to quantize gravity by treating it as just another quantum field faced deep conceptual
and technical difficulties, most notably its intrinsic non-renormalisability." As a result, new paradigms
emerged — string theory being the most prominent, alongside alternative approaches like loop
quantum gravity and causal dynamical triangulations. While mathematically compelling, these
frameworks remain dauntingly complex, and a fully satisfactory understanding of quantum gravity
remains elusive. Given this, any new tools that allow us to probe regimes where quantum mechanics
and gravity coexist are of immense value.

1.1 When do we need quantum gravity?

To appreciate when quantum gravity becomes essential, consider a physical system characterised by a
mass M and size L, and compare these scales with the relevant fundamental scales:?

¢ the Planck length, £, = 4/ h% ,
. — [ he
the Planck mass, m, = G; >

* and the Schwarzschild radius, R; = 22\/1 .

The importance of quantum effects is dictated by the dimensionless ratio:

myl, R

=M1 = MLc

A somewhat oversimplified but instructive way to see this is through counting the dimension of the coupling constant.
Recall that in d +1 dimensions Newton’s gravitational constant has mass dimension [ Gy ] = 2—d. Hence, the Einstein-Hilbert
action has dimension d — 2 which suggests that gravity is non-renormalisable in d > 2. There are various subtleties that
need to be taken into account to make this naive argument rigorous but in the context of gravity it turns out to be correct.

2In the remainder of this course we almost exclusively use natural units where i =c = Gy = kz = 1.



When this quantity is much smaller than one, quantum effects are negligible, and classical physics
suffices. Conversely, when it approaches or exceeds unity, quantum mechanics becomes crucial.
Meanwhile, the role of gravity is governed by another dimensionless parameter:

R, 2GyM
L c2L

If this quantity is small, gravitational effects are weak and can be treated using Newtonian gravity.
However, when it approaches unity, general relativity is required to describe the system.

=1
L 9 g=1

Newtonian gravity

General relativity
onF----------2

Quantum gravity

Figure 1.1: Domain of validity for different approximations. Above the blue hyperbola,
quantum effects are suppressed, allowing for a classical description via Newtonian mechanics
or general relativity. Below the hyperbola, quantum effects become significant and must be
included.

These two dimensionless quantities define a parameter space that guides our understanding of different
physical regimes. When g,q < 1, classical Newtonian physics provides a good approximation. When
g < 1 but q < 1, gravitational effects have to be taken into account but quantum effects remain
negligible, making general relativity an appropriate framework. Conversely, when g < 1 and g < 1,
quantum effects are strong while gravitational effects can be ignored, allowing for a description using
QFT in flat space. The truly enigmatic domain lies in the bottom-right region of the diagram in Figure
1.1, where both quantum and gravitational effects matter. Understanding this regime requires a
genuine theory of quantum gravity, which remains one of the grand challenges of physics.

In this course, we will not attempt to construct a complete theory of quantum gravity. Instead, we
will focus on an important stepping stone: the study of quantum field theory in curved space-time.
This framework allows us to explore quantum effects in gravitational backgrounds without needing a
full quantum theory of gravity.

This approach describes the transition from general relativity to quantum gravity as we approach the
blue line in Figure 1.1. In other words, we are in the regime where g < 1and q < 1 but perturbatively
include quantum effects. The key is to treat space-time as a classical manifold obeying Einstein’s



equations,’

1
Ry, — ERgW =8nGy (Ty,), (1.1

while introducing quantum fields that propagate in this curved background. This perspective enables
us to study fascinating phenomena, such as particle creation in expanding universes and the Hawking
radiation of black holes, providing glimpses into the intricate interplay between quantum mechanics
and gravity.

1.2 Broader implications

Studying QFT in curved spacetime is not only of practical importance for understanding black holes
and cosmology but also provides deeper insights into the nature of quantum field theory itself.
Traditional QFT in Minkowski space relies on concepts like a unique vacuum, well-defined particle
states, and S-matrix scattering. However, in curved spacetime, these notions break down. We will see,
for instance, that the very concept of a "particle" depends on the observer, a revelation with profound
implications for our understanding of quantum physics.

Moreover, curved space techniques have proven to be powerful tools in unexpected areas of theoretical
physics. In certain cases, computations in curved space are more tractable than in flat space. Many
quantum field theories suffer from infrared divergences in Minkowski space, making semi-classical
methods such as instantons ineffective. However, placing the theory on a compact manifold (such as
a sphere) naturally regulates the infrared behavior, enabling powerful techniques like supersymmetric
localization to yield exact non-perturbative results.

If you are drawn to fundamental physics, this course offers an essential toolkit for exploring quantum
field theory beyond the confines of flat spacetime. It is an active and evolving research area with

many open questions, making it an exciting field to engage with.

But even if you are more mathematically inclined and less motivated by direct physical applications, do
not dismiss this subject just yet. Quantum field theory in curved space has inspired deep mathematical
developments, such as Donaldson-Witten theory and Chern-Simons theory, which provide powerful
invariants for classifying manifolds. The interplay between geometry and gauge theories is one of
the hallmarks of modern mathematical physics, and understanding QFT in curved backgrounds is an
excellent stepping stone into this rich territory.

This course will equip you with the essential concepts and techniques to explore quantum field theory
in curved spacetime. Whether you are interested in its physical applications to black hole physics and
cosmology, or its mathematical connections to topology and geometry, this field offers a wealth of
exciting ideas waiting to be explored. By the end of the course, you will be well-prepared to dive
into current research and contribute to one of the most fundamental frontiers of modern theoretical
physics.

3In this equation (Tw> is the expectation value of the stress tensor of the (quantum) matter fields, which in the regime
we are considering can be understood as a classical source for Einstein’s equations.



1.3 What this course covers

This course offers an introduction to quantum field theory (QFT) in curved space-times. We begin in
Chapter 2 with a study of Lorentzian geometry, emphasising both the local and global aspects of the
causal structure. This foundational material is essential for understanding how classical spacetime
geometry influences quantum phenomena.

Chapter 3 provides a concise review of QFT in flat Minkowski space, focusing on the structures and
techniques most relevant for generalisation to curved backgrounds. Particular attention is given to
the role of symmetries, the concept of the vacuum, and the construction of Green’s functions.

With this groundwork established, Chapter 4 introduces canonical quantisation in curved space-time.
Here we encounter some of the key conceptual challenges unique to the subject, such as the non-
uniqueness of the vacuum state and the phenomenon of particle creation in a time-dependent or
gravitational background.

Chapter 5 illustrates these ideas through concrete examples, including maximally symmetric space-
times (such as de Sitter and Anti-de Sitter), cosmological space-times relevant for inflationary cos-
mology, and aspects of thermal field theory. The chapter concludes with a discussion of adiabatic
expansion techniques, which allow for a perturbative treatment of quantum fields in slowly varying
backgrounds.

Chapter 6 is devoted to the Unruh effect, wherein uniformly accelerating observers in flat space
perceive the vacuum as a thermal state. This phenomenon provides an important bridge between
quantum field theory and thermodynamics in non-inertial frames.

Building on this, Chapter 7 explores Hawking radiation — perhaps the most striking prediction of
QFT in curved space-time — demonstrating how black holes emit thermal radiation due to quantum
effects near the event horizon.

The final chapter, Chapter 8, turns to quantum field theory in Anti-de Sitter (AdS) space. While
geometrically similar to de Sitter space, AdS gives rise to fundamentally different physical insights. This
chapter serves as a gateway to the holographic principle, introducing the AdS/CFT correspondence —
a conjectured duality between quantum gravity in AdS and a conformal field theory on its boundary.

To preserve the clarity of the main narrative, technical derivations and supplementary material are
presented in the appendices. These include a summary of our conventions, a review of differential
forms and general relativity essentials, and mathematical tools such as hypergeometric functions. We
also include brief introduction to conformal field theory.



Chapter 2

Lorentzian geometry

In a classical field theory, one obtains the physical field configurations through variational principles,
i.e. Euler-Lagrange equations. Once a solution has been found its stability can be studied through a
local analysis in field space. Quantisation on the other hand is a global procedure where we need to
take into account the full phase space. Indeed, already in quantum mechanics there is the possibility
for a particle to jump over any potential barrier allowing it to probe the full phase space.

In order to quantise a theory (using canonical quantisation) we need a complete set of solutions
to certain (linear) wave equations. Before moving on to quantum fields in curved space, we will
therefore need some basic global notions from Lorentzian geometry. In particular, we focus on
carefully defining causality and various related concepts, such as Cauchy hypersurfaces and global
hyperbolic manifolds. On such manifolds, the above mentioned wave functions behave particularly
nicely. More details can be found in for example [Wal84, O'N83].

2.1 Lorentzian manifolds

Before stating the definition of a Lorentzian manifold let us start to define what we mean by a
Lorentzian scalar product on a vector space V.

Definition 2.1. Let V be a (d + 1)-dimensional real vector space. A Lorentzian scalar product on V is
a non-degenerate symmetric bilinear form, (,-), of signature (1,d).

This means that we can find a basis {eu}, u=1,...,d+1, of V such that

(ea’ eb) =MNab - 2.1)

where 7, is the usual Minkowski metric, 1,;, = diag(—1,1,---,1). With this definition at hand we
can now give a precise definition of a Lorentzian manifold.

Definition 2.2. A Lorentzian manifold is a pair (M, g), where M is a smooth (d + 1)-dimensional
manifold, and g is a Lorentzian metric, i.e. g associates with each point p € M a Lorentzian scalar
product g, on the tangent space T, M.

As usual in differential geometry we require that g, depends smoothly on p. For a choice of local
coordinates, (xg,X7,**,Xq) : U —>V,where U Cc M and V C R4 are open subsets, and for any
u,v=0,...,d, the functions g,, : V — R, defined by g(J,,d,), are smooth. Here g, = aixu denote
the usual coordinate vector fields. With respect to these coordinates we write the line element
ds? = guvdx" ® dx”. Note that often we choose to call the time coordinate t = x.



Before we continue let us give a few examples.
Example 2.1 (Minkowski space). Minkowski space (R4, 7)) is clearly a Lorentzian manifold.

Example 2.2 (Warped product spaces). Let (N, h) be a connected Riemannian manifold, and I C R
an open interval. For any smooth positive function f : I — (0, 00), we can define a metric g,,, with
line element ds® = —dt? + f(t)?h on M = I x N. For any two vectors X; = (a;0, ® ;) € T(e,py (M),
with Y; € T,N we have g(X1,X;) = —a;a, + f(t)?h(Yy,Y,).! This type of Lorentzian metric is called a

warped product metric.

Many familiar Lorentzian manifolds are of the form of this second example. Friedman-Lemaitre-
Robertson-Walker space-times [Fri22, Fri24, Lem31, Lem33, Rob35, Rob36a, Rob36b, Wal37] are
obtained by requiring (N, h) to be a maximally symmetric Riemannian manifold with a constant
curvature metric. This type of metric is of particular relevance when studying cosmological models
describing the big bang or the expansion of the universe. A special case is the de Sitter (dS) space-time
in global coordinates, where I = R, N" = $™~!, with h the canonical metric on the (n — 1)-sphere with
unit radius, and f (t) = cosh(t).

As a final example, consider the four-dimensional Schwarzschild black hole.

Example 2.3 (Schwarzschild black hole). For a fixed mass M > 0O, consider the function

2M
h:R,-»R:r—1———:. (2.2)
r
This function has a pole at r = 0 and a root at r = 2M. On both patches P; = {(r, t) € R?|r > 2M}

and P;; = {(r, t)ERY0<r <2M } we define the Lorentzian line element as

1

ds? = guydxt ®dx” = —h(r)dt? + )

dr? +r*(d6? +sin® 0d¢?) . (2.3)
The singularity of the metric g at r = 2M might seem problematic, but one can easily show (by going
to Kruskal coordinates for example) that this is simply a coordinate singularity. For more details on
the Schwarzschild black hole and its rotating and electromagnetically charged cousins we refer the
reader to the course GR 1L

2.2 Causal structure

Given a Lorentzian manifold with associated metric g, we can associate to each point p € M the
quadratic form
Tp: LM >Ry (X)=g,(X,X). 2.4

Avector X € T, M is called time-like, light-like or space-like respectively if

7p(X) <0, time-like,
7p(X)=0, light-like, (2.5)
rp(X)>0, space-like..

'For any t €I and p € N we identify the tangent space at (t,p) as follows, TpyM=TI®T,N.
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Figure 2.1: The lightcone associated to the point p.

A vector is called causal if it is time-like or light-like. For d > 1, the set of time-like vectors consists of
two connected components, assigning a time-orientation consists of choosing one of these components
which we denote by I (p) and call future-directed. The closure J,(p) = @ consists of the set of
future-directed causal vectors. Analogously we call I_(p) resp. J_(p) the past directed light-like and
causal vectors. The double cone formed as such is called the lightcone at the point p, see Figure 2.1.
Similarly, we call a (piecewise) differentiable curve s € C*(M) in M time-like, light-like or space-like,
if all of its tangent vectors are respectively time-like, light-like or space-like.

Having defined these concepts locally at each point p we now want to extend them to global properties
of the manifold. A first step in this direction is the following definition.

Definition 2.3 (time-oriented manifold). A Lorentzian manifold (M, g) is time-orientable if there
exists a continuous time-like vector field T on M. A Lorentzian manifold together with such a vector
is called time-oriented.

We will call time-oriented Lorentzian manifolds space-times. It should be noted that the concept of
orientability depends only on the topology of M, while the notion of time-orientability depends on
the choice of Lorentzian metric. The question of whether a manifold can be equipped with some
time-orientable metric is *topological’ however. Indeed, we have the following equivalent statements
(see [O'N83]):

* M admits a smooth non-vanishing vector field.
* M can be equipped with a smooth Lorentzian metric.
* M can be equipped with a time-orientable Lorentzian metric.

Example 2.4. Some (not) time-orientable manifolds:



* The standard Minkowski space is orientable and time-orientable.

* The two-sphere is orientable but cannot be equipped with a time-orientable metric. Indeed, famously
$2 does not admit a smooth non-vanishing vector field. Note that odd dimensional spheres do
admit a non-vanishing vector field!

» The Mobius strip is not orientable but it can be equipped with Lorentzian metrics that are either
time-orientable or not.

* The cylinder R x S! is orientable and can be equipped with a metric that is time-orientable,
ds* = —dt* + dx>. (2.6)
It can also be equipped with a metric that is not time-orientable,
ds? = cos d6? — 2sin OdxdO — cos Odx?>. 2.7)

Exercise 2.1. Show that the metrics on the cylinder written above are respectively time-orientable and
not time-orientable.

For future reference, we define the following causality relations. Let p,q € M, we have

p<q < 3Ja future directed time-like curve in M connecting p and q,
p<q < da future directed causal curve in M connecting p and q, (2.8)

p<q < p<gorp=q.

Unless otherwise mentioned, we always consider both orientable and time-orientable manifolds.
However, time-orientability is not quite strong enough to rule out all problematic cases. For linear
operators to have well-defined unique, causal solutions we need something more.

In general relativity, world-lines of particles are modelled by causal curves. If the space-time is
compact, something strange happens. Namely, in every compact space-time M there exists a closed
time-like curve (CTC). When such curves exist, one easily runs into paradoxes as travel into the past
is now a clear possibility. Therefore, when dealing with Lorentzian space-times we want to exclude
such examples.

Definition 2.4 (Causal manifold). A space-time (M, g) is causal if it does not contain any closed
causal curve.

Definition 2.5 (Strongly causal manifold). A space-time (M, g) is strongly causal if for any point
p € M and any neighbourhood U of p, there exists a causally convex neighbourhood V of p, contained
in U. A neighbourhood is said to be causally convex if any causal curve with endpoints in V is entirely
contained in V.

This property implies that there cannot be time-like curves that pass through V more then once. In
other words, it is not possible to return to the same point in space-time by following a time-like
curve, i.e. particles travelling slower then light cannot return to the same point in space-time. Strong
causality obviously implies causality. For technical reasons we will always assume strong causality.



The wave equations that we will consider, such as the Klein-Gordon equation for a free scalar field
(O0+ m?)¢ =0, are all hyperbolic (linear) partial differential equations. This means that an equation
of order n has a well-posed initial value problem for the first n — 1 derivatives.> More precisely, the
Cauchy problem can be locally solved for arbitrary initial data along a non-characteristic hypersurface
%% In order to have well-defined global solutions on Lorentzian space-times we need some further
technical definitions.

Definition 2.6 (Achronal hypersurface). A hypersurface ¥ is achronal if no pair of points p,q € &
can be connected by a time-like curve.

Since solutions propagate along causal curves the data on the hypersurface ¥ can only influence a
restricted region. We can define the regions

J.(X)= { peEM \ J a future directed causal curve starting on X to p} , 2.9)
J_(X)= { peEM \ 1 a future directed causal curve from p ending on Z} . '

These sets are sometimes denoted as the future/past domain of influence. Analogously we can define
I.(X) by restricting to the interior of J. ().

Definition 2.7 (Domain of dependence). The domain of dependence of a subset X is defined as the
set of points, D(X), in M through which every inextendable causal curve in M meets ¥, i.e.

D(X) = {p € M| every inextendable causal curve passing through p intersects %} . (2.10)

Analogously we define the future/past domain of dependence D, (X) as the intersection D(X)NJ.(%).

The domain of dependence is the region on which the initial value problem for wave equations can
be proved to be well-posed by various PDE techniques. If p is a point lying on a causal curve that
cannot be extended through X, then one can imagine waves coming in along that curve that are
not determined by the data on X and therefore they would violate the uniqueness assumption. The
interior of the domain of dependence is sometimes also called the Cauchy development of a set.

Definition 2.8 (Cauchy hypersurface). A subset X of a connected space-time M is a Cauchy hyper-
surface if each inextendable causal curve in M meets X at exactly one point.

In other words a Cauchy hypersurface is a hypersurface for which D(X) = M. Any two Cauchy
hypersurfaces in M are homeomorphic. They are topological.

In analogy with the nomenclature for PDEs, we call a space-time globally hyperbolic when the future
state of the system is entirely specified by initial conditions. There are several equivalent definitions
of global hyperbolicity of which we note two.

2We say that the initial value problem on some region U with given data on X is well-posed if there exists a unique
solution on U with given initial data on 3.

3Consider a linear second order PDE of the form (2.11) and let X be a hypersurface defined implicitly by ®(x) = q for
some constant q. The hypersurface ¥ is characteristic if the principal symbol of the PDE vanished when evaluated on the
normal, i.e. when g"”(x)0,®0,® = 0. This is known as the characteristic equation. For the wave equations we consider in
this course, the characteristic surfaces are null hypersurfaces.
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D(X)
J(%)

Figure 2.2: The domains of dependence and influence of a set . The green area is the future
domain of influence, the blue area the past domain of influence and the red area denotes the
full future + past domain of dependence.

Definition 2.9 (globally hyperbolic manifold I). A space-time M is a globally hyperbolic manifold if
it is strongly causal and if for all p,q € M the intersection J, (p) NJ_(q) is compact.

Definition 2.10 (globally hyperbolic manifold II). A space-time M is a globally hyperbolic manifold
if it admits a Cauchy surface.

A very useful theorem about globally hyperbolic manifolds goes as follows.

Theorem 2.1. Let M be a connected time-oriented Lorentzian manifold. Then the following are

equivalent:

1. M is globally hyperbolic.
2. M has a Cauchy hypersurface.

3. M is isometric to R x X with metric ds®> = —fdt? + ds%(t), where ds%(t) depends smoothly on t
and each {t} x X is a Cauchy hypersurface in M.

The proof is rather technical so we do not state it here but the crucial step is proving that 1. follows
from 3.. The proof can be found in [BS05] using a theorem by Geroch [Ger70]. Once this step has
been proven the other implications follow straightforwardly.

Exercise 2.2. Show that on a globally hyperbolic manifold M there always exists a smooth function
h : M — R whose gradient is past-directed time-like at every point and all of whose level sets are space-like
Cauchy hypersurfaces. Such a function is called a Cauchy time function.

Globally hyperbolic manifolds are very useful since this property ensures that for a large class
of operators the Cauchy problems are well-posed, with initial data on a Cauchy hypersurface in
appropriate function spaces. In particular, most of the operators we will encounter are generalized
d’Alembertians P, of the form

d d
P= > g"(x)8ude+ Y a'(x)3 + b(x), 2.11)
Au“ﬂv:O MZO

where the inverse metric g"”, and the functions a* and b are smooth functions of x. On globally
hyperbolic manifolds, one can prove a whole range of global existence and uniqueness theorems

11



for the solutions of the homogeneous equation P¢ = 0 as well as for the Green’s functions. For a
more detailed treatment of linear wave equations on Lorentzian manifolds we refer the reader to the
lecture notes [BBBT09].

For these reasons, we will mostly consider globally hyperbolic manifolds in the subsequent chapters.
Minkowski space, de Sitter space, the Schwarzschild black hole as well as the FLRW solutions are all
globally hyperbolic space-times. However, a notable exception is Anti-de Sitter (AdS) space. In this
case we will see that we can overcome the issues accompanying the absence of global hyperbolicity
by providing appropriate boundary conditions at the conformal boundary. In Chapter 8 we will come
back to this example in more detail.

2.3 Conformal infinity and Penrose diagrams

To get a good grip on the global structure, a very useful tool is to study the asymptotics. A neat way
to do so is via conformal compactifications. This consist of introducing a conformal boundary which
corresponds to infinity in the physical space-time. Various aspects of this procedure were discussed in
GRII and we refer the reader to that course for more details and references. Here we restrict ourselves
to those aspects relevant for the remainder of this course.

Definition 2.11 (Conformal transformation). A conformal transformation is a map from a space-time
(M, g) to another space-time (M, §), such that

&un() = Q(x)7g,,, (%), (2.12)
where Q is a non-vanishing smooth function of the coordinates, Q(x) # 0 for all x € M.

One reason why conformal transformations are useful is because they preserve the causal structure of
space-time. Indeed, two space-times whose metrics are related by a conformal transformation have the
same null geodesics.* We can use this fact to our advantage to study the causal structure of space-time
by using suitably chosen conformal transformations to bring infinity to a finite coordinate distance
allowing us to represent the causal structure on a finite sized diagram called a Penrose diagram.The
process of mapping space-time to a compact domain is called conformal compactification.

Definition 2.12. A conformal compactification of a space-time (M, g) is a manifold M with boundary
% = 3 M and metric § such that

1. § is smooth on M.

2. M is diffeomorphic to the interior of M.

3. On M we have that § = Q2g with £ a smooth function on M.
4. In the interior, M\@ M =~ M we have Q # 0.

5. On the boundary OM = .#, we have Q =0, and dQ # 0.

The boundary .# ° is called conformal infinity. In addition to the hypersurface .# the conformally

“Space-like and time-like geodesics on the other hand are not necessarily preserved under conformal transformations.
SPronounced as scri as a shorthand for script I.
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extended space-time might contain loci of higher co-dimension, these have to be considered separately
and are denoted by ij or iy depending on their (time-like/space-like/null) causal properties.

To illustrate these concepts, let us consider in detail the example of Minkowski space.

Example 2.5 (Conformal compactification of Minkowski space-time). Consider Minkowski space-time
in d + 1 dimensions with line element

d
ds?=—dt?+ > dx?, t,x,, €(—00,00). (2.13)
m=1
In spherical coordinates the metric becomes

ds? = —dt? +dr? + 1‘2ds§(H . (2.14)

Defining the light-cone coordinates u = t —r and v = t + r and performing a further coordinate

transformation®
. . Y T T
u=tanii, y=tan?, u,ve(——,—) , (2.15)
2" 2
with i < v, the metric becomes
2 1 ~ 1 Y ~
ds® = [4dudv —sin“(v — u)dSSd—l] . (2.16)

4 cos? i cos? v

We can now use a conformal transformation to remove the prefactor. Since the metric is now regular at
. . . . . . . . ~ o~ T

the points at infinity we can now compactify the space by including the points i1,V = 7. The Penrose

diagram for Minkowski space is illustrated in Figure 2.3.

Alternatively, changing coordinates i = %(T —p)and ¥ = %(T + p) we obtain the following metric
for the conformal compactification

ds> = dT2 —ds?

S30 (2.17)

known as the Einstein cylinder metric. Consequently, the rescaling procedure described above maps
Minkowski space into a (compact) region of the Einstein cylinder, see Figure 2.3.

Having constructed the conformal compactification of Minkowski space let us discuss the structure of
conformal infinity.

* Future and past null infinity are defined as the hypersurfaces,
s*={peM|0<pp)<m,T(p)=+(nr—p()}. (2.18)
By definition, on this hypersurface we have 2 = 0 and dQ # 0. Moreover, at this locus we have
£(dQ,dQ) =0, (2.19)

so that .# are null hypersurfaces.

®Note that in order for r to be positive we need to restrict both u, v and i, ¥ to the domain u < v and i < 7.
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R x S¢

Figure 2.3: The Penrose diagram of Minkowski space. On the left we show the conformal
compactification wrapped on the Einstein cylinder. In the Penrose diagram on the right, the
time-like geodesics, i.e. lines with constant r, are illustrated as blue lines, while the space-like
geodesics, lines with constant ¢, are illustrated as the dashed red lines.

* Spatial infinity is defined as

i®={peM | p(p)=n,T(p)=0}. (2.20)

At these points, the radius of the (d — 1)-sphere vanishes in the usual (d)-sphere degeneration.
At this point, both Q2 =dQ = 0.

* Future and past time-like infinity are defined as

i*={peM|p()=0,T(p)==%n}. (2.21)

Again, the (d — 1)-spheres at these points have vanishing radius and 2 = d2 = 0.

The motivations for this nomenclature follows from the analysis of (inextensible) geodesics in the
conformally compactified space. Indeed, one can show that space-like geodesics all end and start at
i% while time-like geodesics start at i~ and end at i... Finally, null geodesics start at .#~ and end at
st

Next, let us consider the maximally symmetric space-times: Minkowski space, de Sitter space and
anti-de Sitter space. These are solutions to the vacuum Einstein equations with resp. vanishing,
negative or positive cosmological constant. See Appendix E for more details and a variety of metrics
on (A)dS space-times. We leave the explicit construction of the conformal compactification in these
cases as an exercise, and restrict ourselves here to a qualitative discussion.

The hypersurface at infinity, .# has a rather different flavour depending on the value of the cosmological
constant. In particular it is null for flat space, space-like for de Sitter, and time-like for anti de Sitter.
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Moreover, as all of them are conformally flat, they can be mapped to a portion of the Einstein cylinder.
de Sitter space occupies a horizontal strip, while Anti de Sitter maps to a vertical strip, in line with
the nature of conformal infinity. In Figure 2.4 we show the Penrose diagram for (A)dS space-time.

As a final comment, note that Minkowski space and de Sitter are clearly globally hyperbolic, but
that AdS is not. For AdS, we need to present, not just data on an initial t = const. hypersurface, but
also data, or at least boundary conditions at time-like infinity. Otherwise, one can imagine incoming
radiation from infinity which in turn might cause very problematic instabilities.

+
de

Fis
Figure 2.4: The Penrose diagrams for de Sitter (left) and Anti de Sitter (right) space-times.

In the de Sitter case, the left and right vertical line can be identified. The topology of .#¢ djé is
R x S2, while for AdS conformal infinity is conformal to Minky 4.

For the maximally symmetric spaces there is an elegant alternative construction for their conformal

R24*1 To see this let us consider the Lorentzian

compactification though their embedding in
conformal group in (d + 1) dimensions, SO(2, d + 1). This group only acts on the compactification, as
it interchanges points at finite distance with points at infinity. The conformal group acts on R%*3 by

orthogonal transformations preserving the quadratic form

X2 =n,x'x’ :—32+W2+nwx“x”, (2.22)

Rd+3

where the coordinates on are given by X! = (s,w, x*) where I =0,...,d +2and u=0,...,d.

To obtain the conformal compactification of the maximally symmetric space-times, we choose a
non-zero constant vector K! € R(4+3) and define the metric,

N nIJdXIdXJ

ds?, = (2.23)
K2 (K : X)Z X2=0

where we defined the product between to vectors X - Y = X; Y. Up to SO(2,d + 1) transformations,
K' is distinguished only by its norm K? so there are only 3 cases K? = —1,0, 1. Since we divided by a
quadratic function, the metric is invariant under constant rescalings of the embedding coordinates X’.
Moreover, on X2 = 0 the form X;dX = 3dX? vanishes so it is easy to see that under X! — f(X)X', the
metric dsI2 is invariant for any (non-vanishing) function f(X). Thus we can scale X sothat K- X =1
on the interior of the conformal compactification. At conformal infinity we find that K - X = 0. The
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isometry group of the metric d512<2 can then be found as the subgroup of SO(2,d + 1) that preserves
the vector K'.

Exercise 2.3. Show that by taking the vectors:

K =(1,-1,0,0,0,0), (2.24)
K =(1,0,0,0,0,0), (2.25)
K =(0,1,0,0,0,0), (2.26)

the metric (2.23) reduces resp. to the metric on Minkowksi space, de Sitter space or anti-de Sitter space.
Use this to construct the conformal compactifications. Show that the resp. preserved isometry groups are
SO(1,d), SO(1,d + 1) and SO(2, d).

Exercise 2.4. As a final example consider the FLRW backgrounds with spatial sections of constant
curvature. The metric is given by
ds? =—de* + a(t)zdsﬁ K> (2.27)

where for k = 0,1,—1 the spatial manifold is respectively flat Euclidean space, the sphere or hyperbolic
space.

t dt

Show that these metrics are all conformally flat. Hint: consider the conformal time T = | Ok

So far all our examples were conformally flat, allowing us to use a variety of tricks to easily construct
their conformal compactification. For non-conformally flat space-times many of our tricks fail making
the task of finding the conformal compactification more involved. Conceptually the procedure remains
identical, as described in Definition 2.12 but has to be discussed on a case by case basis. However, if
M is globally hyperbolic we can see that .¢ = .47 U .#~ where future infinity .#7 is to the future of a
Cauchy hypersurface and past infinity .#~ to the past.

2.4 Asymptotics and peeling

All the examples discussed above had an important feature in common, namely that they all admit
a smooth conformal extension which attaches a conformal boundary to the space-time. A natural
question is to what extend this property is shared by more generic manifolds.

Definition 2.13 (Asymptotically simple space-times). A space-time (M, g) is asymptotically simple if
there exists a smooth, oriented, time-oriented causal conformal compactification (M, §) such that
each null geodesic of (M, §) acquires two distinct endpoints on .%.

Note that the completeness requirement in this definition excludes singular space-times such as the
Schwarzschild black hole in which there exist null geodesics which do not reach .#. Not only those
falling into the black hole but also those lying in the photon sphere are incomplete in this sense.
Moreover, even without singularities, the fact that a space-time is smooth and geodesically complete

does not guarantee that it admits a smooth conformal compactification.

Exercise 2.5. Consider the Nariai space-time M =R x S x $2 with metric
ds? = —dt? 4 cosh? tdy? + ds?;2 . (2.28)
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The Nariai space-time is both geodesically complete and globally hyperbolic. Show that it does not allow
for a smooth conformal extension.

To do so note that under a conformal transformation the squared Weyl tensor transforms as

CHPo =Q4C, . CHPY (2.29)

C uvpo

uvpo

Use this fact to show that a smooth conformal extension cannot exist for this space-time.

The requirement of asymptotic simplicity is very natural from a physical point of view and can be
thought of as stating that the matter density has to die off quickly enough at infinity such that the
asymptotic geometry is purely described by the cosmological constant. More precisely, we only allow
conformally invariant matter in the neighbourhood of .#.” Furthermore, we can prove the following
theorem

Theorem 2.2. Let (M, g) have conformal compactification (M, §), and suppose that the space-time
asymptotically satisfies the Einstein equations with conformally invariant matter (so that the trace of the
stress-energy tensor vanishes) with cosmological constant A. Then .# is space-like when A > 0, time-like
for A < 0 and null when A = 0.

Proof: From Einstein’s equations in d + 1 dimensions we immediately obtain

2(d+1
Ra 202Dy (2.30)
in a neighbourhood of .#. Define the Schouten tensor as
P,y = —L (Ruv — ing) . (2.31)
d—1 2d
Near .# we have that Pﬁ ~— d(der_ll)A and note that near .# it transforms as
P,y =b,,+Q7'V,V Q- %Q—Zg”wﬁpsﬁm, (2.32)
under a conformal rescaling of the metric. Remember that on .# we have Q = 0 so that,
g""N,N” = 2 (2.33)
24
on .#, where we defined the normal vector N,, = —?HQ. From this the proposition immediately

follows.

Asymptotically simple space-times satisfying the conditions in the theorem above are called asymp-
totically flat, asymptotically AdS or asymptotically dS, depending on the value of the cosmological
constant. Moreover, using the results above one can analyse the topology of conformal infinity in
each case, the de Sitter and anti de Sitter cases are rather straightforward. For de Sitter one can show
that topologically .# ~ $9~!, while for anti de Sitter it is a compact time-like hypersurface. The case

’Conformally invariant matter comes with a traceless stress tensor and includes massless matter fields such as for
example a massless scalar field or massless gauge fields. Therefore this criterion still allows for radiation to reach infinity.
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of vanishing cosmological constant on the other hand is harder to analyse. However, one can prove
that in any asymptotically simple space-time for which .# is everywhere null, the topology of each
component .#* is given topologically by .#* ~ R x $2, where the R factor can be thought of as the
rays generating null infinity.

To finish this chapter we briefly discuss one of the most important results of the theory of asymptotics of
the gravitational field, the so-called peeling theorem. The peeling theorem is based on the observation
that in asymptotically simple space-times the Weyl tensor must vanish on .# and quantises the allowed
decay. A precise statement of the peeling theorem requires the introduction of a variety of new
concepts and goes beyond the scope of these lectures. For this reason we only present a simplified
sketch and refer the interested reader to the textbooks [PR84,Kro23] for more information.

As already mentioned before, it is reasonable to expect conformally invariant and massless fields to
continue smoothly to .# in the conformal compactification. Consider a (conformally coupled) scalar
field ¢ solving the (conformally invariant) wave equation. Then d; =¢/ QT should be smooth on
# (at least if it is in the domain of dependence of M). In an asymtotically de Sitter space, where
A > 0, we can deduce that the massless scalar will evolve past .# as if it wasn’t there and so ¢ will be
smooth and generically non-vanishing near .# in the conformally extended space-time. Translating
this back to the physical space-time this gives a sharp asymptotic fall-off of the physical scalar ¢. It is
instructive to compare this fall-off in terms of the affine parameter r along an outward going geodesic
terminating on .. When .# is null we find

Q~ = — ¢~
r rz

(2.34)

On the other hand, in the de Sitter case, it is easily seen that 2 ~ exp(—t), where t is the proper time
along a time-like geodesic ending on .#*.% Hence, for massive fields we find an exponential fall-off
for the physical fields. In the asymptotically de Sitter case these conclusions can straightforwardly be
extended to higher spin/helicity fields.

These considerations can straightforwardly be generalised to study the fall-off of scalars in asymptot-
ically AdS or flat spaces. When A = 0 however, the analysis is more involved for higher spin fields as
they can scale differently according to whether they are aligned with .# or transverse to it. Carefully
doing so for the Weyl tensor results in a proper statement of the peeling theorem in asymptotically
flat spaces, see for example [PR84, Kro23] for a careful statement.

Remark. As a final remark, note that in the peeling theorem one is usually focused on asymptotically
flat space-times and the decay of gravitational waves at null infinity. In asymptotically AdS space-times,
in particular in the context of holography, a more common way of analysing asymptotic expansions
proceed through the use of the Fefferman-Graham expansion [FG85]. See Chapter 8 for more details
in the context of holography.

8This can be easily see by noting that dt = dTT, where T is the time coordinate on the Einstein cylinder.
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Chapter 3

Quantum fields in flat space

Quantum field theory in curved space-time is a generalisation of quantum field theory in flat space.
It is not surprising that in many respects the behaviour of quantum fields in curved space-time can
be directly inferred from the flat space theory. Local entities, such as commutation relations or field
equations are determined by the principle of general covariance and the equivalence principle and will
therefore remain unchanged. On the other hand, there are various global entities which will behave
radically different in curved space. For example, in Minkowski space the vacuum is unambiguously
determined by Poincaré invariance. However, as we will see in Chapter 4, the concept of a vacuum
becomes ambiguous in curved space.

For this reason we will take a moment to review certain aspects of quantum field theory in flat space,
fix our conventions and notation and highlight certain aspects which carry over to curved space as
well as those which lose their meaning. To avoid having to deal carefully with gauge invariance etc.
we mostly focus on scalar fields as they suffice to illustrate the properties we are interested in. For
more details on spinors, vector or higher spin fields in Minkowski space we refer the reader to their
favourite textbook on quantum field theory, for example [Wei95,PS95, Sre07].

3.1 Canonical quantisation in Minkowski space

In this chapter we exclusively deal with (d + 1)-dimensional Minkowski space R where as before
we use mostly plus signature. Sometimes it will useful to separate the time direction t and collect the
spatial coordinates in the vector x = (x;, - ,Xg).

Consider a classical scalar field ¢ (x) in (d + 1)-dimensional Minkowski space R?, satisfying the
Klein-Gordon field equation,
(o-m?)¢ =0, (3.1)

where O = n""9,,0, is the d’Alembertian, and m is the mass of the scalar field. This field equation
can be derived from the action,

1

s:f £(¢,0,0)dx,  with  £(¢,0 ¢)=—§(n“vau¢av¢+m2¢2), (3.2)
RLd

by demanding that the variation 6S with respect to ¢ vanishes. The conjugate momentum 7(x) is
defined through the following definition,

_6£L(¢,99)

m(x) = 56.0) (3.3)
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such that for the free scalar we find n(x) = J,¢.

We proceed by defining the (classical) phase space V,; as the vector space of fields satisfying the linear
field equations, i.e. the Klein-Gordon equation in the case of the free scalar. There are some caveats
regarding the asymptotic fall-off of these fields at infinity for the various formulae that we use to
make sense. Without going into too much detail we assume that our fields have been appropriately
restricted.! For the scalar field we denote the phase space as

Vy ={¢p e C®®R")|(@—m*)¢ =0} = {(¢,8:¢) € C®(RY) x C*(RD}, (3.4)

where in the second equality we identified the phase space with the initial data along a time slice
t = to. A similar phase space can be defined for fermions and gauge fields but we leave the precise
definition as an exercise to the reader.” The phase space comes with a natural symplectic structure,

or skew symmetric form,>

Q(¢1:¢2)=J ¢1*d¢2—¢2*d¢1=J (¢18: b2 — p20,91)d%x (3.5)
Rd Rd

More concretely, consider a basis {uy(x)} of the phase space, and denote their conjugate momenta
by {my(x)}. In this basis the symplectic form takes the canonical form Q = )}, duy A dmy and the
expression above can be obtained straightforwardly by expressing the fields ¢; in this basis. This
skew symmetric form is dual to the Poisson bracket on V;, which can be expressed as,

{p(x), n(x")} =6 D(x —x"), {p(x), p(x)} = {n(x),n(x")} = 0. (3.6)

Canonical quantisation then proceeds by promoting the fields and canonical momenta to operators

on an appropriate Hilbert space and imposing the canonical (equal time) commutation relations,

[¢(t,%), ¢(t,x)] =0,
[n(t,x), n(t,x’)] =0, (3.7)

[p(t,x), n(t,x)]=i6(x—x).
To develop the quantum theory we relate the phase space to a one-particle Hilbert space # and define

the Fock space to be

oo
F=CoHo(HOH) @ - =PH™". (3.8)
n=0

We can make this more precise using the Fourier transform, by decomposing complex fields into
plane waves. An appropriately normalised set of solutions to the wave equation (3.1) is given by the

1For the interested reader: The relevant space is often taken to be the Schwartz space, which consists of infinitely
differentiable functions that at infinity fall off faster than any reciprocal power of x. Crucially, this space has the property
that it allows for the Fourier transform to be applied.

2Note that the Dirac equation is first order so that the initial value problem only needs the value of the field as boundary
condition. For vector fields one has to deal with gauge invariance and quotient out gauge equivalent field configurations.

3For fermionic fields the phase space comes with a symmetric form.

“Note that here and throughout the text we put i = 1 explaining the absence of the characteristic factor of 7 on the
right hand side of the equations in (3.7).

20



following plane waves,
1

v (2m)d2w

with w = vk2 + m2. The plane waves uy, are called positive frequency or positive energy solutions

uy(t,%) = ellkx—wt), 3.9)

with respect to t, while the the complex conjugate solutions, i, are the negative frequency/energy
solutions. They are eigenfunctions of the time translation operators with eigenvalues Ficw,

Jiug = —iwuy, oyuy =icwuy. (3.10)

Such plane waves, together with their complex conjugates, form a complete set of solutions and
therefore any solution to the Klein-Gordon equation can be Fourier expanded as

P(x)= f Ak [ () + afug ()] - (3.11)
Such that the phase space for a complex scalar decomposes as C® V, = Vq;“ ) qu_ and the choice of w
above is precisely made so that the fields satisfy the on-shell condition, k? = —m?.

The skew symmetric form on the phase space translates to a (positive definite) inner product on the
Hilbert space defined as,

(P1,¢2) =if d?x ($1(x)8; p2(x) — 8, $1(x)a(x)) - (3.12)

The main property of this inner product is that for two solutions to the Klein-Gordon equation the
product is conserved under time translation. The plane waves defined in (3.9) are orthonormal with
respect to this product,

(U, uy) = 6(k—Kk), (u,113,) = 0. (3.13)

Exercise 3.1. Prove that the plane waves uy together with their complex conjugates form an orthonormal
basis of L(R>?), i.e. square integrable functions on R%4.°

We can therefore express the Fourier coefficients as follows,

= (wed),  a =, e). (3.14)

From the equal time commutation relations (3.7), it follows that
[, aiz,] =6k—-K), [ay, ap ] = [ai‘;, a;;,] =0, (3.15)
Exercise 3.2. Prove the commutation relations, (3.15) , for the creation and annihilation operators

starting from (3.7).

Remark. In the above, k is a continuous parameter. Sometimes it is useful to introduce periodic

SNote that strictly speaking plane waves do not belong to L2(R"¢) but nonetheless they form a complete basis for it.
Similar comments apply to the dual basis given by the delta functions, &(x — x,).
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Td+]. Ld+].

boundary conditions on a torus of volume , a.k.a. putting the theory in a box. In particular,

Zﬁn

this avoids all kinds of volume divergences. Doing so, the wave-vectors become quantised k = 7~

and all integrals in the above get replaced by infinite sums.

It is often easier to compute physical quantities using such a (IR) regulator and taking the limit
L — oo at the end of the computation to obtain the infinite volume result.

Remark. In the above we consider the annihilation and creation operators as elements of End(H).
However, more rigorously, these operators are only well-defined in a smeared sense. Indeed, we
should think of these operators as distribution-valued operators

a(f) = J d?kf (k)ay, (3.16)

where f is a test function with Fourier coefficients f (k).

For ¢, we have that the associated creation operator can be defined as
a'(f)=—a(f"). (3.17)
From the canonical commutation relations introduced above we then have

[a(f),a"(g)] =ij d¥x (f*(t,%)3,g(t, %) — 3. f *(¢,x)g(t,x))
=(f,g) -

(3.18)

Similarly, one can easily show that

[a(f)al@l=—(f.g"), [d'(Fd@]=-("g). (3.19)

For all practical purposes it is entirely appropriate to work formally and think of the annihilation and
creation operators and their smeared versions as elements of End(#), acting on a dense subspace.

3.2 Particle interpretation

We can interpret the operators a;, and aii as annihilation and creation operators for an infinite amount
of harmonic oscillators labelled by their momentum. In the Heisenberg picture, the states span a
Hilbert space. A convenient basis for this Hilbert space is given by the Fock representation introduced
above.

The state space consists of the vacuum |0), which is annihilated by all the annihilation operators,

@, |0) =0. (3.20)
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and all the excited states in the Hilbert, which space can be constructed by acting on the vacuum
with the creation operators a, ,
a, |0) = |1) . (3.21)

Successively acting with the creation operators we can then construct the most general states,

k
N OB p>> _ (3.22)

1

) 1 O\
A (af )" 10y =

These basis vectors are normalised such that

1 2 3 p

(k) (kp) (k3) (ky)
<n1n2n3-~-n" 1 5 3

0 Oka) o (ka) mékq)> _

Opq Z 5”1’"0(1) 5“2’”0(2) o 5"pmo(p) » (3.23)

(o3

where the sum runs over all permutations o of the integers 1, ..., p.

In analogy with the harmonic oscillator we can then introduce the number operator,
N =N, N = day, (3.24)
whose expectation value in a generic state is given by

(WPIN ) =D n;, (3.25)

1

1 2 3 p

k . .
where |¢) = ’n(kl)n(kZ)n(k3) cnl® )>. Hence, we can interpret Ni. and N as counting the number of
quanta with momentum k and the total number of quanta respectively.

Note that the vacuum, as defined in (3.20) is unique. Naively it may seem to depend on a choice
of inertial frame but an easy argument shows otherwise. Indeed, consider a second inertial frame
x* = AP x” with A a Lorentz transformation. Analogous to the above we can define the positive
frequency functions

N 1 P
fig (£, %) = —————elk¥=00 (3.26)

and expand the field ¢ as
p() = d'k] a0 +ala; ] (3.27)

The "new" vacuum is then defined by the condition that

0)=o0. (3.28)

To show that this is nothing but the old vacuum consider the mode function and notice that

~ N i [
i = e ekEwD (2) 1 diGxan - (2) . (3.29)

Vv (2m)d2w w/ 4/(2m)d20 w

Since we restrict to the orthochronous subgroup of the Lorentz group, to preserve time orientation,
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we have that & > 0 implies w > 0 and thus we find that
ai0)=0 Yk =  l0)=0 Vk, (3.30)

and the converse follows by symmetry. Hence the vacuum is indeed unique and independent of the
choice of frame.

3.3 Vacuum energy

To further explore the meaning of the Fock states we can compute their energy and momentum,
which can be obtained from the expectation value of the energy-momentum tensor which for a scalar
field is given by

1
Tm,:3M¢8vqb—§nm(8p¢8p¢—m2qb2). (3.31)

We can define the conserved momentum operator as
P, = J T,0d’x, (3.32)
t=t,

with the time-like component P, = H, the Hamiltonian. The expection value in a state |1)) can then
be computed as (Y| H |).

Exercise 3.3. Give an expression for the Hamiltonian and conserved momentum in terms of the creation
and annihilation operators and show that they commute with the number operator N.

Naively compute the expectation value of the Hamiltonian density H and momentum density P, and
show that they are divergent.

Similarly, consider the expectation value of the energy-momentum density T,,, in the vacuum as well as
in a generic state and find an expression in terms of the mode functions.

Computing the energy we encounter our first infinite result. Such troubling results are well-known to
plague the subject of quantum field theory but can be cured through renormalisation. In this setup it
will suffice to define the normal ordering operation, : e :, which is understood to act on products of
annihilation and creation operators such that it puts all the annihilation operators on the right of the
creation operators.

Exercise 3.4 (Vacuum energy divergence). Compute the momentum and energy of the vacuum and
show that it naively diverges. Use the normal ordering prescription to regularise this result and find the
resulting vacuum energy.

In the above we regularised the vacuum energy by passing through a normal ordered prescription
which simply throws away the infinite contribution. However, as already mentioned before, in curved
space, especially when gravity is included, the energy of the vacuum is physical since it gravitates.
For this reason it is instructive to take a closer look at the vacuum expectation value of the energy in
a situation where it becomes important. Consider a massless neutral scalar in (3 + 1)-dimensional
Minkowski space in the presence of two parallel plates at x5 = 0 and x3 = a with a < 1 and
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impose boundary conditions ¢ (0) = ¢ (a) on the plates. In addition we impose periodic boundary
conditions in the two other spatial directions with x; 5 ~ x; 5 + L, with L > a. This setup represents
a modified version of the usual Casimir effect for two neutral conducting plates in a vacuum electric
field vanishing on the plates.

Exercise 3.5. Quantise the scalar field in the presence of the two plates and show that the average energy
density is given by

1
— 172 —
pl@)=a "L7°(0| Ty |0), = E Ek Wy, (3.33)
and give an expression for wy,.

We can regularise this sum by writing

pla) = EWE ll_I)I(l) I e @k (3.34)
k

Remark. The parameter € here is dimensionful so it is good practice to introduce an explicit length
scale e — €/A so that € becomes dimensionless. In the final result all the A dependence should drop
out as can be easily verified.

Exercise 3.6. Compute the regularised vacuum energy and show that the sum

S(e,a) = L_ZZexp(—ewk) (3.35)
k
takes the form
3
nS(e,a) = aG(a)+ L2 +0(e?). (3.36)
45a3

Before taking the limit in (3.34), subtract the infinite part to arrive at the renormalised vacuum energy.

Doing so compute p(a).

What would have changed if we instead imposed vanishing boundary conditions at the plates?

Remark. In the last exercise we proceeded in a rather cavalier way. In order to obtain the same result
in a mathematically more satisfying manner one can employ {-function regularisation. We invite the
interested reader to explore this method and repeat this exercise in a more rigorous manner.

3.4 Symmetries, charges and topological operators
When the quantum theory enjoys some global symmetries, there will be associated conserved currents.

The theories we consider in this course are all covariant under space-time diffeomorphisms. In
particular, they are invariant under space and time translations. The associated conserved current is
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given by the stress tensor,

o)
where T £

o W 5ong

s Byp — 8,0 L. (3.37)

Note that in order for this to serve as a source for the Einstein equations we need to improve it to
be symmetric under interchanging the indices. We will present a manifestly symmetric stress tensor
formulation of the stress tensor later when dealing with curved space-times. Similarly, if the theory
has additional global symmetries we can write the conserved current as

oL

By — w— _ v
o) J,=0, where J 53“¢5¢ Tw6x , (3.38)

where 6 = ¢’ — ¢ denotes the change of the field under an infinitesimal symmetry transformation
and similarly 6x” = x” —x".

In a more modern incarnation, symmetries are often rephrased as the presence of topological operators.
To illustrate this viewpoint, let us consider a general QFT with a continuous U(1) global symmetry.
We define the associated charge operator Q as

Q= jg dixJ,. (3.39)

The charge Q is conserved because of the conservation equation

8Q= J d'xd) =~ J dxV" =~ J Al =0, (3.40)
ORd

where we assume appropriate fall-off conditions of the fields at infinity. The conserved, unitary
operator Uy implementing a U(1) symmetry transformation with angle 6 is

UQ = eiQQ = exp |:19 § ddXJt] . (341)

The unitary symmetry operator can be generalised in a covariant way as follows. Define

Ug(My) =exp |:19§ Ju dn“:| = exp |:i9§ *J:| , (3.42)
My Mgy

where n is a normal vector to the co-dimension one submanifold M, and * denotes the Hodge dual
of a differential form (see Appendix B for a definition). Since *J is a closed form, i.e. d xJ =0, it is
easy to see that correlation functions involving Ug (M) are independent of small deformations of
My, as long as they do not cross any operators charged under the U(1) symmetry. Therefore, we
see that a conserved current operator J,, gives rise to a topological object Ug(M ) supported on a
codimension one submanifold in space-time.

So what are these operators Uy(M;)? When M, spans the spatial directions at a fixed time Ug (M)
is the conserved, unitary operator that acts on the Hilbert space H(M,). On the other hand, when
M, is extended along the time direction and localised in one of the spatial directions, say x; = 0,
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Ug(My) is a defect that modifies the quantisation. Indeed, the quantisation in the presence of such a
defect gives rise to a twisted Hilbert space Hg(M).

Example 3.1 (Complex scalar in 141 d). To make these concepts more concrete, let us consider a free
complex scalar in two dimensions. The Lagrangian for this theory is given by

L=0,50"%", (3.43)
and enjoys a global U(1) symmetry acting by a phase ® — e'®® with Noether current
J,=i(9,0")e—id"(3,2). (3.44)

Let the space be a circle S* parametrized by the coordinate x ~ x +27. The Hilbert space H(S*) on a circle
is obtained by the canonical quantization of the free scalar field subject to the periodic boundary condition
®(t,x +21) = &(t,x). The conserved current leads to a unitary operator Uy(S!) = exp (i@ f det)
acting on this Hilbert space.

Alternatively, we can insert a defect Ug(R) = exp (i@ 3§ dth) along the time direction at x = 0. This
defect changes the boundary condition of the scalar field to ®(t,x + 2m) = €9®(t,x). Canonical
quantization subject to the above twisted boundary condition leads to a twisted Hilbert space Ho(S*)
labelled by the U(1) group element 6 € [0, 27).

This modern perspective in terms of topological defects not only neatly unifies defects and symmetry
operators but generalises in many interesting ways. First of all, it immediately generalises to discrete
symmetries G, like Zy . In this case we do not have a conserved Noether current or charge operator
but we can still construct the topological operators.

Another interesting generalisation are higher form symmetries [GKSW15]. One can consider con-
served/topological operators supported on higher codimension submanifolds. These generate so-
called higher form symmetries which act on extended objects. I.e. 0-form symmetries act on particles,
1-form symmetries act on line operators, and so on. A g-form global symmetry G4 acts on a g
dimensional object W as

Uy (Ma_WN) = g(WIWNG), (3.45)

where M_, and V; are two submanifolds linking in space-time and g(W) is a representation of G,
Note that G(@ for g > 0 is necessarily abelian, since one can always move two higher-codimension
objects around each other in a topological manner so that the order in which then act can not make a
difference.

Example 3.2. One of the simplest examples of a higher form symmetry arises in Maxwell theory with no
charged matter. In this case one can define the topological operators

6
Ug(Mg—1) = exp [_e_Z jg *F] , (3.46)
Mg

where e is the electric coupling in the Maxwell action and the exponent in this expression is nothing but
the electric flux which is topological thanks to Gauss’ law d = F = 0. This topological operator implements
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a U(1)M 1-form global symmetry. The charged objects in this case are (non-topological) Wilson lines

W(N;) =exp [in% A:| , (3.47)
M

which are acted upon as follows,
Up(Mg_1)- Wy, =W, . (3.48)

Due to the Bianchi identities dF = O there is a second U(1)") symmetry which instead acts on ’t Hooft
lines.

Remark. One can further generalise the concept of a symmetry by considering not just group-like
symmetries but ring-like symmetries, where not every element has an inverse. We will not go into
details of such non-invertible symmetries but refer the interested reader to the lecture notes [Sha23].

3.5 Correlation functions

On top of the vacuum energy and Hilbert space, much information about a quantum field theory
is encoded in its n-point functions. Euclidean and Lorentzian correlation functions are related by
analytic continuation. However, due to the more interesting causal structure in Lorentzian signature
there are various subtleties related to this continuation.

These subtleties are most easily illustrated in a quantum mechanical setup which straightforwardly
generalises to quantum field theory. Let us there fore consider a quantum mechanical system with
Hermitian Hamiltonian H, whose spectrum is bounded from below. For energy eigenstates we have
H ) = Ey |) and we assume that there exists a unique vacuum state |0) with H [0) = 0, and all
other states have E,;, > 0.

Let us consider first the Euclidean system with Euclidean time 7, and time evolution operator e~ .

Given a local operator O(0) we define the Euclidean Heisenberg picture operator as
Op(1)=e"H0(0)e™ ™ . (3.49)
A general correlation function in the vacuum state is then given by®

(0101 p(T1) -+ Op p(7,)10) = <01,E(Tl) e On,E(Tn)>
= <01,E(O)e_(Tl_Tz)HOZ,E(O) e On—l,E(O)e_(Tn_l_Tn)HOn,E(O)>

= > 01 01,5(0) [11) (11 O3 5(0) [1h5) -+ (1] O £(0) [0) (3.50)
P
X e_(Tl_TZ)El P e_(Tn—l_Tn)En—l ,

where we inserted complete sets of energy eigenstates 1);. This simple rewriting leads us to a first

SFor ease of notation we often denote vacuum expectation values simply as (©) omitting the explicit state |0).
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important observation. In Euclidean signature, only time-ordered correlation functions of local

—(11=72)H cause

operators make sense. Indeed, in the time-ordered case the evolution operators e
the high-energy states to be exponentially damped. Since Euclidean correlators can have at most
power-law divergences as times become coincident, a similar statement holds for transitions between

non-vacuum states (1| O(0) |1,b’ > For this reason we only consider time ordered Euclidean correlators

(015(11)+ Op (7)) =(T{O1£(t1) - O p(T1)})
= <01,E(T1) e On,E(Tn)> 0(ty>-->1,) (3.51)

+ permutations.

On the other hand, consider a Lorentzian system with time t. The Lorentzian time evolution operator

is e and the Lorentzian Heisenberg picture operators are defined as

O,(t) =™ O(0)e M = O (1 = it). (3.52)

We can go through exactly the same manipulations as in (3.50) for a Lorentzian correlation function
(0] Oy 1(t1) -+ O, 1(t,)]0) where the only change is that the exponential factors are now oscillatory
for any time ordering! Hence it makes sense to define any time ordering, or consider commutators
([Ol, 1(t1), 0y, L(tz)]> which in Euclidean signature does not make sense because it always involves
at least one unbounded operator. In Lorentzian QFTs, correlators with a fixed operator ordering are
called Wightman functions. By contrast, a time-ordered Lorentzian correlator is a sum of Wightman
functions with 8-functions enforcing the time ordering. The face that the e*! insertions are oscillatory
has an important consequence: Wightman functions are not actually functions. Instead they should
be treated as distributions where we must smear the times t; against smooth test functions to make
the sum over high energy states converge,

J dey---depfr(ty) - 'fn(tn)<01,L(t1) e On,L(tn)> . (3.53)

To observe this distributional character in more detail, let us explicitly construct the Lorentzian
correlators as an analytic continuation of the Euclidean ones. However, note that the collection of
O-functions in the time ordered correlator cannot be continued in a natural way. Instead, we should
think of the Euclidean correlator as a collection of different functions, one for each ordering of the ;.
We can then separately continue each of these functions. For example,

F(t1,79, 7)) = (01 p(71) - Opp(7,)) (3.54)

can be analytically continued to a holomorphic function of its arguments in the region
U: Ret;>--->Rert,. (3.55)
Let us then write 7; = €; + it; and change t; away from zero. Upon this change, the time-evolution

Operator becomes
e~ (e1—e)H _, o—(e1—ex)H—i(t1—t2)H , (3.56)
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As long as we stay in the region U, the high-energy states remain exponentially damped. The
imaginary parts t; insert additional phases into the already convergent sums, thus the correlator is
holomorphic in this region.

A Wightman function can be obtained as the boundary value of such a holomorphic function. Since F
is holomorphic in the domain U we can safely continue t; from O to any desired value. Afterwards
we can then take the limit €; — 0, preserving the ordering. Formally, this produces the Wightman
function

gi%(ol,E(el +ity)- - Opp(en + itn)> = <O1,L(f1) e On,L(fn)> . (3.57)

However, this limit is not always well-defined because it requires approaching the boundary of the
region of holomorphicity. We claim that if we smear against test functions f;(t;), and subsequently
take €; — 0, then the limit becomes well-defined. This is how the boundary value of F is defined as a
distribution.

Remark.

In the above we have not defined the space of test functions relevant for QFT correlators. The
technical statement is that Wightman functions are tempered distributions.

Given a space of functions F, a distribution T on F is a continuous linear function T : 7 — C.
Formally we can write this as

T(f)zfdtf(t)T(t)e(C, (3.58)

Although the value T(t) might not make sense.” The space of test functions relevant in QFT is the
Schwartz space S of rapidly decreasing functions,

S={fec™)|sup|t™d'f(t)| < 00, m,n € Lsy} . (3.59)

Distributions on S are called tempered distributions.

Exercise 3.7. Consider a correlator F(7) that is holomorphic in a single variable T = € + it in the region
€ > 0. Assume that F(7) has at most a power-law divergence as we approach the boundary of the regime
of holomorphicity

|F(e +it)| < e *P(t), (3.60)
where P(t) is polynomially bounded for large t.

Show that F(t) is a tempered distribution, i.e. show that lim,_,, f dtF(e +it)f (t) is finite for f € S.

The discussion above generalises straightforwardly to QFT by introducing additional spatial directions.
Now, the Heisenberg picture operators are defined as

O(x) = e P *O(0)eP*, (3.61)

7A famous example is the Dirac §-distribution T(t) = 6(t), which is only defined by its integral against test functions.
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where P* are the energy-momentum generators. The signs above are fixed by requiring that the
t-dependence of the right-hand operator is e ‘| where H = P°. We can go through exactly the
same manipulations where now all positions can be analytically continued, x; = y; +i{; where
Y&, {x € R14. The generalisation of the statement that H is bounded from below is that the spectrum
of P is contained inside the future null cone. Consequently, the the real part of the exponential e’ **12
is negative provided that {;, is past-directed, which we write as {15, < 0 or {; < {5. When this
condition holds, high energy states are exponentially damped. Thus, positivity of energy implies that
the Wightman function is holomorphic in the region

{1 <fp<--<,. (3.62)

Wightman distributions in real space are defined as boundary values of holomorphic functions in the
region (3.62). We can compute them with the following recipe:

» Start with x; real and mutually space-like. For example, place them at times t; = 0.

* Give the x; small imaginary parts {; = Im x; satisfying (3.62). For example, if all points start at

Lorentzian time t; = 0, we can assign them times x? =—ie; withe; > - > ¢,.

* Continue the real parts y; = Re x; to the desired values.

* Take the imaginary parts to {; zero, treating the result a distribution.

The Osterwalder-Schrader reconstruction theorem states that correlators in a reflection positive Euc-
lidean QFT can be analytically continued to give Wightman functions that are tempered distributions
on Minkowski space RV,

3.6 Two-point functions

Among the correlation functions a particularly important role is played by two-point functions. In fact,
in many applications we will effectively only work with free fields for which all non-trivial information
is encoded in the two-point functions, i.e. the Green’s functions for the relevant wave equation.

While in Euclidean signature only the "time"-ordered correlator makes sense, in Lorentzian signature
there are various types of Green’s functions depending on the choice of integration contour in the
complex plane.

A useful set of Green functions are given by the following expectation values,

G*(x1,x5) = (0] O(x1)O(x,)10) ,

G (x1,x2) = (0] O(x,)O(x1)0) ,

iG(xli'XZ) = (Ol [O(x1)> O(XZ) |0> >
( )

] (3.63)
GM(x1,x5) = (0] {O(x1), O(x2)} 0)

G* are Wightman functions as discussed in the previous section, while the other combinations can be
built up from combinations of the Wightman functions. G is known as the Pauli-Jordan, or Schwinger
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function, while GM is called the Hadamard elementary function. These Green functions can be split
into their positive and negative part,

iG=6"-G-, and GW=6"+6", (3.64)
Finally, the Feynman propagator Gy and retarded/advanced Green functions Gy, are defined as
Gp(x1,x2) = (0] T[O(x2)O(x1)110) = O(t1 — t3)G " (x1, x2) + O(t, — t1)G ™ (x1, X2), (3.65)
where T denotes time ordering, and
Grlxy,x3) = 0(t; — t2)G(x1, x3), Galxy, x2) = —0(ty — £1)G(x1, Xx3). (3.66)

All these two-point functions have the same form in momentum space but they have different ie
prescriptions and are used in different contexts. Time ordered products, such as the Feynman or
retarded/advanced Green’s functions are relevant for S-matrix calculations. The Green’s functions
involving (anti-)commutators on the other hand are useful to describe how the field responds to a
source. Finally, the Wightman functions are useful since they describe the effect of the field on a
moving detector, as will be described in detail in Chapter 6.

Exercise 3.8. Show that the average of the retarded and advanced Green functions G = %(GR +Gy)is
given by
— 1
GF(x13x2):iG(X13X2)+EG(D(XI’XZ)' (367)

In the above we kept the operator O completely generic, but let us now specify to scalar fields and
see how the two point functions can be obtained respectively as an analytic continuation and next by
carefully applying the various ie prescriptions.

To illustrate the first perspective, let us start by considering a two-point function of a massless scalar
O in a d + 1 dimensional CFT. The Euclidean correlator is

1
Op(711,%1)0p(79,%5)) = ————, (3.68)
( E( 1 1) E( 2 2)) (T%l‘i‘X%l)A
where A is the dimension of O. Let us compute the Wightman function
(O(t2,%3)0(t1,%1)) - (3.69)

We start with the operators O at Euclidean times 745 = €5 > 7; = €; and then continue €; — €; +it;,
staying in the region €, > €1,

1
(_tgl +X§1 + 2i€21 to; + 6%1)A

(Op(eg +ity,%9)Op (€7 +ity,X;)) = (3.70)

Finally, we take €57 =€ — 0,

1
O(tq,%,)0(t1,%1)) = lim ————, 3.71
(Ot )0 30) =l (3.7
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where we have used the Minkowski norm x2 = —t2 + x2.

The denominator involves a fractional power of a complex number. However, its phase is fixed by our
prescription for analytic continuation.

Exercise 3.9. Show that the phases in different causal configurations are

iTA

e Xg > Xq
1
(O(t3,%)O(t1,%1)) = RIS 1 X1~ Xg - (3.72)
e x> xy

Here, we write x; > x; to denote that x; is in the future of x;, and x; ~ Xx; to denote that x; is spacelike
from x;.

To compute the other ordering (O(tq,x;)O(t4,X,)), we choose €;5, = € > 0, which leads to

1
O(t1,%1)0(tq,%5)) = lim ————, (3.73)
(001,002 3)) = limy s
which differs from (3.71) only in its ie prescription. In particular, the expectation value of the
commutator ([O(t1,X;), O(t,,X,)]) vanishes at space-like separation, as it should by microcausality.
Henceforth, when writing Wightman distributions, we often leave lim._,, implicit.

Next, let us consider the free scalar field in d + 1 dimensions. Using the field equations (3.1) one can
show that the Green functions G € {G, G, G*} all satisfy the homogeneous equation

(O, + m?)G(x;,x,) =0, (3.74)
while the Feynman and retarded/advanced Green functions satisfy

(@, + m*)Gp(x1,x,) = — 5(d+1)(x1 —X3), (3.75)
(O, + mZ)GA/R(xb Xy) = 5(d+1)(X1 —X3). ‘

We can use translation invariance to translate one of the points, say x, to the origin in which case we
can denote the Green functions by G(x) = G(x,0). It si straightforward to solve (3.74) in momentum

space where the solution is simply given by

—i

i
G0 = .

(3.76)
Having done so, an integral representations for the Green functions can be obtained by substituting the
mode decomposition (3.11) in the definitions above. All the Green functions can then be represented

as
—ik-x

1
G(x) = Wfdd“ke— (3.77)

k2—m2’

This integral has poles at w = ++/|k2 + m2| and the various Green functions correspond to various
contour prescriptions for the integration. In Figure 3.1, the contours are shown for the various Green
functions.
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Figure 3.1: The various Green functions are associated with the above contours for the integral
(3.77). The open contours should be interpreted as closed by an infinitely large semicirle in
the upper/lower plane.

From (3.64)—(3.66) we can see that we can obtain all the Green functions from the Wightman
functions G* so we mostly focus on those.

Exercise 3.10. Use the mode expansion of the scalar field to show that the Green functions take the
manifestly Lorentz invariant form (3.77).

Example 3.3 (Massless scalar). To illustrate the formalism let us consider a massless scalar in four-
dimensional Minkowski space. To compute the Wightman functions perform the relevant contour integra-
tion as indicated in Figure 3.1. We focus on G* but the computation for G~ is entirely analogous. Near

the pole the integrand reduces to

1 .
I, = —e kX, (3.78)
2a)k

where wy = |K|. Using Cauchy’s residue theorem we obtain

i [ PR ek
G'(x)= (27'5)32|k|e . (3.79)

We can use spherical coordinates to rewrite this as

|k|d|k| sin Gdedtp ei|k|(r cosO—t) _ _;
2(2m)3 2(2m)%r

oo
Gt (x)= J d|k| (e iM(t=r) _ e7ilki(t+r)) — (3.80)
0

This integral is divergent and needs to be regularised. We do so by shifting t — t —ie, with € > 0 so that

oo .
dlifeikiesn) — L (3.81)
0 t+r—ie
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This has to be understood as a distribution, since we have (Sokhotski-Plemelj theorem)

lim

1
— =P—Find(x), (3.82)
e—0 x £ie X

where P denotes the Cauchy principal value. Using this we find the Wightman function

1 1 i
GHx) =Py + e — (8t +r) =8t —r). (3.83)

The massless scalar field is conformal with conformal dimension A = dz;l. Show that the result obtained
here agrees with the general discussion for conformal scalar fields above.

Exercise 3.11. Use this result to compute the Feynman propagator and Hadamard’s elementary function,

i 1 1 9 a) _ 1 1

Exercise 3.12 (Massive scalar). Use spherical coordinates in the spatial directions to simplify the integral
and find an explicit expression for the Wightman functions for a massive scalar.

Show that for space-like separated points, the Wightman function takes the form

Gt (x1,x5) = lKl(ms) , s =/—(x1 —x3)2, (3.85)
4m2s

where s is the proper distance and K; is a Bessel function of the second kind. Show that for timelike
separated points it becomes

G+(X1,X2) = BllH§2)(mT)J T=1 (X _y)Z > (386)
T

where 7 is the proper time and H 52) is a Hankel function of the second kind.
What is the behaviour for large space-like separation r > 1? Give a physical explanation of this behaviour.

What happens for light-like separated points? You can study this by taking the limit s — 0 in (3.85)
or T — 0in (3.86). Show that there is a branch point singularity in the Wightman distribution. This
essential singularity is known as the lightcone singularity of Wightman functions at null separation.

In order to perform the calculations of the (Feynman) Green’s function it is often useful to rotate the
contour by 90 degrees to obtain the Euclidean Green’s function Gg. The integration variables are
changed to x = —iw and similarly we replace T = —it, such that we have the relation

Gp(t,x) =—iGg(iT,x). (3.87)
where
_ 1 ei(k~x+o.>’r) d ddk ) B 6(d+1)
Gg(t,x) = @ | o2 e me kd?k, (@—m*)Gg=— (x), (3.88)

where O now denotes the d’Alembertian on (d + 1)-dimensional Euclidean space. The advantage of
the Euclidean theory is that the operator 0 —m? has a unique well-defined inverse because the poles
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now lie on the imaginary rather than the real axis. Hence it is often much easier to work in Euclidean
space and Wick rotate the result to obtain the Lorentzian Feynman Green’s function. Note that this
only works for the Feynman propagator, as all of the other contours in Figure 3.1 can not be rotated
without crossing poles. A useful way to compute Euclidean Green’s functions is using heat kernel
regularisation, as demonstrated in the following exercise.

Exercise 3.13. An alternative and often useful way to compute Green’s functions is by analytically
continuing the expressions to Euclidean signature and using heat kernel regularisation.

Let us consider the Laplacian operator A= —0 in Euclidean space RY. The heat kernel of an operator A
is defined as
K(x,x";7) = (x]e”™ |x'> . (3.89)

Show that, in the case of the Laplacian, the heat kernel solves the heat equation

‘.
O,K(x,x’;7) = M , (3.90)
ot
with boundary condition
K(x,x’;0)=68(x—x"). (3.91)

Show that the Euclidean Green’s function of A is then given by
(o]
G(x,x") =J K(x,x';7)dr, (3.92)
0

and use the explicit expression for the heat kernel to derive the Euclidean Green’s function for a massless
scalar in RY. Compare the result with a direct calculation of G*(x, x") in four-dimensional Minkowski
space-time.

The last Green’s function we want to introduce is the thermal Green’s function about which we will
have much more to say in Chapter 6. Instead of looking at the Green’s functions in the vacuum state,
the thermal Green’s functions Gg(x) are obtained by considering a thermal state at temperature
T= % These Green’s functions have the important property that they are periodic in imaginary time,

Gﬂ(t,X):Gﬁ(t+iﬂ,X). (393)

3.7 Charged scalars, gauge fields and spinors

To finish this chapter, we briefly consider charged scalars, gauge fields and Dirac spinors. Many details
are omitted as this section mainly serves to set our notation and conventions.

So far we considered real, neutral scalar fields. A charged scalar on the other hand can be described
by a pair of Hermitian scalar fields ¢; and ¢, which we can collect in a single complex field

¢ (x) = ¢1(x) +iga(x). (3.94)
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The Lagrangian density is given by the slightest generalisation of (3.2) as
L=n""3,¢"0,0 —m*¢'¢, (3.95)
which is invariant under the global symmetry transformation
p(x) = ¢'(x)=e“p(x), acR. (3.96)

Exercise 3.14. What is the conserved current for this symmetry J,,? And what is the symmetry generator
G(e)= [dlJye?

Show that the generator can be written as

G=a) (N"—N*), (3.97)
k

where N* are respectively the number operators for positively and negatively charged particles.

We can couple the charged scalar field to an external electromagnetic field with field strength F = dA.
The minimal coupling prescription is defined by replacing the derivatives d in £ with covariant
derivatives D = 0 +igA, where g is the coupling constant. The Lagrangian is then invariant under
the local symmetry transformation

A () AL (x) = 4, () — éaue(x),

P (x) =’ (x) =@ (x).

(3.98)

If the gauge field A, is dynamic we must add to the Lagrangian a Maxwell term, gauging the original

global symmetry,

1 1
L=—ZFWF‘“’—ED“d)TDMd)—mqu'qb. (3.99)

Remark. In the above we considered a U(1) gauge field. If ¢ is instead charged under a G symmetry
we can proceed analogously. The Lagrangian remains unchanged but the gauge field A now transforms
in the adjoint representation of the gauge group G,

Ay(x) = A% ()T, (3.100)
where T¢ are the generators of the gauge group which satisfy
[Te,Tb]=if T°, (3.101)
with the structure constants f .. The (covariant) field strength in turn is given by
F=—ig ' [D,D]=dA+ig[AA]. (3.102)

In this case the kinetic term for the gauge fields, also known as the Yang-Mills action contains a
quartic interaction term, making this case significantly harder to analyse.
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Finally, the Dirac spinor 1 is governed by the action
S=y (g —m)y, J=r"3,. (3.103)
where the gamma matrices y* satisfy the following commutation relations
{y*,y"} =29*". (3.104)

The Dirac adjoint is defined as ¢ = vy° and transforms such that the Lagrangian density is a scalar.

For more information on the quantisation of Maxwell theory, Yang-Mills theory or the (charged)
Dirac spinor we refer the reader to any textbook on quantum field theory cited above. For additional
information on representations of gamma matrices and minimal spinors in various dimensions
see [VP99,FVP12].

3.8 Interacting theories and generalised free fields

The free field theories discussed so far are very special: while their spectrum can be determined
exactly, the particle excitations do not interact with one another. To add interactions one can add
higher-order terms to the Lagrangian. A generic such interaction in for a single scalar field can thus
be written as

1
L=

1 Auin
_Eamu¢au¢_5m2¢2_zm¢ ; (3.105)

n>3
where the coefficients A, are known as coupling constants. An central question is which of these
interaction terms can be treated perturbatively. At first glance, one might think that this simply
requires choosing A,, < 1 but the situation is subtler.

To begin with, observe that the action S = f d?*1x is a scalar quantity and therefore dimensionless,
[S] =0, so the Lagrangian must have dimension [£] = d + 1. From this we can deduce the mass
dimensions of the fields and couplings,

n(d—1)

d—1
[21=1, [#]="5—, [ml=1, [A]=d+1-"= (3.106)
This dimensional analysis immediately clarifies why it is insufficient to simply demand that A,, be
small: only dimensionless quantities can meaningfully be said to be small or large. Depending on

their dimensions, the interaction terms fall into three qualitatively different categories:

* Relevant couplings: These correspond to [A,] > 0, i.e. n < 2+ d%l. The dimensionless
parameter is A, /E [A.] where E is the characteristic energy scale in the problem. This implies
that such perturbations are small at high energies but large at low energies. Terms of this type
are called relevant, because they are most relevant at low energies. In a relativistic theory,
E > m so we can always make these perturbations small by taking A, < m.

* Marginal couplings: [A,] =0, ie. n=2+ %. The coupling is already dimensionless, and
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perturbation theory is valid simply when A, < 1.

* Irrelevant couplings: These couplings are characterised by [A,] < 0,i.e. n =2+ ﬁ. Here, the
dimensionless parameter is small at low energies and grows with energy. Such perturbations
are called irrelevant as these perturbations are suppressed at low energies.

In practice, it is typically impossible to avoid high energy processes in quantum field theory. We have
already seen a hints of this when discussing the vacuum energy. This means that we might expect
problems with irrelevant operators. Indeed, these lead to “non-renormalizable” field theories in which
one cannot make sense of the infinities at arbitrarily high energies. This does not necessarily mean
that such theories are useless; just that they are incomplete at some energy scale and have to be
completed by some more fundamental UV theory.

It is also important to note that the classification into relevant, marginal, and irrelevant operators
based on classical dimensions is not absolute. Quantum corrections can modify the scaling behaviour
of operators, potentially changing their classification.® For more details we refer the reader to the
course on the renormalisation group. For this course we simply note that we will always restrict
ourselves to theories with only renormalisable interactions.

In a free theory, all local dynamics are encoded in the two-point functions; all connected higher-point
functions vanish. As a result, higher-point correlators decompose entirely into disconnected products
of two-point functions. By contrast, in interacting theories, the connected higher-point functions
contain genuinely new dynamical information. These contributions can be systematically computed in
perturbation theory using the interaction picture. For a detailed discussion of perturbative expansions
in flat spacetime, we refer the reader to standard quantum field theory textbooks.

So far, we have always taken the Lagrangian as the starting point, deriving the two- and higher-
point correlation functions from it. However, it is important to stress that the Lagrangian is not
a fundamental object in quantum field theory. The basic observables are the n-point correlation
functions themselves. In particular, for intrinsically strongly coupled theories, it may not even be
meaningful to write down a Lagrangian. This viewpoint is especially prominent in conformal field
theories (CFTs), where the local dynamics are fully specified by the scaling dimensions A; and three-
point coefficients C;j.. Higher-point functions can then be constructed via successive applications of
the operator product expansion (OPE).

An instructive intermediate case is provided by generalized free fields (GFFs). These are characterized
by two-point functions of the form

(p(x)p(0)) =f dp(m?) G, (), (3.107)

R,

where G,,(x) denotes the two-point function of a free Klein-Gordon field with mass m, and dp(m?)isa
positive, polynomially bounded weight known as the Kéllén-Lehmann spectral density [Kal52,Leh54].
Remarkably, this is the most general form for the two-point function of any scalar quantum field

8Classically irrelevant couplings which become relevant at the classical level are called dangerously irrelevant. Operators
which remain marginal at the quantum level are called exactly marginal. In a CFT such operators characterise the conformal
manifold.
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theory. A general theorem asserts that any field whose two-point function can be written as in (3.107)
with supp(p) contained in a finite mass interval must be a generalized free field [Gre62].

Despite the name, a generalized free field is not an interacting theory. Like in ordinary free field
theories, all connected higher-point functions vanish. However, GFFs are more flexible than free
fields and can mimic certain features of interacting theories—making them valuable as analytically
tractable toy models.
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Chapter 4

Quantum fields in curved space

Having reviewed quantum field theory in flat spacetime and established the essential global properties
of Lorentzian manifolds, we are now prepared to extend our discussion to quantum fields in curved
spacetime. This chapter lays out the necessary conceptual and technical ingredients, and explores
the general features of quantisation in a curved background. The subsequent chapters will focus on
applying this framework to a number of particularly instructive and physically relevant examples.

The most profound new aspect introduced by curved spacetime is the loss of a clear, invariant notion
of a particle. Closely related to this is the ambiguity in defining the vacuum state: unlike in Minkowski
space, there is no canonical choice. These issues lie at the heart of many of the conceptual and
practical challenges in quantum field theory on curved backgrounds, and they will guide much of our
discussion going forward.

4.1 Classical fields in curved space-time

To formulate a classical field theory in curved spacetime we need to know how the various fields
couple to the background metric. Let us once more emphasize that the metric will not be a dynamic
field and we only wish to consider fixed background metrics. This situation is very similar to the
charged scalar we considered in Chapter 3.

Analogous to that case, we can couple the theory to a non-trivial background metric simply by
changing all partial derivatives into covariant derivatives, 3, — V,,. However, this is not quite enough.
In order to guarantee that the action transforms as a scalar under Lorentz transformations we need
to simultaneously change the measure d?*!x to the Lorentz invariant measure /|g|d?*'x. This
procedure is in a sense the minimal consistent way to couple the system to gravity and for that reason
goes under the name minimal coupling.’

Taking for example the free massive scalar field we find the action

1

S= EJ d*x /1l (="' V6V, —m2¢?) . 4.1)
M

This leads to the equation of motion,
(o-m?)¢ =0, (4.2)

Moreover, this coupling is consistent with Einstein’s principle of equivalence, according to which local gravitational
effects are not present in a neighbourhood of the spacetime origin of a locally inertial frame of reference. A similar comment
applies to the theory with conformal coupling.
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where now [ represents the d’Alembertian on the curved space,?

O¢ ="'V, V,¢ =g[/%9,[1g'*¢""3,¢] . (4.3)

This is not the most general way of coupling the scalar field to a background metric. A slightly more
general action one can consider is,

S =—§J d*1x/1gl(g"'V,0V ¢ + m> P> + ERP?) (4.4)
M

where R is the Ricci scalar of the curved manifold M. The term proportional to R disappears in flat
space so in this sense it is a generalization of the usual flat space action. The equation of motion after
including the curvature coupling is given by

(o—m?—¢&R)¢p =0, (4.5)

Remark. In principle one can consider more general higher derivative interactions in the Lagrangian.
Such terms could be of the form R"¢?2 but equally well terms like (0"¢3,¢)" could be included. In
many context such terms are indeed present, but in this course we will mostly ignore them. However,
there are various arguments why to a first approximation this is a reasonable thing to do. First of
all, under the renormalisation group flow such terms will always be suppressed with respect to the
two-derivative couplings. In many cases these terms will be "irrelevant” and can therefore be ignored
at low energies. See the course on renormalisation for more details on this first point. Secondly, when
including higher degree terms in the Lagrangian a multitude of issues with causality arise which need
a careful treatment which goes beyond the scope of this course.

One reason why the curvature coupling R¢ is useful is that for a specific values of £ its addition to
the Lagrangian of a massless scalar makes the action conformally invariant. For this value § =&,
this coupling to the background metric is called conformal coupling.

Exercise 4.1. Consider a free massless scalar field in d + 1 dimensions. Show how the action transforms
under a conformal transformation of the background metric,

Cuv = AxV8yy, ¢ =AY, (4.6)

for any function Q(x) # 0.

For which values of & and A is the action invariant under conformal transformations? In conformally
invariant theories A is called the scaling dimension of the field ¢.

Next, let us briefly consider Maxwell theory, i.e. the Abelian gauge theory with gauge field A,(x) and
field strength F,,,, = V[,A,;}. For gauge fields, the differential form language really starts to show it’s

2Written as a differential form, the kinetic term in the action takes the form f d¢ A +d¢, where * is the Hodge star
operator. In this language, the d’Alembertian takes the form O¢ = » (d x d¢).

42



elegance. In this language, we write the gauge field as a one form
A=A dx" € Q'(M). (4.7)

In this language the field strength can be written as the two-form F = dA € Q?(M). The action for
Maxwell theory coupled to a background metric is given by

1 1
S=—= FAxF=—= ,/|g|dd+1wa,F“v, (4.8)
4 ) 2 Jm

which is invariant under the gauge transformations, A, — A, + 9, f, or equivalently A— A+ df. The

Bianchi identity for F can be written as dF = V[,,F, ;1 = 0 while the equations of motion are given by

d«F=0, or  V“F,, =0. 4.9)

The gauge invariance noted above adds a redundancy to Maxwell theory. In order to obtain a
deterministic equation, one should first fix a gauge. A common choice of gauge in this situation is
provided by the Lorenz gauge defined by VA, = 0. Upon this gauge fixing, the equations of motion
reduce to the wave equation A, = 0. Note however that there is nevertheless still a residual gauge
freedom parameterised by A — A+ df provided that O0f = 0. Finally, one can also consider spinors in
curved spacetime. But we will not discuss this in this course.

Exercise 4.2. Show how the Maxwell action transforms under conformal transformations. Demonstrate
that in d + 1 = 4 dimensions the action and equations of motion (and Bianchi identities) are conformally
invariant.

Just as in general relativity (and its generalisations such as e.g. Einstein-Maxwell theory) we can
define the energy momentum tensor as

2 48

wy —
1g1'/2 68,

(4.10)

which in general relativity this provides a source to the Einstein equation. In this course we consider
quantum fields in fixed background metric and do not consider fluctuations of the metric. One can
think of this as solving Einsteins equations with a source given by the vacuum expectation value of the
stress tensor (T,,). In a second step of our semi-classical treatment we can then consider fluctuations
of the dynamical fields around this background metric. Note that up to possible improvement terms
this reduces to the definitions in flat space presented in Chapter 3.

Conformal invariance of a theory is manifested in the stress tensor as the property Tl‘f =0. Thisis a
general consequence of the invariance of the action under variations of the form 6g,, = 0g,,.

Exercise 4.3. Show that the stress tensor of a conformally invariant theory is necessarily traceless.

Exercise 4.4. Compute the stress tensor for a minimal and conformally coupled scalar as well as Maxwell
theory in curved space.

Check that for the latter two the stress tensor is indeed traceless.
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4.2 Canonical quantisation in curved spacetime

To avoid subtleties, in this chapter we always assume the spacetime to be globally hyperbolic with a
foliation by Cauchy hypersurfaces ¥, where t € R is a time-like coordinate. Having discussed how
various fields couple to a background metric we repeat and modify where necessary the same steps
as in Chapter 3 to quantise the theory.

Concepts such as the phase space, the associated symplectic form and the commutation relations
generalise straightforwardly to curved space. The phase space for a scalar field on a spacetime M
can be defined as

Vy(M) = {p € C®(M)|(@—m*—ER)P =0} = {(¢,$) € CP(Z,) x C=(T)} (4.11)

where we allow for an arbitrary coupling to the Ricci scalar. Note that here we defined the initial
data on the Cauchy hypersurface at time t and defined ¢ = n*V ¢ with n* a unit normal vector
to the hypersurface at time t. Due to the global hyperbolicity of spacetime any choice of Cauchy
hypersurface results in an isomorphic phase space. Similarly, one can define the phase space for
fermions or gauge fields entirely analogous to the flat space case. The symplectic form is given by

Q¢p1, P2) = J P *xdpy—pyxde, = J (12— Pa1)dT (4.12)
2 p

where d. is the volume form on the hypersurface 3.. For more details on the geometry of hypersurfaces
see Appendix C.

Remark. Note that for the complex scalar field we can write the inner product more invariantly as

(¢1,P2) =J dxtJj,, (4.13)
b
where d¥* = dXn" and J, is the conserved current for the U(1) global symmetry,

J,=1(7V,pr— 3V, 01). (4.14)

In order to proceed with the quantisation we need a Hamiltonian description of the theory, and
therefore a preferred time coordinate. Assuming there is a splitting (¢, x,,,) we will quantise the theory
using the hypersurfaces X, defined by t = constant. Let us be more explicit and write the metric as

ds? = —ggodt? +2g0,,dtdx™ + h,,,, dx™dx", (4.15)

where h,,, is the induced metric on the Cauchy hypersurface . In terms of these coordinates, we
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can write the momentum conjugate to ¢ as

__ oL
~8(5:)

Exercise 4.5. Prove the second equality in Equation (4.16). The most straightforward way to do so is

= |g|"?g%V ¢ = [n|**n"V ¢ . (4.16)

by explicit computation.

Analogous to flat space we can now quantise the theory by promoting all fields to operators on a
Hilbert space and imposing the canonical commutation relations

[¢(t,%),0(t,x)] =0,

[n(t,x),n(t,x)]=0, (4.17)
[¢(t,x), n(t,x)] =i6(x—x).

where now the 6-function is normalised against the volume form on the hypersurface,

f(x')=J S(x—x)f(x)dxz. (4.18)
by
Similarly, this Hilbert space now comes with a generalised inner product,

(1, 92) =11, P2). (4.19)

Similar to flat space it follows immediately that this inner product is independent of the choice of
Cauchy hypersurface in the given foliation. For this reason it was justified not to specify the precise
time t in the above.

To further develop the quantum field theory we again want to relate the above phase space to a
one-particle Hilbert space H. However, in curved space there is no canonical analogue of the Fourier
transform so this step will need some more care. In flat space, the plane waves represent a complete
orthonormal set of solutions for the Klein-Gordon equation and allowed us to construct the one-
particle Hilbert space. Successively applying the associated creation operators then allowed us to
construct the full Hilbert space in the Fock representation. In addition, we showed that the vacuum
state constructed as such is unique.

In order to have a complete understanding of the Hilbert space in curved space, the first step is to
find a complete orthonormal basis of the phase space, analogous to the plane waves in flat space. In
other words we have to find a complete set of functions u;, solving the wave equation and satisfying,

(u,u;) =64, (uf,u;) =0, <”§k’”j> =0y (4.20)

Having found such a basis, we can expand the field ¢ as follows,
— T
¢ (x) —Z(aiui +aq, uf) , (4.21)
i
where the quantum annihilation and creation operators, a; and ag', satisfy the standard commutation
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relations,
[a.a]] =5 (4.22)

A very important point is that on curved space, there is no natural way to perform this mode
decomposition. This property is key to many odd but interesting phenomena in the theory of quantum
field theory on curved space and will lie at the origin of many of the observations that will follow.

A special scenario where there exists a "natural" choice of decomposition is when the spacetime
admits a globally well-defined, non-vanishing Killing vector K = J,, which is irrotational, i.e. when
the spacetime is globally static. In this case one can write the metric as

ds?(t,x) = —goo(x)dt? + h,p, (x)dx™dx™, (4.23)

where h and g, are respectively the metric and a positive function on the transverse (space-like)
manifold %, both independent of t. In this case the quantisation follows very closely in the steps of
quantisation in flat space. We can separate variables and analogous to flat space define the positive

modes Vdj as the set of functions P, of the form

Xn(x) e_iwnt .

Pn(x): o
n

(4.24)
where the functions y,(x) collectively give a basis of functions on the manifold X that satisfy the

reduced wave equation,
(A +w7)x, =0, (4.25)

for some second order operator A on X. The functions y, should satisfy the completeness relation,

S 1) = 5D, 1), (4.26)

where the §-function is understood to be normalised against the measure d?x+/go,h. Hence, it
follows that the inner product reduces to

(Pm’ Pn) = f ddx 800 him%n = 6mn . (427)

Similarly, one can introduce negative frequency modes N,, € Vy and complete the quantisation exactly
like in flat space. However, this limited approach does not generalise to generic curved spacetimes
and moreover, even though the Schwarzschild black hole is static we will see that this approach is

insufficient to fully understand quantum field theory on a black hole background.

Remark. In the above we silently assumed that % is compact such that the labels n take value in a
countably infinite set. More generally, for a non-compact spatial slicing such as R®, m and n must be
replaced by continuous variables such as k,k’. Similarly, the Kronecker delta, &,,,, should then be
replaced by 6§©)(k—k’) and > by f R3 d>k/wy. For the more formal development we will mostly
stick to the discrete modes and introduce continuous alternatives when needed.
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Another example of a natural choice of vacuum arises for conformally invariant theories in conformally
flat spacetimes. Consider a conformally flat metric, i.e. g,,(x) = Qz(x)nw. A solution to Klein-
Gordon equation for a conformally coupled massless scalar can then be obtained from the Minkowski
solution ukM (x) simply by using the conformal transformation of the scalar field. Therefore, we have
a natural choice of solutions of the wave equation given by

w(x) = Q(x) 7 1M (x). (4.28)

The vacuum associated to this choice of modes is called the conformal vacuum. In this case the analysis
of the two-point functions becomes particularly easy, as one can obtain the Wightman functions
simply as,

G.(x,x") = ()T GY(x, x )0 T, (4.29)

where GY(x, x”) is the Wightman function in Minkowski space introduced in Chapter 3. The Wightman
functions transform as bi-scalars under conformal transformations.

4.3 Quantisation in generic curved spacetimes

In general there does not exist such a natural choice of orthonormal basis. For example, consider a
spacetime that is asymptotically static both in the future and past region, respectively M, and M_.
In both asymptotic regions one can write down a metric in the form (4.23) and define the natural
basis P,f and N: resp. in the past and future region. This will lead to two notions of positive and
negative modes and in general we do not expect these to agree.

We can quantise the theory using a Cauchy hypersurface in either of the asymptotic regions. In order
to construct the transition between them we can impose that the quantum field ¢ is the same in both
regions, i.e.

$(x)=> a Py +a; Ny => atPt +ai'NY,. (4.30)

n n

The main question we’ll try to answer in this section is how to identify the Fock spaces F© and F~ of
the different asymptotic regions. Similarly, in spacetimes with no asymptotically static regions, we
have to learn how to identify the Fock spaces at different times.

To do so, consider two different orthonormal bases of the phase space {u, },en and {v,},en such that

o(x)= Zanun + aj;uj; = Z b,v, + b:;v:, , (4.31)

n

where a,,, a:; and b, br'l are the creation and annihilation operators defined with respect to either the
u basis or v basis. Since both sets of functions are independent bases of C ® V,; we can relate them

V) Anm Bam \ [ Um B u,
(v:)_;(ﬁ:m a)()—Zsm( ) (432)

through linear maps
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where S is the classical S-matrix whose entries are called the Bogoliubov coefficients,

Amn = <unzvm> 5 Bmn = _<u):pvm> 5 (4.33)

and analogous for their complex conjugates. Since the u and v basis were both assumed to be
orthonormal, the Bogoliubov coefficients have to satisfy the normalisation relation,

aa'—pp =1, ap’—pa’ =o0. (4.34)

Going back to (4.31) we find that the (transposed) Bogoliubov coefficients similarly encode the
relation between the a and b creation and annihilation operators,

(bﬁ) — Z( G P :m) (ai") (4.35)
b T,l m _ﬁnm Anm ar'n
Exercise 4.6. Starting from (4.31) and (4.32), show that the Bogoliubov coefficients encode the relation

(4.35) between the a and b operators.

Exercise 4.7. Show that in order for the commutation relations of the b operators to be properly

normalised, we have to impose the condition (4.34).

Define the vacua with respect to the u or v expansion, |0), and |0), in the usual way as the states
annihilated by all annihilation operators,

a,10), =0,  b,0),=0, VYn>0. (4.36)

When 3 =0, the two vacua are equivalent and can be identified up to possibly a phase. However, if
B # 0, the b vacuum will contain a particles and vice versa! To see this more explicitly, define the
number operators,
N@=ala,, NO=>'NO, (4.37)
n

and compute their expectation values in the b vacuum,

(N), = (atan), (4.38)
= <Z(a*mnbi + Brunbm) D (cmnbr +/5;‘;mb;'§l)> (4.39)
m k
= Zk: BialBrn (DL ), b (4.40)
= Z Bl (4.41)

Hence, we see that the changing gravitational field creates particles (in pairs). In a sensible physical
systems the number of quanta in any vacuum should be finite so we require that the Bogoliubov
transformation is such that (fo”)b < oo for all n. Indeed, without this condition various problems
regarding the convergence of all the expressions in this section arise.

To find an explicit relation between the a and b vacuum we would like to extend the map S from the
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classical phase space to the Fock space, S : 7, — F},. As a first step, we can construct the b vacuum
using the Bogoliubov coefficients. After some algebra, one can show that (up to phase) we have

1 1 . ~
e S EY I [N T (CORTD RN
m,n

Such states are sometimes called squeezed states, in analogy with the nomenclature for the ground
state for an oscillator with a different frequency. The full quantum evolution operator translating
between the two Fock spaces then takes the form

1 1 .
S= - M. a'al —M* . 4.43
detalt { 2 2 (Mo m”ama")} e

This operator is now unitary as the exponent is skew Hermitian so it preserves norms.

Exercise 4.8. Show that the a and b vacua are related as in Equation (4.42). Hint: use the Baker-

Campbell-Hausdorff formula to expand expressions of the form as e Fa,ef.

4.4 Curved space and spin statistics

In curved space an interesting connection between statistics and dynamics appears that is not present
in Minkowski space. The statistics is determined by the algebra of creation and annihilation operators.
Commuting operators give rise to bosons, while anti-commuting operators give rise to fermions. This
is nothing new, but as we will argue, in curved spacetime this is the only consistent option!

To see this, consider a spin-0 field, i.e. a scalar field in curved space and two possible vacua, the
a and b vacuum among which we can interpolate using the Bogoliubov coefficients defined above,
satisfying |a|?> —|B]? = 1. Note that this relation follows purely from the field equations. Assume that
the a creation and annihilation operators satisfy the (anti-)commutation relations

[l =[af, 1], =0, [an a}], = 8o, (4.44)

where the plus sign denotes the anti-commutator and the minus the commutator. Following the
above, one can show that in the b vacuum, the (anti-)commutation relations become

[Bys bple = [ b1, b7 ], = (0mnBl & AnBr ) » (4.45)

and
(b, b1 ], =l £1B12,)8mn (4.46)

Hence, we see that in order for the particles in the b vacuum to satisfy the same statistics as the
particles in the a vacuum it is necessary to pick the minus sign such that (4.45) vanishes identically
and (4.46) reduces to the standard commutation relations for bosons.

This is a purely curved space derivation, since in flat space 3 = 0 and the connection derived above is
absent and both statistics seem allowed. Similar conclusions can be reached for fermionic fields as
well as higher spin fields.
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Part 11

APPLICATIONS

50



Chapter 5

First examples

In the previous part, we developed the main theory necessary to perform the canonical quantisation
of a quantum field theory in curved space-times, focussing on free scalar fields. The extension of this
formalism to fermionic or higher spin fields and interacting theories — at least within perturbation
theory — follows closely the flat space case.

In this chapter, we shift our attention from general formalism to concrete applications. We will
examine quantum field theory on several classes of physically relevant spacetimes, including maximally
symmetric and cosmological backgrounds. We will also explore how the formalism can be used to
describe quantum fields in thermal states. These settings allow for explicit computations and offer
valuable insight into the behaviour of quantum fields in curved geometries. Beyond these examples,
we introduce adiabatic expansions as a powerful method to investigate more general backgrounds.
Together, these examples will highlight both the conceptual subtleties and the practical techniques
involved in applying the general framework in specific physical situations.

5.1 Maximally symmetric spaces

As a first set of examples we will consider a free scalar field in a maximally symmetric space-time. The
maximally symmetric space-times all have constant Ricci curvature so can be split in three cases. For
zero curvature we have Euclidean or Minkowski space, for positive curvature we have the sphere S¢ or
de Sitter space dS; and for negative curvature we have hyperbolic space or anti-de Sitter space AdS;.
More details about the maximally symmetric spacetimes as well as the various useful coordinate
systems can be found in appendix E. In this section we will focus on scalar fields in de Sitter space,
while the other maximally symmetric examples will be left as an exercise.

Geometry of de Sitter space

The de Sitter space dS;,; can be described as a hyperboloid
d+1
—X2+ Y x?=12, (5.1)
i=1
embedded in (d + 2)-dimensional Minkowski space, with metric,
d+1

ds?,, =—dx2+ > dx?. (5.2)
i=1
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As such, de Sitter space inherits an O(1,d + 1) symmetry from the ambient Minkowski space (See
also exercise 2.3). de Sitter space has constant scalar curvature

_ d(d+1)

R Iz

(5.3)

An important quantity in the following analysis will be the geodesic distance between two points. As
in the case of a sphere embedded in R?, the distance between two points in de Sitter space is closely
related to the distance in embedding space. Hence, let us define,

P(X,X')=L2n,XX"". (5.4)

Notice that for two identical points X = X’ in dSy,;, we have P = 1, while for antipodal points
X = —X’, we have P = —1. One nice property of the quantity P(X,X’) is that it is manifestly
O(1,d + 1) invariant, since it is constructed out of the Lorentz product in R¢*!. Depending on the
causal relationship between the two points, X and X', we have the following behaviour for P(X,X’):

* Time-like separated points: the two points can be joined by a time-like geodesic, hence
P(X,X’)> 1 and the geodesic distance is given by

Z(X,X") = Lcosh™'(P) (5.5)

» Space-like separated points: the two points can be joined by a space-like geodesic, hence
|IP(X,X’)| < 1 and the geodesic distance is given by

{(X,X")=Lcos ' (P) (5.6)

* light-like separated points: the two points can be joined by a light-like geodesic, hence
P(X,X’) =1 and the geodesic distance is given by

(X, x)=0. (5.7)

Notice that there are points in de Sitter space which cannot be joined by geodesics to a given point X.
These are the points in the interior of the past and future light cones of the point —X, the antipodal
point of X. For these points, we have that P(X,X’) < —1.

Exercise 5.1. Prove the above formulae for the geodesic distance between two points in de Sitter space.

Hint: it might be useful to explicitly compute the geodesics in de Sitter space. See also Appendix E for
more details.

Quantisation in de Sitter space

Let us for now consider the free scalar field ¢ (x) with mass m in a fixed de Sitter background. The
action of such a scalar is given by:

S = —% f d'x+/Igl (73,4 0,¢ + m* >+ ERP?) . (5.8)
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Using the conformal time coordinate 7, the de Sitter metric becomes a FLRW metric where the

function C(n) is given by
2

L
n

In de Sitter space, we have
dd+1
COnRE) = H2, (5.10)

so that the Klein-Gordon equations reduces to

212 d(d+1)(E—&(d
xl’(’+[k2+m —+ ( )(g £(d)) 2c=0. (5.11)
n n
Performing the change of coordinates s = —kn and defining
Xk = Vsf(s), (5.12)
it is easy to see that f (s) satisfies the Bessel equation,
s2F7(s) +sf/(s)+ (s2—v))f(s) =0, (5.13)
where )
1 d
v = p +(E(d)—&E)d(d+1)—m?L? = i d(d+1)E—m?L2. (5.14)
We can then write yy in terms of Bessel functions, for n <0, as
xx(m) = v knl [AJ, (kIn]) + B, Y, (k|nD] . (5.15)
and the normalisation condition leads to
—ik?n (AeBi —ALBi ) W [, (kInl), Y, (kIn[)] = 1. (5.16)

Here W[f,g]= fg’— f’g is the Wronskian, where the derivative is with respect to the full argument
k|n|. The Wronskian can be computed to be

2
WL, (kinD), Y, (kInD]l= —, (5.17)
X
so that we find )
im
A B —AtB;, = ——. 5.18
kB — Ay Dk ok (5.18)

To get a better feeling for the behaviour of these functions consider the asymptotic region near .#,,
i.e. n — 0. In this region, the modes asymptotically behave as

X o< (—kn)7+”. (5.19)

Notice that for small mass m and &, v is real and the modes either blow up or vanish asymptotically
while for large masses and/or & it becomes an oscillatory mode with positive frequency |v|.
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de Sitter vacua

De Sitter space is a static space-time, and moreover maximally symmetric. Hence, guided by the
discussion in the previous sections we look for the 'preferred’ vacuum which preserves all said
symmetries. For this reason, let’s consider the behaviour in the asymptotic past .£_, i.e. k|n| > 1,
where we have w; ~ k. In this regime we want to consider modes which behave like Minkowski

modes in conformal time 17,

1 .
oc ——etkn (5.20)
X2k

In order to find solutions to the Klein-Gordon with this behaviour, consider the asymptotic behaviour
of the Bessel functions. We have

2(A+iB ., A—iB .
Xk~ E (Te_ll + Tell) , n— —00, (521)
where
VT T
A=kln|l————. 5.22
=< -3 (5.22)

Therefore, we require that A+ iB = 0, which together with the condition (5.18) results in

TT
A2 = —. 5.23
|A] p (5.23)

Inserting this in the expression for the modes we find,
1 1 . 1 1..01)
2(m) = S (zinl)2 (,(klnl) +1Y,(k[nD)) = S (w|n[)>H (k|nl), (5.24)

where H E}l) is the Hankel function of the first kind. This vacuum is called the Euclidean vacuum or
Bunch-Davies vacuum |0)p, after [BD78]"

Positive frequency modes in the Bunch-Davies vacuum state are those which become the positive
frequency modes in Minkowski space upon taking the limit k|n| — oo [BD78] (see also [STY95]).
We can thus expand our quantum field in terms of the creation and annihilation operators associated
to |0),

$(n,%) =Y | atpu(n, 1) +alus (0, 0)], (5.25)
k

where the creation and annihilation operators satisfy the usual properties:
@ l0)=0, [apqf]=6u- (5.26)

This vacuum has various interesting properties. Namely, it is invariant under the de Sitter isometry
group SO(1,4). Clearly, it is invariant under rotations of the spatial coordinates x, since y;(n) only
depends on the modulus of k. It is also invariant under the dilatation,

n—An, X — AX, A €R\{0} (5.27)

History has its ways so that Bunch and Davies got the honour of naming this vacuum. However, it was already described
earlier in various papers such as [CT68,SS76].
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Figure 5.1: The Bunch-Davies state is prepared by gluing the de Sitter space to a sphere, i.e.
Euclidean de Sitter space. This construction can be though of as a toy model for the universe.

Indeed, under this transformation the wave-vector transforms as k — %k such that the argument of
the Hankel function remains invariant. Collecting the overall factor |n|% in yx(n), together with the
factor C7 /4, we get a total factor of Inl%. However, this factor gets cancelled against the factor of
1/ V2 in the wave-function uy., where V = L9 is the spatial volume. This factor combines with the 7
factor to produce (|n|/ L)4/2, showing that the modes are invariant under dilatations. Below we will
see that the invariance of this vacuum manifests itself in the O(1, 4) invariance of the corresponding
Wightman functions.

Only demanding that the vacuum state is invariant under the de Sitter isometries does not uniquely pick
out the Bunch-Davies vacuum. Indeed, the vacuum state of the quantum field could be rather different.
A more general family of vacua is given by the so-called the a-vacua, |a) [Mot85,Al185], parameterised
by a complex number a. These vacua and their properties are reviewed in [BMS02,SSV01] but as
we’ll see in a bit, these vacua have some funny properties for which reason we usually discard them.
In this course we will mostly focus on the Bunch-Davies vacuum as defined above but surely at some
point these funny extra vacua will turn out to have some purpose in life.

Remark. The Bunch-Davies vacuum is picked out for another reason. We can prepare a de Sitter
vacuum by starting with a Euclidean sphere, cutting it in half and gluing it to ’half’ of the Sitter space.
The state prepared by this procedure is precisely the Bunch-Davies vacuum. This origin furthermore
elucidates where the name ’Euclidean vacuum’ comes from. This construction is motivated by the 'no
boundary wave function’ proposal of Hartle and Hawking [HH83], where a conjectural description
for the wavefunction of the universe was given. According to their prescription, the universe has no
origin. If we would travel back towards the beginning of the universe we would note that, similar
to in the interior of the black hole, our notion of space and time changes. In this case they propose
that close enough to the singularity time stops to exist and we are left with a Euclidean space which
smoothly caps off.
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Finally, note that when m = 0 and & = £(d), the Bunch-Davies vacuum reduces to the conformal

vacuum. Indeed, in this case the index of the Hankel function is v* = % and we have

1
2\2 .
Hg)l)(z)z—i(g) ek, (5.28)

—L_e=ikn_appropriate for a

so that the modes reduce up to a phase to the Minkowski modes, y; = NeT

conformal vacuum.
Green’s functions

Having defined the vacuum we would like to compute the Wightman functions. This can be done in
two ways. One way is the brute-force approach, by explicitly plugging the equations for the modes in
(5.140) and performing the integration over momenta. This has been done in [BD78,SS76,CT68],
but it’s rather tedious. Another, more elegant approach is to solve the Klein-Gordon equation for
G, (x,x") while assuming O(1,d + 1) invariance along the way. This in fact gives the answer not only
for the Bunch-Davies vacuum but also for the more general family of a-vacua |a).

If the Wightman function is computed in a state invariant under the de Sitter isometry group it should
only depend on the O(1,d + 1) invariant distance between the two points. This distance is nothing
but the geodesic distance and can be expressed in terms of P(X,X’). Therefore, we have

Gt(X, X)) =GT(P(X,X"). (5.29)
The Wightman function then satisfies the homogeneous Klein-Gordon equation,
(O, + m? + ER)G™ (x, x7), (5.30)

where the Laplacian only acts on the first coordinate X. To solve this equation let us note two useful

properties of the geodesic distance,

2

P
VEPV P="—r, YV, P=gyus (5.31)

Exercise 5.2. Prove the two properties above. You can do so abstractly or by explicit computation in
your favourite coordinate system. Hint: in conformal coordinates (1, X) these take a particularly simple
form. To do so you will need to compute the Christoffel symbols.

Consider now a function F(P) depending on X only through P(X,X’). We then have,

pP?-1_, d+1
I F"(P)+ I

O,F(P) = PF'(P). (5.32)

where the primes denote derivatives with respect to P. It then follows that the Wightman function
for a scalar field in de Sitter space satisfies,

(P2—1)G™ +(d +1)PG" + (m?L* + &d(d + 1)) GT =0. (5.33)
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After a change of variables, z = # this becomes a hypergeometric equation,

d+1
2(1—2)32G* + (T —(d+ 1)2) 3,G* —(m?L* +£d(d + 1)) G =0. (5.34)
Comparing this to the standard form (see Appendix F), we find that
a+pB=d, af =m?L? +Ed(d+1), (5.35)

so that we find the general solution

d+1
G =cy,F; (h+,h_, %z) , (5.36)

where ¢, is a normalisation constant to be determined shortly and we defined

he = % [d+ /a2 —a(m212+Ed(d+1))]. (5.37)

The hypergeometric function in (5.36) has a pole at z =1, or P = 1 and a branch cut for 1 < P < oo,
The pole occurs when the points x and x’ are separated by a null geodesic. At short distances, the
scalar field is insensitive to the fact that it lives in a de Sitter space and the form of the singularity
should be the same as that of the propagator in flat Minkowski space. Indeed, in the UV all energy
scales are much higher than the scale set by the curvature of the space-time (as well as the mass) so
the UV/short distance behaviour should not depend on it. We can use this fact to fix the normalisation
constant. Near z = 1, the hypergeometric function behaves as

M1—=d (L) (4L
" (h+,h_,d+1,z)m (P, x' N T (5)T () 5.38)

21-d r(h)r(h) ’

where {(P) = cos™! P < 1 the geodesic separation between the two points. Comparing this expression
with the usual short distance singularity,

fl ’ d-1 F(dz;l) 1 2 N2
Gt (x,x" )~ (1) 7 i (dZ)d;l , I“=(x—x")*, (5.39)
T2 2
we find the normalisation constant
I'(h )T(h_
c :Ll—dw (5.40)

(4m)ir(3)

Exercise 5.3. Use the properties of hypergeometric functions to show that near the pole the hypergeometric
2 2
function behaves as in (5.38). (Hint: to do so write P =1+ &, where 6 = (an) —(Ax)

T and expand for
small 6.)

Exercise 5.4. Show that for m = 0 and & = £(d) this expression reduces to the expected expression for a
two-point function in a conformal vacuum.

As noted above, the hypergeometic function (5.36) has a branch cut along the semi-infinite axis
running from 1 to 0o. This corresponds to points where P(X,X’) > 1, i.e. points inside the light-cone.
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The prescription for avoiding the singularity at the light-cone is the same as in Minkowski space and
simply consists of changing
(n—n")* = (n—n"—ie)*. (5.41)

Finally, note that the equation (5.33) is symmetric under interchanging P «<—» —P. So if G(P) is a
solution, then so is G(—P). We therefore find a second linearly independent solution,

d+1 1-P
G*@ =¢,,F, (h+,h_, —, —) . (5.42)
2 2
The singularity now lies at P = —1, which corresponds to X being null separated from the antipodal

point to X’. This singularity sounds rather unphysical at first, but we should recall that antipodal
points in de Sitter space are always separated by a cosmological horizon. The Green’s function (5.42)
can thus be thought of as arising from an image source behind the horizon, and is non-singular
everywhere within an observer’s horizon. Hence the unphysical singularity can never be detected
by any experiment. The de Sitter space therefore has a one parameter family of de Sitter invariant
Green’s functions

Gsra) = (a] p(x)p(x")|a) =sina Gt +cosa GTP, (5.43)

corresponding to the a vacua |a) discussed above. Putting a = 0 the antipodal singularity disappears
and the vacuum reduces to the Bunch-Davies vacuum.

Other maximally symmetric spacetimes

The quantisation, analysis of vacua and the computation of the Green’s functions is very similar in
other maximally symmetric spacetimes. In the following exercises we will have a closer look at the
sphere $¢, while a more in-depth analysis of quantum fields in AdS will be left for Chapter 8.

Exercise 5.5. The d-dimensional sphere S? is defined by the following embedding in (d + 1)-dimensional

Euclidean space,

d+1
lez —R2. (5.44)
I=1
we can parametrise this as
X441 =RcosH, X; =RsinOw;, (5.45)

where i =1,...,d and w; are embedding coordinates for a (d — 1)-dimensional unit sphere.

1. Compute the geodesic distance {(x, x") between two points x and x’. (Hint: note that using the
rotational symmetry we can always put one of the points at the north pole of the sphere, 6 = 0.

2. Since the sphere is maximally symmetric, the Green’s function is restricted to be a function of {
alone. Show that the Laplacian of the Green’s function takes the form

d—1 ¢
R

cot =
R

0G(0)=G"(Q)+ G'(0). (5.46)

3. Find the Green’s function for a scalar field with mass m and coupling & to the Ricci scalar. (Hint:

consider the change of variables z = cos? (%))
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4. Do the same for all the maximally symmetric spaces in a uniform way.

Exercise 5.6. A topological theory on the equator Consider the Euclidean action
S= f d®x /g3 (x)D, " (x)qp (x), (5.47)

defined on the round three-sphere S° with radius R, where the operator D,® is defined by
3 o? o?
—O0+ 25+ % e
Di(x) = ( aRr R R 02) : (5.48)
r Uttt

Here the scalars q, and §° are similar to a complex scalar in Lorentzian signature where after continuation
to Lorentzian signature the tilde would become the complex conjugate. In Euclidean signature the precise
reality condition is more subtle but for the sake of this exercise you can thing of it as the complex conjugate.

1. How do you interpret the various terms in the differential operator D1;?

2. Determine the two-point function G,°(x, x’) = <qa(x)c”1b(x’ )) by solving the differential equation

5b
DGl (x,x") = mé(”(x—x'), (5.49)
Either by using the previous exercise or by brute force computation. Show that the solution is given
by
1 cosh(on—o{) sinh(on—o{)
Gab(x’ x') = <qa(X)qb(X/)> = Dok ( siflifll((gﬁtz—)ag) COS(i?(S(g'gT/E()J'C)) > (5.50)
8nRcoshom \ — 0sT2) S4E)

where  is the relative angle (or geodetic distance) between the points x and x’.

3. Now consider putting both q, and G° on the equator and define the operators
Q) =a(@)cos L +qy(@)sin, QeI =a(pIeosE +ap(p)sint, 65D
where we use the metric
ds® =R? ((:192 + cos? Od1? + sin? ngoz) . (5.52)

Obtain the two-point function for these operators restricted to the equator.

Show that after taking a careful limit o — O the green’s function becomes

sgn(p1 — 7)

Golpr—pa2) = (Q(‘pl)é(%» ~ 7 8mR

(5.53)

It becomes topological!

This might seem a weird coincidence but it is actually a deep consequence of N' = 4 supersymmetric
theories in three-dimensions. By going to the cohomology of a specific supercharge Q, i.e. by only

59



considering operators that are annihilated by Q, i.e. [Q, O] = 0 but are not Q-exact, O # [Q, (’)’], the
theory reduces to a one-dimensional topological theory (or mildly non-topological if we allow for non-gzero
o). The theory we studied above corresponds to the N = 4 hypermultiplet! If you want to know more
about these protected sectors have a look at the following papers:

* C. Beem, W. Peelaers, and L. Rastelli, “Deformation quantization and superconformal symmetry in
three dimensions,” Commun. Math. Phys. 354 (2017), no. 1 345-392, 1601.05378.

7

* M. Dedushenko, S. S. Pufu, and R. Yacoby, “A one-dimensional theory for Higgs branch operators,”
JHEP 03 (2018) 138, 1610.00740.

5.2 Cosmological spacetimes

Maximally symmetric spacetimes such as Minkowski, de Sitter (dS), or anti-de Sitter (AdS) exhibit a
high degree of symmetry, including time translation invariance. In such backgrounds, no moment
in time is physically distinguished from another -— there is no notion of a "beginning" or "end" of
time, and thus no meaningful concept of a cosmological history. While these eternal universes are
often favoured for their mathematical elegance and philosophical appeal, they are fundamentally at
odds with the cosmological data accumulated over the past century, which compellingly points to a
dynamic, evolving universe.

To model this evolution, we turn to the class of Friedmann-Lemaitre—Robertson-Walker (FLRW)
spacetimes, which provide non-trivial generalization of maximally symmetric geometries. FLRW
universes allow for time-dependent expansion or contraction, thereby capturing the essential features
of cosmological evolution. Crucially, such time dependence leads to rich physical phenomena:
quantum fields in an expanding background can undergo particle production, and, in the context of
an early period of accelerated expansion, i.e. inflation, this same mechanism gives rise to primordial
quantum fluctuations. These fluctuations have left an observable imprint in the cosmic microwave
background (CMB) and are the seeds for the large-scale structure of the universe we observe today.

Cosmological models

FLRW models describe universes that are both homogeneous and isotropic from the perspective of
a set of co-moving observers—that is, the universe looks the same at every point (homogeneity)
and in every direction (isotropy). In Appendix E, we review the key geometric features of FLRW
spacetimes and present the Friedmann equations in general spacetime dimensions. In this section we
will primarily focus on the physically relevant case of three spatial dimensions (d = 3). For a more
comprehensive treatment, we refer the reader to standard cosmology textbooks, such as [Dod03].

An FLRW metric can be written as
2 _ 1.2 212
ds® = —dt* + a(t) dsMk3 s (5.54)

where t is the time measured by a co-moving observer, a(t) is the scale factor encoding the expansion
(or contraction) of the universe and M; 5 is a maximally symmetric spatial manifold with curvature
k =0,+1, corresponding respectively to flat, spherical or hyperbolic spatial geometries. This ansatz
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is the most general form of the spacetime metric compatible with spatial homogeneity and isotropy,
and serves as the starting point for most theoretical and observational analyses in cosmology. In our
own universe, the spatial curvature is tantalisingly close to k = 0, but so far experiments are not yet
able to determine whether the spatial curvature is exactly vanishing or not.

For any choice of spatial manifold, the FLRW metric is conformally flat. This becomes manifest upon
introducing the conformal time coordinate 7 defined via

Car
n(t) =J @)’ (5.55)

in terms of which the metric takes the form

2 _ 2(_ 3,2 2 —
ds? = C(n)* (—dn?+ds3, ), C(n)=a(t(n). (5.56)
This conformally flat form proves particularly useful for analysing the causal structure of cosmological
models, as light-cones and null geodesics are more transparent in these coordinates.

To determine the dynamics of the scale factor a(t), or equivalently C(n), one needs to specify
the matter content of the universe. A natural and symmetry-compatible assumption is that the
stress-energy tensor takes the form of a perfect fluid,

T,, = diag(—p,p,p,p), (5.57)

where p is the energy density and p is the pressure. Inserting this ansatz into Einstein’s equations for
the FLRW background yields the Friedmann equations. Expressed in conformal time, they read

.82 .
C 8nG k C+C k

C 3 c2’

where dots denote derivatives with respect to 1. These equations are supplemented by the continuity
equation, which encodes local conservation of energy:

. .C
p+35(p +p)=0, (5.59)

Taken together, these equations govern the full evolution of an FLRW universe once an equation of
state p(p) is specified. While this relation is not determined by the Einstein equations themselves,
standard cosmological models often employ the simple barotropic form p = wp, with w ~ 0 for
non-relativistic matter (dust), w = % for relativistic matter (radiation), and w = —1 for a cosmological
constant.

A key quantity characterising the dynamics of FLRW spacetimes is the Hubble parameter, defined by

_a(©) _ )
a(t) C(n)*’

It quantifies the relative rate of expansion of the universe at a given time and plays a central role in

H(t)

(5.60)

nearly all cosmological phenomena we will encounter. In particular, the behaviour of H(t) encodes
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important information about the energy content of the universe and its evolution.

As long as the null energy condition (NEC), which in this case reduces to p + p > 0, is satisfied, the
expansion rate slows down over time, in other words, the Hubble parameter H decreases during the
evolution. When the universe is dominated by a positive cosmological constant, the NEC is saturated
and the universe expands at a constant rate. This corresponds precisely to de Sitter space, in which
the Hubble parameter takes the fixed value

1
HdS == Z, (561)

with L the de Sitter radius.

Example 5.1. As an example, let us consider dust in an FLRW universe with k = 1. After solving the
Friedman equations we find,

C(n)=c(1—cosmn), t =c(n—sinn). (5.62)

Hence, we find a big bang (C = 0) at n = 0, followed by a big crunch at n = T.

Remark. Why inflation?

To finish the discussion of cosmological models, let us recall a particular problem for universes
undergoing a decelerated expansion. In the current standard cosmological model (known as ACDM)
an accelerated expansion is induced at late times by the cosmological constant. At earlier times, when
the universe is radiation or matter dominated, we expect a period of decelerated expansion. We refer
to such models as hot big bang models, where the adjective hot refers to the temperature of radiation.

In general, in order to justify the homogeneity of the spatial slices, we would like to have that the
distance between regions of space that look the same is much smaller then the maximal distance
travelled by light since the beginning of time. Otherwise it is hard to explain why the two region can
look similar, since their causal past is disconnected. However, in hot big bang models, this desired
inequality is dramatically violated. More precisely, cosmological observations of far away objects
allow us to see regions in the past that are separated by much more that than the particle horizon at
the time, which is the furthest a signal can travel. Any mechanism attempting to explain homogeneity
across these regions then necessarily violates causality and/or locality, leading to the horizon problem.

This apparent tension is resolved by inflation. This scenario posits that there is a surface of last
scattering at some time t, soon after the big bang, before which we cannot clearly see what was
going on. This surface is where radiation decouples from matter and so after this time, we can see
what is going on, whereas before, we just have what we see from the cosmic microwave radiation.
Inflationary models are then obtained by gluing in an exponentially expanding region of de Sitter
space, before the surface of last scattering. This inflationary phase gives the past of distant regions
time to mix and homogenise so as to explain the homogeneity and isotropy of the universe.

Guided by experimental evidence, it is by now firmly believed that the cosmological constant of our
universe is positive. This implies that at large times the scale factor will diverge. At such time the
contributions from the cosmological constant will dominate the Friedmann equations which in this
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regime (for k = 1) we can approximate by,

¢ =\ =c?. (5.63)

JA T
c~—\|= e (5.64)
3N—"ny

such that the scale factor has a pole at conformal infinity 1 = 1 ,. This implies that near .#*, conformal

Hence we find that

infinity looks like that of de Sitter, i.e. we have an asymptotically de Sitter universe. For k = 0,—1
the result is similar. This exponential expansion arises because a positive cosmological constant has a
stress-energy tensor T, = diag(—A, A, A, A), so that although the effective energy density is positive,
the pressure is negative. At the current age of the universe, the contribution of A to the energy density
is thought to be of the same order as that of the matter including dark matter (visible matter being
thought to be 3%, dark matter 30% and cosmological constant about 67% of the critical mass of
the universe). Such a ratio of matter to cosmological constant is extremely high at early times, and
extremely low at late times, and this sometimes leads to the ‘why are we alive now?’ question. The
later periods are however, very cold and boring, and the early periods rather hot, and too early for
structure to form, leading to the answer in the form of an anthropic principle.

In this section we introduced just one motivation for considering inflation, i.e. the horizon problem.
However, there are various other problems arising in hot big bang models, such as

* The curvature related to the approximate spatial flatness of our current universe,
* The particle horizon problem related to the statistical isotropy of our universe,
* The phase coherence problem related to the homogeneity of the CMB,

* The scale invariance problem related to the scale invariance of the CMB.

Discussing all these problems in depth would take us too far, but importantly inflation offers a way
out for each of them and provides us with a plausible explanation for the current state of the universe.
For more details we refer to [Dod03, Paj20].

Canonical quantisation in an FLRW universe

Having set up the FLRW background and its dynamics, we now turn to the quantisation of a free
massive scalar field propagating in such a spacetime. Let us for simplicity consider FLRW backgrounds
with flat spatial slices.

Switching to conformal time 7), the d’Alembertian operator in this background takes the form
O¢ = C(n) g, (c(m“3,¢)—C(n)2V3¢. (5.65)
Thanks to the spatial translation invariance, we can decompose the scalar field into Fourier modes
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and focus on their time evolution:

ik-x

ug(n,x) = - C(n) z xk(n) (5.66)

2m)2

Substituting this ansatz into the wave equation, one finds after a direct computation:

Oluy, _L) 7 e Xk(n)+k2lk(n)+—(2C(n) +(7— d)( (n)) )xk(n)]

(2m} 2\ ¢ ¢tn) (5.67)
CE”% X [ () + K2 () — E(AC2 () R() ()] -
2m)2

where R(n) is the Ricci scalar of the background and £(d) = %Td Including the mass and curvature
coupling &, we find that 1y, solves the Klein-Gordon equation if yj solves

Fic+ o’ (M =0, (5.68)

where
w*(n) =K+ m?C%(n) + C*(M)R(M) (§ —&(d)) . (5.69)

To proceed with the canonical quantisation, we define an inner product on the space of solutions to
the wave equation. The induced metric on a hypersurface at constant 7 is

Rppdx™dx™ = C%(1)8 p,dx™dx", (5.70)

so that we can define the inner product

(uk, uk/) :lf ddXC('I’])(d_l) (ui‘;ﬁnuk/ - 8nu1*(uk/)

(5.71)
=15(d)(k -k (xkanxk/ — an)(f:xk/) )
We therefore normalise the modes y; by fixing the Wronskian:
i(xﬁanxk/—anx; Xk/) =1. (5.72)

The inner produce, or equivalently the symplectic form on the phase space, is conserved in time.
However, now that the space-time is explicitly time-dependent, energy is not conserved and in the
absence of asymptotically static patches, particles will be created at any time and there is no fixed or
preferred vacuum.

However, at each time 7) there is some notion of vacuum, i.e. the state without particles, or equivalently
the instantaneous lowest energy state. Expanding the quantum scalar field as

kX 4 qf T yrekx) (5.73)

¢ = J — X (e
Jemicm -
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we find the Hamiltonian

H=7 J Ck(Auaay + Fiaya' + (qa+ aga)E) (5.74)
where
Be= 121 + eIz, Fie= i+ o’x % (5.75)

With this implicit choice of vacuum we find
E 1
V= (0|H |0) = y J dkE,, (5.76)

where as usual we took out a diverging volume factor V ~ §((0) to get the local energy density.
Minimising Ej for each mode subject to the appropriate normalisation condition a brief computation
shows that we obtain the following initial data to impose at the hypersurface n = 7,

1

m=m v 2w(ny)

The particle content measured in this vacuum is that of the instantaneous ‘static’ observer.

(o 110 (1,—iw(no))- (5.77)

Exercise 5.7. Derive the initial conditions (5.77) starting from the reduced Klein-Gordon equation
(5.68) by demanding that the energy is minimized for each mode.

Remark. When the frequencies w(n) are varying slowly enough, we can use an adiabatic approxim-
ation to define also an evolution of the vacuum. This arises as the WKB approximation at leading
order; more generally, the adiabatic approximation takes the WKB approximation beyond leading

order and then there will be particle creation.

Having defined the instantaneous vacuum at each time 7 and ideally also have an evolution equation,
we can define the Bogoliubov transformations between any two times 7; and 71, and compute the
particle creation just like we did in the previous chapters. As we discussed above, the E; determines
the energy at some time 7). The Fy on the other hand determines the instantaneous particle creation
at each time. If we are in the lowest energy vacuum at some time 7, the F at that time vanishes.

For more details on the adiabatic vacuum and WKB approximation we refer the reader to the
textbook [BD84].

To make the above analysis more explicit, let us consider FLRW models in which the scale factor

asymptotically approaches constant values in the far past and future:*

a,; as t —>—0Q
a(t) = . (5.78)
a, as t— 00

2This requires a mechanism for the dissipation of the particles created and otherwise we are working in the full quantum
theory in the Heisenberg representation where the state is fixed and the evolution is carried by the operators.

3As usual we are not very careful with the appropriate fall-off and smoothness conditions but assume the function a(t)
is sufficiently well-behaved.
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This assumption allows us to interpret the asymptotic regions as Minkowski spacetimes with different
effective scales, making the identification of vacuum states more transparent.

Let us now consider the case in which the conformal scale factor C(n) approaches constant values
both in the distant past and future. Then the frequency w(n) also asymptotes to constants:

Wy, as m——00

w(n)= { (5.79)

Wour @S M — OO
In such situations, the theory admits natural vacuum states both in the asymptotic past and future.
These are defined by choosing mode functions that reduce to positive-frequency solutions in the
corresponding Minkowski limits:

20 () exp (—iwipn) , as 1 — —00,

1
vV Zcoin

1 .
nwim — —=exp(—weyn), as n—00.

vV 2W gyt

Each of these choices defines its own Fock space with vacuum states |Oin/0ut> and creation and

(5.80)

annihilation operators, ai{n/ " and (ai{n/ Om)', satisfying
" |03 /ou) = 0. (5.81)

To relate these two vacua we compute the Bogoliubov coefficients (4.33).The spatial homogeneity
and isotropy imply that the Bogoliubov coefficients take the form

ak’k/ = ak5(k— k/) , ﬁk,k’ = /5k5(k + k/) . (582)

i.e. they only mix modes with momenta k and —k, and are functions of |k| only due to rotational
symmetry. The Bogoliubov transformation therefore takes the form

U = gt + Bt (5.83)
The first condition in (4.34) is automatically satisfied, while the second gives
lal* = 1B* =1 (5.84)

The physical interpretation of this result is that the in-vacuum appears as a many-particle state from
the perspective of the out-vacuum. The number of particles with momentum k in the out region is
given by |Bx|?, so that the total particle production is finite only if

fddklﬁklz <o00. (5.85)
Remark. Note that since FLRW metric is conformally flat, in the case of a massless, conformally
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coupled scalar we can always construct a conformal vacuum. Indeed, in this case we have
wi(’?) = k2 (5.86)
and the solution simplifies drastically to

e ikn (5.87)

xe(n) =
4/ 2w k
In this case the function uy, can simply be obtained as a conformal transformation of the plane waves
in standard Minkowski space.

Exercise 5.8 (An exactly solvable model). To get a better feeling for these types of properties, it is
interesting to work out some non-trivial models where the equations for y, can be solved explicitly. One
such model is given by the two dimensional spacetime with § = 0 and C(n) = A+ Btanh(pn) studied
in [BD77].

Verify that the equations of motion for y; can be solved by the following two sets of functions,

. 1 iw_
()= exp [—iw n——log(2coshpn)} (5.88)
K Vzwin ’ P
o e o—ie 1
><2F1(p e 1‘”1“,—(1+tanhpn)), (5.89)
P P p 2
xe () = E eXp[—iwm—m—_IOg(Zcoshpn)} (5.90)
k - .
V 204yt P
o o i )
x2F1(1+1°’ 0= out Z(q +tanhpn)), (5.91)
p P 2

where w, are defined as w. = %(a)out + wyy).
Show that these functions have the appropriate plane wave limit as 1 — £00 and show that the squared
Bogoliubov coefficients are given by

sinh? (%)

sinh(%)sinh(%)

sinhz(%)
sinh(%) sinh(%) :

lag |? = Bl = (5.92)

Hint: Use the identities for hypergeometric functions introduced in Appendix F.

A novel feature of having the time-dependent frequencies is that for large length scales and small
enough k and m, the frequency wi can become negative. This, as we will see now, leads to the
corresponding modes ceasing to oscillate and essentially freezing out.

To see this in more detail, let us consider the simplest possible cosmological model, namely de Sitter.
Looking at the planar coordinates (see Appendix E) we see that de Sitter is an FLRW space with scale

t/L

factor a = Le'/" and constant Hubble parameter H = 1/L. In particular, the Hubble parameter is

proportional to the radius of the cosmological horizon.

The de Sitter mode functions, discussed in the previous section, behave very different from their
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Minkowski counterparts when the wave-number k becomes smaller that the co-moving Hubble
parameter

k < kHC =aH = (5.93)

1
Inl”
where HC stands for Hubble crossing, sometimes also called horizon crossing. In physical length
scales this means that the physical wavelength A = a/k is stretched by the expansion to become
larger than the Hubble radius 1/H. Since k and H are constant, while a = et/L grows with time, all
modes cross the Hubble radius as time proceeds and eventually become "super-Hubble" modes. Unlike
"sub-Hubble" modes with k > aH, which oscillate, super-Hubble modes freeze out and asymptote to
a constant.

Cosmological correlators

Having discussed general properties of quantum fields in cosmological backgrounds, a natural next
question is: What are the physical observables in these theories? As in flat-space QFT, the primary
observables are expectation values of operator products. However, in a cosmological context, we
typically have access only to correlators evaluated at late times, 7 — 0. In this limit, the observables
tend to freeze out and become time-independent, which is why we focus on equal-time expectation
values of local operators. These are known as cosmological correlators:

TI;ILI%) (O(Xl’ n)o(xz, 77) "O(xn: 7))) . (5.94)

In the free theory, all information is encoded in the two-point functions of the field ¢ and its conjugate
momentum 7. Odd-point correlators vanish due to the Z, symmetry ¢ <= —¢, and higher even-point
functions are reducible to two-point functions via Wick’s theorem. We therefore focus on the two-point
function which in momentum space take the following form:

lim (¢ ()¢ (K)) =hud* (e’ )

=(2n)%6(k—K)P(k),

(5.95)

where P(k) is the power spectrum, which for a massless scalar field in de Sitter space takes the form

H2

P(k):2_k3’

(5.96)
The delta function reflects momentum conservation, and the isotropy of the background ensures
that P(k) depends only on the magnitude of k, not its direction. The fact that P(k) asymptotes to a
constant as 1 — 0 signals the absence of mass, while the k™ scaling encodes the scale invariance of
the massless scalar field. This is more transparent in position space, where the correlator becomes
independent of the separation between the two points.

When a mass is introduced, the power spectrum becomes

HZ (_k,’,’)S—Zv

— 2
P(k) - |uk| - nzz(v_l)l—,(v)z k3 >

(5.97)

68



valid for m? < %H 2 with v = 1/ % - ;”Tz for a minimally coupled scalar field. The mass breaks scale
invariance, giving P(k) o< k2", and introduces time dependence. For m? > 0, we find 3—2v > 0, so
the power spectrum decays over time and vanishes in the far future. This reflects the restoring force
of the quadratic potential, which drives the field back to ¢ = 0. For m? < 0, an instability appears:
the power spectrum grows with time and diverges as  — 0.

When m? > %H 2y becomes complex and the power spectrum oscillates with decaying amplitude,
scaling as n°. In cosmological applications, we are primarily interested in (nearly) massless fields,
as these give rise to long-lived perturbations that can be observed at late times without causing
instabilities.

Fluctuating gravitons

The quantization of gravitational fluctuations proceeds analogously to the scalar field case. We
decompose the full metric into a classical FLRW background and small quantum perturbations:

g,uv(tax) zgw(t,x)+hw(t,x). (5.98)

Naively, h,,, contains ten independent components, but four are constrained by the Einstein equations,
which are only first order in time derivatives for certain components. This follows from the contracted
Bianchi identity,

vVkG,, =0. (5.99)

which implies a conservation law. Explicitly,
0,G" =—0,G™" —I3 G + I G*. (5.100)

Since the right-hand side contains at most two derivatives of the metric, G'” has at most one time
derivative. Consequently, four components of the Einstein equations serve as constraint equations,
reducing the number of physical degrees of freedom.

A full analysis of the linearised Einstein equations requires more effort (see GRII), but for a spatially
flat FLRW background, the result simplifies dramatically in a convenient gauge:

ds? = dt? — a?(t)(8, + Y )dx™dx", (5.101)

where the tensor perturbation y,,, is symmetric, traceless (y], = 0), and transverse (3™y,,, = 0),
leaving two independent degrees of freedom—the helicity-2 modes of the graviton.

A convenient gauge choice is given by
ds? = dt? — a®(8 py + Y )dx™dx", (5.102)

where v is transverse, i.e. d™y,,, =0 and traceless y;; = 0. So we are left with two independent
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components. Expanding the Einstein Hilbert action to quadratic order in the fluctuations we find

MZ
S, = ?m J d*xdea® (v, ™ — Onymd™r™) . (5.103)

This action can be derived by rigorously linearising Einsteins equations, but alternatively it could
easily have been guessed by writing the simplest action consistent with the symmetries of the problem.
As we did for the scalar we can expand the graviton in plane waves by writing

Y mn(X) = J dSkZ einn(k))/s(k)eik'X , (5.104)

s==+

s I . .
where €} (k) are the polarisation tensors, which are generally complex and satisfy

e, (k) =k"e (k)=0, Transverse and traceless,
e (K)=e (k), Symmetric,
e, (ke (k) =0, Light-like, (5.105)
Ginn(k)fs/mn(k) =5%, Unit normalised,
e;n(k)* :efnn(_k); Yij is real.

From these properties we can derive explicit expressions for the polarisation vector and rewrite the
action as

Mg, 3 2 L N k?
2= | d'kdta >, (Ys(k)}/s(_k) - ;Ys(k)n(—k)) : (5.106)

s=%

Now this action consists of two independent copies of the action for a (canonically normalised)
2

. .. M . .
massless scalar field, up to a normalisation factor —*. To quantise the gravitons we therefore can
proceed exactly as above. We can promote y,(k) to an operator and expand it in creation and
annihilation operators,
V2 _
T
1) = —=(fid} + fia} ) , (5.107)
Mp,
where for both signs s = & the creation and annihilation operators satisfy the canonical commutation
relations. If we now assume a de Sitter background we can explicitly compute the graviton power
spectrum in the same way as we did for the massless scalar field. We find

(YR Ymn(K)) = > €5 (W)€, (K {7, (K)y, (K))
=% > e e, (K)(2m)*6(k+ k)| il
PL s (5.108)

2 H?

== 5 (2n)* s (k+ K| fil?
Mlgl 2k> s,s’

=2n)36(k+K)Py,
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with 42
_aa 5.109
Y (5.109)
This power spectrum provides us with a clear prediction for the CMB spectrum after a period of
inflation starting from the Bunch-Davies vacuum. This spectrum can then be compared to the
observational data from cosmological experiments and gives an excellent match. However, the match
is not exact. This is to be expected, since in this course we take the coarse approximation that all
fields are free. It turns out that this is an excellent approximation to predict the CMB radiation but
recent experiment have nonetheless found tiny non-Gaussianities hidden in the observed radiation.
To properly account for such effects one has to introduce interactions. This goes beyond the scope of
these lectures, but we refer the interested reader to [Paj20] for more details.

5.3 Thermal QFT

Another surprisingly simple application of quantum field theory in curved space are quantum field
theories at finite temperature T. In statistical mechanics thermal ensembles are of great importance.
In particular, the canonical ensemble describes a system in contact with a heat reservoir at a fixed
temperature T.* Energy can be interchanged between the system and the reservoir, but the particle
number and volume are fixed. In this section we will formalise how to formulate quantum field theory
at non-zero temperature. To see what temperature has to do with curved backgrounds, let us briefly
review some aspects of thermal states in quantum field theory.

Thermal states

Thermal states are a feature of statistical physics at a temperature T, the equilibrium state is a
probability distribution of physical states. In quantum mechanics such a distribution is given in the
form of a density matrix,

Definition 5.1. A density matrix is an element p € H ® 7{* that is Hermitian, positive definite and
has unit trace trp = 1.

Such matrices are always diagonalizable and an orthonormal basis of states |n) can be found such
that they can be expressed in the form

p = pyln)(nl (5.110)

where the coefficients are positive p,, > 0 and ) p, = 1. In this context, the coefficients p, can be
thought of as the probability of the ensemble to be in the state |n) such that the expectation value of
an observable A can be computed as

(A), =trpA= > p,(nlAln). (5.111)

“One can consider various other ensembles such as the grand canonical ensemble, where also particle number and
volume can be be exchanged with the reservoir.
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A density matrix represents a pure state when p = [¢) (y| for some normalized state [v)), i.e., p has
rank 1, otherwise states are said to be mixed. Mixed states arise naturally when part of a quantum
system is hidden. Consider for example a pure state |y) € H = H; ® Hy where the Hilbert space H;
is hidden for an observer. The state observed by the observer is then obtained by the partial trace
over H;. More precisely, consider the state |1))

) =D apslr) @ ls)g - (5.112)

where {|r)} represents a basis of #; and {|s)} of Hg. The partially traced density matrix perceived by
the observer is then given by

PR = TI.L |lp> <1/J| = Z’l/;r,sllljr,sz |52> (51| . (5.113)

The observed state is mixed if the density matrix py has rank greater than one. In this case the systems
R and L are said to be entangled. Given a Hamiltonian H, we define a thermal state as follows,”

Definition 5.2. A thermal state of temperature T is a state of the form

1 1 1
— J— —_ _ﬂEn —_——
pp = exp(—pH)=—-> PP ln)(nl, =1, (5.114)
B B n
where |n) is a basis of energy eigenstates of energy E,, and
Zg = Tr exp(—fBH) :Ze_ﬂEﬂ, (5.115)
n

is the partition function.

Note that we use units where the Boltzmann’s constant kz = 1. This is in exact analogy with the
canonical ensemble in statistical mechanics.

Example 5.2 (Bose-Einstein distribution). In the context of a harmonic oscillator (i.e., a single mode of
a quantum field), we can compute the thermal expectation of the number operator N using E,, = (n+ %)w

to obtain Z 5
ne P 1 ¢ 1
Te(ppN) = 28— — == log(1—e P®) = ———.
d.e P wdp efe —1

(5.116)

A useful way to characterize thermal states in quantum mechanics and quantum field theory was
described by Kubo, Martin and Schwinger [Kub57,MS59] and is called the KMS condition. Similarly
a state satisfying the KMS condition is called a KMS state.

Definition 5.3 (KMS state). A KMS state is a state for which the time evolution of operators A — A,
can be continued to complex time in such a way that for a time-independent operator, B, we have

(AtB)KMS = <BAt+i[5 >KMS s (5.117)

One can decorate this definition with chemical potentials when the particle number is allowed to change, i.e. in a
grand canonical ensemble.
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where (A, B) s and (BA, )¢ are analytic functions of z in the strip 0 < imz < f3.

For finite systems the definition of the KMS condition is equivalent to the the definition of thermal states
above. To see this recall that in the Heisenberg representation, an operator A has time dependence
A, = efltA et For our thermal density matrix above we can compute

1 1 . ‘
(Al’B>ﬂ = Z_ tr(e_ﬁHAtB) — Z_ tr(e—ﬁH+leA0e—lHtB)
p p

1 _ 1 _
=7 tr(Acipe PHp) = A tr(e ﬁHBAHi[g’)
B B

= <BAt+i/5>ﬁ >

where we have used the cyclic property of the trace. This is often interpreted as the property that our
system can be analytically continued to Euclidean signature with periodicity in imaginary time. In
infinite dimensions these manipulations are a lot more subtle as we might encounter phase transitions,
spontaneous symmetry breaking, operators that are not trace class and so on. However, the content of
the KMS condition is precisely that a similar relation continues to hold in the thermodynamic limit.°

Matsubara formalism or QFT on R? x S!

The Matsubara (or imaginary time) formalism makes the above observations manifest and reformulates
quantum field theory at finite temperature as Euclidean quantum field theory on R? x S!. In this
setup it will be often more convenient to work in the path integral formulation of quantum field
theory. We will not introduce this in detail but instead refer to one of the many standard text on
quantum field theory.

We can now apply the same logic to Green’s functions in a thermal state. The thermal Green’s function
can be obtained as the analytic continuation of the Wightman function or alternatively as the Green’s

function for the relevant operator, i.e., the Laplacian on R x Sé where now S! is a circle of length j3.

Definition 5.4. The thermal Green’s function is defined as

—BH
o) = (B9 = T P20,

(5.118)

Furthermore, when our system enjoys time translation symmetry, the thermal Green’s function is of
the form Gg(x,y) = Gg(t — t’,x,x') and satisfies the KMS condition, i.e. it is periodic in imaginary
time with period if3. This property follows directly as above from the KMS condition.

Example 5.3. In flat space, the thermal propagator for a massless free scalar can be constructed by
images in imaginary time of period 3. Thus we can identify the thermal greens function on Minkowski
space for the massless wave equation as

n_ 1
Gﬂ(x’x)_HZZ:4n2((t—t’+in/5+ie)2—x-x)' (5.119)

°If a phase transition takes place or if some symmetry is spontaneously broken, the KMS state might not be uniquely
defined.
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Defining the imaginary time coordinate T = it, it immediately follows from the KMS condition it
immediately follows that ¢(0,x) = £¢(3,x) where the sign is determined by whether the fields
commute or anti-commute, i.e. whether they are bosonic or fermionic. On R? x S it is convenient to
Fourier decompose the field

¢(7,%) =Z¢(a)n,x)ei‘°”. (5.120)
n
In order to satisfy the KMS condition we only allow discrete frequencies
2
w, = % Bosonic fields
2n(n+1) s (5.121)
w, = T Fermionic fields

These frequencies are called the Matsubara frequencies.

A fundamental object in thermal field theory is the partition function, Zg = Tr e PH where H is the
Hamiltonian of the system. In terms of the Euclidean path integral on RY x S this takes the form

Zﬂzqub (¢|e—ﬂH|¢)=JD¢e—S[¢1. (5.122)

with the Euclidean action, S = f d¥*1x ., defined over an imaginary time interval 7 € [0, ] with
appropriate boundary conditions (5.121) encoding thermal equilibrium.

In general it is very hard to compute the partition function, but for a free scalar we can explicitly
carry out the computation. Substituting the Fourier expansion into the expression for the partition
function we obtain

B dd dd
Zp = J D¢ eXP{—ﬂ J dedde f Gyt # (@0 PP (0, @) %
0 I,n

% ei(wl T+pvx)ei(wnr+qvx)

—w?—q2—m2
%} (5.123)

After some manipulations the thermal partition function for the free scalar reduces to

d
Zp = exp {f (Snl)(d (—logﬂ + %Zwﬁ - % D@+ K+ mz))} (5.124)

Exercise 5.9. Derive the expression (5.124) for the thermal partition function of a free scalar.

Hint: Remember the following representation of the d-function f f drell@rten)® = B5(m + n).

With this expression for the partition function at hand we can compute a variety of thermodynamical
properties such as the pressure and entropy, using the standard relations,

_laan olnz

=5 v ST P

(5.125)

Exercise 5.10. Compute the pressure and entropy for a free scalar. Hint: It might be useful to put the
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theory in finite volume and take the infinite volume limit at the end of the computation.

Show that at large temperature the pressure is given by Stefan’s law for the pressure of black body

radiation,
2
T
P=—T*%,
90

while at lower temperatures quantum effects modify this result.

(5.126)

Remark. In this section, we have focused exclusively on the Matsubara formalism for quantum field
theory at finite temperature, which is based on Euclidean time compactification and is particularly
well-suited for equilibrium systems. However, there exists an alternative approach known as the
real-time formalism or Schwinger—Keldysh formalism, which is especially powerful when dealing with
non-equilibrium phenomena or real-time correlation functions. Roughly speaking, this formalism
involves doubling the degrees of freedom and defining the theory on a contour in complex time
that runs forward and then backward along the real axis, possibly with a vertical leg into imaginary
time to incorporate initial thermal conditions. This closed time path (CTP) formalism allows one to
compute expectation values of time-ordered, anti-time-ordered, and Wightman functions in a unified
way, making it ideal for studying dissipative processes and transport phenomena. For an introduction
to the real-time formalism see for example [CSHY85, NvW87, Mac07,KL09].

Thermal mass and symmetry restoration

At finite temperature, the properties of quantum fields are modified by interactions with the thermal
bath. One key effect is the generation of temperature-dependent corrections to the mass of fields,
known as thermal masses. These corrections can significantly alter the vacuum structure of the theory.
In particular, in theories with spontaneous symmetry breaking at zero temperature, thermal effects
can restore the symmetry at high temperatures by driving the effective mass squared positive. This
mechanism, known as symmetry restoration, plays a central role in understanding phase transitions
in quantum field theory and early universe cosmology.

To illustrate this phenomenon, consider a real scalar field with a Z, symmetry in 3+1 dimensions:
__1 2 1 9,50 A 4

In an interacting field theory, the bare mass m appearing in the Lagrangian gets renormalised through
the self energy and the physical mass can be defined as

m= m%+5m2. (5.128)
We are interested in computing how the mass term is modified at finite temperature.
At one-loop, the self-energy correction comes from a tadpole diagram:

smA(T) = & d*pg 1
2 (2”)4P§+m2'

(5.129)
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At finite temperature, we compactify Euclidean time and can replace the integral over p, by a sum
over the Matsubara frequencies:

2
m*(T) =7 Ar Z f(2n)3w2+p2+m2 (5.130)

where w,, are bosonic Matsubara frequencies. This expression contains both a zero-temperature part
and a thermal correction:
Sm?(T) = 6m2(0) + Am?(T). (5.131)

The thermal part is

Al dp 1 1
Am*(T)== f w; =+/p2+m?, (5.132)

(2n)° wp ePr —1°

which is a convergent integral. The divergent part is independent of temperature so the counterterms
remain the same as at T = 0.

In the high-temperature limit T > m, we can approximate the thermal correction as

Al dp 1 1

Am*(T)~ = 5.133
M~3 ) erppiapi—1- (5133

This is a standard Bose integral which we can straightforwardly integrate, resulting in
Am?(T) ~ iT2 (5.134)

24 '
We therefore found that the field acquires a temperature-dependent effective mass,

2 (T)mm? + -T2 4 O(A2 5.135
mZ(T) ~ m +2—4 + O(A7). (5.135)

This result has some very interesting consequences. Namely, if the theory exhibits spontaneous
symmetry breaking at T = 0, e.g., m? < 0, we can write the potential as

1 A
V($)=—5Im?l¢*+ . (5.136)
At zero temperature the vacuum expectation value of the scalar field is then given by

($)=+v, v= 6";12'. (5.137)

At finite T, the thermal mass can drastically modify this behaviour. In particular, there is a critical
temperature T, where the effective mass vanishes,

24|m2|

T, ~ a1

(5.138)
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For T > T,, mgff > 0, and the minimum of the potential is at (¢)) = 0. In other words, the symmetry

is restored at large temperature.’

Thermal fluctuations screen the scalar field and increase its effective mass. This mechanism explains
how broken symmetries at zero temperature can be restored at high temperature — a key idea in early
universe cosmology and the study of phase transitions in QFT.

5.4 Adiabatic expansions

In the previous sections, we explored a number of instructive examples where the high degree of
symmetry allowed for an exact mode decomposition and explicit construction of Green’s functions.
These cases, while illuminating, are rather special. In a generic curved background — where the
geometry lacks time translation invariance or spatial homogeneity — such analytic control is typically
lost. Nevertheless, physical intuition tells us that if the spacetime curvature is small and evolves
slowly, we may still extract useful information through a systematic expansion. This leads us to the
adiabatic expansion, a perturbative framework that allows us to approximate quantum effects in
slowly varying backgrounds by organising corrections in terms of derivatives of the metric. In what
follows, we introduce the basic ideas and technical machinery behind this expansion, and illustrate
how it can be used to compute Green’s functions and understand particle creation in time-dependent
spacetimes.

Let us once more consider a free scalar field in a generic background. To proceed with the quantisation,
we expand this field in modes,

$(x) = > (@t (x) + a1 (x)) , (5.139)
n
appropriate for a given choice of vacuum. The Wightman function G* (and similarly G™) can then be
computed as

G*(x,x") = Y L up ()t (x). (5.140)

n

Furthermore, since the field ¢ satisfies the wave equation we necessarily have
(0, + m? + ER)G*(x,x’) = 0. (5.141)

Although conceptually clear, finding the appropriate basis of functions and computing the Wightman
functions is often prohibitively hard and only in very special cases will we be able to obtain analytic
expressions. Such cases are usually characterised by some sort of additional symmetry. The more
symmetries are present in our setup the more constrained are the Green’s functions. Another case
where computations simplify dramatically is when we have a conformal vacuum, i.e. a conformal
theory on a conformally flat manifold. In this case the Green’s functions can simply be obtained
through a conformal transformation from Minkowski space.

"Note that although conventional wisdom tells us ordered phases should only exist at low temperatures, there are
examples where ordered phases exist for arbitrarily high temperatures or even phase transitions where disordered phases
become ordered at higher temperature. The most famous example is the Pomeranchuk effect in *He. At T < 107K (at a
pressure of 30atm) we find a liquid, while for 1077 < T < 1K we find a solid [Pom50].
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In the absence of symmetries, explicitly solving for mode functions or constructing Green’s functions
is generally hopeless. Fortunately, progress is still possible through perturbative methods in many
relevant situations. In this section, we outline the key results while omitting several technical steps;
readers are referred to [BD84,PT09] for a more thorough treatment.

When the space-time curvature is small and varies slowly, we do not expect the creation of particles
with arbitrarily high energies. Intuitively, if the background metric evolves sufficiently slowly —i.e.,
adiabatically — the number of particles in a given mode should remain approximately constant. This
intuition can be formalized by introducing a scaling parameter T in the metric,

T _ t X
guv(t,X) = g, (t,x) = gm(;, ;) : (5.142)

An expansion in inverse powers of T is called the adiabatic expansion, which loosely counts the
number of derivatives acting on the metric. For instance, the scalar curvature R is of adiabatic order
two. While we will not always keep the parameter T explicit throughout, it can be reintroduced at

any point by counting derivatives. When we write terms like O(T ™), this refers to contributions of
third adiabatic order and beyond.

To illustrate this idea, let us consider a free, neutral scalar field in four-dimensional space-time obeying
the equation,
(O+m?+ER)p =0. (5.143)

Solving this equation exactly to obtain the mode functions and Green’s function is rarely feasible.
However, one can show that Feynman’s Green’s function admits a well-defined adiabatic expansion.
As in flat spacetime, it satisfies

@+m? + ER)Gp(x, x") = =6(x,x"),  6(x,x")=1g(x)[?6(x —x), (5.144)

where the minus sign is conventional, and both 5(x, x’) and Gg(x, x’) transform as bi-scalars.
To construct the adiabatic expansion, we write the propagator in the form

(o]

Gr(x,x") = —if dse_imst(x,x/;s), (5.145)
0

where m? is understood to have a small imaginary part m? — ie so that there is no divergence as
s — 00. The kernel K satisfies the Schrodinger type equation

i0,K(x,x’;s) = (0, + ER)K(x,x’;s), (5.146)

with the boundary condition that K(x, x’;s) ~ |g(x)|7/26(x — x’) as s — 0.

Exercise 5.11. Show that the kernel K(x, x’;s) satisfies the equation (5.146) with the stated boundary

conditions.
We now seek a short-time (i.e. small s) expansion of the kernel K. This is achieved by writing

AI/Z(X x") ot
/. _ s > == /..
K(X,X,S)—lme 2 F(X,X,IS), (5.147)
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where A(x, x’) is the Van Vleck-Morette determinant and o (x, x’) is related to the proper distance

along the geodesic from x to x’,°

1
A(x,x") = —|g(x)| Y det (—axu oo (x, x’)) lg(x)I72, o(x,x’) = Ef(x, x)?,  (5.148)

where 7 is the proper distance along the geodesic. The adiabatic expansion of Gy can now be
rephrased as the following expansion of the function F,

F(x,x’;s) ~ ag(x,x") + (is)ay (x, x") + (is)%ay(x, x ) + - - - . (5.149)

where the first coefficients are given in the coincidence limit x — x’ as

1
ao(x) =1, a(x) = (6 - 5)R, (5.150)
1 1 1/1 171 2
—— R gweo_ _— p pu_2(2_rlgpy=(2—¢) R 5.151
a2(x) =TggRumpo 180" M 6(5 g) 2(6 5) (5.151)

In this expansion we did not keep the parameter T explicit but by counting the derivatives on the
metric, one can easily see that the term a,, is of adiabatic order 2n. If the metric is smooth, one can
continue this expression indefinitely and find a unique expansion. However, typically this expansion
is asymptotic so the solutions will in general not be uniquely determined.

Exercise 5.12. To make this more explicit, consider the FLRW metric with flat spatial slices,
ds? = —dt? +a(t)*dx>. (5.152)
The wave equation for the scalar field it
(O+m?+£&R)¢p =0. (5.153)

.2 .
Hint: Note that the Ricci scalar for this metric is R = 6 (2—2 + 9)

a

Show that the modes for the scalar field can be written as
fllx) = ey (t), (5.154)

where hy(t) satisfies
h+(w?+0)hy =0, (5.155)

2 . . . . . .
where w = 4/ % + m2. Find an expression for o in terms of a and its derivatives.

The adiabatic expansion for the field modes is based on the usual WKB ansatz,

h(t) = Wk(t’)dt’] , (5.156)

1 e
el

8Here we assume x’ is in a normal neighbourhood of x such that only one geodesic goes from x to x’.
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where Wi (t) can be expanded in an adiabatic expansion,
Wi (1) = 0@ + 0@ + @ + O(T72), (5.157)

where each ™ is of nth adiabatic order; i.e. contains n derivatives with respect to t.
Show that W (t) satisfies the following equation,
2_ 2 3WE 1w
WZ2=w?+o+>——S—-—X, (5.158)
4w 2 W
and solve this equation perturbatively in a large T expansion. (Hint: explicitly reintroduce T and

expand.)

Show that all odd ) vanish and that

ON (5.159)
1 3 1
w®=—"" (0w2 + 0% — —cocb) 5 (5.160)
2w3 4 2
@__1 @) 20, @2 3@ _ Lo @, .o @)
w :ﬁ 200w —5w (w ) +§wa) —E(wa) +ow . (5.161)

Exercise 5.13. Using the results from the previous exercise we can compute the Green’s function in the
adiabatic expansion. In the coincidence limit the Green’s function takes the form

o0
G(x,x) zf dkk*w, ! (5.162)
0

Expand this integral adiabatically and show that only the first to adiabatic orders contain divergences.
More precisely, show that the Green’s function can be written as,

G(x,x) = R_, 1 Lwdkkz[l—(g—é)i]. (5.163)

28872 471243 w 23

After removing the divergent terms, we find a finite result for the Green’s function (at coincident points).
Note that the adiabatic expansion described above can be continued to arbitrary order and it is even
possible to find analytic expressions for all of the higher order terms in terms of first two [dRNS15]. The

perturbative expansion is therefore uniquely determined. However, this expansion is an asymptotic
expansion and is only uniquely defined up to non-perturbative terms.
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Chapter 6

The Unruh effect

A fundamental application of the formalism introduced in part I can already be seen in flat space.
Indeed, the general principles of relativity state that it should be possible to express the laws of
physics as being the same for all observers, even those undergoing acceleration. Indeed, the effects
of constant acceleration are equivalent to those caused by the presence of a uniform gravitational
field. Thus one can ask the question: in flat space, how does the Minkowski vacuum appear to an
accelerating observer? The perhaps surprising answer to this question lies in the Unruh effect which
states that this observer will perceive a thermal state!

Studying the physics of an accelerated observer will highlight many of the properties we discussed in
the previous chapters. Due to its simplicity we will be able to exactly solve this problem and explicitly
see the theory at work. Moreover, as we will see in the next chapter, many of the curious properties
observed in this case immediately carry over to the study of an evaporating black hole.

6.1 Particle detectors

Since in general curved space-times the notion of a particle is observer-dependent it will prove useful
to give a coordinate independent characterisation of the temperature. A useful way to achieve this is
to consider an observer equipped with a so-called Unruh detector [Unr76, GH77b].

The detector will have some internal energy states and can interact with the scalar field by exchanging
energy, i.e. by emitting or absorbing scalar particles. The detector could for example be constructed so
that it emits a ‘ping’ whenever its internal energy state changes. All observers will agree on whether or
not the detector has pinged, although they may disagree on whether the ping was caused by particle
emission or absorption. Such a detector can be modelled by a coupling of the scalar field ¢ (x (7))
along the world-line x(7) of the observer to some operator m(7) acting on the internal detector states

gJ drm(7)¢(x(7)), (6.1)

—0Q

where g is the strength of the coupling and 7 is the proper time along the observer’s world-line. Let
H, denote the detector Hamiltonian, with energy eigenstates |E j>,

Ho |E;) = E; [E;) (6.2)
and let m;; be the matrix element of the operator m(7) at T =0,

m;; = (E;|m(0) |E;) . (6.3)
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We will calculate the transition amplitude from a state |0) ® |E;) € H 4 ® Hge. in the tensor product of
the scalar field and detector Hilbert spaces to the state (E j| ® (Y|, where |v) is any state of the scalar
field. To first order in perturbation theory (for small g) the desired amplitude can be computed as

A=g f dr (Ej| ® (| m(t)e(x(7))[0) ® |E;) . (6.4)

Using (in the Heisenberg picture) that m(7) = e’*m(0)e 7, this can be written as

A=gm;, J dr elEE)T (1] (x(7))[0) - 6.5)

Since we are only interested in the probability for the detector to make the transition from E; to E;,
we should square this amplitude and sum over the final state |¢)) of the scalar field, which will not be
measured. Using the resolution of identity Zw [Y) (3| = 1 we find the probability

oo
P(E; > E;) = g2|mij|2J drdt’e BTG (x(1'),x(1)), (6.6)
—0Q
where G, is the Wightman function. Notice that the prefactor in (6.6) depends on the details of the
detector, so it is useful to extract the piece which depends only on the scalar field and the world-line
trajectory. For this reason we define the detector response function

F(E)= f dﬂ:df’e_iE(T/_T)GJr (X(T/),X(T)) , 6.7)

—0Q0

When the Wightman function only depends on At = 7’ — 7 we can change variables to At and

T= Tzi The detector response function is then defined by removing the diverging volume factor

coming from the integration over 7,

o0

f(E)= J dAT e EATG (AT). (6.8)
—0Q

Example 6.1. First consider Minkowski space in the vacuum state. The Wightman function is then given

by
1 1

472 (At —ie)?

If we plug this in the formula (6.8), we can calculate the integral by residues. Since E > 0 we should

G (AT) = (6.9)

close the contour for At in the lower half-plane, since in this case the integral at the half-circle at infinity
goes to zero due to the damping factor e "EAT (Jordan’s lemma) and we conclude that
f(E)=0. (6.10)

So, unsurprisingly, we find that there is no particle detection in the Minkowski vacuum.

Example 6.2. We can also arrive at the Bose-Einstein distribution from the Green’s function by computing
the detector responds function for a detector at x = 0. Inserting the thermal Green’s function in (6.8) we
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find
f(E)= J dATe EAT Gg(AT)

—0Q

R —iEAT
—e
= dAa
J TZ 4m2(AT +inf +ie)?

—0Q nez

(6.11)

The integral can be analytically continued so as to be evaluated by residues along the negative imaginary
axis where it has double poles at t = —nf3i. Thus we obtain the sum of residues

fE)=E) et =

nez

E
efE—1"

(6.12)

in line with our expectation for a detector immersed in a thermal bath of temperature T = 1/ 3.

6.2 The Unruh effect

Having introduced these tools we are ready and well-equipped to study the Unruh effect. Here we
will perform the calculation for massless modes in 1 + 1 dimensions where we can use the conformal
invariance of the wave equation allowing us to work out everything very explicitly. All the essential
features will already be present in this setup. The analysis can be performed explicitly also for massive
modes and be extended to higher dimensions but comes at the expense of having to deal with Bessel
functions.’

Consider an observer O, with constant acceleration a along the x-axis. The world-line for this
observer can be parametrised as

X(t)=(t(7),x(7)) = %(sinhar,coshaf), (6.13)

where 7 is the proper time of the observer. Note that these trajectories parametrise the hyperbolae,
x2 — 72 = a?. We will be asking the question as to how the accelerating observer sees the Minkowski
vacuum. To do so we want to find the natural coordinates in Minkowski space-time adapted to this
observer. I.e. we want the time coordinate to be its proper time, and the spatial coordinate to be
characterized by the fact that the observed is at rest in it. Using the clock and radar method, the
observer will set up coordinates (7, &) related to inertial coordinates (t, x) by

ag
(t,x)= e—(sinh at,coshar), ds? = —dt? + dx? = 2% (—d7? + d&?). (6.14)
a

Indeed, in these coordinates, the path followed by the observer is given by X(7) = (7,0). The new
coordinates have range {7,£} € (—00, 00) but they only cover the part of Minkowski space with
R : {x > |t|}, called the Rindler wedge. This is the portion of space-time that the accelerating observer
can measure and see. Minkowski space equipped with this metric will be denoted Rindler space.
Note that Rindler space corresponds to the right wedge foliated by the world-lines of the accelerated
observers, labelled by R in Figure 6.1.

!Going to higher dimensions is no worse than introducing a mass; in both cases we lose the conformal invariance that
we exploit in this section.
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Figure 6.1: The Rindler wedge R in two-dimensional Minkowski space is denoted by the
orange region. A uniformly accelerated observer O, follows the blue hyperbolic trajectories
in R. H, denote the Killing horizons which are the boundaries of R"! perceivable for this
observer.

The inertial light-cone coordinates (u, v) := (t — x, t + x) can be rewritten in terms of the light-cone
coordinates adapted to the accelerating observer (Ug, Vg) :=(t— &, T+ &),

1
mﬂq=acfﬂwﬁw), ds? = dudv = e 2R qU,dV;. (6.15)

The Rindler wedge is therefore the whole plane in the (Ug, V) coordinates but only the quadrant
with —u, v > 0 in the (u, v) coordinates.

More generally, we see that the lines of constant & in the Rindler metric describe uniformly accelerated
observers with acceleration
a=ae %, (6.16)

and proper time 7. Therefore, Rindler space can be regarded as a foliation of Minkowski space by the
trajectories of uniformly accelerated observers. Near the horizon where £ — —00, we have a — oo
such that the observers feel an infinite proper acceleration.

Similarly, we can also cover the left wedge of Minkowski space, x < |t|, by defining the coordinates

ea§ eaE
t =——sinhaé, x =———coshag. (6.17)
a a

Notice that the events happening in the left Rindler wedge are causally disconnected from the world-
lines of a Rindler observer in the right Rindler wedge, and the line u = 0 effectively behaves as an
event horizon. This observation will be relevant in the context of our discussion of black holes in the
next chapter.
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Let us now consider the quantisation of a massless scalar field in Rindler space. Since the wave
equation in this case is conformal, we can trivially solve it by applying a conformal transformation to
the standard Minkowski space modes. In standard Minkowski space, we have respectively the left
and right moving modes?

1 . .
Jirat o %= o (6.18)

which constitute the positive frequency modes for w > 0. In the adapted coordinates introduced

¢w(u) =

above the metric is conformal to the standard Minkowski metric so the modes seen/measured by O,
of frequency w will be respectively

7, (Up) = %e“"”“& &7 (V) = %e‘i”%. (6.19)

where we added the Heaviside functions to denote that these modes are only non-zero in the right
Rindler wedge.

Similarly, considering the left Rindler wedge L with lightcone coordinates U; and V; we find the
modes for the quantum field there as,

0w ; O(=v)
ol (U) = ‘bl oL (V) = v 6.20

Given that the left- and right-moving modes decouple, we can focus on the right-moving modes while
the results for left-moving modes will follow identically.® In the standard Minkowski picture, we can
define a general right-moving field operator as

o
o dw —iwu iwu T
¢ = fo m[e a,+e“a,], (6.21)

while for an accelerating observer in the right Rindler wedge the right-moving field operators are
defined as

© da
$p = [e AUrAR 4 eAURART] (6.22)
. fo vanA A A
where a,, and AI; are the standard raising and lowering operators satisfying the commutation relations
[a,,a ]=6(w—0), [ApAl1=6(1—21)), (6.23)

and analogous for the left Rindler wedge. Implicit in these definitions are the Minkowski vacuum
|0p), satisfying a,, |0,,) = 0, and the Rindler vacuum satisfying A, |0g) = O for respectively all w > 0
and A > 0.

As by now standard, we can build a Fock space Fg/; on the Rindler vacua \OR / L) using the respective

2In two dimensions we have |k| = « where k only has one component. The right-moving waves have k > 0 while the
left-moving ones have k < 0.

3The left and right movers can never mix under Bogoliubov transformations, since <I>§)/ ©(Ugy,) only depends on Uy,
while */L(Vy,,) only depends on Vg, .
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creation and annihilation operatorsAi/ LT and AI;/ L These Fock spaces are based on the Rindler modes
(6.19) or (6.20) measured by an observer (’)g/ L respectively in the right or left Rindler wedge. In
particular the vacua |0)g;, is the state in which (’)5/ L sees no particles. However, As it stands, there
can be no identification between the Minkowski Fock space F;,; and either of the Rindler Fock space
JFgy1, separately as they only determine the Minkowski fields respectively for u < 0 or u > 0 and
are not defined in the opposite patch. To determine ¢ and F,, from Rindler type data, we have to
consider both the left and right Fock spaces F; and F; such that the Minkowski Fock space is now a
tensor product

Note however, that the Minkowski vacuum |0),, might be an entangled state in this product, i.e.
10}y # 10), ® |0)g.

Having discussed in detail the various vacua in the picture we now wish to compute the distribution
of the number of particles of frequency A detected by the observer O, in the Minkowski vacuum. To
do so we need to compute the Bogoliubov coefficients relating the Minkowski and Rindler modes in
the right Rindler wedge,

0) (W, (W) = f dA[ag, @5 (Us) + B, @5 (Un)] - (6.25)

Inserting the modes in the definition for the Bogoliubov coefficients, (4.33), * we find,
o «—>
ak, :if dug @%* 9, &,
—0Q

0
1 : i
= dude ¥(—qu)~ ! (6.26)
21V wA f_oo ( )

1 | Arayv s ( m) =
- _(_) r(-2)e%,
2na \ w \w a

Similarly, for [55 , we find

o0 L d
R =1J dup @% 8, ¢,
—° (6.27)

1 )L(a)% (i)t) _m
=—\—|—) | —]e 2.
2nma \ w \w a

The verification of the intermediate steps are left as an exercise for the reader but mainly consist of
rewriting the integral in terms of an integral representation of the Gamma function and using some
Gamma function identities.

The main takeaway from this calculation is the relation
| l? = 2B, 2, (6.28)

as this allows us to compute the expectation value of the number operator N, of the modes with

“where the inner product is defined on the hypersurface & = constant with normal vector n* = e~%(1,0)
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frequency A detected by O, in the Minkowski vacuum,
(N)m = <0|MA§TA};|OM>

=J deo|B ol (6.29)
0

This can be simplified by using the normalization condition for Bogoliubov coefficients which in our
context reads

f dw(aa)lawl’ - ﬁwl[‘;wl’) = 5(7(' - A/) . (630)
0

Evaluating at A = A/, we reinterpret the right hand side 5(0) = V as the volume of space, regularized
as usual by putting the system in a finite box. This allows us to deduce the particle number density as

(Naw 1
\% - e2nifa _1°

(6.31)

This is the main result of this section as we now recognize this as the Bose Einstein distribution with
Unruh temperature
a
Tonruh = o (6.32)
We conclude that an observer moving with uniform acceleration through the Minkowski vacuum
observes a thermal spectrum of particles. The Unruh temperature T = 5~ is the temperature that
would be measured by an observer moving along the path & = 0, which feels the acceleration a = a.
Any other path with & = constant feels an acceleration

a=ae %, (6.33)

and will thus measure thermal radiation at temperature T = 5-. As & — 00, the temperature
approaches 0, in line with the fact that near oo the Rindler observer is nearly inertial. We conclude
that not only does the choice of vacuum, and hence concept of particle become time-dependent, it is

also observer-dependent, even in flat space-time.

Coming back to the relation between the Minkowski and Rindler vacua we have that the Unruh state
pu as measured by O, is given by the density matrix

py=Trg 0} a1 Oz - (6.34)

A key point to analyse this state is that time translation d, for O, in R is given by the boost Killing
vector on R but in £ it is given by minus the boost Killing vector
G, 0

=—— (6.35)

B:=x3t+t8x=v3v—u5u=ﬁ 37
R L

However, since the Minkowski vacuum is Lorentz and hence boost invariant we must have an entangled
product of the form

00 = D faln)y ® In)g, (6.36)
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for some f,. Indeed, our calculations show that f, = e B where f = 1/ Typrun-

Alternatively we can recognize the thermal nature of the Rindler vacuum by looking at the KMS
condition on the Wightman function in the Rindler vacuum. Since we are working in a conformal setup
we can straightforwardly obtain the Rindler space Wightman function from the Minkowski Wightman
function. Indeed, in two dimensions it is unchanged so we simply have to change coordinates to
obtain the Wightman function in Rindler space

1
(X0 —x/0 —i€)2 — (x—X/)2
T e2af 4 2a€ 4 q2¢2 — 2ea(E+E) cosha(T — 1) + 2aie (e€ sinhat + ee€’ sinhat’) (6-37)

=(0lr $(x)P(x") [0)x
=GR (x,x").

GM (x, x") = (0ly $ ()P (x")[0)

From this expression is is clear that in Rindler coordinates, Gﬁ is periodic in complex T with period
p= 27” Thus, for O, the Minkowski propagator is a thermal Green’s function of temperature Ty p-

As before, we can make the previous remark more explicit by restricting to the accelerating world-line
x = x(7),x’ = x(t = 0) and introducing a particle detector. Restricting to the world-line we obtain
the Green’s function

a2

R —
G (x(7),x(0)) = (sinhat —iae)? —(coshat —1)2

- 2(1—coshar + 2iaesinhat +a2e2/2)

(6.38)

With this expression at hand we can compute the detector response function f (E) characterising the
detection of field transitions at energy E as

f(E)= f dAaTeEATGR(AT)

—00
oo 2, —iEAT (6.39)
—a‘e
=f dAT

- 2(1—coshat +iaesinhat)’

The integral can be analytically continued so as to be evaluated by residues along the negative
imaginary axis where it has double poles at at = 2nmi. We obtain the sum of residues

f(E)—EZ (6.40)

ea—1

as expected for a detector immersed in a thermal bath at the Unruh temperature Ty, -

Before moving on let us introduce an alternative way to detect the thermal nature of space-times.
In terms of the Euclidean continuation of the space-time, it turns out thermal effects can be seen
as the need to periodically identify the imaginary time coordinate [GH77a, GH94]. It is easy to see
that the inverse is true. In a space-time which is periodic in imaginary time on can compute the
Euclidean Green’s function which consequentially will also be periodic. After analytically continuing
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to Lorentzian signature, the Euclidean Green’s function becomes the Feynman Green'’s function which
naturally inherits the complex periodicity of its Euclidean counterpart.

As an example, consider the the analytic continuation of the Rindler wedge metric,
ds? = a™2(dp? + p2d6?), (6.41)

where we defined the coordinate p = €% and 6 =iat. This is usual metric on flat Euclidean space
but generically, it has a conical singularity at p = 0. In order to avoid this singularity we need to
periodically identify 6 with period 27. This is essential for regularity at the horizon and gives rise
to the imaginary periodicity T ~ 7 +if for f = 1/Typun- This is a theme that can be taken much
further in curved space-times where similar consideration prove very useful in studying black hole
backgrounds.

Remark. Let us finish this chapter with some apparent paradoxes, and their resolutions, in Rindler
space. First, note that a Rindler observer with smaller constant £ coordinate are accelerating faster to
keep up. This may seem surprising because in Newtonian physics, observers who maintain constant
relative distance must share the same acceleration. In relativistic physics, this is no longer true and
we see that the trailing endpoint of a rod which is accelerated by some external force (parallel to
its symmetry axis) must accelerate a bit faster than the leading endpoint, or else it must ultimately
break. This is a manifestation of Lorentz contraction. As the rod accelerates, its velocity increases
and its length decreases. Since it is getting shorter, the back end must accelerate harder than the
front. Another way to look at it is: the back end must achieve the same change in velocity in a shorter
period of time. This leads to a differential equation showing that, at some distance, the acceleration
of the trailing end diverges, resulting in the Rindler horizon. This phenomenon is the basis of a
well known "paradox", Bell’s spaceship paradox. However, it is a simple consequence of relativistic
kinematics. One way to see this is to observe that the magnitude of the acceleration vector is just the
path curvature of the corresponding world line. But the world lines of our Rindler observers are the
analogues of a family of concentric circles in the Euclidean plane, so we are simply dealing with the
Lorentzian analogue of a fact familiar to speed skaters: in a family of concentric circles, inner circles
must bend faster (per unit arc length) than the outer ones.

The main observation of this chapter was that an accelerated observer detects particles in the
Minkowski vacuum state. An inertial observer would say that the same state is completely empty, the

expectation value of the energy momentum tensor (T > w = 0. If there is no energy momentum how

W4
can the Rindler observer detect particles? If the Ringler observer is to detect background particles,
they must carry a detector. This must be coupled to the particle being detected. However, if a detector
is being maintained at constant acceleration, energy is not conserved. From the point of view of
the Minkowski observer the Rindler detector emits as well as absorbs particles, once the coupling
is introduced the possibility of emission is unavoidable. When the detector registers a particle the
inertial observer would say that it had emitted a particle and felt a radiation-reaction force in response.
Ultimately the energy needed to excite the Rindler detector does not come from the background

energy momentum tensor but from the energy we put into the detector to keep it accelerating.
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Chapter 7

Hawking radiation

The creation of particles by black holes is necessary for maintaining the second law of thermodynamics
in their presence. This process of radiation and evaporation of black holes is an important facet in
the fundamental search for a microscopic explanation of the entropy of black holes; a search which
appears to be leading to new and exciting physics connecting gravitation and quantum theory. In this
chapter we will explore the effect of Hawking radiation and introduce some of the challenges this
phenomenon generates.

7.1 Quantum fields in a black hole background

The goal of this section is to explore quantum fields in a black hole background. The simplest, and
prototypical example of such a background is the Schwarzschild background, with metric,

2M 2M 7!
dszz—(l——)dt2+(1——) dr?+r2d0?. (7.1)
r r

Black holes, such as the Schwarzschild black hole and its rotating and/or charged cousins were
discussed at length in the course general relativity II. In Appendices C and E we collect all the
necessary background information for these notes to be self-contained.

One might be surprised that anything interesting can happen since the Schwarzschild black hole is
a static space-time. Surely one can use the Schwarzschild time-like Killing vector (at least at large
distances) to define positive and negative frequency and proceed with the quantisation just like in
Minkowski space. The point of this chapter is to show that interesting things do happen! We will do
so in steps and start with a simple toy model exhibiting many of the relevant phenomena.

(1 + 1)-dimensional toy model

We start our exploration with a massless scalar field in a two-dimensional "black hole" background
with the same time-radial part of the metric as the Schwarzschild black hole

-1
ds? =—(1—%)dt2+(1—%) dr?

r r

= (1 — ZTM) (—dt®+dr?) (7.2)

2M _
——e 2mdUudV.
r
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where we introduced the tortoise coordinate r, = r + 2M log(ﬁ - 1) and the Kruskal-Szekeres and
Eddington-Finkelstein null coordinates U, V and u, v are defined as,

U=—4Me ™, V=4Me ™, u=t+r*, v=t—r%. (7.3)

Note that this (1 + 1)-dimensional model merely serves to illustrate some properties of the (3 + 1)-
dimensional black hole and should not be taken seriously on its own. In itself it is not even a solution
to the (vacuum) Einstein equation.

A first hint that this picture is related with the Unruh effect can already be seen from the coordinate
change (7.3), which is identical to the transformation between null coordinates in Rindler and
Minkowski space upon substituting a = (4M)~!. Indeed, the problem is very similar to the one in
Rindler space. The two coordinate systems we consider, Eddington-Finkelstein and Kruskal-Szekeres
are respectively very similar to the Rindler and Minkowski coordinates.

Consider for simplicity the massless minimally coupled scalar. We could introduce mass and a coupling
to the Ricci scalar but note that in the four-dimensional background the Ricci scalar vanishes so
we won't consider it. The addition of mass breaks conformality so for the sake of keeping things
simple we will not include it here but comment on it later. The Eddington-Finkelstein coordinates are
adapted to an observer sitting very far from the black hole, where the metric approaches Minkowski
space ds? — —dudv. In these coordinates it’s straightforward to solve the wave equation and find a
complete set of incoming and outgoing modes

Y= ——=e", ), =——e . (7.4
To these modes we can associate a vacuum called the Boulware vacuum which is defined by
bw |O)B =0. (75)

The Boulware vacuum contains no particles from the point of view of a distant observer. However,
since the Eddington-Finkelstein coordinates do not cover the whole of space-time, only the first
quadrant of Penrose diagram. This is somewhat similar to the Rindler coordinates, this vacuum can
be thought of as the analog of the Rindler vacuum of an accelerated observer.

Similarly, in Kruskal-Szekeres coordinates we can solve the wave equation finding the following set
of positive frequency, incoming and outgoing, modes,

1 1

L) = eTioU f (V)= ——e @V, (7.6)
)= e )= e
The corresponding Kruskal vacuum is defined as,

a,|0)x =0. (7.7)

In Kruskal-Szekeres coordinates, the metric near the black hole horizon approaches ds? — dUdV, so
the Kruskal vacuum is the appropriate one for an observer sitting next to the black hole horizon. Since
Kruskal-Szekeres coordinates cover the whole of space-time, they are the analogue of the Minkowski
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vacuum that we studied in the quantization of a scalar field in Rindler space.

We can now ask the following question: if a Kruskal observer is in the vacuum state, what does the
Boulware observer see? Since the relation between both systems is the same as we found before in
the case of the Unruh effect, the calculation of the Bogoliubov coefficients will be the identical as the
one for the Unruh effect. The only difference lies in replacing the acceleration a by the surface gravity
a—K= 4LM' We conclude that the Boulware observer sees a thermal spectrum with temperature

K 1

TH=_

= — 7.8
2n  8mM (7.8)

Since the Kruskal-Szekeres coordinates U and V are well defined both in quadrant I and II of the
Penrose diagram, the expansion in modes &, (U) is valid both outside and inside the horizon. On the
other hand, the Eddington-Finkelstein coordinates, u and v only cover region I, so the expansion of b
operators in terms of a is only valid there. This implies that while the expression b, in terms of a;
and a; is complete, the inverse relation expressing a,, also involves some other operators, b, whose
modes have support only in region II inside the horizon. In particular, we can write

aw=fdk(ailbx+ﬁc’glb;+dzlﬁl+/§;‘;kfox), (7.9)
In particular one can easily see that
[H,b] |=wb! , [H,b]]=-wb. (7.10)

Hence, while the creation operator b:‘;J raises the energy by w, the creation operator E"O lowers the
energy by w. The modes created by BZ) are in fact necessary for energy conservation. Every time a
particle with positive energy is created and propagates away from the black hole horizon, a particle
with negative energy is also created, and falls into the horizon. These particles with opposite energy
are entangled and there is a large entanglement between the radiation propagating outside the
horizon and the inside. The resulting state for our quantum field in the black hole background is
described by the repeated action of E('J) bz) on the vacuum |0), ; and takes the form of a squeezed
state as derived in chapter 4,

|0) g o< exp {f dewe bLBL} [P (7.11)

The Boulware vacuum above is the state obtained by tracing out the tilded part of the Hilbert space.

In conclusion, we can interpret the Hawking emission process as arising from particle pair creation
close to the horizon, with a negative energy particle falling into the black hole and a positive energy
particle escaping to infinity. One may be surprised by the appearance of propagating negative energy
modes. However, one should recall that here the energy is the conserved charge associated with a
Killing vector that generates time translations far away from the horizon, lets say t. This vector is
timelike outside the horizon, but becomes space-like inside the horizon. The charge of a space-like
Killing vector is momentum, and this can be either positive, or negative so there is no worry. We see
that since Hawking radiation needs a time-like Killing vector becoming space-like. This is exactly
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what happens in the vicinity of a Killing horizon.
(3 + 1)-dimensional Schwarzschild

The two-dimensional toy model discussed above was extremely simple but included all the necessary
ingredients to observe the Hawking temperature. However, we are really interested in the four-
dimensional Schwarzschild black hole. In this case we lose conformality and we will not be able to
exactly solve the problem. However, using some approximations we will still be able to come to a
similar conclusion as in the toy model above.

Let us consider again a massless scalar field but now in the full Schwarzschild background (7.1).
As in Schwarzschild, and similarly in the Kerr black hole we have R = 0 we can safely ignore the
coupling to the Ricci scalar.’ As the problem is entirely symmetric on the two-sphere it will prove
useful to decompose our field in spherical harmonics,

¢ = fim(t,1)Y1(6, ), (7.12)

where Y;,,,(8, ¢ ) are the spherical harmonics. Substituting this expansion in the wave equation results
in

0W¢ =0= (0@ + V() fim(r, 1), (7.13)

where O+ denotes the (d + 1)-dimensional Laplacian on respectively the full Schwarzschild
space-time or the 2d time-radial slice considered in the above. The potential V;(r) is given by

So we see that the massless scalar in (3 + 1) dimensions decomposes in infinitely many massless

scalars in (1 + 1) dimensions in the presence of a potential. The only change from the story above
is therefore that a wave escaping the black hole needs to propagate through the potential barrier
caused by V;(r). Even though we cannot solve this problem analytically, note that the potential falls
off exponentially in r* as r* — —o0, i.e. when one approaches the horizon, and falls off polynomially
as r — oo. For this reason we can use the same asymptotic states as above. Hence, the only effect
of the potential is that it decreases the intensity of the wave and changes the resulting spectrum of
emitted particles by a greybody factor 0 < [;(w) < 1,

(n) = L) (7.15)
e’ —1

The greybody factor is entirely due to the potential outside the black hole horizon. It is clear that this
factor is not directly related to the quantum origin of the Hawking radiation and therefore the basic
features of the derivation above survive without significant alterations. This result can be generalized
for the case of a massive scalar field, and also for vector and spinor fields. The conclusion is that the
black hole must emit all possible species of particles, each having the Hawking thermal spectrum

corrected by the corresponding greybody factor.

In the collapse picture below, in the collapsing phase the Ricci scalar might be non-vanishing. However, this will not
change the late time spectrum and so we will keep ignoring this coupling.
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vi(r)

2M

Figure 7.1: The effective potential V;(r) experienced by the spherically symmetric modes fi,,
for the values of [ = 0,1, 2.

Black hole formed through collapse

The eternal black hole described above is rather unphysical and we don’t expect to see the full Kruskal
extension. A more physical picture would be to consider a ball of spherically symmetric dust collapsing
to form a black hole. The Penrose diagram for this space-time is given in Figure 7.2.

We can now proceed as before and quantise the massless scalar field in this background. The past
null hypersurface .#_ is a Cauchy hypersurface, hence we can quantise the scalar field using this
hypersurface and write

¢ = J do(a,f, +al fk), (7.16)

where the f,, are a complete set of orthonormal solutions to the wave equation with associated
annihilation and creation operators a,, and aL. Far outside the collapsing body at early times, the
definition of physical particles that would be detected by inertial observers, or equivalently of positive
frequency solutions of the wave equation, is unambiguous. We choose the f,, such that they form a
complete set of incoming positive frequency solutions of energy w. Their asymptotic form on past
null infinity is
1

Viendw

where we suppress the discrete quantum numbers [ and m in labelling the functions f,,.

wa e_ivalm(QJ ¢): <fw:fw’> :6(0‘)_6‘)/)7 (717)

At late times on the other hand, we know that .#" is not a Cauchy hypersurface. Instead we have to
consider boundary data both at future null infinity and the event horizon H. On .#7, just like on .#~,
the definition of positive frequency modes is unambiguous and we can find a complete set {p,,, p},}
of orthonormal solutions on .#*. The asymptotic form of these functions on .#% is

1

~ —iwu

where u is the outgoing null coordinate at .#*. A general solution, incoming from the past, will also
have a part that is incoming at the event horizon. Therefore we must introduce a second complete

basis of orthonormal functions q,, on the horizon which have zero Cauchy data on .#*. Since the
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Singularity

Figure 7.2: The Penrose diagram for collapse to the Schwarzschild black hole. The singularity
is located on top and shielded by the horizon H in orange. The collapsing cloud of dust is
pictured in blue. Once the cloud enters the horizon, a black hole is formed. The incoming ray
with v = v, is the last one that reaches the centre of the collapsing body and makes it to .#*.
Rays with v < v, fall into the black hole.

functions p,, and q,, are supported in disjoint regions at late times, their (conserved) scalar product
must vanish (q,,, p.,) = 0 and similarly for their complex conjugates. For this reason the precise form
of the functions q,, will not affect observations on .#7*. The details are therefore not important since
we will trace over the modes at the horizon. We can thus expand the field ¢ in the entire space-time
as

¢ =dw(bwpw+cwqw+bz)pz+cz)qz)) , (7.19)

with b, and c,, the annihilation operators for outgoing particles at late times. The vacuum at .#,
defined by b,, |0)5 is the Boulware vacua as defined before, while the vacuum at past null infinity
|0)_, defined by a,, |0)_ will take up the role of the Kruskal vacuum. The task we have to do is then
clear, we want to compute the number density of particles observed by a Boulware observer in the
"Kruskal" vacuum. Although conceptually clear the computation is rather involved and some details
will be left to fill in by the reader.
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To compute the density of emitted particles we have to compute the Bogoliubov coefficients

Ao’ = (fco’>pw> ) ﬁww/ = _<f:;/:pw> . (7.20)

To determine these coefficients we need to trace back in time the function p, along an outgoing
geodesic at a large value of u, close to the horizon. Such a geodesic is illustrated in Figure 7.2 as
the red line and passes through the center of the collapsing cloud just before the event horizon is
formed and emerges as an incoming geodesic characterised by a value of v close to v,. The value of u
depending at .#" depending on v can be computed by analysing the null geodesics in this space-time,
see Appendix C, and is given by

u(v) =—4M log(VOI;v) , (7.21)

where K is some positive constant. Inserting this expression into expressions (7.18) for the functions
D, we can compute the Bogoliubov coefficients as

1
Vo '\ 3
w s s
Ay = C f dv ( ) el®V iwu(v) ,
co w

1
Yo I\ 3
w RPN
QAo :CJ dv (—) e 1@V 1“’“("),
. w

(7.22)

where C is a constant. Substituting s = vy —v = iz we can compute

0 N3 .
Ay = — CJ ds (2) e =) exp (4in log i)
o w K
0 w’ 2 iz
= —iCe'“" f dz (—) e“*exp (4ia)M log —) (7.23)
oo w K
iy '\ [° , I2]
= —iCel®e2meM (—) J dze®*exp (4icoM log —) ,
w oo K

and similarly,

NI

/
o —iew vy — w

ﬁww’ =iCe ®@Ve 2nwM (_)

w

0
f dze®’ exp (4in log M) . (7.24)
oo K

We immediately find that

|aww’|2 = e87’th|/5ww/|2 B (725)

for the part of the wave packet that was propagated back in time through the collapsing body just
before it formed a black hole.

For the components p,, of this part of the wave packet, we have the scalar product,
<pwﬂpa)/> = F(CO)(S(O)—O)/), (726)

where I'(w) is the fraction of the wave packet that would propagate back in time through the collapsing
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body. Indeed, we can divide the functions p,, in two parts,
Po =03 +p. (7.27)

The part pg) propagates backwards in time outside of the collapsing body and reaches .#_ at some value
v > v,. This part of the wave will interact minimally with the collapsing matter and consequentially
the frequency will not change significantly from .#_ to .#,. For this reason we can ignore this part of
the wave when asking questions about particle production. Indeed, since pg) and pg) have disjoint
support on .#_ (resp. v > vy and v < V), they do not interact and we can safely ignore the parts pfj).
Their only effect is the introduction of the function I'. From the normalisation condition (7.26) we
therefore find

I(w)s(w—w')= J da (a*w)tawzl — ﬂzkﬁw%) (7.28)

where now the Bogoliubov coefficients refer to the coefficients in the expansion of pg) only.

As before, this allows us to compute the density of emitted particles as
(No)— = (Ol b, b, [0) = (0] bP"b J0)_ = J do’|Beer | (7.29)

The resulting integral is again divergent but can be regularised by putting the system in a box and
computing the density of emitted particles instead,

(Ny)_ = —— )

= m . (7.30)

Hence after this long computation we come to exactly the same conclusion as before and find that
the collapsing black hole emits and absorbs radiation exactly like a gray body of absorptivity I},,(w)
and Hawking temperature Ty = (8nM) ™!

For large black holes this temperature Ty ~ 6 X 10_8% K is extremely small for large black holes with
M > M, where Mg, is the mass of the sun. For this reason our assumption that the background does
not back-react against this radiation seems to be justified. For small black holes the back-reaction
cannot be ignored and a more sophisticated treatment is needed.

Indeed, from energy conservation one can estimate the rate of loss of mass. Stefan’s law for the
evaporation of a black body states that

= o< —AT?, (7.31)

where A is the area. With E oc M, Aoc M? and T oc M ! this leads to the rate of mass loss to be
proportional to

—~—— (7.32)

where ¢ is a positive constant that depends on the number and type of quantised matter fields
that couple to gravity. From this expression we it becomes indeed apparent that for large black
holes M > %—I\f justifying our assumption of ignoring back-reaction. For reference, this leads to the
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3
black-hole evaporating in a finite time of the order of 107! (M%) seconds.

Finally, before moving on, note that a static observer O at finite radius r measures a blue-shifted
temperature T, = %. As r — o0 this approaches the Hawking temperature, but it diverges at the
horizon where |gy9| — 0 due to the infinite acceleration of the static observer at the horizon. This is
precisely the Unruh effect we observed in the previous section. A freely falling observer however sees

no divergence as they cross the horizon.

7.2 The Hawking thermal state and friends

In analogy with the Rindler case, we can easily observe the thermal nature of the |0)_ vacuum for a
Boulware observer. The observer in the Boulware vacuum |0); has access to a Fock space Fj built
by acting on |0)z with the creation operators b(‘u As in the Rindler case however, and from the fact
that .#" is not a Cauchy surface, we know that this is not enough to construct the full Fock space as
seen by an observer at past null infinity. Indeed, the full Fock space is obtained as the tensor product
F_=Fp® Fy.

As before for Rindler, the late time vacuum is a complicated state of the form
10)— o< > fulnby In)g (7.33)
n

Considering the associated density matrices, we construct the Boulware vacuum by tracing over the
horizon modes

PB = Tr]_-Hp_ = Tr]:H |0)_ <0|_ (o @ Ze_an/K|n>BB<n| (7.34)
n

which gives the desired thermal state.

The Hawking state was what arose from an essentially Minkowskian vacuum at .#~ in the collapsing
scenario, but other states are natural for the eternal Schwarzschild black hole where we start from
the Kruskal vacuum defined near the horizon. In this case the Cauchy surface in the far past consists
of two components, .#_ U H_, as can be seen from the Penrose diagram in Figure E.1. Having said so,
it becomes clear that there are various 'natural’ choices for the vacuum in the past depending on what
we define as positive frequency states. The options are summarised in Table 7.1 below for positive
frequencies w > 0.

Vacuum | Positive modes on H_  Positive modes on .#_
Boulware vacuum |B) e iou e iV
Unruh vacuum |U) e oV e lov
Hartle-Hawking vacuum |H 2> eV emieV

Table 7.1: The three natural vacua in the eternal Schwarzschild black hole. The options differ
by the choice of positive frequency modes in the two component of the far past Cauchy surface
HUS_.

The three options defined in this table each have a distinct physical interpretation.
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* The Boulware vacuum corresponds to our familiar concept of an empty state defined far away
from the black hole and is defined with respect to a static observer. It is pathologic in the sense
that the expectation value of the stress tensor diverges at the horizon. This is similar to the
Rindler vacua becoming singular at the Killing horizon seen in the previous chapter.

* The Unruh vacuum is regular on the future horizon, but not on the past horizon. At infinity, this
vacuum corresponds to an outgoing flux of blackbody radiation at the black hole temperature.
The black hole collapse studied in the previous section brings about the Unruh state.

* The Hartle-Hawking vacuum does not correspond to our usual notion of a vacuum. It is well-
behaved both on the future and past horizon but the price we have to pay for this is that the
state is not empty at infinity, but instead corresponds to a thermal distribution of quanta at
the Hawking temperature. That is, the Hartle-Hawking vacuum corresponds to a black hole in
(unstable) equilibrium with an infinite bath of blackbody radiation.

All these vacua are interesting in their own right and have been studied for a variety of reasons.
However, from the point of view of the ’physical’ collapse picture described above, it seems that the
Unruh vacuum best approximates the state obtained following the gravitational collapse of a massive
cloud of dust.

There are various ways to investigate the thermal nature of the various vacua above. As mentioned
above, the Hartle-Hawking state is a thermal state both at .#,.. Moreover, it is an example of a Thermal
Green’s function
2 N A
G (x,x") := (H?| () (x) |[H?) = Gp(x, ). (7.35)

We will not attempt to explicitly compute the Green’s function (see for example [CJ86] for the result)
but a key statement is that it analytically extends to complex time and is periodic in imaginary time
with period,

p=1/Ty =8nM, (7.36)

An alternative, and easier way to recognize the thermal nature of black holes is to study the Euc-
lideanised background. Wick rotating t — it, we find the positive definite background with metric?

-1
ds? = (1_¥)dfz+(1—¥) dr? + r2dQ?. (7.37)

Substituting r = 2M + € and expanding in small € we find

ds? e 2Mge2 4 ﬁd# +4M2d02. (7.38)
€

At € = 0 we see that the angular part nicely factorises out. Changing coordinates to p = v8Me the
metric becomes

2
ds? ~ dp? + p
16M2

dr? + 4M2d02. (7.39)

Hence we clearly see that in order to avoid a conical singularity at the origin we need to impose the

2It’s even easier to see this in Kruskal coordinates, where the metric is given by ds? = ZTMe_ﬁ dUdV. Remembering that

U =—4MeiW e 4 it is equally clear that unless 7 has period 8 tM this metric has a conical singularity at the origin.
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periodicity T ~ 7 + 8t M. This gives alternative evidence for the Hawking temperature, analogous to
the Euclideanisation argument for the Unruh temperature in the previous section. In Figure 7.3 we
sketch the topology of the various Euclideanisations discussed so far. This property is an important
clue for the presence of thermal states and remains valid much more general in various dimensions
with various types of matter content. The Euclideanisation of a black hole has the characteristic
topology of a cigar.

R
N

~_

Figure 7.3: From left to right, the Euclideanised Minkowski space R x S!, Rindler space R? and
(r,t) plane of the Schwarzschild black hole. The cigar topology background is characteristic
for black hole backgrounds.

7.3 Black hole thermodynamics

Prior to the discovery of Hawking radiation of black holes Bekenstein already conjectured that black
holes must have a non-vanishing intrinsic entropy [Bek73]. He came to this conclusion through the
following thought experiment. Consider a black hole that absorbs matter with non-zero entropy. If
the black hole entropy were vanishing then the total entropy in the system would decrease, violating
the second law of thermodynamics. Based on this reasoning Bekenstein concluded that the second
law can only be preserved if a black hole has an intrinsic entropy Sp;; proportional to its surface area.
However, the proportionality constant could not be fixed until the discovery of Hawking radiation.

Differentiating the expression for the surface area A= 16nM?, we find
1 A
d

dM = ——d-.
8tM 4

(7.40)

Recognising the coefficient on the left hand side as the Hawking temperature this looks precisely like
the first law of thermodynamics
dE =TdS, (7.41)

Following this analogy we conclude that the black hole (or Bekenstein-Hawking) entropy must be
equal to

A
Sy = 1= 4mtM?. (7.42)

In line with its thermodynamic counterpart, the first law of black hole thermodynamics can be
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generalised to closed systems with rotation and charge as follows,
dE =TdS + QdJ + ¢dQ, (7.43)

where we interpret ¢ as the electric potential at the horizon and Q the total charge. Similarly, J is the
angular momentum and 2 the angular velocity.

Exercise 7.1. Consider the Reissner-Nordstrom solution

2
2= A(r)dtz— r dr? —r2dQ?, A(r)=r?—2Mr +Q?, (7.44)

ds r2 A(r)

This is a solution to the Einstein-Maxwell equations with electromagnetic potential

A= %dt. (7.45)

Assuming Q < M, state the second law of thermodynamics by differentiating the area as a function of
mass and show that the coefficient is indeed equal to the Hawking temperature. (Hint: the Hawking
temperature has the same expression as for Schwarzschild when expressed in terms of the surface gravity.)

Exercise 7.2. If you are feeling courageous, repeat the previous exercise for the Kerr black hole.

The entropy of astrophysical black holes is extremely large, for a solar mass black hole for example one
finds Sg, ~ 107°. Interpreting this as a statistical entropy implies that a quantum mechanical black
hole has an enormous number of microstates corresponding to the unique classical black hole. Finding
a microscopic derivation of this entropy is an active area of modern research. In asymptotically flat
space-time such a derivation has been given through string theory [SV96] but in asymptotically AdS
or dS space-times this remains an open question.

Taking into account the entropy of a black hole, we can state the generalised second law of thermody-
namics as follows.
0Sotal = OSmatter + 0Sp = 0. (7.46)

L.e. the total entropy of all black holes and matter combined can never decrease. In classical general
relativity, one can prove that the combined area of all black hole horizons cannot decrease. This
applies not only to adiabatic processes but also to strongly out of equilibrium processes such as
collisions and mergers of black holes.

Ordinary thermodynamic systems can be in a stable equilibrium with an infinity heat reservoir.
However, this is not true for black holes because they have a negative heat capacity! In other words,
black holes get colder when they absorb energy. Indeed, with E(T) =M = (8nT)~}, we find

_9E_ 1
8T 8mT2

Can <0. (7.47)

This means that a black hole surrounded by an infinite thermal bath at temperature T < Ty will emit
radiation and become even hotter. The process of evaporation is not halted in an infinite thermal
reservoir with constant temperature. Similarly, putting a black hole in a bath with T > Ty will make
the black hole colder! In either case no stable equilibrium is possible. Stable equilibrium is only
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possible in a finite reservoir. In this case the radiation of the black hole changes the temperature of
the bath until both reach the same temperature.

7.4 The information paradox

In this chapter we have discussed quantum fields in a black hole background and discovered that black
holes have a temperature. But where precisely does this radiation come from? The answer, discovered
by Hawking, is that we must consider quantum processes, more precisely quantum fluctuations of
the vacuum. In the vacuum pairs of particles and antiparticles are continuously being created and
annihilated. Consider such fluctuations for electron-positron pairs. Suppose we apply a strong electric
field in a region which is pure vacuum. When an electron—positron pair is created, the electron gets
pulled one way by the field and the positron gets pulled the other way. Thus instead of annihilation of
the pair, we can get creation of real (instead of virtual) electrons and positrons which can be collected
on opposite ends of the vacuum region. Thus we get a current flowing through the space even though
there is no material medium filling the region where the electric field is applied. This is called the
‘Schwinger effect’.

A similar effect happens with the black hole, with the effect of the electric field now replaced by the
gravitational field. We do not have particles that are charged in opposite ways under gravity. But the
attraction of the black hole falls off with radius, so if one member of a particle-antiparticle pair is
just outside the horizon it can flow off to infinity, while if the other member of the pair is just inside
the horizon then it can get sucked into the hole. The particles flowing off to infinity represent the
‘Hawking radiation’ coming out of the black hole. Doing a detailed computation, one finds that the
rate of this radiation is given by (7.31). Thus we seem to have a very nice thermodynamic physics of
the black hole. The hole has entropy, energy, and temperature and radiates as a thermal body should.

So far, so good, but there is a deep problem arising out of the way in which this radiation is created by
the black hole [Haw76]. The radiation which emerges from the hole is not in a ‘pure quantum state’.
Instead, the emitted quanta are in a ‘mixed state’ with excitations which stay inside the hole. There is
nothing wrong with this in this by itself, but the problem comes at the next step. The black hole loses
mass because of the radiation and eventually disappears. Then the quanta in the radiation outside the
hole are left in a state that is ‘mixed’, but we cannot see anything that they are mixed with! Thus the
state of the system has become a ‘mixed’ state in a fundamental way. This does not happen in quantum
mechanics. If we start with a pure state |¢)) and evolve it by some Hamiltonian H to |1/)’> = e 1HE |y))
we obtain another pure state at the end. Mixed states arise in usual physics when we coarse-grain
over some variables and thereby discard some information about a system. This coarse-graining is
done for convenience, so that we can extract the gross behaviour of a system without keeping all its
fine details, and is a standard procedure in statistical mechanics. But there is always a ‘fine-grained’
description available with all information about the state, so that underlying the full system there is
always a pure state. With black holes we seem to be getting a loss of information in a fundamental
way. We are not throwing away information for convenience; rather we cannot get a pure state even
if we wanted.

To make this discussion a bit more quantitative, let us introduce the von Neumann entropy, which is
an extension of the Gibbs entropy from statistical mechanics to quantum statistical mechanics. For a
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quantum system described by a density matrix p, the von Neumann entropy is defined as,
S=—Trplogp, (7.48)

In a finite dimensional system we can always write the density matrix in a basis of eigenvectors |n) as
p= an In) (nl, (7.49)
n

which makes it clear that for pure state the von Neumann entropy vanishes, while its maximal value
S =logdim H is reached for the maximally mixed state p = m > |n) (n|. Now, let us consider the
evaporation of a black hole a la Hawking. The black hole starts in a pure state, hence initially we
have S = 0. After some time part of the black hole has evaporated where the radiation is in a mixed
state. Hence, during the evaporation, the von Neumann entropy gradually increases until it reaches
its maximum when the black hole is fully evaporated into thermal radiation. See Figure 7.4 for a
graphical representation of the entropy as a function of time.
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Figure 7.4: The red line represents the entropy of the radiation following Hawking’s calculation,
while the blue line is the page curve. The turning point at the page time occurs at the point in
time where the entropy of Hawking radiation is equal to the Bekenstein-Hawking entropy of
the black hole. The dots give a cartoon picture of the qubits of information transferred from
the black hole to the radiation.

[E LR
[E LR
—
[ X2 X
EEE
-
[ 3
-
BEEE
BEEE
-4
[ X3
[ X3

This paradox has been a guiding post for progress on quantum gravity since its discovery by Hawking
in 1975. Hawking initially advocated that in the presence of gravity we should change our ideas
about quantum mechanics and loosen the our demand of having purely unitary evolution. However,
this is a very unsettling proposal which opens a Pandora’s box of unwanted consequences and most
physicists are not willing to abandon ordinary quantum mechanics when it works so well in all other
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contexts. Luckily, in the 90s and 2000s string theory provided various hints that information is not
lost! But how can it be that we need string theory for this? The gravitational interactions at the event
horizon for a large black hole are so incredibly small that we would expect that our semiclassical
intuition should be valid here.

Around 2020 a new perspective emerged in the papers [Pen20, AEMM19] and many papers after
that. In this paper an alternative semiclassical computation was performed that instead of Hawkings
entropy curve produces the Page curve. As can be seen from Figure 7.4 this curve descends back
to zero entropy at the end of the evaporation, therefore restoring unitarity! The fundamental idea
behind these computations is to introduce a new tool called the ’quantum extremal surface’ which
takes into account the microscopic structure of the black hole as well as the coupling with the external
fields. Performing the semiclassical computation using this surface, instead of the event horizon as
in Hawkings computation results in a different prediction for the entropy where at the Page time a
transition takes place after which the entropy starts to shrink, reproducing the Page curve. A full
discussion of their formalism would lead us beyond the scope of this course so we refer the reader to
the original literature.

This approach immediately brings us a whole range of new questions. Why are the equations for
various quantities modified by quantum gravity when a black hole is involved? And should they
then also be modified when studying the sun or Mercury? The key in answering this question turns
out to be complexity. Black holes are incredibly complex objects, they are maximally chaotic and
pack information in the densest possible way. This characteristic sets them apart from the other
astrophysical object where we find a similar curvature as at the event horizon of a black hole. The
computation of the quantum extremal surface turn out to crucially depend on complexity. It turns
out that usual semi-classical gravity is valid at low curvature and low complexity. However, at large
complexity our semi-classical intuition has to be modified in order to predict the correct physical
behaviour. Research in this direction continues until today and is an exciting area of new developments
in quantum gravity.
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Chapter 8

Quantum fields in AdS

de Sitter space plays a crucial role in cosmology, capturing the behaviour of our universe during both
its early inflationary phase and its current accelerated expansion. Anti-de Sitter (AdS) space, on the
other hand, is valuable for entirely different reasons. It provides the natural setting for exploring
the holographic principle, particularly through the AdS/CFT correspondence. The rich symmetry
structure of AdS, characterized by the SO(2, d) isometry group, heavily constrains the dynamics of
quantum field theories defined on this background. Even with mass deformations, these symmetries
guide us toward solvable structures. Moreover, the intrinsic length scale of AdS acts as a built-in
infrared regulator, taming the long-distance behaviour of interacting field theories.

In many respects, placing a quantum theory in AdS improves its behaviour -— much like confining a
system within a box. However, this simplification comes with its own set of subtleties. Notably, AdS
is not globally hyperbolic, which means that to fully specify the dynamics, one must carefully choose
boundary conditions at the conformal boundary. These boundary effects are not just technical details
but often encode essential physics in the holographic framework.

8.1 A CFT primer

This section introduces the minimal set of CFT concepts required to understand the AdS/CFT cor-
respondence, focusing on the Euclidean signature for simplicity. Our presentation emphasizes the
embedding formalism, as it will be essential for the remainder of this chapter. For a more compre-
hensive treatment, we refer the reader to the course on conformal field theory or standard textbooks
and lecture notes such as [DFMS97,Ryc16].

Conformal symmetry

A conformal field theory (CFT) is a quantum field theory invariant under the conformal group. We
begin by introducing this group and its action. As discussed earlier, a conformal transformation is a
coordinate transformation that preserves the metric up to a local scale factor:

. dx*dgf
Euv = 8ur = M@gaﬂ :Q(X)Zguv: Q(X)#O. (8.1)

Exercise 8.1. Show that, for d > 2, the most general infinitesimal conformal transformation takes the
form x* = x* + e#(x) with

et(x) = a* + Ax* + m*x, + x2b* — 2x"b . xH . (8.2)
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In d > 2 dimensions, conformal transformations of R¢ form the group SO(1,d + 1). Its generators
are:

p¥, M

uv> K

. D, (8.3)

where P, and M, generate translations and rotations (as in any Poincaré-invariant QFT), while D
and K, generate dilatations and special conformal transformations, respectively. Special conformal

transformations can be understood as the composition of an inversion, followed by a translation,

followed by another inversion. The inversion acts as: !

xt — I (84)
X

Exercise 8.2. Verify that inversion is a conformal transformation.

The action of conformal generators on fields can be derived from their infinitesimal transformations:
. i .
¢ (x* + et (x)) = [1 +ia"P,—AD + Em’“’MW +i b“KH] ¢ (x*). (8.5)

from which we can find a representation of the generators acting on operators. Acting on an operator
with conformal dimension A and SO(d) representation R we have, *

[P,,0(x)] =—i5,0(x),
[D,0(x)] =—(A+x"5,)O(x),
[Muw (’)(x)] =—i (xuav — xvau) O(x)+ iSﬁv -0(x),
[Kw (’)(x)] = 2ix, AO(x) + 2ix,,x"0,0(x) —ixzauO(x) + Zixpsﬁu -0(x),

(8.6)

where Sﬁv is the spin generator in the representation R.

Exercise 8.3. Show that the generators obey the following commutation relations

[D’Pu]:Pu’ [MW’Pa] i(5uapv_5vapu)’
[D,K,|=—K,, [M,,, Ky ] =1(6 0Ky —8,aK,) (8.7)
[K,,P,]=26,,D—2iM,,, [Myp, My, ]=1(80uMpy+8p,Muy—8p,Mar—84,Mp,,) -

Local operators

Local operators in CFTs are classified as primaries or descendants. Descendants are (linear combina-
tions of) derivatives of other local operators, while primaries are not expressible as such. A primary
operator O(0) inserted at the origin is annihilated by the generators of special conformal transforma-
tions, is an eigenvector of the dilatation operator, and transforms in an irreducible representation of
the rotation group SO(d),

[K,,000)]=0, [D,0(0)]=A0(0), [MW,OA(O)]=(Sﬁv)AB(’)B(O). (8.8)

INote that inversions lie outside the component of the conformal group connected to the identity. Thus, it is possible to
have CFTs that are not invariant under inversion. In fact, CFTs that break parity also break inversion.
2We define the dilatation generator D in a non-standard fashion so that it has real eigenvalues in unitary CFTs.
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Under conformal transformations, correlation functions of scalar primary operators transform covari-
antly:

A1

)
ox d

ox

a%

Pl <Ol(x1)'--0n(xn)) (89)
X

(Ol(il) s On(i‘n)) =

X1 Xn

where A; is the scaling dimension of O;. This transformation law, together with Poincaré invariance,
dilatation invariance, and invariance under inversion highly constrains the correlation functions.
In particular, all vacuum one-point functions (O(x)) necessarily vanish unless O = 1, the identity
operator, for which A = 0. Two- and three-point functions are constrained to take the form,

N A
(01(x1)05(x5)) = ﬁ )
12 Cins (8.10)

<O1(x1)02(xz)03(x3)> =
|xyg|A1FA2783 |x g | A1 AR [y g [ B2t e

where |x;;| = |x; — x;| and we have normalised all scalar primaries to have unit two-point function.®

Exercise 8.4. Deduce the form of the two- and three-point functions above by imposing conformal

invariance.

Four-point functions are not completely fixed by symmetry, since two independent conformally
invariant cross-ratios can be constructed,

2,2 2,2

X%, X X%,X
u=zi=—"1—2, y=(1-2)(1-2)=—"F—2. (8.11)
X13%24 X13%24
The general form of the scalar four-point function is then
f(u,v)
(01(x1)05(x3)03(x3)04(x4)) = (8.12)

218,
[ Ticj b0
where )’ j#i 6;j =A; and f could in principle be any function of the cross-ratios.

State-operator map and the OPE

In conformal field theories, there exists a one-to-one correspondence between local operators and
states, known as the state-operator map. This becomes manifest upon mapping flat Euclidean space
R? to the cylinder R x S9! via a Weyl transformation. Under this map a local operator inserted at
the origin of R? prepares a state on the cylinder at T = —co. Conversely, a state on a time slice of
the cylinder can be evolved backwards to define a boundary condition on a small sphere around the
origin, thus defining a local operator. Time translations on the cylinder correspond to dilatations on
RY, so the spectrum of the dilatation operator coincides with the energy spectrum of the theory on
R x §4-14

3This normalization is only consistent for primaries not subject to Ward identities. For example, the coefficients C, and
C, appearing in the stress tensor and current two-point functions encode physical information.
“More precisely, there can be a constant shift equal to the Casimir energy of the vacuum on S%~!, which is related with
C

the Weyl anomaly. In d = 2, this gives the usual energy spectrum (A - ﬁ) % where c is the central charge and L is the
radius of S*.
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The operator product expansion (OPE) expresses the product of two local operators as a sum over
local operators:

Ci;
J S~———

k
descendants

where the coefficients of descendants (e.g. ) are fixed by conformal symmetry. We have shown only
the contribution of a scalar primary; in general, the OPE includes operators of arbitrary spin.

Exercise 8.5. Compute f3 by using this OPE inside a three-point function.

The OPE converges inside correlation functions within a finite radius, a fact that follows from the
state-operator map and radial quantization. By iteratively applying the OPE, any n-point function
reduces to a sum over one-point functions, which vanish in the vacuum except for the identity operator.
Thus, all correlation functions are determined by the CFT data, {A;, C;ji}, where A; are the scaling
dimensions and Cjj; the OPE coefficients.”

The CFT data is highly constrained. In particular, associativity of the OPE requires that different OPE
channels in correlation functions yield the same result, leading to the conformal bootstrap equations.
There must exist a conserved stress tensor T},,,
correlators satisfy conformal Ward identities. The theory is assumed to be unitary, which in Euclidean

a spin-2 primary with dimension A = d, whose

signature implies reflection positivity. This enforces bounds on operator dimensions and allows for a
real basis in which all OPE coefficients are real.

Embedding Space Formalism
The conformal group SO(1,d + 1) acts naturally on the space of light rays through the origin of R4+,
0)2 1)2 d+1)2
—(PO) +(PY) +---+(P¥*) " =0. (8.14)

A section of this light-cone is a d-dimensional manifold where the CFT lives. For example, it is easy
to see that the Poincaré section P® + P4+ =1 is just RY. To see this we can parameterise this section

using
1+ x2 1 —x2
PO(x) = zx . PE(x)=xk,  P(x)= 2x , (8.15)
with u = 1,...,d and x* € RY and compute the induced metric. In fact, any conformally flat

manifold can be obtained as a section of the light-cone in the embedding space R¢*1:1. Using the
parameterisation P4 = Q(x)P4(x) with x* € R%, one can easily show that the induced metric is
simply given by ds® = Q%(x)8 ,,dx"dx".

Exercise 8.6. Consider the parameterisation PA = (PO, P, Pd+1) = (cosh 7, Q",—sinh 1) of the global

section (PO)2 — (Pd“Ll)2 =1, where Q" (u=1,...,d) parameterises a unit (d — 1)—dimensional sphere,

>For primary operators O;, O,, O transforming in non-trivial irreps of SO(d) there are several OPE coefficients C;,;.
The number of OPE coefficients C,,5 is given by the number of symmetric traceless tensor representations that appear in
the tensor product of the 3 irreps of SO(d) associated to O,, O, and O;.
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Q-Q = 1. Show that this section has the geometry of a cylinder exactly like the one used for the
state-operator map.

With this in mind, it is natural to extend a primary operator from the physical section to the full
light-cone with the following homogeneity property,

O(AP)=2A"20(P), A€R. (8.16)

In other words, this implements the Weyl transformation. One can then compute correlation functions
directly in the embedding space, where the constraints of conformal symmetry are just homogeneity
and SO(1,d + 1) Lorentz invariance. Physical correlators are simply obtained by restricting to the
section of the light-cone associated with the physical space of interest. This idea goes back to
Dirac [Dir36] and has been further develop by many authors [MS69,BBP70,FGG73a,FGG73b,CCP10,
Weil0, CPPR11].

Exercise 8.7. Using the embedding space formalism, show that the form of two- and three-point functions
of scalar primary operators in R? take the form

o(A; —A
(01(P1)0y(Py)) = (1712) (8.17)
Py,
C123
(01(P1)O4(Py)O5(P3)) = BE Ee E (8.18)
Py, Py Py

where we defined P;; = —2P; - P;.

It is easy to see that these expressions are the only ones consistent with SO(1,d + 1) invariance and
the degree of homogeneity of each O;(P;). Using the identity,

—2Py, - Py, =xl.2j, xij = |x; — x;, (8.19)

which holds in each physical section, we can straightforwardly reduce the three-point function to the
familiar,

(01 (x1) 0, (x5)O5(x3)) = C12s , (8.20)

2 A1+A22—A3 2 A2+A23—A1 2 A3+A21—A2
X1 X3 x5

Exercise 8.8. Similarly, vector primary operators can also be extended to the embedding space. In this
case, we impose
PAo,(P)=0, OA(AP) = A720,(P), AER, (8.21)

where the physical operator is obtained by projecting the indices to the section,

opA
O,(x)= _MOA(P) . (8.22)
9x PA=PA(x)
Notice that this implies a redundancy, O(P) — O4(P) + P,A(P) gives rise to the same physical operator
O(x), for any scalar function A(P) such that A(AP) = A~271A(P). This redundancy, together with the
constraint PA0,4(P) = 0, removes 2 degrees of freedom of the (d + 2)-dimensional vector O,(P).
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Show that the two-point function of vector primary operators is given by

"% (P - Py)) = PyP?
(—2P; - Py)AM!

(0*(P))OB(Py)) = const , (8.23)

up to redundant terms.

Conformal correlation functions extended to the light-cone of R»¥*! are annihilated by the generators
of SO(1,d + 1)

n
D3 (O1(P).. 0P =0, (8.24)
i=1
where Jf‘g is the generator 5 ;
Jag =—i| Pp— —Pg— | , 8.25
AB I(AaPB BaPA) (8.25)

acting on the point P;. For a given choice of light cone section, some generators will preserve the
section and some will not. The first are Killing vectors (isometry generators) and the second are
conformal Killing vectors. The commutation relations give the usual Lorentz algebra

(ag>Jcp] = i1 (Macdpp + MepJac —Mcdap — Napdsc) - (8.26)

Exercise 8.9. Check that the conformal algebra (8.7) follows from (8.26) and

D=—iJyg41 5 Po=Jduo—Jyd+1 >
MPW:JF“’ ) KPL :JPLO +J.Uud+1' (827)

Exercise 8.10. Show that equation (8.24) for Jag = Jy 441 implies time translation invariance on the
cylinder

n

d
25 (011,920 0n(7,, 2,)) =0, (8.28)

i=1 t

and dilatation invariance on R4

Z(Ai +x4‘iu) (01(x1)...0,(x,)) =0. (8.29)

1
i—1 Ix;

In this case, you will need to use the differential form of the homogeneity property PA%(’)I-(P) =
—A;O;(P). It is instructive to do this exercise for the other generators as well.

8.2 Geometry of AdS

Anti-de Sitter (AdS) space is the maximally symmetric spacetime with constant negative curvature.
A convenient way to construct it is by considering the isometric embedding of a d + 1-dimensional
hyperboloid into a flat ambient space R>“. More precisely, AdS space is defined as the universal cover
of the manifold

—(x) + (x2)? e (x) = (x) = 12, (8.30)
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embedded in R%2. We refer the reader to Appendix E for an overview of the various coordinate systems.
For concreteness, we work here in global coordinates, for which the embedding is parametrised as

X% = Lcostcoshp
X* = Lw"sinhp (8.31)
X1 = Lsintcoshp

where w* (u=1,...,d) parametrises a unit (d — 1)—dimensional sphere. This parametrisation yields
the global AdS metric,

ds? = L2, (—cosh® p dt? + dp? +sinh® p dQ3_,) . (8.32)

By taking p = 0 and 0 < t < 27, we cover the entire hyperboloid once. However, since the time
coordinate t is periodic, the spacetime contains closed timelike curves. To restore causality, we pass
to the universal cover by unwrapping the time direction: t € R.

This coordinate system reveals several notable features of AdS geometry. For instance, any light ray
can reach spatial infinity in finite coordinate time. To see this, consider a null trajectory at fixed
angular position. The radial null condition gives:

o
At = LAde dt = LAdSJ‘ dp = TELAdS . (8.33)
o coshp 2

This implies that observers anywhere in AdS can communicate with each other within a finite (proper)
time.

Causality and the conformal boundary

As p — o0, the metric (8.32) diverges. The surface at p = co0 does not belong to the AdS manifold
proper. However, as discussed in Chapter 2, one can perform a conformal compactification to formally
include the hypersurface .#,45, also known as the conformal boundary. More precisely, the conformal
boundary is defined as the conformal equivalence class of metrics d§? = e 2°ds? with boundary
R at p = co.

Particularly interesting for our purposes is the relation between the conformal compactification of
AdS and flat space. It is well-known that Euclidean flat space can be compactified to the d-sphere, S¢
by adding a point at infinity. On the other hand, Euclidean AdS,.,, which is simply the hyperbolic
space, can be conformally mapped to the (d + 1)-dimensional disc. Therefore the boundary of the
compactified Euclidean AdS space is the compactified Euclidean plane.

Similarly, in Lorentzian signature, by changing to hyperspherical coordinates, i.e. performing the
coordinate change tanh p = sinr from global coordinates, we obtain
12

ds? = CO:SSQ (—dt2 +dr? + sin? rdﬂi_l) , (8.34)

which after a conformal rescaling becomes the metric of the Einstein static universe. However, it is
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only half of the Einstein static universe since 6 is restricted to the range [0, t/2) rather then [0, 7).
The boundary of this space is at r = 7t/2 and is given by R x S¢~1. This is identical to the conformal
compactification of d-dimensional Minkowski space. This identification will play an essential role in
the AdS/CFT correspondence.

v AdSgpy |l

Figure 8.1: AdS,,; can be conformally mapped into one half the Einstein static universe. This
space has boundary R x $4~1 which is exactly the conformal compactification of Minkowski
space.

For future reference it will also be useful to introduce the conformal compactification from the point of
view of the embedding coordinates. The (conformal) boundary of AdS is not part of the hyperboloid
itself but can be seen by rescaling the metric. To do so, let us introduce null rays in embedding space,

PA~APA, pP?=0, PAe R, (8.35)

Such null rays define coordinates on the projective null cone A" embedded in R*¢. Consider now a
point X# on the hyperboloid. As we approach infinity, this point comes arbitrarily close to the null
cone, but never quite reaches it due to the defining constraint (8.30). The null lines do not lie on the
hyperboloid, but they represent its conformal boundary. In other words,

dAdS~ {P e R*|P>=0}/~,  where P*~AP%. (8.36)

The quotient identifies points along the light ray and is the space on which the conformal structure
lives. This space inherits the group of linear transformations preserving P* = 0, i.e. SO(2,d), which
is the conformal group acting on the boundary spacetime.

Before moving on to considering quantum fields in AdS there are a few causal issues that need our
attention. A peculiarity of AdS spaces is that an initially radially outward trajectory from p = 0 will
begin to re-converge to its starting point following a period of 7. Remembering the discussion in
Chapter 2, a Lorentzian spacetime is globally hyperbolic if and only if it contains a Cauchy hypersurface,
i.e. a hypersurface whose domain of dependence covers all of the spacetime. Famously, AdS is not
globally hyperbolic. This becomes clear by looking at Figure 8.2, where the domain of dependence
for the spatial hypersurface ¥ is indicated by the blue diamonds.
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Figure 8.2: The Penrose diagram of AdS. The blue domain blue diamonds denote the domain
of dependence of the spatial hypersurface X. Two geodesics, y and y’ are denoted in yellow.
In the universal covering the diagram continues indefinitely in the vertical direction.

Therefore, there are regions for which a knowledge of events on X does not result in any predictive
power. The underlying cause of these issues is the fact that conformal infinity in AdS is a time-like
hypersurface. Indeed, as a massless particle can reach spatial infinity in finite time, it can then
propagate along .# and move outside of D(X). In this way information is "lost’ from X to spatial
infinity. Similarly AdS space allows for information to be introduced from spatial infinity.

To resolve these issues, and restore the predictability in the entire space, we have to provide boundary
conditions at spatial infinity. In these lectures we will insist on having a closed system, hence reflective
boundary conditions are the natural choice [AIS78]. In the next section, when discussing the solutions
to the wave equation we will discuss these boundary conditions at length. Note that such boundary
conditions amount to requiring that there is no net flux across spatial infinity.

Asymptotically locally AdS spaces

Through the AdS/CFT correspondence, empty AdS corresponds to the vacuum state of the dual CFT.
If we want to access more general states we can consider non-trivial fillings with the same conformal
boundary. In other words we will no longer have an exact AdS space but only an asymptotically locally
AdS (AIAdS) space. However, a lot of the machinery we will develop for pure AdS spaces will still be
valid. By adding matter to the theory the bulk of AdS will change but, as we discussed in Chapter
2, the conformal boundary is a rather robust characteristic of spaces with a negative cosmological
constant. It takes infinite energy to change the asymptotics of such spaces.
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In particular we can expand the metric of such spaces near the conformal boundary as

L2
ds? = ;*—st (—d2? + gma(z, x)dx™dx") , (8.37)

where we use Poincaré coordinates and g,,,(2, x) is smooth and finite as z — 0 and can be expanded
in powers of the radial coordinate as

oo

Zap(zx) = > 2" (x). (8.38)

n=0

where g(® reproduces the pure AdS metric, while the g™ with n > 0 parametrise the deformations
away from it. Similarly, the matter fields coupled to gravity can be expanded near the conformal
boundary. This expansion is called the Fefferman-Graham expansion. Since the Einstein equations are
second order PDEs, plugging in the Fefferman-Graham expansion leads to a second order recursion
relation for the g™. After specifying g(®) one finds that all g™ with n < d are uniquely determined.
However, new data enters in g(d), which can be derived from the Hamiltonian and momentum
constraints along surfaces with z constant. Once g(9) is determined all higher terms are again
determined in terms of g®) and g(9). For even d the situation is slightly more complicated, since at
order d we must allow for logarithmic terms in the expansion.

8.3 Quantum fields in AdS

We have seen that AdS;,; acts like a box for classical massive particles. Quantum mechanically, this
confining potential gives rise to a discrete energy spectrum. Consider the Klein-Gordon equation

(o-m2)e =0, (8.39)
in global coordinates. Since the Ricci scalar is a constant in AdS we define the effective mass m; as

d(d+1)

12 (8.40)

m% =m?+£
To avoid excessive notation we will mostly suppress the subscript £. The phase space in this case is
again defined as the solution space of this equation, but unlike for globally hyperbolic spacetimes we
now have impose additional boundary conditions at conformal infinity. There are various options
for these boundary conditions, but since we are interested in closed quantum systems, a natural set
of choices is given by reflective boundary conditions. These can be divided in three cases, Dirichlet,
Neumann or mixed/Robin boundary conditions

¢|,_, =0 (Dirichlet)
Va9 |Z:0 =0 (Neumann) (8.41)
(K(Za X)¢ + vn¢) |Z:0 =0 (RObln)

Here n denotes the unit normal to the conformal boundary at z = 0 and K is a function. The
usual plane wave incoming and outgoing modes do not satisfy such boundary conditions as they
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parameterise solutions with ingoing or outgoing energy flux at conformal infinity. Instead, the basic
solutions will be of the form of ‘standing wave’ solutions, ¢ ~ exp(—iwu) % exp(—iwv).

To find the mode functions we will use an indirect route which has the advantage that it makes the
correspondence with holography more explicit. Consider the action of the quadratic Casimir of the
AdS isometry group on a scalar field®

1
5JABJBAcp =[-X202+X -0 (d+X-3)]¢. (8.42)

By foliating the embedding space R>? with AdS surfaces of different AdS radii L, we can obtain the
Laplacian in the embedding space as
2 1 0 anld

b'e :_Ld+1 a_LL a_L+DAdS . (8.43)

Substituting this in (8.42) and noticing that X - dy = LJ; we conclude that

1
5JABJBAd; = L2Opgs® - (8.44)

Therefore, we should identify m%L2 with the quadratic Casimir of the conformal group. We can use
this fact to construct the phase space and Hilbert space mimicking our CFT discussion.

For this is it useful to introduce the Lorentzian version of the conformal generators,

D= —Jo’d_H_ 5 PM = JMO + iJ'u’d_{_]_ 5 (8.45)
MI—“’ - J‘uv N KH - JMO _i‘]u,d+1 . (846)

Exercise 8.11. Show that, in global coordinates, the conformal generators take the form

p=il
- ot

y 2 2
Mir =g =50 )

P, =—ieit [a)“ (8p —itanhp 4,) +

1
Vil
# tanh p “}

. . 1
KM — —jelt [O_)M (3p + 1tanhp at) + mvu] ,

_ 0 _ y 0 . . . . . d—1
where V, = 507 — w,w" 555 is the covariant derivative on the unit sphere ST .

In analogy with the construction of the Hilbert space in a CFT, we can look for primary states, which
are annihilated by K, and are eigenstates of the Hamiltonian, D¢) = A¢. The condition K;,¢p =0
splits in one term proportional to w, and one term orthogonal to w,,. The second term implies that
¢ is independent of the angular variables w* while the first term reduces to (EP + Atanhp) ¢ =0.

®Formally, we are extending the function ¢ from AdS, defined by the hypersurface X? = —L2, to the embedding space.
However, the action of the quadratic Casimir is independent of this extension because the generators J,; are interior to
AdS, ie. [J, X2 +L2]=0.
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This implies that

e—it A L A
Y () 6o
cosh p X0 —xd+1

This is the lowest "energy" state with eigenvalue A for the dilatation operator. Starting from this state
one can construct excited states by acting on it with the generator P,,. Notice that all such states have
the same value for the quadratic Casimir

%JABJBAqS =AA—d)¢p . (8.48)

Hence in this way we can generate all normalisable solutions of the Klein-Gordon equation with
m?L? = A(A —d). This shows that the one-particle "energy" spectrum is given by w = A +1+ 2n
where [ =0,1,2,... is the spin, generated by acting with the traceless generators, P, ...P, — traces,
and similarly, the quantum number n =0, 1,2,... is generated by acting with (Pz)n.

Exercise 8.12. Given the symmetry of the metric (see (E.46)) we can look for solutions of the form
¢ =Y (QF(r), (8.49)

where Y;(Q) is a spherical harmonic with eigenvalue —I(l + d — 2) of the Laplacian on the unit sphere
$9=1. In addition, we changed coordinates with respect to the above such that tanh p = sinr such that
re[0,m/2).

Derive a differential equation for F(r) and show that it is solved by

[+A—w [+ A+ w
2 ’ 2

d
F(r) = (cosr)* (sinr)! ,F, ( L+ > sin r) , (8.50)
with 2A = d + 4/ d? + 4(mL)2. We chose this solution because it is smooth at r = 0. Now we also need to
impose another boundary condition at the boundary of AdS, i.e. r = 5. Imposing that there is no energy
flux through the boundary leads to the quantization of the energies |w| = A+1+2nwithn=0,1,2,...
(see for example [AGM*00]).

If there are no interactions between the particles in AdS, then the Hilbert space has a Fock represent-
ation and the energy of a multi-particle state is just the sum of the energies of particles. Turning on
small interactions leads to small energy shifts of the multi-particle states.

Note that, for a given (effective) mass we can solve the equation m?L? = A(A—d) as

2
A:Aizgi\%+m2L2. (8.51)

Demanding that A, € R requires having m?L? > —%. Hence, we see that a range of tachyonic masses
is allowed. In Minkowski space this would lead to an instability of the perturbative vacuum. In AdS
space, whenever the mass-squared lies above this bound the free energy of the field is bounded from

below and no instabilities arise. This bound is called the Breitenlohner-Freedman bound after [BF82].

When building the phase space above we restricted to A = A,. This is because generically this is the
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only normalisable solution, i.e. with finite norm
||¢||2=Jdd“xv|gll¢|2<00- (8.52)

Note however that in the window —% <m?L?< —% +1, both choices are allowed. This in particular
implies that above this window, only Dirichlet conditions can be considered, while in the window
Dirichlet, Neumann as well as mixed (Robin) boundary conditions are allowed. This phenomenon
goes under the name "alternate quantisation”. In these notes we will usually avoid the subtleties that
come with this and restrict ourselves to m?L? > —de +1.

Green’s functions

To find the Green’s function, let us return to Euclidean signature and afterwards analytically continue
the result to obtain the Lorentzian Feynman Green’s function. For simplicity, we consider a free scalar

field with action

1
Sp= —f d*x (|dg > + m?¢?) . (8.53)
2 AdS

Similar as for the de Sitter space, we can obtain the two-point function (¢ (X)¢(Y)) by exploiting
the conformal symmetry of AdS. The Euclidean Green’s function denoted by the propagator I1(X,Y),
has to obey,

(Ox —m*) X, Y)=—-56(X,Y). (8.54)

From the symmetry of the problem it is clear that the propagator can only depend on the invariant
Z = —X-Y. From now on we will set L = 1 and all lengths will be expressed in units of the AdS
radius.

Exercise 8.13. Use (8.42) and (8.44) to show that

d+1 1+Z7
TI(X,Y) = cp o F; (A+, A= T) , (8.55)
where A, = d=y/diram? ”d;+4mz and c, a normalisation constant which can be fixed by demanding that the
high energy behaviour is the same as in flat space.
For a free field, higher point functions are simply given by Wick contractions. For example,
<¢(X1)¢(X2)¢(X3)¢(X4)> =T1(X1, X2)(X3,X4) + (X7, X3)T(X5, X4) (8.56)

+ (X1, X)(X5,X3) .

Weak interactions of ¢ can be treated perturbatively. Suppose the action includes a cubic term,

_ 1 2, 1 5.5, 1 3]
S_JAdeX|:2(v¢) +omip?+ g’ | (8.57)
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Then, there is a non-vanishing three-point function

(X P(X)P(X3)) = —gJ dY TI(X;, Y)I(X,, Y)I(X3,Y) + 0(g%) ,
AdS

and a connected part of the four-point function of order g2. This is completely analogous to perturb-
ative QFT in flat space.

8.4 Towards a conformal theory on the boundary
Given a correlation function in AdS we can consider the limit where we send all points to infinity.
More precisely, we introduce the extrapolate dictionary to identify an operator on the conformal

boundary with a field in the bulk.

o(P) =

A1im A2p (X =AP+...), (8.58)
A — 00

where P is a future directed null vector in R>¥*! and the ... denote terms that do not grow with A
whose only purpose is to enforce the AdS condition X2 = —1. In other words, the operator O(P) is
the limit of the field ¢(X) when X approaches the boundary point P of AdS. Notice that, by definition,
the operator O(P) obeys the homogeneity condition (8.16). Correlation functions of O are naturally
defined by the limit of correlation functions of ¢ in AdS.

Let us consider this in detail for the two point function. As a first step we have to understand the
asymptotic behaviour of the two-point function IT(X,Y) as X and Y approach the boundary,

X:A,1P1+5X, Y:2,2P2+5Y, Ai_)oo. (859)

In this limit Z = —X Y ~ A;A,P; - P, — 00. The asymptotic behaviour of the hypergeometric function
for large Z is given by
d+1 1+Z
SF; (A,d—A,T;T) ~AZ A4 BZA 4. (8.60)
These two terms come precisely from the normalisable and non-normalisable mode. In standard
quantisation, the leading behaviour comes from the A term, while the B term is subleading. Plugging
this in the Green’s function of the scalar we find

CAAA CAAA
II(x,Y) ~ = 8.61
X, 1) (—2X -Y)A  (—2AA,P; - P))A’ ( )

as A, Ay — o0, Finally, we can find the boundary correlator as

1.
(O(P])O(Pz)) :a R glzn‘_l)ooklAAZAH(Alpl +.. "A’ZPZ +.. )

(8.62)

EETR A
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where the O(g?) terms come in at one-loop level in perturbation theory. This is exactly the CFT
two-point function of a primary operator of dimension A.

Similarly, we can compute the three-point function of three identical scalars. At tree-level in perturba-
tion theory this is given by

_E
2

(O(P)O(P)O(P3)) =— J dX TI(X, P)II(X, PI(X, P3) + 0(g%), (8.63)

where we defined the bulk to boundary propagator

Ca

HXP—hrn)LAHXY AP+ .. —
(X,P) ( )= C2p X

(8.64)

is the bulk to boundary propagator whose form can be derived through similar arguments as above.
Exercise 8.14. Write the bulk to boundary propagator in Poincaré coordinates.

Exercise 8.15. Compute the following generalization of the integral in (8.63),

1
J ( Tk (8.65)

and show that it reproduces the expected formula for the CFT three-point function (O;(P;)O4(P5)O3(Ps3)).
It is helpful to use the integral representation

1 ds D25 PX
8.66
(—2P- X)A F(A) (866

to bring the AdS integral to the form
f dxe*Q (8.67)

with Q a future directed timelike vector. Choosing the X° direction along Q and using the Poincaré
coordinates (E.42) it is easy to show that

f dXe®Q =gt J %Z_%e_”QZ/Z . (8.68)
Z
To factorize the remaining integrals over sq,s,,53 and z it is helpful to change to the variables tq,to, t3
and z using
vzttt
=¥ 123 (8.69)

t:

1

State-operator map

So far, we have established that the correlation functions of the boundary operator defined in (8.58)
exhibit the expected homogeneity and manifest invariance under the conformal group SO(1,d + 1).
These are precisely the properties characteristic of correlation functions of identical primary scalar
operators with scaling dimension A in a conformal field theory. We now turn to the question of
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whether these operators also satisfy an associative operator product expansion (OPE). The argument
closely parallels that of standard CFTs: we interpret the correlation functions as vacuum expectation
values of time-ordered products, and proceed accordingly.

(PXDPK)P(X3)...) = (0]... (T3, p3, Q)P (T2, P2, )P (T1,01,2,)10) (8.70)

where we assumed the time ordering 7; < 75 < 0 < 73 < --- . We now insert a complete basis of
states at global time 7 =0,

(X9 (X2)p(Xa)...)
= D201 (73,03, 93) 1) (1] S (72, p2, ) (71, p1,22)10) . (8.71)
Y

Using the relation ¢ (7, p, Q) = €™ (0, p, 2)e "2, and working in a basis where the Hamiltonian
D= —;—T is diagonal, it follows that the sum over states converges for the chosen time ordering.

The next step is to establish a one-to-one correspondence between states |v) and boundary operators.
Every boundary operator defined via (8.58) determines a bulk state. For example, inserting the
boundary operator at the point P4 = (PO, PH Pd+1) = (%, 0, %), which corresponds to the boundary
point T — —o0 in global coordinates, we can write:

(... 0(X3)O(P)) = (0]... (73,03,923)]0) , (8.72)
where
|O) = ‘EEEHOO (e_f coshp)A é(t,p,Q)|0) (8.73)

=D, I¥) (coshp)* lim (9| e"P2)(0,p,)(0) -
Y

The limit T — —00 projects onto the lowest-weight (i.e., primary) state, whose wavefunction matches
that in (8.47).

To complete the state-operator correspondence, we use global time translation invariance. For any
state |1), we define the corresponding boundary operator O,,(P) via:

<0|~-¢;(T3793593)|T/)(0)> (8.74)
= _lim _(0]...¢(t3,p3,2)e™ (1)) = (... p(X3)04(P))

where |1(7)) = e *P|y) and P = (%, 0, %) is again the boundary point defined by T — —oo in global
coordinates. The idea is that |y)(7)) prepares a boundary condition for the path integral on a surface
of constant T and this surface converges to a small cap around the boundary point P4 = (%, 0, %)
when T — —oo. This is depicted in figure 8.3.
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Figure 8.3: Curves of constant 7 (in blue) and constant p (in red) for AdS, stereographically
projected to the unit disk (Poincaré disk). This shows how surfaces of constant T converge
to a boundary bound when 7 — —o0. The Cartesian coordinates in the plane of the figure

are given by w = m (cosh p sinh 7, sinh p) which puts the AdS, metric in the form
dSz _ 4dw?
= 1w

Generating function
So far we have taken the approach of computing boundary correlators by starting from the bulk and
extrapolating to the boundary. This approach captures the extrapolate dictionary.

Another common dictionary to define CFT correlation functions from a bulk QFT in AdS is via a

generating functional. We introduce the functional
W [p] = (eJorsdPosPIO®)) (8.75)

where the integral is taken over a chosen section of the null cone in R**! | equipped with its induced
measure. The source ¢, (P) is required to transform homogeneously under rescalings as

¢»(AP) = 25719, (P), (8.76)

ensuring that the integral is invariant under changes of section — in other words, that it is conformally
invariant. For instance, on the Poincaré section, the integral becomes the standard expression

[ d¥x ¢ (x)O(x).

CFT correlation functions are then recovered as functional derivatives:

19) 9]
W] . (8.77)

(O(Pl) . O(Pn» = 5¢b(P1) 5¢b(Pn) ¢p=0

To relate this construction to AdS QFT, we define the generating functional W[ ¢, ] as the ratio of AdS
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path integrals with specified boundary behaviour:

Jgosp, AT
Jomoldglesior”

Wigp]l= (8.78)

where the path integral in the numerator is taken over bulk fields that asymptotically approach the
source ¢,(P) at the boundary. Specifically, we impose the boundary condition

1 1

T 2A-d . JC,

With this prescription, the resulting boundary correlators computed via functional differentiation of

Alim A Bp(X=AP+...) ¢p(P), (8.79)

W[ ¢, ] reproduce the correlators of O defined earlier as limits of bulk fields.

For a free scalar field, the path integral becomes Gaussian and can be evaluated using the classical
solution ¢ satisfying the AdS equations of motion and the boundary condition (8.79). A natural
ansatz for this solution is

¢p(P)

¢(X)=+/Cx P s

2AdS
which indeed solves the AdS Klein-Gordon equation V2¢ = m?¢. This follows because ¢(X) is a
homogeneous function of degree —A and satisfies 3,0%¢ = 0 in embedding space (see equations
(8.42) and (8.44)). To verify that the boundary condition (8.79) is also satisfied, it is convenient to
work in the Poincaré patch:

(8.80)

Exercise 8.16. In the Poincaré section (8.15) and using Poincaré coordinates (E.42), formula (8.80)
reads

A
¢ (z,x) = \/C_AJ ddy(zzi(fb_(};))z)A (8.81)

and (8.79) reads
1 1

2A —d 1/cA

Show that (8.82) follows from (8.81). You can assume 2A > d.

lin(l)zA_dcb(z, x)=

Pp(x) . (8.82)

Now consider the addition of interactions, such as a cubic term %gdﬁ’ in the bulk action. This modifies
the classical solution ¢ = ¢+ O(g) and introduces order-g corrections to W[¢,]. To compute the
classical action, we must address a subtlety: the bulk action must include a boundary term to ensure
a well-posed variational problem.

Exercise 8.17. The coefficient 3 should be chosen such that the quadratic action

Sy = f VOl[%(Vd))z + %m%z] +/5f volV, (¢ V) (8.83)
AdS AdS

is stationary around a classical solution obeying (8.82) for any variation & ¢ that preserves the boundary
condition, i.e.
Sp(z,x)=22[f(x)+0(2)] . (8.84)
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Show that § = AT_d and that the on-shell action is given by a boundary term

_2A—d
27 o4

J volV, (¢ V%) . (8.85)
AdS

Finally, show that for the classical solution (8.81) this action is given by ’

1
52573 f d?y1d%y2¢,(y1)06(V2)K(y1, ¥2) » (8.86)
where
2A—d ddx 2% &
Y1:¥2) = Ca— z—>0J 2971 (22 4 (x — y1)2)® T (22 + (x — y9)2)?
1
_ 1 (8.87)
(r1—y2)*2

is the CFT two point function (8.62).

Exercise 8.18. Using ¢ = ¢+ O(g) with ¢ given by (8.80), show that the complete on-shell action is
given by
__1

§=—3 f d?y1d%y2¢5(y1) s (YK (1, ¥2) + %gf dX [$o(X)T* +0(g?), (8.88)
: AdS

and that this leads to the three-point function (8.63).

Extra: Compute the terms of O(g?) in the on-shell action.

8.5 The necessity of dynamical gravity

In the previous sections, we have seen that a quantum field theory (QFT) defined on an AdS back-
ground naturally gives rise to conformal correlation functions on the boundary of AdS. More precisely,
we established that boundary states organize into representations of the d-dimensional conformal
algebra. Via the state-operator correspondence, this implies that local operators on the boundary
transform covariantly under conformal transformations, and that their operator product expansion
(OPE) defines a consistent and convergent product structure on the space of boundary operators.

These features collectively characterize what we will refer to as a conformal theory (CT). As we have
shown, this minimal set of properties already leads to significant constraints: correlation functions
are highly structured, and all operators must have scaling dimensions above the unitarity bounds.

However, conformal theories in this sense are missing a crucial ingredient that would elevate them to
full conformal field theories (CFTs): they lack a stress-energy tensor. That is, their spectrum does not
include a conserved, symmetric spin-2 operator T, of dimension A = d. In the remainder of this
section, we will explore why the presence of the stress tensor is so significant and how its universal

’This integral is divergent if the source ¢, is a smooth function and A > %. The divergence comes from the short
distance limit y; — y, and does not affect the value of correlation functions at separate points. Notice that a small value of
z > 0 provides a UV regulator.
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properties are intimately connected to the emergence of gravity. Based on our previous discussions, it
should already be clear that the stress tensor plays a key role in implementing conformal symmetries
in a local and spacetime-resolved manner—Ilocal in the sense that the symmetry transformations are
generated by insertions of T, (x) at spacetime point x.

We begin by reviewing some general aspects of conserved currents. When a quantum field theory
possesses a global symmetry, it is associated with a conserved current J,,. In such cases, the theory
can be coupled to a non-dynamical background gauge field A, that sources this current. For our
boundary theory, the coupling takes the form

S=S+ J JHA,,, (8.89)
Jd AdS

Here, A,, denotes a fixed background gauge field defined on the boundary of AdS. In the context of
the bulk-boundary system, coupling the boundary current to this background field is equivalent to
introducing a dynamical gauge field in the bulk subject to Dirichlet boundary conditions:

Abulk

u laaas =Au- (8.90)

From the bulk perspective, gauging the global symmetry on the boundary corresponds to promoting
A, to a dynamical field and relaxing the boundary conditions from Dirichlet-type to Neumann-type.
This transition reflects the shift from treating A, as a fixed source to treating it as a fluctuating
dynamical degree of freedom. At first glance, it may seem puzzling that a global symmetry on the
boundary is dual to a gauge redundancy in the bulk. The resolution lies in the notion of a long-range
gauge symmetry. In the bulk, there exist Wilson lines that can terminate on charged operators at the
boundary, giving rise to non-trivial, physical observables. Gauging the boundary symmetry amounts
to identifying these charged operators under a local redundancy, thereby rendering the corresponding
Wilson lines trivial. In this way, the dual of a global symmetry is not a mere gauge redundancy, but a
gauge symmetry with physical, long-range implications.

Extending the reasoning above to include spacetime symmetries, we consider the role of the stress-
energy tensor T#”. Just as a global symmetry current can be coupled to a background gauge field,
the stress tensor naturally couples to a background metric g,,. On the boundary, this coupling takes
the form

S=S+ f g, . (8.91)
J AdS

where g, is interpreted as the boundary value of a bulk dynamical field — namely, the spacetime
metric. This is the gravitational analogue of coupling a conserved current to a background gauge
field. But crucially, to account for dynamical responses of the theory (e.g. to compute correlation
functions involving T"”), we must allow g,,,, to fluctuate. That is, it is a dynamical field in the bulk.

This leads to a profound conclusion: if the boundary theory possesses a conserved stress tensor — that
is, if we are dealing with a full-fledged conformal field theory — then the bulk dual must include a
dynamical metric. In other words, the bulk theory must contain gravity. More precisely, since the dual
theory lives in a spacetime that asymptotically approaches AdS, this must be a theory of quantum
gravity in asymptotically AdS space.
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This connection makes gravity in the bulk unavoidable: the very existence of a conserved stress tensor
in the boundary theory forces us to include a dynamical spin-2 field, i.e. the bulk graviton. Thus, a
conformal field theory on the boundary theory implies dynamic gravitaty in the bulk.

The next exercise also shows that a free QFT in AdS,.,; can not be dual to a local CFTj.

Exercise 8.19. Consider a gas of free scalar particles in global AdS. Since the particles are bosonic
and non-interacting, multiparticle states can be formed by populating each single-particle state with
any number of quanta. The full partition function is thus a product over single-particle states, and is

completely determined by the single-particle partition function.

Letq = e_%, where T is the temperature and R is the AdS radius. The energy eigenvalues E,, of the
single-particle states are determined by the AdS global Hamiltonian D = —d.. Show that:

oo o
1
F=-TlogZ=-Tlog[ | (Z q"Ewsp) =-T > =Z1(q"), (8.92)
Yoy \k=0 n=1"

A

q
Z(Q) =) q" = : (8.93)
™ (1—q)

where Z1(q) is the single-particle partition function and A is the conformal dimension of the scalar field.

Show that in the high-temperature limit (T > 1%), the free energy behaves as
F ~—{(d +1)RITI*H! (8.94)

where {(s) is the Riemann zeta function.

Compute the entropy from the free energy using the thermodynamic identity:

JoF

S=—2=.
aT

(8.95)
Compare this with the expected scaling of the entropy of a conformal field theory on a spatial sphere S

of radius R, which behaves as
S~ (RT) T, (8.96)

Discuss the physical meaning of this discrepancy in scaling, particularly in light of the difference between
a theory in AdS and a boundary CFT. For further insights and a more detailed discussion, see section 4.3
of [ESP12].

8.6 The AdS/CFT correspondence

Finally, we are ready to state the AdS/CFT correspondence in its full form. The central statement of
the duality relates the partition function of string theory in an asymptotically AdS spacetime to the
generating functional of correlation functions in a conformal field theory living on the boundary of
that spacetime. This is succinctly expressed as:

Zoan [ (6, 2]z = po(x)] = (] ¢ x0o00) (8.97)

CFT *
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On the left-hand side, we have the partition function of a quantum gravitational theory (often string
theory or a low-energy effective supergravity theory) in a bulk spacetime that is asymptotically Anti-de
Sitter (AdS). This partition function is computed with the boundary condition that the bulk field
¢ (2, x) approaches a fixed value ¢,(x) at the conformal boundary z = 0. On the right-hand side,
¢o(x) is interpreted as a source for a local operator O(x) in the boundary conformal field theory. The
exponential generates all correlation functions of O(x) via functional differentiation with respect to
¢o(x) as introduced above.

This expression encapsulates the core principle of the AdS/CFT correspondence: every bulk field
¢ (2, x) is dual to a boundary operator O(x), and their dynamics are intricately linked via the equality
of partition functions.

In practice, computing the full quantum gravitational path integral is an incredibly difficult — if not
impossible - task, especially in strongly curved or stringy regimes. However, substantial progress can
be made in the semi-classical limit, where the bulk theory is weakly coupled. This limit is typically
controlled by a large parameter, such as the string tension 1/a’ or the rank N of the gauge group in
the boundary theory. In this regime, the bulk path integral can be approximated via a saddle-point
expansion around classical solutions to the equations of motion:

Zpulk ™ Z e Sat(Psadate) +O(@,1/N) O(loops), (8.98)
saddles

Here S, denotes the classical action evaluated on a saddle-point ¢,qqi.. @’ corrections correspond to
higher curvature corrections, while ]% corrections correspond to quantum corrections.

This approximation is valid when the gravitational theory is weakly coupled, and quantum and stringy
corrections are suppressed. The validity of this approximation depends on two independent but
related criteria:

* Small String Length vs. Curvature Scale:

The first condition is that higher derivative corrections, controlled by the parameter a’, must
be small in units of the AdS length, z‘—; < 1. This condition ensures that higher-curvature
corrections to the supergravity action, which scale as powers of a’/L?, are negligible. When
this inequality holds, the gravitational dynamics can be described by classical gravity rather
than full quantum gravity.

* Weak Bulk Coupling (Large Effective Planck Mass):

The second condition is that quantum corrections from bulk loops are suppressed. These are
governed by the bulk Newton constant Gy, or equivalently, by the Planck length £,. The
effective loop expansion parameter is Li—’fl < 1. This ensures that one-loop and higher-loop
contributions to the path integral are subleading, allowing us to keep only the tree-level
(classical) contribution.

Up to this point, we have approached AdS/CFT from a "bottom-up" perspective, treating the bulk
theory as an effective field theory of gravity coupled to matter fields in an AdS background. This
approach is flexible and allows for general insights into the structure of holography, but it leaves open
the question of UV completeness: what is the full theory that consistently includes quantum gravity?
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To make the correspondence precise and UV-complete, we must turn to string theory. String theory is
currently the only known consistent framework for quantum gravity, and it provides a "top-down"
construction of the AdS/CFT correspondence. In this setting, AdS/CFT emerges as a specific limit of
a duality between string theory on certain ten-dimensional spacetimes and (often supersymmetric)
gauge theories in lower dimensions.

The canonical example

The best-understood and most precisely formulated example of the AdS/CFT correspondence is the
duality between:

* Type IIB string theory on AdSs xS° with N units of five-form flux,

* 4d N =4 SU(N) super Yang-Mills (SYM) theory.

Type IIB string theory on AdSs xS° (with equal radii L) and fss F5 ~ N is a maximally supersymmetric
background with isometry group SO(2,4) x SO(6). This background can be obtained as the gravita-
tional backreaction of a stack of N D3-branes in flat space. N'=4 SU(N) SYM on the other hand is a
maximally supersymmetric conformal field theory who’s field content consists of an SU(N) gauge
field, four Majorana fermions (gaugini) and six scalars, all transforming in the adjoint representation
of SU(N). The global symmetry group of this theory is SO(2,4) x SO(6), precisely matching the IIB
isometry group, where the first factor is the four-dimensional conformal group and the second factor
corresponds to the R-symmetry (rotating the various supercharges). This CFT can be obtained as the
world-volume theory living on the same stack of N D3-branes, where the SYM fields arise as the open
string modes ending on the branes. In string theory the duality can be understood as open/closed
string duality relating.

The AdS/CFT correspondence asserts that the partition function of type IIB string theory on AdSs xS°
with appropriate boundary conditions for the bulk fields is equal to the generating functional of
connected correlators in N' =4 SYM with sources

Zcrr = Zus (8.99)

This means that every local gauge-invariant operator in the CFT corresponds to a field (or excitation)
in the bulk, and the dynamics of the two theories are fully equivalent.

The duality includes a precise map between the parameters of the two theories relating the string
theory parameters with CFT parameters. We list the most important entries in Table 8.1.

In order for the semi-classical approximation to be valid, we need small string correction, which
corresponds to large 't Hooft coupling,

LZ
—~ Vs, (8.100)

This ensures that the curvature scale of the background is small compared to the string scale, sup-
pressing higher-derivative corrections. In addition, in quantum corrections are suppressed if N is
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Quantity String theory CFT
Gauge coupling g}% M 4rg,
't Hooft coupling A=gz,N 4ng N
AdS radius VA LZ/ZS2
5d Newton constant GI(VS) ~ N2

Table 8.1: Holographic dictionary between parameters. g; is the string coupling and £, = v'a
the string length.

large,

)
g~ <L, (8.101)

Putting these together, classical supergravity is valid when N, A > 1. This corresponds to the strongly
coupled, large-N limit of the gauge theory. In this regime, we can compute CFT correlators and
observables by solving classical equations of motion in type IIB supergravity on AdSs xS°. Conversely,
at weak coupling (A < 1), the gauge theory is accessible via perturbation theory, but the bulk dual
becomes strongly curved and stringy and is no longer described by (semi-classical) supergravity.

In other words, the holographic duality is a strong-weak duality, meaning that when one side is
weakly coupled, the other is strongly coupled. It provides a non-perturbative definition of string
theory in certain backgrounds and gives a powerful tool for studying strongly coupled gauge theories.

The holographic correspondence is a rich and active research field, reaching far beyond what is
discussed in these notes. A more complete discussion would go beyond the scope of this course,
but let us offer some final remarks. Over the past two decades, AdS/CFT has grown from a bold
conjecture into a versatile and powerful framework that connects quantum field theory, quantum
gravity, and string theory in profound ways. Current research continues to expand the dictionary
between bulk gravitational theories and boundary conformal (and non-conformal) field theories,
exploring less symmetric setups, finite-coupling effects, and quantum corrections. There is also a
strong drive to apply holographic ideas to more realistic systems, ranging from condensed matter
physics to strongly coupled nuclear matter and beyond. Simultaneously, efforts to understand the
emergence of spacetime geometry, the role of entanglement, and the microscopic origin of black
hole entropy place holography at the heart of the quest to reconcile gravity and quantum mechanics.
While much remains to be understood, the general trend is clear: holography provides a uniquely
powerful lens to study the deep interplay between geometry, quantum information, and field theory,
making it one of the most vibrant and promising areas in modern theoretical physics.

8.7 Hawking radiation in AdS

In this last section, which is left entirely as an exercise, we derive the Hawking effect for black holes
in AdS space.

Exercise 8.20. Hawking radiation in AdS
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5.

. Consider the following metric for a black hole in AdS,, 4 space,

ds? = f(r)dt?— ar® r2dQ? (8.102)
’ fn e |

where f(r)=r?>+1— rdi_z The mass is related to the parameter u as

(d—1)u=8n¥r(g)M. (8.103)

Argue why this metric represents a black hole,show that asymptotically it reduces to a metric on
standard AdS,,, and find the horizon radius ry ford =3 and d = 4.

From now on, consider the same type of 2d toy model we considered in the Chapter 7. Discard the
transverse sphere but keep the same function f(r) as for d = 4. As in flat space this suffices to
predict the correct temperature. What changes when we reintroduce the sphere?

Introduce the tortoise coordinate analogous defined by dr* = d(l:) which tends to —oo near the

horizon and approaches a constant value near the asymptotic boundary.

Similar as in flat space, define the null coordinates u = t —r* and v = t + r* appropriate to
describe incoming and outgoing waves for an asymptotic observer. Similar as in flat space, define
the Kruskal coordinates

_f’(ZrH)u o),

U=—e , V=e2", (8.104)

appropriate to describe an observer outside the future or past horizon.

Define the (plane wave) modes for both observers analogously as we did in the lectures for the
Unruh effect or Hawking radiation in asymptotically flat space. Show that imposing reflective
boundary conditions at r = 00 implies that the solutions have to be standing waves. (Consider
Dirichlet and /or Neumann only)

Compute the Bogoliubov coefficients relating the two types of modes and use this to find the
temperature of the Hawking radiation. (Hint: You can do this only for the outgoing modes
depending on u resp. U. The computation for ingoing modes is analogous and essentially fixed by
the boundary conditions.)

Physically speaking, what is the effect of the boundary conditions?

Exercise 8.21. Euclidean time periodicity

An alternative way to detect the thermal nature of black hole backgrounds is to study the periodicity in

Euclidean time. Show that for a generic black hole background with metric (8.102), the absence of

conical singularities predicts a Hawking temperature T = % with

_4rn
)

B (8.105)

(Hint: expand the metric around the horizon and rewrite in the standard metric on RLI x sd-1)

8You do not need to assume anything about the asymptotic behaviour at r — co.
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Use this to verify your computation of the Hawking temperature of the AdS Schwarzschild black hole in
the previous exercise.
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Appendix A

Conventions

In these notes we use natural (or Planck) units in which & = ¢ = Gy = kz = 1. In these units the
natural scales are given by

Quantity Expression Metric value
Length lp = % 1.616 - 1073 m
_ [& -8
Mass mp =4/ G 2.176 - 107° kg
Time tp =1/ ﬁ% 5.391 - 107" s
Temperature Tp =,/ thliz 1.417 - 10°2 K
wky

Using these normalised units, the cosmological constant of our observable universe is A ~ 2.888 -
1222
107122052,

These notes we employ a plethora of indices, each with its own meaning. The various uses of indices
are summarised in Table A.1 below.

Index Range Meaning
Uy Vs ... 0,...,d Curved spacetime indices
m,n,... 1,...,d Space-like curved spacetime indices
M,N,... | 0,...,d+1 Embedding space curved indices
a,b,... 1,...,d Tangent space indices
a,pB,... 1,2 SU(2); indices
a, [3, ... 1,2 SU(2)y indices

Table A.1: The various indices used in these lecture notes. d is the dimension of spacetime.
When considering four-dimensional spacetime we sometimes employ the exceptional isomorph-
ism s0(4) = su(2); x su(2)g.

A.1 Signs, signatures and curvature

Let (M, g,,,) be our space-time. For the most part, we will take to be a four-dimensional manifold
with metric g, and here we restrict to this situation only. As usual curved indices are raised and
lowered with respectively the metric and its inverse g*” while flat tangent space indices are raised
and lowered with the Minkowski metric

Ngp = diag(—1,1,---,1), (A1)
and its inverse, where in these notes we choose mostly plus conventions.
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In the literature many conventions are used, often causing confusion when comparing different
sources. In order to easily compare with the literature we keep all the signs explicit in this appendix
while in the main text we fix all signs to be one,

§] =89 =83=84=S55=1. (A.2)

The first choice of sign comes from the signature of the metric, which can be either mostly plus or
mostly minus,
Nap =s; diag(—1,1,---,1,1). (A.3)

A second sign appears in the definition of the Riemann tensor,

R’ o =—s5(8,I0, —8,If +TPT7 —TPTF ). (A.4)

utvo ut - vo VT Uo

A third sign appears in the definition of the Ricci tensor

s353R,, =R R=g""R,,. (A.5)

Je)
vou>

This sign in turn gives rise to a sign in the Einstein equation

1
S3 (RW— 5gWR) =x*T,,, (A.6)

where by definition, Ty, is always positive and x? = 8tGy. The signs s; and s3 determine the signs
of the kinetic terms of scalars and gravitons

1 1
:ﬁ |g|{5153R_51§au¢au¢_ZF,qu“v"""} . (A.7)

Hence, looking at the Lagrangian one can easily recognize the values of these signs.

When working with frame fields the curvature can also be obtained from the spin connection wuab.

The usual convention is that it is related to the curvature defined above in terms of the Christoffel
symbols as
Rpo™ (1) =Rpo P (w)ele, . (A.8)

However, there is an independent sign in

ab _ __ ab __ ab ac, b _ ,.ac,.b
R, = 34(3“6% vau Wyl — ) wuc). (A.9)

This sign is relevant when considering the covariant derivatives of vectors and spinors, which are
given by
1
Vo= (8H+szs4zwuabyab)lp, v,vt=g9,v" +szs4wuabe. (A.10)

Furthermore we always (anti-)symmetrize with weight one, i.e.
1 1
Argp) = E(Aab —Apa), Aup = E(Aab +Apq) - (A.11)
In some references the factor of 2 is omitted. Finally, the Levi-Civita tensor is defined as €93 = s5
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0123 _ _

and € Ss.

To illustrate all these conventions above here are some useful formulae which depend on the choices
of sign

V,.e5 = 3d,e; +szs4wuabevb —IPe; =0, (A.12)
wuab = 5984 (Zev[a a[uei} — e”[aeb]aemaveg) , (A.13)
[Vw v,] Vo =R 1y Vs (A.14)
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Appendix B

Differential forms

Differential forms often simplify formulae both computationally and conceptually. In this appendix
we briefly review the essentials of this framework, for a more comprehensive treatment, see for
example [Nak90,BT13,Nab10].

On any manifold we can define the formal objects, dx*, called differentials. The composition of such
differential forms is done through the exterior product and denoted by a wedge, A. This product is
associative and anti-symmetric,

1
dx" AL Adxte =dxlf AL Adx] = - Z (=D)1ldxHow A .. A dxHo® (B.1)

OES,

where |o| denotes the signature of the permutation o. We define a p-form as an element of the linear
vector space AP(M) spanned by the the external composition of p differentials. Any p-form can thus
be represented as a homogeneous polynomial of degree p in the exterior product of differentials,

a dxftALdxte = apy X AL dXEE € AP(M)). (B.2)

= Q...

In a d-dimensional manifold, the direct sum of vector spaces A(M) = @ﬁzo AP(M) is called the
exterior algebra. In the exterior algebra, the exterior product is a map A(M) x A(M) — A(M)
defined as

AAB = apy, By XA A € APTI(M), (B.3)

where a is a p-form and 8 a g-form. This product is graded commutative

aAB=(1PIBAa. (B.4)

We also have the exterior derivative defined by

da=q, a dxPr AL Adxer € APTLHM). (B.5)

M2 -Mp+1
Key features of the exterior derivative are:

Lemma B.1. The exterior derivative does not depend on the choice of torsion-free covariant derivative.
We have d%a = 0 for all a as a consequence of the commutation of partial derivatives (or symmetry of a
torsion-free connection).

Thus it is metric independent and can be defined just using the coordinate derivative in any coordinate
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system. The fact that d? = 0 allows us to define cohomology groups
HP(M)={a <€ QP|da=0}/{a=dp}, (B.6)

since the exact forms, i.e. those that can be expressed as df3, are a subset of the closed forms, those
that satisfy da = 0. Such cohomology groups encode important information about the topology of M
because da = 0 implies that locally there exists a § with a = d 8 (Poincaré lemma).

Example B.1. As an example, consider the circle S*. Since the circle is connected, every two points are
connected by a segment and are cohomologically equivalent. Indeed, this implies that H°(S') = R which
remains to be true for any connected manifold. Next, let us compute H*(S'). Consider a generic one-form
w = f(0)d0 € Q}(S1). This form is clearly closed so we are left to investigate whether it is exact, i.e. if
we can find a globally well-defined function F such that «w = dF. Locally it is easy to see that we can find

such a function,
0
F(0)= f f(6"Hde’. (B.7)
0

In order for F to be globally well-defined we need to impose that F(27) = 0. Defining the function
27
A: QY (SYH > R:w=F(6)d6 »—>f £(6))de’, (B.8)
0

it is easy to see that the first cohomology group is given by

HY(SH=0Q'(S!)/kerA =imA =R. (B.9)

The exterior derivative satisfies the graded Leibniz rule

dlaAB)=(da)AB+(—1)Yandp. (B.10)

Furthermore, we can also define the interior product with a vector V¢ that takes a p-form «a to the
p — 1-form*
(V—'a)a2a3...ap = pVa1 aal...ap . (B.11)

This also satisfies a graded Leibniz property,
ValaAB)=(Vaa) AP+ (—1)PaAn(VaB). (B.12)
It plays a role in the Cartan formula for the Lie derivative of a form

Lya=Vida+d(Via). (B.13)

When we have a metric, we can define Hodge duality: in d dimensions a p-form a is dualized to a

d —p form *a by
1
(*a)apﬂ...ad = ;gal...ad af (B.14)

!Another common notation for the inner product is given by v, a = V 1a.
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where €4, 4, = €[q,...q,] 30 €01..4—1 = +/—& is the metric volume form.

A key application is to integration. Being a covariant tensor, a p-form naturally ‘pulls back’ under a
map, and restricts to provide a p-form on a submanifold. On a p-dimensional submanifold, it can
naturally be integrated subject to the choice of an orientation on the surface.

Definition B.1. A p-surface X is said to be orientable if it is possible to choose a non-vanishing
p-form. Such a choice provides an orientation on %P

The key point is that under a change of coordinates on the p-surface ~?, a p-form transforms with
the determinant of the Jacobian of the coordinate transformation, whereas the change of variables
formula for integration requires the modulus of the determinant which can introduce additional signs,
and so we must restrict the coordinate transformations to those that preserve the sign of the chosen
form making sure that the sign in question is positive.? The standard example of a non-orientable
manifold is RP?" = §2"/Z, where the Z, acts by the antipodal map which reverses the sign of the
volume form.

The main theorem concerning integration on manifolds is Stoke’s theorem:

Theorem B.2 (Stokes). Let X be a p-surface with boundary S with compatible orientations (i.e., the
orientation on S is obtained from that on T by use of an outward pointing normal vector), and let a be a

f daZJ a. (B.15)
b s

Another application is the Cartan formulation of connections and curvature.

p — 1-form on %, then

B.1 Connections and curvature

Instead of working with the metric, it is often useful to define a orthonormal frame of one-forms, or
vielbeine, e® = eﬁdx“ satisfying

8uv = Navelies, (B.16)
where 1., = diag(1,—1,---,—1) is the flat Lorentz metric. The vielbeine ez and their inverses e} can

be used to freely convert curved spacetime indices to flat tangent space indices. Note that the global
structure of spacetime manifolds does not always allow the vielbeine to be chosen globally. In other
words, generic spacetimes do not admit a global framing. In general this description is only valid
locally. However, for globally hyperbolic spacetimes with orientable spatial slices, it is valid globally.

The connection acting on this frame can be obtained from the Cartan structural equation

dea+wab/\eb:O, (B.17)

2The issue is seen in one dimension: under the transformation y = —x,

b —b —a
J f(x)dx :J —f(=y)dy = J f=y)dy,
a -b

—a

so that there is no sign change if we are to integrate from the lower limit to the upper in each case.
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where

W = lab]l = dx“couab s (B.18)

is the 1-form spin connection.® In terms of the spin connection, we can define the curvature 2-form,
R,’ =dx“/\dvam,ab =dw? + ' Awy. (B.19)
Consistency then requires that this form satisfies the Bianchi identities
R AeP =0, dR%, + w? AR‘, —R% A w’;, =0. (B.20)
For a general 1-form we can then write the covariant derivative as
VAp = (0Ap — 0, pA) (B.21)

and similar for higher forms. In addition, this formulation allows us to consider spinors in general
spacetimes.

3Note that here, as always in this course, we assume the connection to be torsionless. In the presence of torsion, (B.17)
has to be modified to de® + w®, A e? = ©, where @ is the torsion 2-form. Similarly, in the presence of torsion the Bianchi
identities have to be modified.
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Appendix C

Hypersurfaces

This appendix reviews some facts on hypersurfaces which will be useful in various computations in
this course. More details and examples can be found in the book [Poi04].

Let M be a (d + 1)-dimensional Lorentzian manifold. A hypersurface > can be defined by parametric
equations of the form
xt = xH(yP), (C.1)

where x are coordinates on M and y?, p =1,...d are intrinsic coordinates on . Alternatively, the

hypersurface can be defined by implicit equations
d(x")=0. (C.2)

Exercise C.1. As in standard Euclidean geometry, show that the vector J,® is always normal to the

hypersurface.

A hypersurface is null if g"”5,$3,® = 0 and space/time-like if the vectors in the tangent space at
each point are space/time-like. When the hypersurface is not null, we can introduce the unit normal
vector, defined by

n“n,=¢€= (C.3)

{ +1, if - is space-like,
u

-1 if 2 is time-like.

When the hypersurface is defined implicitly, the normal is proportional to J,®. By definition, the
normal is pointed in the direction of increasing &, i.e. n"9,® > 0.

Exercise C.2. Show that the normal can be written as

€9,®
n, = W . (C.4
Define now the tangent vectors
B*, = g’;g ., nE",=0. (C.5)
The pull-back of the metric to X is then given by
ds? s = &uE",E"dyPdy? = —ehp,dyPdy?. (C.6)

This defines the so-called induced metric, or first fundamental form, h,,. For non-null surfaces we

pPq-
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can then define the surface element as
1p11/24d _
dz=|n/"?dy,  dz,=en,dz. (C.7)

One then has the following Lorentzian (or Pseudo-Riemannian) version of Stokes’s theorem,

Jdd+1x |g|VMA“=f dz, A% (C.8)
M IM

Exercise C.3. Show that the ambient metric g"”, when restricted to %, can be decomposed as

gt =e€ (n“nv — hpqE“pqu) . (C.9

The second fundamental form, or extrinsic curvature, is defined as
_ u v
Kpq =V, n,E* E”,. (C.10)
Exercise C.4. Show that K, defined in (C.10) is a symmetric tensor and can furthermore be written as

1
Kpq = 5 LagurE"pE” (C.11)

where L,, is the Lie derivative along the normal vector n.
The trace of the extrinsic curvature is given by
K =hPK,, = (n"n" —eg"")V,n, =P E* E” V,n,. (C.12)

Exercise C.5. As an example, and to get familiar with the concepts introduced above, consider the
spacetime M with metric,
ds? = V(r)dtz—V(r)_ldrz—rdefi_l. (C.13)

and consider the hypersurface defined by r = constant.

1. Compute the tangent and normal vectors.

2. Compute the induced metric and extrinsic curvature.
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Appendix D

Variational calculus

To keep the discussion in these notes self-contained, this appendix includes a short discussion of
variational calculus, in particular as applied to the Einstein-Hilbert action. Even though we do not
discuss dynamical gravity in these notes this will be useful to revisit the general principles.

The Einstein-Hilbert action for the gravitational field in d + 1 dimensions is

Spi = 16¢1ch J d*1x4/|gIR. (D.1)
Its variation leads to the vacuum Einstein equations. After including additional matter fields these
give rise to a non-trivial stress-tensor. The derivation of Einstein’s equations is standard and can
be found in many textbooks. However, the standard derivations often do not carefully include the
contributions due to boundary terms. Such contributions are not so important if your main interest is
the study of the solutions to Einstein’s equations in classical GR. However, in a quantum theory, the
action becomes a crucial object since it gives the weight of a field configuration to the path integral.
For this reason let us revisit this derivation with particular care paid to the boundary terms.

Let us consider the gravitational action in a region M of space-time, with boundary d M and analyze
the variation of the action as we vary the metric, with the condition that the metric variation vanishes
at the boundary:

=0. (D.2)

o
Euvl,

To study the variation of the Einstein Hilbert action, note that

1
54/ 1gl =—5\/Ig|gw5g“v, (D.3)

such that
5(V1gIR) = V/181G,,58" + /118" 6R .., (D.4)

where G, =R, — % gu»R is the Einstein tensor. The vanishing of the first term leads to Einstein’s
equations in empty space, while the last term is usually neglected by arguing that it vanishes on a
boundary at infinity. However, let us have a closer look at this term. Using a local frame where the
Christoffel symbols vanish, i.e. using Gauss’s normal coordinates, we have

BR,y = 6RP =5 (8,10 —3,TP) = V6T —V,6TF,. (D.5)
This last expression is covariant and hence applies in any coordinate system. We can therefore write

g""oR,, =V, 6V, SvH = g“pSvav — ngSng. (D.6)
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Using Stokes’ theorem we can then write

f d?1x |g|g‘“’5RW=J dd+1x,/|g|vH5vM=J dz,5vH. (D.7)
M M

oM

Let us now proceed to compute the variation of v. Since the variation of the metric, but not of its
derivatives, vanishes at the boundary, we find

1
51—‘50 = Eg‘”(5aogvp + 5apgva - ‘Savgpg) P (D.8)

and therefore we have
ov, =g’ (58ng0—58pgw) . (D.9)

Finally, before we can plug this into (D.7), we need to contract this with the vector n normal to the
boundary;,

n"6v, =—n'e (npn" —hpqupEUq) (Saggup — Sé’ug(,p) . (D.10)

Now notice that the last bracket is anti-symmetric in u and o, while n*n° is symmetric under the
interchange of indices. Therefore, the part of the metric which involves the normal vectors drops
out. Next, we note that 67, ¢,,E?, =0, since the variation of the metric vanishes everywhere on the
boundary and therefore the variation on its tangential derivatives has to vanish as well. Summarizing,
we have

n"6v, =—eh??639,g,,n". (D.11)

This involves the variation of the derivative of the metric along the normal direction to the boundary
so it is in general non-vanishing.

Putting everything together, we find

dit x4/ 1g|G,08"" — f ddy+/ |h|h*"63,g,,,n" . (D.12)

oM

M

Therefore, in the presence of a boundary, Einstein’s equations are not sufficient to guarantee the
vanishing of the variation of the action, due to the second term in (D.12). To remedy this, we must
add an explicit boundary term to the action,

1
Sey = —— d?y+/|hK, D.13
GH 871Gy LM ¥4/ |hl ( )

called the Gibbons-Hawking counterterm. To see that this counterterm has the correct properties, let’s
have a quick look at its variation. Since the metric is fixed at the boundary the variation of h vanishes
and the only variation comes from the extrinsic curvature K. Computing its variation we find

1
6K =h""60,n, = Eh“v63pgwn“. (D.14)
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Varying the Gibbons-Hawking counterterm we then find

16mGy6Sgy = f d’y /|hlh*"53,g,,,n" , (D.15)
M

which exactly cancels the boundary term in the original variation and thus rendering the variational
principle well-defined.

In the context of black hole physics and AdS/CFT this is not always enough. In general, the action,
supplied with the Gibbons-Hawking counterterm, will lead to divergences when evaluated, even
in flat space. In order to obtain finite values for the on-shell action, it is usually necessary to add
additional counterterms removing the divergences. In the context of AdS/CFT the prescription to
remove said divergences goes under the name of holographic renormalisation.
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Appendix E

Ingredients from general relativity

In this appendix we review a variety of useful facts from general relativity that will come in handy in
this course.

E.1 Maximally symmetric spaces

Let us start with the maximally symmetric manifolds. In Euclidean signature these are given by the

sphere S¢, flat Euclidean space R and hyperbolic space H¢, which are respectively positively curved,

flat or negatively curved. We will sometimes collectively denote them by M 4, where k = 0,+1 and
write their metrics as

doz, k

2 _ d 2
dsy, , = 2i—1dx;, k
2 k

=
SR

5

1
0, (E.1)
-1,

where dei and dEfi are the standard metrics on the d-sphere and d-dimensional hyperbolic space

d i—1 d

i=1 \_j=1

respectively,

There are many other coordinate choices but unless explicitly stated otherwise we will always use the
metrics above.

In most of this course we are interested in spaces with Minkowskian signature. The maximally
symmetric Lorentzian spacetimes are de Sitter space, Minkowski space and anti-de Sitter space, which
are respectively positively curved, flat or negatively curved.

de Sitter space

The de Sitter space is the maximally symmetric spacetime of positive curvature

_d(d+1)

R 12

(E.3)

where L is the characteristic length scale of the space. This space describes a exponentially expanding
universe. For this reason, there is an observer-dependent horizon, called the ‘cosmological horizon’
beyond which spacetime is expanding faster than the speed of light. This is a null surface beyond
which the observer can never receive a signal.

In d +1 dimensions de Sitter space can be described by a hypersurface in d + 2 dimensional Minkowski
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space. consider the embedding space R1¥*! with metric,

d+1
ds?=—dx2+ > dx2. (E.4)

i=1
The de Sitter space of radius L is then defined as the hyperboloid
d+1
XXM =—X2+> X2=12, (E.5)

i=1

In the same way that the two sphere embedded in R? inherits the O(3) symmetry of its ambient space,
de Sitter space inherits an O(1, d) symmetry from the ambient Minkowski space. There are various
useful coordinate systems to describe the de Sitter space of which we list a few below:

* Global coordinates. These coordinates {7, w;} are defined by
. T T
Xo :Lsmhz, X; :La)icoshz, (E.6)

where i = 1,...d + 1 and the w; are constrained coordinates on a round unit sphere $¢ such
that Zi coiz = 1. In these coordinates, the metric on the de Sitter space reads,

ds® = —d1? + L? cosh? z do?. (E.7)
1

Global coordinates are sometimes also called the closed slicing of de Sitter, especially in the
context of cosmology. This terminology comes from the FLRW metric (see below) since for
these coordinates the space-like slices are closed.

e Planar coordinates. These coordinates {t,x} are defined as

Lt X
Xo=Lsinh—+ —el,
L 2L

2
t xX° ¢ (E.8)
X441 =Lcosh———eT,
d+1 I ol
X; zxie% ,
wherei =1,...,d. These coordinates do not cover the full de Sitter space but only the patch

Xo+X44q =Lel >0. (E.9)

In these coordinates, the metric reads,
.
t
ds? = —dt? +eT Z dxi2 . (E.10)
i=1

* Static coordinates. de Sitter space enjoys various time-like isometries inherited from the boosts
in embedding space. Yet, the metrics considered so far are time dependent. Since there is a
time-like Killing vector, there must exist coordinates such that time does not appear explicitly
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in the metric. These are static coordinates and are defined as
Xo= V12 —r2sinh % ,
Xgp1 =V L2—r2cosh£, (E.11)
Xo=rw;,
withi=1,...,d and 0 < r < L. They only cover the region

Xgn >0, D> X;<L% (E.12)
i

The resulting metric reads

2 2
dszz—(l—r—z)dt2+ dr
L 1

rz
L2

+r2dQ7 . (E.13)

This metric is manifestly static. In static coordinates the cosmological horizon is located at r = L
Therefore these coordinates cover precisely the patch that is accessible to a single observer, in
the sense that the observer can both send and receive signals to/from this entire region.

Hyperbolic coordinates. Global coordinates foliate de Sitter with spheres, while planar co-
ordinates foliate with planes. To cover the third possibility we introduce hyperbolic coordinates
which foliate de Sitter by hyperbolic spaces. The embedding coordinates are defined by

Xo =sinh T cosh,
X441 =cosht, (E.14)
X; =sinh T sinhyw;,

such that the metric takes the form

ds? = —d7? + sinh® Td=3 . (E.15)

Conformal coordinates. Finally, to obtain the conformal coordinates we start from planar
coordinates and perform a coordinate transformation to conformal time

t
dt’ _t
7 =J sy = Le (E.16)
oo

so that —0o0 < 1 < 0 and 11 — —o0 corresponds to the infinite past t — —o0. However, one
can extend this spacetime to almost all of the de Sitter by extending the range of 7 to the full
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real line. These coordinates can be parameterised as

Xo :% (nz —x? —Lz) s

1
Xgi1 :—Z—(nz—xz-i-Lz), (E.17)
n
L
XO =——X;,
so that the metric is given by
d
12
ds? = = | —dn?+ > dx? (E.18)

These coordinates cover only the submanifold Xy +X 4,1 = 0. When written in these coordinates,
the metric of the de Sitter space, is manifestly conformally flat.

An important quantity in the geometry of the de Sitter space is the geodesic distance between two
points {(X,X’). As in the case of the sphere or the hyperbolic plane in two dimensions, the distance
between two points of the de Sitter space is closely related to the distance defined in the embedding
space. Therefore, let us define

P(X,X') = H?n ,X°x". (E.19)

Notice that, if X = X’ are identical, we have P = 1. However, if X and X’ are antipodal, i.e. X' = —X,
one has P = ﬁnabX axb = _1. Plugging in the explicit parameterisation, we find an expression of
the geodesic distance in conformal coordinates:

(n—n'P—(x=x)*

PX,X)=1+
( ) oy

(E.20)
One important property of P(X,X’) is that it is a manifestly O(1, d) invariant function on de Sitter
space, since it is constructed out of the Lorentz invariant product in R»4*!. Depending on the causal
relationship between X and X’, we have the following behaviour for (X,X"):

e If X and X’ are joined by a time-like geodesic P(X,X’) > 1 and the geodesic distance is given by

(X, x) = %cosh_l(P). (E.21)

e If X and X’ are space-like separated, |P(X,X’)| < 1 and

X, x) = %cos_l(P). (E.22)

e If X and X’ are light-like separated, P(X,X’) =1 and {(X,X’) =0.

Notice that there are points of de Sitter space which cannot be joined by geodesics to a given point X .
These are the points in the interior of the past and future light cones of —X, the antipodal point of X .
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For these points, we have that P(X,X’) < —1. The results listed above can be obtained by an explicit
analysis of geodesics in de Sitter space.

Exercise E.1. The geodesics in the de Sitter space can be obtained by minimizing the distance in the
embedding space subject to the constraint (E.5). Employ an appropriate Lagrange multiplier to solve this
minimisation problem and explicitly find the geodesics in the de Sitter space.

Anti-de Sitter space

The anti-de Sitter space is the maximally symmetric spacetime with negative curvature. Its scalar
curvature is given by

d(d+1)
= 0 (E.23)
Analogous to the de Sitter space we can describe Anti-de Sitter space in d + 1 dimensions by the
hyperboloid
d
XZ+X2->X2=12, (E.24)

i=1
embedded in a (d + 2) dimensional ambient space with metric
d+1
ds? = —dx2 —dx?+ > dx?2. (E.25)

i=2

The constant L is the AdS length parameterising the characteristic scale of the anti-de Sitter space.
The anti-de Sitter space inherits an O(2,d) symmetry from the ambient space. There are a variety of
useful coordinates on the Anti-de Sitter space, similar to the de Sitter space.

* Global coordinates. These coordinates {7, p, w;} are defined by

Xo=Lcoshpcost,
X, =LcoshpsinT, (E.26)
Xi =L Sinhpwi 5

where i =2,...d + 1 and the w; are embedding coordinates on a round unit sphere S~ such
that Zi coiz = 1. In these coordinates, the metric on the Anti-de Sitter space reads,

ds? = L2 (— cosh? pdt? + dp? + sinh? pdﬂfl_l) . (E.27)

In the limit p — oo one approaches the conformal boundary which in global coordinates is
given by R x $971,
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* Poincaré coordinates. These coordinates {z, x} are defined as

L2—t2 4+ x>+ 22

%o = 2z ’
Lt

Xl —?,
in

X; = ot
—L2—t? 4+ x>+ 22

Xg41 = )
2z

(E.28)

where i = 2,...,d. These coordinates do not cover the full anti-de Sitter space but only the

patch
2

L
XO_Xd+1 =?>O.

In these coordinates, the metric reads,

12
ds?® = - (dz2 —de*+ E dxiz) .
Z -
1

(E.29)

(E.30)

In these coordinates the conformal boundary is located at z — 0 and the geometry of the

boundary is that of d-dimensional Minkowski space.

* Static coordinates. These coordinates are given by

Xo =L\ 1+ = sin L
= —sin—,
0 \ 27 L

r2 t
XlzL\ 1+ —cos—,

L2 L
X; =ruw;,

withi=2,...,d + 1. In these coordinates the metric reads

r

1+ﬁ

2 2
2 _ r 2 dr 2102
ds __(1+ﬁ)dt +—2+r de—l'

The conformal boundary is located at r — 0 and its geometry is given by R x $4~1.

(E.31)

(E.32)

* de Sitter slicing. Finally, we can slice the anti-de Sitter space with de Sitter slices. The

embedding coordinates are given by

Xy =Lsinhpsinhtcosh&,
X, =Lcoshp,

X, =Lsinhp cosht,

X; =Lsinh p sinh t sinh§w;
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so that the metric is given by
ds? =12 (dp2 + sinh? pdsﬁsd_l) . (E.34)

where ds(zls is a metric on de Sitter space with Hubble scale H = 1.

* Hyperspherical coordinates. In these coordinates the embedding is parametrised as

Xo=Lsecpcost,
X, =Lsecpsint, (E.35)
X;=Ltanpw;,

with w; again parametrising a unit d — 1 sphere. The metric in these coordinates is given by
ds? =L%sec?p (—d’L’Z +dp? + sin? pdﬂg_l) . (E.36)

In these coordinates the boundary of (the universal covering of) AdS is the Einstein static
universe.

An important quantity in the geometry of the anti-de Sitter space is the geodesic distance between
two points,
1
P(X,X') = ﬁnabxax’b. (E.37)

where 1), is the metric in the ambient space. If X = X’ are identical, we have P = 1. However, if X
and X’ are antipodal one has P = —1.

One important property of P(X,X’) is that it is a manifestly O(2,d) invariant function on anti-de
Sitter space, since it is constructed out of the Lorentz invariant product in R*>¢. Depending on the
causal relationship between X and X’, we have the following behaviour for P(X,X’):

e If X and X’ are joined by a time-like geodesic |P(X,X")| < 1 and the geodesic distance is given
by
d(X,X’)=Lcos }(P). (E.38)

e If X and X’ are space-like separated, P(X,X’) > 1 and

d(X,X") = Lcosh™}(P). (E.39)

 If X and X’ are light-like separated, P(X,X’) =1 and d(X,X’) = 0.

Notice that this is opposite of the de Sitter case. Furthermore, notice that in the anti-de Sitter space
it is possible to reach the conformal boundary in a finite time. I.e. there exists a time-like geodesic
connecting any point X with the conformal boundary. This is why AdS is often thought of as a finite
'box’.

Exercise E.2. The geodesics in the anti-de Sitter space can be obtained by minimizing the distance in the
embedding space subject to the constraint (E.24). Employ an appropriate Lagrange multiplier to solve
this minimisation problem and explicitly find the geodesics in the de Sitter space.
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Euclidean AdS

In some situations it is more convenient to perform computations in Euclidean signature and after
Euclidean AdS spacetime is the hyperboloid

d+1
X2+ > x?=—R*, X°>o0, (E.40)
=2

embedded in R4*11. From this definition it is clear that Euclidean AdS is invariant under SO(d + 1, 1).
Let us be more explicit it this case and write out the symmetry generators as

: d b,
JAB =—1 XA@ _XBﬁ . (E41)

Analogous to AdS , we define the Poincaré coordinates by

1+ x2+22
Yoo = R0 —
Z
u
X, = R (£.42)
z
1—x2—z2
Xa1 = R——F—

where x* € R? and z > 0. In these coordinates the metric reads

) dz? + 5 ydxtdx”

2 _
ds*=R 2

(E.43)
This shows that EAdS is conformal to R* x R? whose boundary at z = 0 is just R?. These coordinates
make explicit the subgroup SO(1, 1) x ISO(d) of the full isometry group of EAdS. These correspond
to dilatation and Poincaré symmetries inside the d—dimensional conformal group. In particular, the
dilatation generator is

d d d d

—g——x*— (E.44)

P=toan =Hogymt e gy = 7o T G

Global coordinates in Euclidean AdS can simply be obtained from the global coordinates in AdS by
analytically continuing T — it such that the metric is given by

ds®> =R*[cosh® p dt* + dp? +sinh? p dQ%_| ]. (E.45)

To understand the global structure of this spacetime it is convenient to change the radial coordinate
via tanh p = sinr so that r € [0, Z[. Then, the metric becomes

2

dsZ_

2 2, 2 2
= osr [dT +dr®+sin rde_l] s (E.46)

which is conformal to a solid cylinder whose boundary at r = 5 is R x S 4=1 In these coordinates, the
dilatation generator D = —iJg 441 = —;—T is the Hamiltonian conjugate to global time.
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Exercise E.3. Explicitly write out the symmetry generators for (Lorentzian) (A)dS spacetime, analogous
to the discussion in this last subsection.

E.2 Warped product manifolds and FLRW spaces

Apart from the maximally symmetric spacetimes, our second most loved example is given by warped
product manifolds of the form R x M with metric

ds? = —dt? + a(t)zds/zw , (E.47)

When M is a maximally symmetric Euclidean manifold, i.e. M = M; 4 these are the FLRW manifolds
introduced in the main text. When a(t) is a constant function these represent static spacetimes. In
the case k = +1 this spacetime is often called the static Einstein universe.

On the other hand, when a(t) is a non-trivial function of time, these manifold provide an excellent
toy model for cosmology. The spatial section of the universe contracts or expands according to the
scale factor a(t). It is often useful to define the conformal time coordinate,

t /
n= J de (E.48)

_oo alt’)’
in terms of which the FLRW metric becomes
2_ 2 4.2 2
ds“=a (n)( dn +dsMk’d) . (E.49)

Note that the de Sitter space can be thought of as a FLRW space.

In maximally symmetric spacetimes, such as Minkowski or (A)dS, there can be no beginning or end
of time. There cannot be any history because every time is equivalent. The simplest way to introduce
some time dependence is to consider FLRW spacetimes. For this reason they are natural toy models
in cosmology. The coordinate t introduced above, corresponds to the proper time of an observer at
rest with respect to the co-moving spatial coordinates. The spatial manifold in an FLRW space is
maximally symmetric hence such spacetimes describe a homogeneous and isotropic universe, i.e. a
universe that looks the same at every point in space. This metric is simple enough that it allows for a
very explicit, often exact, analysis. A most remarkable fact that should blow your mind is that this
most simple spacetime for k = 0 is in fact a very good description of our own universe on distances
much larger than average distance between galaxies, about a few Megaparsec (Mpc). Of course there
are small deviations from perfect homogeneity in our universe but on large enough scales this gives
an excellent description.

In contrast to the maximally symmetric spacetimes, in an FLRW universe time translation and Lorentz
boost fail to be isometries because of the time dependence of the scale factor a(t). A useful way to
capture this dependence is by defining the Hubble parameter
a
H(t)==. (E.50)
a
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The absence of time translations has profound implications for constructing QFTs in these backgrounds,
as energy is not preserved.

Next, let us quickly review the Einstein equations in such backgrounds. In order to have any hope to
solve them, we need to impose some particularly symmetric stress tensor. The most general stress
tensor consistent with the symmetries of FLRW spaces is given by

T,,=diag(—p,p, - ,p), (E.51)

where the energy density p and pressure p are functions of time only. We can interpret this as the
energy-momentum tensor of a homogeneous perfect fluid in its rest frame,

T,,=(p +pluyu,—gup, (E.52)

where u,, is the normalised fluid velocity, lu|? = 1, which in rest frame would be u, =6,,. Einsteins
equation imply that the energy momentum tensor is covariantly conserved,

v, T =0, T"" +T! T*" +T) T'" =0. (E.53)
Plugging in the FLRW solution this reduces to the so-called continuity equation,
p+dH(p+p)=0. (E.54)

This equation tells us that the energy density changes only if the universe expands or contracts, i.e. if
H # 0. The Einstein equations however will not tell us what kind of matter permeates the universe.
For that we need to specify an equation of state giving a relation between the pressure, density and
possibly other thermodynamic variables. Most systems of interest in cosmology can be described to a
good approximation by the very simple equation of state,

p=wp, (E.55)

with a single parameter w. For this equation of state we can immediately solve the continuity equation
giving us
p(t) = poa(t)~40+w) (E.56)

* Non-relativistic matter, a.k.a. dust, has a velocity much smaller than the speed of light. For this
type of matter, the pressure is negligible compared to the energy density, p < p,or0 < w < 1.

Therefore in an expanding universe, dust dilutes as p oc a™9.

* Relativistic matter, a.k.a. radiation, on the other hand has pressure and energy density of the
same order. A statistical mechanics analysis furthermore predicts that p = p/d and sow =1/d.
This is precisely the proportionality constant to make the matter conformal. Hence we find
p o< a—(d+1).

* Finally, a cosmological constant, or vacuum energy has T,,,, = —Ag,, and hence p = —p = —A,
or w =—1. Since in this case we have p + p = 0, the continuity equation teaches us that the

cosmological constant does not dilute, p o< a°.
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Solving the Einstein equations for an FLRW metric results in the Friedmann equations, which can be

written as
5 167Gy k = _8nGy

Tdd-1nP 2 ~ T i1

Here p and p can be thought of as the effective energy density and pressure build from the combination

k
(p+p)+ ok (E.57)

of all the matter present in the universe, together with the cosmological constant,

A A
P=Q2 . Pn—g> P=2,Pntg - (E.58)
; " 8nGy ; " 8nGy

The first Friedmann equation can be used to estimate the age of the universe, while the second
encodes the acceleration of the universe. Since most cosmological matter respects the null energy
condition, which in this case reads p + p > 0, we find that H typically decreases during the expansion
of the universe.

E.3 Black holes

Another important set of spacetimes that play a key role in this course are black holes. contrary to
the above examples, such spacetimes are singular and hence not complete.

In this course we restrict ourselves to the simplest of black holes, the Schwarzschild black hole in four
dimension, as it will suffice to illustrate the relevant phenomena. This is the unique four-dimensional
non-rotating neutral, asymptotically flat black hole. More generally, black holes can have mass and/or
charge. For such more general solutions as well as black holes in other dimensions we refer the reader
to the course General Relativity II.

The Schwarzschild black hole

The Schwarzschild black hole, with metric

dszz—(1—¥)dt2+(1—¥) 1dr2+cm§, (E.59)
is the unique non-rotating asymptotically flat black hole. This metric has a singularity at r = 2M, the
location of the event horizon, and therefore only describes the exterior of the black hole. To see that
the singularity at the event horizon is not a physical singularity it is useful to introduce the tortoise or
Regge-Wheeler coordinate r*, which is defined such that massless free falling observers follow the
path t = r* 4 constant. For such an observer one has,

ds?’=0 — dtzl_%_MdrEdr*

r (E.60)
— r*=r+2Mlog(ﬁ—1) ,

where we put the arbitrary additive constant to zero. In these coordinates the metric takes the form,
2M
ds* = (1 — —) (—de? +dr*?) +r2dQ2. (E.61)
r
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From this line element we see that the two-dimensional metric is conformally equivalent to Minkowski
space. Next we introduce the retarded and advanced Eddington-Finkelstein coordinates

u=t+r"*, v=t—r*, (E.62)

which places the horizon at (u,v) — (0o0,—0o0). In these coordinates the metric becomes

ds? =— (1 — %) dudv + r?ds? (E.63)

r S2>
where r can be expressed as a complicated function of u —v. In these coordinates the metric is still
singular at r = 2M but we can introduce one more coordinate transformation

u v
U=—-4M (——) , V =4M (—) , E.64
xp 4M exp 4M ( )
called Kruskal-Szekeres coordinates. The final metric is then given by

2M
ds®> = —=—e W dUdV +r’dQ;. (E.65)
r

which makes it clear that there is no singularity at r = 2M. In these coordinates the event horizon
isat U =0 or V = 0 and the original Schwarzschild metric only covers the patch U < 0 and V > 0.
However, there is no obstruction to extend U, V to the full real line. The fully extended metric covers
both the inside and outside of the Schwarzschild black hole and is the maximal extension of this
spacetime. Finally, an explicit map between U,V and r, t is given by

UV = e (1—L), Ly (E.66)
2M 1%

We see in fact that r = 2M is a null hypersurface ruled by outgoing null geodesics. The presence of

the event horizon means that not all light rays escape to infinity. For r > 2M, light rays with 7 > 0

can and do escape. However, for r < 2M, all causal geodesics have future end point at the true

singularity at r = 0. More precisely, we can define the event horizon is as

Definition E.1. The event horizon is the boundary of the past of #7.

this can easily be seen from the metric using the retarded Eddington-Finkelstein coordinate

2M
ds® = — (1 - —) du® —2dudr + r?dQ3, (E.67)
r
as the boundary is at u — oo, which corresponds to r — 2M. There is a corresponding time-reversed
picture using coordinates (v, ). However, now we have that r = 2M is the past horizon being the
boundary v = —o00 of the future of .#~. The full causal structure of the Schwarzschild black hole can
be summarised in its Penrose diagram, see Figure E.1.

Similar diagrams can be drawn for Reissner-Nordstrom, Kerr and the Kerr-Newman, see GR II,
although the latter have the novelty of having Cauchy horizons, hypersurfaces beyond which neither
fields nor space-time itself are determined by Cauchy data essentially as a consequence of naked
singularities, singularities in the past of observers. However, these cannot be seen from infinity. These
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Figure E.1: Penrose diagram for the Kruskal extension of the Schwarzschild spacetime. The
singularity at r = 0 (which is a genuine curvature singularity) is a black hole to the future of
every observer that crosses the future event horizon (or a white hole in the past).

black hole solutions are unique subject to various assumptions (like the existence of a stationary
Killing vector that looks like a time translation at large distances). Similarly, all of these spacetimes
have generalisations with non-vanishing cosmological constant.

E.4 Killing horizons and surface gravity

Consider a null hypersurface ¥ defined implicitly through the equation ®(x) = 0. In other words,

the tangent vector n satisfies n,n* = 0 on X. Hence, n is normal and tangent to the surface!’ A null

u
hypersurface is said to be a Killing horizon if there exists a Killing vector field that is normal to .
A black hole is a spacetime that contains a region which is not in the backward lightcone of future
timelike infinity. The boundary of such a region is called an event horizon. Moreover, the event
horizon of a stationary asymptotically flat black hole is typically a Killing horizon.? The Killing vector
field associated with a Killing event horizon is a combination of the Killing vector field generating
K = 8, generating time translations at infinity , and of the rotational Killing vector K = 94, and can
be written as

n=20 +Qu0o,, (E.68)

where Q) is a constant called the angular velocity of the horizon. In the static case we simply have
n=2o,.

To every Killing horizon, we can associate a surface gravity. Since n,n" = 0 on X, the gradient
V,(n"n,) is normal to X and therefore proportional to n at each point on X. It follows that there

Remember that a tangent vector v to a hypersurface satisfies v,n* =0.
2The converse is not true, see for example the Killing horizon associated to the Killing vector n = xJ, + tJ, that we
considered in our discussion of the Unruh effect. This is clearly not an event horizon.
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exists a function «, called the surface gravity, such that on %
v,(n"n,)=—-2kn,. (E.69)
Using the Killing equation this can be rewritten as
n"V,n* =xkn*, (E.70)

This is nothing but the geodesic equation, where x measures the failure of the integral curves of n to
be affinely parametrised. Another useful formula for the surface gravity is

1
k2= —EV“n”V“nv, (E.7D)

evaluated on 2.

Exercise E.4. Derive the formula (E.71).

Let us show that x is constant on orbits of n. Take a vector v tangent to Y. Since (E.71) holds
everywhere on X, we can write on X,

v”VpK2 =—-Vn"vPV, Vv, n,=-Vn"v’R, ,,n?, (E.72)

where in the second step we used that n is a Killing vector. Since n is also tangent, we can choose
v = n, which gives

anpK2 =—V*n'R,,,onPn? =0. (E.73)

One can actually show that v/ V ,x = 0 for every tangent vector, namely that x is constant over the
horizon. See [Wal84] for a proof.

Remark. Note that if ¥ is a Killing horizon for a Killing vector field n with surface gravity x, then
it is also a Killing horizon for cn with surface gravity ck, where c is any non-zero constant. This
shows that the surface gravity is not an intrinsic property of the Killing horizon, it also depends on the
normalization of n. While there is no natural normalization of n on X (since it is null), in a stationary,
asymptotically flat spacetime we conventionally normalize the generator of time translations K so that
K, K" =—1 at spatial infinity. The sign is fixed by requiring that K is future-directed. This completely
fixes the the normalization of n = K + QyzK.

The main reason we are interested in the surface gravity is that it provides the Hawking temperature
of a black hole. However, even in classical GR the surface gravity has a physical meaning. In a static,
asymptotically at spacetime, the surface gravity is the acceleration of a particle at rest on the horizon,
as measured by a static observer at infinity. The acceleration of a static observer near the horizon
tends to infinity, but the redshift factor that relates this to the acceleration measured from infinity
goes to zero. The surface gravity arises from the limiting value of the product of these two quantities,
with the result typically being finite. When the spacetime is not static, this physical interpretation
does not hold, but the surface gravity is still well-defined.
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To see this in more detail, consider a static particle in a spacetime containing a static black hole. By
definition, a static particle has four-velocity U proportional to the time-translation Killing vector field,
K = V(x)U, for some function V(x). This function is called the redshift factor. Recalling that the
four-velocity satisfies U*U,, = 1, clearly we have V = ,/—K,, K. This ranges from 0 at the horizon to
1 at infinity. Now consider the four-acceleration a* = U”V ,,U*. Explicit computation results in

YV
u \% 4

a (E.74)

and thus its magnitude is a = ,/a,a# = V! VHVV, V. This is infinite at the horizon, as V vanishes
there. But the acceleration as measured at infinity is redshifted by a factor of V, and reads

aV =,/V,VVIV, (E.75)

which is generically finite. One can check that the square of this evaluated on the horizon agrees
with our expression for the surface gravity. Hence k = aV evaluated at the horizon.

Exercise E.5. Show that (E.74) holds by using the Killing equation.

Exercise E.6. Apply this to the Schwarzschild black hole and evaluate its surface gravity. Notice that the
surface gravity is inversely proportional to the mass, so it is large for small black holes, and vice-versa.
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Appendix F

Hypergeometric functions

In this appendix we review the definition and various properties of hypergeometric functions. For
further reference see for example [AAR99].

The hypergeometric function is a solution of Euler’s hypergeometric differential equation,
2(1—2)0%F +[y—(a+p +1)z]3,F —aBF =0. (E1)

which has three regular singular points at z = 0,1 and co. Any second order linear equation with
three regular singular points can be converted to this equation through a change of variables.

For |z| < 1, the hypergeometric function can be defined through the following series expansion

o (@), (), 2"
Fi(a,B;7l2)= ) ——~———, (E2)
2 Z(; () n!
where we introduced the (rising) Pochhammer symbol
I'(g+n)
(@), = . (E3)
1 I'(q)

when either a or 8 is a non-positive integer this series terminates in which case the hypergeometric
function reduces to a polynomial. For complex |z| > 1 it can be analytically continued along any path
that avoids the branch points at z =1 and z = co.

Depending on the sign of Re(y — a — f3) we find the following behaviour near g =1,

I(ry—a—p) g —
Fi(a iyl =t | @GR for  Re(y—a—=f)>0,
2@ fiyle) =~ IMatpy) g _ yyr—a—p for Re(y—a—p)<0
T(@)I(B) ) 14 :

(E4)
In addition,we have the following identities for the analytic continuation of the hypergeometric
functions,

I'(y)L(y —a—p)

I'(y —a)T(y —p)

T'(y)l(a+p—7)
I'(a)T(p)

oF1(a, B;rlz) = oF1(a,B31+a+pB—v[1—2) (ES)

(1—2)"* PR (y—a,y—B;1,—a—Bl1—z).

and
2Fi(a, B vl2) = (1 —2) % PR (y —a, v — B 1l2). (E6)
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