
Probabilistic Combinatorics

These notes are to accompany the lectures in HT 2019 on C8.4 Probabilistic Com-
binatorics. They are based on Colin McDiarmid’s notes from 2015 and earlier notes
of mine; the current version is (essentially) the same as in 2017. There may be some
changes during the term.

These notes are not intended for distribution, only as a learning/revision aid.
I would be grateful to receive corrections by e-mail (riordan@maths.ox.ac.uk) but

please check the course webpage first in case the correction has already been made.

Recommended books: For much of the course The Probabilistic Method (third edition,
Wiley, 2008) by Alon and Spencer is the most accessible reference. Very good books
containing a lot of material, especially about random graphs, are Random Graphs by
Bollobás, and Random Graphs by Janson,  Luczak and Ruciński; but do not expect
these books to be easy to read! OMR
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0 What is probabilistic combinatorics?

The first question is what is combinatorics! This is hard to define exactly, but should
become clearer through examples, of which the main ones are from graph theory.

Roughly speaking, combinatorics is the study of ‘discrete structures’. Here ‘discrete’
means either finite, or infinite but discrete in the sense that the integers are, as opposed
to the reals. Usually in combinatorics, there are some underlying objects whose internal
structure we ignore, and we study structures built on them: the most common example
is graph theory, where we do not care what the vertices are, but study the abstract
structure of graphs on a given set of vertices. Abstractly, a graph is just a set of
unordered pairs of vertices, i.e., a symmetric irreflexive binary relation on its vertex
set. More generally, we might study collections of general subsets of a given vertex set
(not just pairs), for example.

Turning to probabilistic combinatorics, this is combinatorics with randomness in-
volved. It can mean two things: (a) the use of randomness (e.g., random graphs) to
solve deterministic combinatorial problems, or (b) the study of random combinatorial
objects for their own sake. Historically, the main focus was initially on (a), but after
a while, the same objects (e.g., random graphs) come up again and again, and one
realizes that it is not only important, but also interesting, to study these in themselves,
as well as their applications. Random graphs have also been intensively studied as
mathematical models for disordered networks in the real world. Probabilistic combi-
natorics has also led to new developments in probability theory, and interacts strongly
with theoretical computer science.

The course will mainly be organized around proof techniques. However, each tech-
nique will be illustrated with examples, and one particular example (random graphs)
will occur again and again, so by the end of the course we will have covered aim (b) in
this special case as well as aim (a) above.

The first few examples will be mathematically very simple; nevertheless, they will
show the power of the method in general. Of course, modern applications are often not
so simple.
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1 First moment method

Perhaps the most basic inequality in probability is the union bound : if A1 and A2 are
two events, then P(A1 ∪ A2) 6 P(A1) + P(A2). (A1 ∪ A2 and A1 ∨ A2 both denote the
union of the events A1 and A2, i.e., the event that A1 or A2 holds, or both.) More
generally,

P
(
A1 ∪ · · · ∪ An

)
6

n∑
i=1

P(Ai).

This trivial fact is already useful.

Example (Ramsey numbers). For positive integers k and `, the Ramsey number R(k, `)
is the smallest n such that every red/blue colouring of the edges of the complete graph
Kn contains either a red Kk or a blue K`. It’s not our focus here, but these numbers
exist: it is not too hard to show by induction that n =

(
k+`−2
k−1

)
has the required property

(and so does any larger n). We are interested in lower bounds.

Theorem 1.1 (Erdős, 1947). If n, k > 1 are integers such that
(
n
k

)
21−(k2) < 1, then

R(k, k) > n.

Proof. Colour the edges of Kn red/blue at random so that each edge is red with proba-
bility 1/2 and blue with probability 1/2, and the colours of the edges are independent.

There are
(
n
k

)
copies of Kk in Kn. Let Ai be the event that the ith copy is monochro-

matic. Then

P(Ai) = 2

(
1

2

)(k2)
= 21−(k2).

Thus

P(∃ monochromatic Kk) 6
∑
i

P(Ai) =

(
n

k

)
21−(k2) < 1.

Thus, in the random colouring, the probability that there is no monochromatic Kk is
greater than 0. Hence it is possible that the random colouring is ‘good’ (contains no
monochromatic Kk), i.e., there exists a ‘good’ colouring.

To deduce an explicit bound on R(k, k) involves a little calculation.

Corollary 1.2. R(k, k) > 2k/2 for k > 3.

Proof. Set n = b2k/2c. Then(
n

k

)
21−(k2) 6

nk

k!
21−(k2) 6

2k
2/2

k!
21−k2/2+k/2 =

21+k/2

k!
,

which is smaller than 1 if k > 3.
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Remark. The result above is very simple, and may seem weak. But the best lower bound
proved by non-random methods is roughly 2(log k)C with C constant, which grows only
slightly faster than polynomially. This is tiny compared with the exponential lower
bound given above. Note that the known upper bounds are roughly 4k, so exponential
is the right order: the constant (if it exists) is unknown.

Often, the ‘first-moment method’ simply refers to using the union bound as above.
But it is much more general than that. We recall another basic term from probability.

Definition. The first moment of a random variable X is simply its mean, or expecta-
tion, written E[X].

Recall that expectation is linear. If X and Y are (real-valued) random variables and
λ is a (constant!) real number, then E[X + Y ] = E[X] + E[Y ], and E[λX] = λE[X].
Crucially, these ALWAYS hold, irrespective of any relationship (or not) between X and
Y .

If A is an event, then its indicator function IA is the random variable which takes
the value 1 when A holds and 0 when A does not hold.

Let A1, . . . , An be events, let Ii denote the indicator function of Ai, and set X =∑
i Ii, so X is the (random) number of the events Ai that hold. Then

E[X] =
n∑
i=1

E[Ii] =
n∑
i=1

P(Ai).

We use the following observation about any random variable X with finite mean µ : it
cannot be true that X is always smaller than µ, or always larger: P(X > µ) > 0 and
P(X 6 µ) > 0.

Example (Ramsey numbers again).

Theorem 1.3. Let n, k > 1 be integers. Then

R(k, k) > n−
(
n

k

)
21−(k2).

Proof. Colour the edges of Kn randomly as before. Let X denote the (random) number
of monochromatic copies of Kk in the colouring. Then

µ = E[X] =

(
n

k

)
21−(k2).

Since P(X 6 µ) > 0, there exists a colouring with at most µ monochromatic copies of
Kk. Pick one vertex from each of these monochromatic Kks – this may involve picking
the same vertex more than once. Delete all the selected vertices. Then we have deleted
at most µ vertices, and we are left with a ‘good’ colouring of Km for some m > n− µ.
Thus R(k, k) > m > n− µ.
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The type of argument above is often called a ‘deletion argument’. Instead of trying
to avoid ‘bad things’ in our random structure, we first ensure that there are not too
many, and then ‘fix things’ (here by deleting) to get rid of those few.

Corollary 1.4. R(k, k) > (1− o(1))e−1k2k/2.

Here we are using standard asymptotic notation. Explicitly, we mean that for any
ε > 0 there is a k0 such that R(k, k) > (1 − ε)e−1k2k/2 for all k > k0. (Theorem 1.1
does not quite yield this.)

Proof. Exercise: take n = be−1k2k/2c.

We now give a totally different example of the first-moment method.

Example (Sum-free sets).

Definition. A set S ⊆ R is sum-free if there do not exist a, b, c ∈ S such that a+b = c.
Note that {1, 2} is not sum-free, since 1 + 1 = 2. The set {2, 3, 7, 8, 12} is sum-free,

for example.

Theorem 1.5 (Erdős, 1965). Let S = {s1, s2, . . . , sn} be a set of n > 1 (distinct)
non-zero integers. There is some A ⊆ S such that A is sum-free and |A| > n/3.

Proof. We use a trick: we want a prime p such that all si are distinct and non-zero
mod p. For for example we may take p > 2 max |si|. There are infinitely many primes
of the form 3k + 2: we fix such a p not dividing any si. (A prime of the form 3k + 1
works nearly as well.)

Let I = {k+1, . . . , 2k+1}. Then I is sum-free modulo p: there do not exist a, b, c ∈ I
such that a+b ≡ c mod p. (For if a, b ∈ I then 2k+2 6 a+b 6 4k+2 = (3k+2)+k.)

Pick r uniformly at random from 1, 2, . . . , p− 1, and set ti = rsi mod p. Thus each
ti is a random element of {1, 2, . . . , p− 1}. For each fixed i, as r runs from 1 to p− 1,
ti takes each possible value 1, 2, . . . , p − 1 exactly once: to see this note that no value
can be repeated, since if rsi ≡ r′si then p|(r − r′)si and so p|(r − r′). Hence

P(ti ∈ I) =
|I|
p− 1

=
k + 1

3k + 1
>

1

3
.

We use the first moment method: we have

E[#i such that ti ∈ I] =
n∑
i=1

P(ti ∈ I) > n/3.

It follows that there is some r such that, for this particular r, the number of i with
ti ∈ I is greater than n/3. For this r, let A = {si : ti ∈ I}, so A ⊆ S and |A| > n/3. If
we had si, sj, sk ∈ A with si + sj = sk then we would have rsi + rsj = rsk, and hence
ti + tj ≡ tk mod p, which contradicts the fact that I is sum-free modulo p.
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The proof above is an example of an averaging argument. This particular example
is not so easy to dream up, but it is hopefully easy to follow.

Example (2-colouring hypergraphs). A hypergraph H is simply an ordered pair (V,E)
where V is a set of vertices and E is a set of edges (or hyperedges), i.e., a set of subsets
of V .

Note that E is a set, so each possible edge (subset of V ) is either present or not,
just as each possible edge of a graph is either present or not. If we wanted to allow
multiple copies of the same edge, we could define multi-hypergraphs in analogy with
multigraphs.

H is r-uniform if |e| = r for all e ∈ E, i.e., if every edge consists of exactly r vertices.
In particular, a 2-uniform hypergraph is simply a graph.

Figure 1: The Fano plane

An example of a 3-uniform hypergraph is the Fano plane shown in the figure. This
has 7 vertices and 7 edges; in the drawing, the 6 straight lines and the circle each
represent an edge. (As usual, how they are drawn is irrelevant, all that matters is
which vertices each hyperedge contains.)

A (proper) 2-colouring of a hypergraph H is a red/blue colouring of the vertices
such that every edge contains vertices of both colours. If H is 2-uniform, this is the
same as a proper (vertex) 2-colouring of H as a graph. We say that H is 2-colourable
if it has a 2-colouring. (This was once called having property B.)

Let m(r) be the minimum m such that there exists a non 2-colourable r-uniform
hypergraph with m edges. The Fano plane is not 2-colourable (exercise), and so m(3) 6
7. It is easy to check that m(2) = 3. It is harder to check that m(3) = 7 (there is no
need to do this!).

Theorem 1.6. For r > 2 we have m(r) > 2r−1.

Proof. Let H = (V,E) be any r-uniform hypergraph with m < 2r−1 edges. Colour the
vertices red and blue randomly: each red with probability 1/2 and blue with probability
1/2, with different vertices coloured independently. For any e ∈ E, the probability that
e is monochromatic is 2(1/2)r = 1/2r−1. By the union bound, it follows that the
probability that there is at least one monochromatic edge is at most m/2r−1 < 1. Thus
there exists a ‘good’ colouring.

We can also obtain a bound in the other direction; this is harder.

Theorem 1.7 (Erdős, 1964). If r is large enough then m(r) 6 3r22r.
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Proof. Fix r > 3. Let V be a set of n vertices, where n (which depends on r) will be
chosen later. Let m = 3r22r.

Let e1, . . . , em be chosen independently and uniformly at random from all
(
n
r

)
pos-

sible hyperedges on V . Although repetitions are possible, the hypergraph

H = (V, {e1, . . . , em})

certainly has at most m hyperedges.
Let c be any red/blue colouring of V (not a random one this time). Then c has either

at least n/2 red vertices, or at least n/2 blue ones. It follows that at least (crudely)(dn/2e
r

)
of the possible hyperedges are monochromatic with respect to c.

Let p = pc denote the probability that e1 (a hyperedge chosen uniformly at random
from all possibilities) is monochromatic with respect to c. Then

p >

(dn/2e
r

)(
n
r

) >
(n/2)(n/2− 1) · · · (n/2− r + 1)

n(n− 1) · · · (n− r + 1)

>

(
n/2− r + 1

n− r + 1

)r
>

(
n/2− r
n− r

)r
= 2−r

(
1− r

n− r

)r
.

Set n = r2. Then p > 2−r(1− 1/(r − 1))r. Since (1− 1/(r − 1))r → e−1 as r →∞, we
see that p > p0 := 1

3·2r if r is large enough, which we assume from now on.
The probability that the given, fixed colouring c is a proper 2-colouring of our ran-

dom hypergraph H is simply the probability that none of e1, . . . , em is monochromatic
with respect to c. Since e1, . . . , em are independent, this probability is (1 − p)m 6
(1− p0)m.

By the union bound, the probability that H is 2-colourable is at most the sum over
all possible c of the probability that c is a 2-colouring, which is at most 2n(1 − p0)m.
Using the standard inequality 1− x 6 e−x, we have

2n(1− p0)m 6 2ne−p0m 6 2r
2

e−
3r22r

3·2r = 2r
2

e−r
2

< 1.

Therefore there exists an r-uniform hypergraph H with at most m edges and no 2-
colouring.

Remark. Why does the first moment method work? Often, there is some complicated
event A whose probability we want to know or at least bound. For example, A might
be the event that the random colouring c is a 2-colouring of a fixed (complicated)
hypergraph H. Often, A is constructed by taking the union or intersection of simple
events A1, . . . , Ak. In a few special situations, P(A) is easy to calculate:

• If A1, . . . , Ak are independent, then

P(A1 ∩ · · · ∩ Ak) =
∏
i

P(Ai) and P(A1 ∪ · · · ∪ Ak) = 1−
∏
i

(1− P(Ai)).
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• If A1, . . . , Ak are mutually exclusive, then

P(A1 ∪ · · · ∪ Ak) =
∑
i

P(Ak).

(For example, these give us the probability 2(1/2)|e| that a fixed hyperedge e is monochro-
matic in a random 2-colouring of the vertices.)

In general, the relationship between the Ai may be very complicated. However, if
X is the number of Ai that hold, then we always have E[X] =

∑
i P(Ai) and

P(
⋃
i

Ai) = P(X > 0) 6
∑
i

P(Ai).

The key point is that while the left-hand side is complicated, the right-hand side is
simple: we evaluate it by looking at one simple event at a time.

So far we have used the expectation only via the observations that P(X 6 E[X]) > 0
and P(X > E[X]) > 0, together with the union bound. A slightly more sophisticated
(but still simple) way to use it is via Markov’s inequality.

Lemma 1.8 (Markov’s inequality). If X is a random variable taking only non-negative
values and t > 0, then P(X > t) 6 E[X]/t.

Proof. The inequality X > tIX>t holds always. Take expectations.

We now start on one of our main themes, the study of the random graph G(n, p).

Definition. Given an integer n > 1 and a real number 0 6 p 6 1, the random graph
G(n, p) is the graph with vertex set [n] = {1, 2, . . . , n} in which each of the

(
n
2

)
possible

edges is present with probability p, independently of the others.

Thus, for any graph H on [n],

P
(
G(n, p) = H

)
= pe(H)(1− p)(

n
2)−e(H).

For example, if p = 1/2, then all 2(n2) graphs on [n] are equally likely.

Remark. It is important to remember that we work with ‘labelled’ graphs. For example,
the probability that G(3, p) is a path with three vertices is 3p2(1 − p), since there are
three (isomorphic) graphs on {1, 2, 3} that are paths.

We use the notation G(n, p) for the probability space of graphs on [n] with the
probabilities above. All of G ∈ G(n, p), G = G(n, p) and G ∼ G(n, p) mean exactly
the same thing, namely that G is a random graph with this distribution. The notation
Gn,p is also common.

This model of random graphs is often called the Erdős–Rényi model although in fact
it was first defined by Gilbert. Erdős and Rényi introduced an essentially equivalent
model, and were the real founders of the theory of random graphs, so associating the
model with their names is reasonable! Another common name for this model is the
binomial model – the number of edges has the binomial distribution Bin(

(
n
2

)
, p)).
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Example (High girth and chromatic number). Let us recall some definitions. The girth
g(G) of a graph G is the minimum length of a cycle in G, or∞ if G contains no cycles.
The chromatic number χ(G) is the least k such that G has a proper k-colouring (i.e.,
a colouring of the vertices with k colours in which adjacent vertices receive different
colours). The independence number α(G) is the maximum number of vertices in an
independent set in G, i.e., a set of vertices of G no two of which are joined by an edge.

Since a proper k-colouring partitions the vertex set into k independent sets, |G| 6
k α(G), and so

χ(G) > |G|/α(G).

Theorem 1.9 (Erdős, 1959). For any k and ` there exists a graph G with χ(G) > k
and g(G) > `.

There are non-random proofs of this, but it is not so easy.
The idea of the proof is to consider G(n, p) for suitable n and p. We will show

separately that (a) very likely there are few short cycles, and (b) very likely there is no
large independent set. Then it is likely that the properties in (a) and (b) both hold,
and after deleting a few vertices (to kill the short cycles), we obtain the graph we need.

Proof. Fix k, ` > 3. For r > 3, there are

n(n− 1) · · · (n− r + 1)

2r

possible cycles of length r in G(n, p): the numerator counts sequences of r distinct
vertices, and the denominator accounts for the fact that each cycle corresponds to 2r
sequences, depending on the choice of starting point and direction.

Let Xr be the number of r-cycles in G(n, p). Then

E[Xr] =
n(n− 1) · · · (n− r + 1)

2r
pr 6

nrpr

2r
.

Set p = p(n) = n−1+1/`, and let X be the number of ‘short’ cycles, i.e., cycles with
length less than `. Then X = X3 +X4 + · · ·+X`−1, so

E[X] =
`−1∑
r=3

E[Xr] 6
`−1∑
r=3

(np)r

2r
=

`−1∑
r=3

nr/`

2r
= O(n

`−1
` ) = o(n).

By Markov’s inequality it follows that

P(X > n/2) 6
E[X]

n/2
→ 0 ( as n→∞).

Set m = m(n) = bn1−1/(2`)c. Let Y be the number of independent sets in G(n, p) of
size (exactly) m. Then, using bounds from problem sheet 1,

E[Y ] =

(
n

m

)
(1− p)(

m
2 ) 6

(en
m

)m
e−p(

m
2 ) =

(en
m
e−p

m−1
2

)m
.
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Now

p
m− 1

2
∼ pm

2
∼ n−1+ 1

`n1− 1
2`

2
=
n

1
2`

2
.

Thus p(m− 1)/2 > 2 log n if n is large enough, which we may assume. But then

E[Y ] 6
(en
m
n−2
)m
→ 0,

and by Markov’s inequality we have P(Y > 1) 6 E[Y ]→ 0, i.e., P(α(G) > m)→ 0.
Combining the two results above, by the union bound we have P(X > n/2 or α(G) >

m) → 0. Hence, if n is large enough, there exists some graph G with n vertices, with
fewer than n/2 short cycles, and with α(G) < m.

Construct G∗ by deleting one vertex from each short cycle of G. Then g(G∗) > `,
and |G∗| > n− n/2 = n/2. Also, α(G∗) 6 α(G) < m. Thus

χ(G∗) >
|G∗|
α(G∗)

>
n/2

m
>

n/2

n1− 1
2`

=
1

2
n

1
2` ,

which is larger than k if n is large enough.
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2 Second moment method

Definition. A counting random variable is a random variable taking non-negative in-
teger values.

Suppose (Xn) is a sequence of counting random variables. By Markov’s inequality,
if E[Xn] → 0 as n → ∞, then we have P(Xn > 0) = P(Xn > 1) 6 E[Xn] → 0. Under
what conditions can we show that P(Xn > 0)→ 1? Simply E[Xn]→∞ is not enough:
it is easy to find examples where E[Xn] → ∞, but P(Xn = 0) → 1. We want some
control on the difference between Xn and E[Xn].

Definition. The variance Var[X] of a random variable X is defined by

Var[X] = E
[
(X − EX)2

]
= E

[
X2
]
−
(
EX
)2
.

(We assume that E[X] and E[X2] are finite.) We recall a basic fact from probability.

Lemma 2.1 (Chebyshev’s Inequality). Let X be a random variable and let t > 0. Then

P
(
|X − EX| > t

)
6

Var[X]

t2
.

Proof. By Markov’s inequality applied to Y = (X − EX)2 we have

P
(
|X − EX| > t

)
= P

(
Y > t2

)
6

E[Y ]

t2
=

Var[X]

t2
.

In practice, we usually use this as follows.

Corollary 2.2. Let (Xn) be a sequence of random variables with E[Xn] = µn > 0 and
Var[Xn] = o(µ2

n). Then P(Xn = 0)→ 0.

Proof.

P(Xn = 0) 6 P
(
|Xn − µn| > µn

)
6

Var[Xn]

µ2
n

→ 0.

In fact, Chebyshev’s inequality shows that under the same assumption, for any fixed
ε > 0,

P
(
(1− ε)µn 6 Xn 6 (1 + ε)µn

)
→ 1.

Remark. The mean µ = E[X] is usually easy to calculate. Since Var[X] = E[X2]− µ2,
this means that knowing the variance is equivalent to knowing the second moment
E[X2]. In particular, with µn = E[Xn], the condition Var[Xn] = o(µ2

n) is equivalent to
E[X2

n] = (1 + o(1))µ2
n, i.e., E[X2

n] ∼ µ2
n:

Var[Xn] = o(µ2
n) ⇐⇒ E[X2

n] ∼ µ2
n.

Sometimes the second moment is more convenient to calculate than the variance.
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Suppose that X = I1 + · · ·+Ik, where each Ii is the indicator function of some event
Ai. We have seen that E[X] is easy to calculate; E[X2] is not too much harder:

E[X2] = E
[∑

i

Ii
∑
j

Ij
]

= E
[∑

i

∑
j

IiIj
]

=
∑
i

∑
j

E[IiIj] =
k∑
i=1

k∑
j=1

P(Ai ∩ Aj).

Example (K4s in G(n, p)).

Theorem 2.3. Let p = p(n) be a function of n.

1. If n2/3p→ 0 as n→∞, then P(G(n, p) contains a K4)→ 0.

2. If n2/3p→∞ as n→∞, then P(G(n, p) contains a K4)→ 1.

Proof. Let X (really Xn, as the distribution depends on n) denote the number of K4s
in G(n, p). For each set S of 4 vertices from [n], let AS be the event that S induces a
K4 in G(n, p). Then

µ = E[X] =
∑
S

P(AS) =

(
n

4

)
p6 =

n(n− 1)(n− 2)(n− 3)

4!
p6 ∼ n4p6

24
.

In case 1 it follows that E[X]→ 0, so P(X > 0)→ 0, as required.
For the second part of the result, we have E[X2] =

∑
S

∑
T P(AS ∩ AT ). The

contributions from all terms where S and T meet in a given number of vertices are as
follows:

|S ∩ T | contribution

0
(
n
4

)(
n−4

4

)
p12 ∼ n4

24
n4

24
p12 ∼ µ2

1
(
n
4

)
4
(
n−4

3

)
p12 = Θ(n7p12)

2
(
n
4

)(
4
2

)(
n−4

2

)
p11 = Θ(n6p11)

3
(
n
4

)(
4
3

)(
n−4

1

)
p9 = Θ(n5p9)

4
(
n
4

)
p6 = µ

Recall that by assumption n4p6 →∞, so µ→∞ and the last contribution µ is o(µ2).
How do the other contributions compare to µ2? Firstly, since µ2 = Θ(n8p12), we have
n7p12 = o(µ2). For the others, we have

n6p11

n8p12
=

1

n2p
= o(1)

and
n5p9

n8p12
=

1

(np)3
= o(1).

12



Putting this all together, E[X2] = µ2 + o(µ2), so Var[X] = o(µ2), and by Corollary 2.2
we have P(X = 0)→ 0.

Definition. Let P be a property of graphs (e.g., ‘contains a K4’). A function p∗(n) is
called a threshold function for P in the model G(n, p) if

• p(n)/p∗(n)→ 0 implies that P(G(n, p(n)) has P)→ 0, and

• p(n)/p∗(n)→∞ implies that P(G(n, p(n)) has P)→ 1.

Theorem 2.3 says that n−2/3 is a threshold function for G(n, p) to contain a K4.
Note that threshold functions are not quite uniquely defined (e.g., 2n−2/3 is also one).
(Call a property increasing if whenever G = (V,E) has the property then so does each
graph G′ = (V,E ′) with E ⊆ E ′. Every increasing property has a threshold function.)

Suppose as usual that X = I1 + . . .+ Ik, with Ii the indicator function of Ai. When
applying the second moment method, our aim is to estimate the variance, showing that
it is small compared to the square of the mean, so Corollary 2.2 applies. So far we first
calculated E[X2], due to the simplicity of the formula

∑
i

∑
j P(Ai∩Aj). However, this

involves some ‘unnecessary’ work when many of the events are independent. We can
avoid this by directly calculating the variance.

Var[X] = E[X2]− (E[X])2

=
∑
i

∑
j

P(Ai ∩ Aj)−
(∑

i

P(Ai)
)(∑

j

P(Aj)
)

=
∑
i

∑
j

(
P(Ai ∩ Aj)− P(Ai)P(Aj)

)
.

Write i ∼ j if i 6= j and Ai and Aj are dependent. (More precisely, we ensure that if
i 6= j and i 6∼ j then Ai and Aj must be independent.) The contribution from terms
where Ai and Aj are independent is zero by definition, so

Var[X] =
∑
i

(
P(Ai)− P(Ai)

2
)

+
∑
i

∑
j∼i

(
P(Ai ∩ Aj)− P(Ai)P(Aj)

)
6 E[X] +

∑
i

∑
j∼i

P(Ai ∩ Aj).

Note that the first line is an exact formula for the variance; the second line is just an
upper bound, but this upper bound is often good enough.

The bound above gives another standard way of applying the 2nd moment method.
We suppress the dependence on n in the notation here.

Corollary 2.4. If µ := E[X] → ∞ and ∆ :=
∑

i

∑
j∼i P(Ai ∩ Aj) = o(µ2), then

P(X > 0)→ 1.

13



Proof. We have
Var[X]

µ2
6
µ+ ∆

µ2
=

1

µ
+

∆

µ2
→ 0.

Now apply Chebyshev’s inequality in the form of Corollary 2.2.

Definition. An isomorphism from a graph G to a graph H is a bijection φ : V (G)→
V (H) such that ij ∈ E(G) if and only if φ(i)φ(j) ∈ E(H). An automorphism of H is
an isomorphism from H to itself. We write aut(H) for the number of automorphisms
of H.

For example the path P3 with 3 vertices has aut(P3) = 2, and aut(Cr) = 2r. As
noted in lectures, if G and H are isomorphic, then there are exactly aut(G) = aut(H)
isomorphisms from G to H.

Example (Appearance of H in G(n, p)). Fix a graph H with v vertices and e edges.
What is the threshold for copies of H to appear in G = G(n, p)?

Let X be the number of copies of H in G, i.e., the number of pairs (W,F ) where
W ⊆ V (G), F ⊆ E(G), and the graph (W,F ) is isomorphic to H. For example, if H is
P3, then E[X] = n(n− 1)(n− 2)/2 p2.

In general, there are n(n−1) · · · (n−v+1) injective maps φ : V (H)→ [n]. Suppose
that for i = 1, 2 we have a map φi : V (H) → W that is an isomorphism between H
and (W,Fi). Then F1 = F2 iff φ−1

1 ◦ φ2 is an automorphism γ of H; that is, if and only
if φ2 = φ1 ◦ γ. Thus if γ1, . . . , γk are the automorphisms of H, then the maps that give
the same copy of H as φ1 are φ1 ◦ γ1, . . . , φ1 ◦ γk. Thus there are

n(n− 1) · · · (n− v + 1)

aut(H)

possible copies of H. It follows that

E[X] =
n(n− 1) · · · (n− v + 1)

aut(H)
pe ∼ nvpe

aut(H)
= Θ(nvpe).

This suggests that the threshold should be p = n−v/e.
This worked for K4 but can it be right in general? Consider, for example, H to be

a K4 with an extra edge hanging off, so v = 5 and e = 7. Our proposed threshold is
p = n−5/7, which is much smaller than p = n−2/3. Consider the range in between, where
p/n−5/7 → ∞ but p/n−2/3 → 0. Then E[X] → ∞, but the probability that G(n, p)
contains a K4 tends to 0, so the probability that G(n, p) contains a copy of H tends to
0. The problem is that H contains a subgraph K4 which is hard to find, because its
e/v ratio is larger than that of H.

Definition. The edge density d(H) of a graph H is e(H)/|H|, i.e., 1/2 times the average
degree of H.

Definition. H is balanced if each subgraph H ′ of H has d(H ′) 6 d(H), and strictly
balanced if each subgraph H ′ 6= H has d(H ′) < d(H).

14



Examples of strictly balanced graphs are complete graphs, trees, and connected regular
graphs.

For balanced graphs, p = n−v/e does turn out to be the threshold.

Theorem 2.5. Let H be a balanced graph with |H| = v and e(H) = e. Then p∗(n) =
n−v/e is a threshold function for the property of containing a copy of H in the model
G(n, p).

Proof. Let X denote the number of copies of H in G(n, p), and set µ = EX, so µ =
Θ(nvpe). If p/n−v/e → 0 then µ→ 0, so P(X > 1)→ 0.

Suppose that p/n−v/e → ∞, i.e., that nvpe → ∞. Then µ → ∞. We must show
that P(X > 1)→ 1.

Let H1, . . . , HN list all possible copies of H with vertices in [n], and let Ai denote
the event that the ith copy Hi is present in G = G(n, p). Let Hi ∩Hj denote the graph
with vertex set V (Hi) ∩ V (Hj) (when this is non-empty) and edge set E(Hi) ∩E(Hj).
Observe that Ai and Aj are dependent if and only if e(Hi ∩Hj) > 0. As before, write
i ∼ j if i 6= j and Ai and Aj are dependent, and let

∆ :=
∑
i

∑
j∼i

P(Ai ∩ Aj) =
∑
i

∑
j∼i

P(Hi ∪Hj ⊆ G).

We split the sum by the number r of vertices of Hi∩Hj (2 6 r 6 v) and the number
s of edges of Hi ∩Hj. Note that Hi ∩Hj is a subgraph of Hi, which is isomorphic to
the balanced graph H. We thus have

s

r
= d(Hi ∩Hj) 6 d(H) =

e

v
,

so s 6 re/v.
Since Hi∪Hj has 2v−r vertices and 2e−s edges, the contribution to ∆ from terms

with given r and s is
Θ
(
n2v−rp2e−s) = Θ

(
µ2/(nrps)

)
.

Now
nrps > nrpre/v = (nvpe)r/v = Θ(µr/v).

Since µ→∞ and r/v > 0, it follows that nrps →∞, so the contribution from this pair
(r, s) is o(µ2).

Since there are only a fixed number of pairs to consider, it follows that ∆ = o(µ2).
Hence, by Corollary 2.4, P(X > 0)→ 1.

Remark. In general, a threshold is n−1/d(H′), where H ′ is a densest subgraph of H. The
proof is almost the same.

Remark. If H is strictly balanced and p = cn−v/e, then µ tends to a constant and
the rth factorial moment Er[X] = E[X(X − 1) · · · (X − r + 1)] satisfies Er[X] ∼ µr,
from which one can show that the number of copies of H has asymptotically a Poisson
distribution. We shall not do this.
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3 Lovász Local Lemma

Suppose that we have some ‘bad’ events A1, . . . , An, and we want to show that it’s
possible that no Ai holds, no matter how unlikely. If

∑
i P(Ai) < 1 then the union

bound gives what we want. But what if the sum is large? In general, of course, it might
be that

⋃
iAi always holds. One trivial case where we can rule this out is when the Ai

are independent. Then

P

(⋂
i

Ac
i

)
=
∏
i

P(Ac
i ) =

n∏
i=1

(1− P(Ai)) > 0,

provided each Ai has probability less than 1.
What if each Ai depends only on a few others?
Recall that A1, . . . , An are independent if for all disjoint S, T ⊆ [n] we have

P

(⋂
i∈S

Ai ∩
⋂
i∈T

Ac
i

)
=
∏
i∈S

P(Ai)
∏
i∈T

P(Ac
i ).

(If S = ∅ then
⋂
i∈S Ai is the whole probability space Ω, and P(

⋂
i∈S Ai) = 1.) This is

not the same as each pair of events being independent (see below).

Definition. An event A is independent of a family (B1, . . . , Bn) of events if for all
disjoint S, T ⊆ [n] we have

P

(
A
∣∣∣ ⋂
i∈S

Bi ∩
⋂
i∈T

Bc
i

)
= P(A),

i.e., if knowing that certain Bi hold and certain others do not does not affect the
probability that A holds.

For example, suppose that each of the following four sequences of coin tosses happens
with probability 1/4: TTT, THH, HTH and HHT. Let Ai be the event that the ith toss
is H. Then one can check that any two events Ai are independent, but (A1, A2, A3) is
not a family of independent events. Similarly, A1 is not independent of (A2, A3), since
P(A1 | A2 ∩ A3) = 0.

Remark. If we want to avoid division by zero above, we can rewrite the condition
P(A | E) = P(A) as P(A ∩ E) = P(A)P(E). More generally, the defining property
of P(A | E) is that P(A ∩ E) = P(A | E)P(E). In the case where P(E) = 0 (and
so P(A ∩ E) = 0) this holds automatically. Taking this view, a statement such as
P(A | E) > x is really short for P(A∩E) > xP(E), so if P(E) = 0 it holds automatically.

Recall that a digraph on a vertex set V is a set of ordered pairs of distinct elements
of V , i.e., a ‘graph’ in which each edge has an orientation, there are no loops, and
there is at most one edge from a given i to a given j, but we may have edges in both
directions. We write i→ j if there is an edge from i to j.

16



Definition. A digraph D on [n] is called a dependency digraph for the events A1, . . . , An
if for each i the event Ai is independent of the family of events (Aj : j 6= i, i 6→ j).

Roughly speaking, Ai is ‘allowed to depend on Aj when i→ j’. More precisely, Ai
must be independent of the remaining Aj as a family, not just individually.

Theorem 3.1 (Local Lemma, general form). Let D be a dependency digraph for the
events A1, . . . , An. Suppose that there are real numbers 0 6 xi < 1 such that

P(Ai) 6 xi
∏
j : i→j

(1− xj)

for each i. Then

P

(
n⋂
i=1

Ac
i

)
>

n∏
i=1

(1− xi) > 0.

Proof. We claim that for any proper subset S of [n] and any i /∈ S we have

P

(
Ac
i

∣∣ ⋂
j∈S

Ac
j

)
> 1− xi, (1)

i.e., that

P

(
Ai
∣∣ ⋂
j∈S

Ac
j

)
6 xi. (2)

Assuming the claim, then

P

(
n⋂
i=1

Ac
i

)
= P(Ac

1)P(Ac
2 | Ac

1)P(Ac
3 | Ac

1 ∩ Ac
2) · · ·P(Ac

n |
n−1⋂
i=1

Ac
i )

> (1− x1)(1− x2)(1− x3) · · · (1− xn)

=
n∏
i=1

(1− xi).

It remains to prove the claim. For this we use induction on |S|.
For the base case |S| = 0 we have

P

(
Ai
∣∣ ⋂
j∈S

Ac
j

)
= P(Ai) 6 xi

∏
j : i→j

(1− xj) 6 xi,

as required.
Now suppose the claim holds whenever |S| < r, and consider S with |S| = r, and

i /∈ S. Let S1 = {j ∈ S : i → j} and S0 = S \ S1 = {j ∈ S : i 6→ j}, and consider
B =

⋂
j∈S1

Ac
j and C =

⋂
j∈S0

Ac
j.
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In this notation, the inequality (2) simply says that

P(Ai | B ∩ C) 6 xi.

In proving this we may (as noted above) assume that P(B ∩ C) > 0. Then

P(Ai | B ∩ C) =
P(Ai ∩B ∩ C)

P(B ∩ C)
=

P(Ai ∩B ∩ C)

P(C)

P(C)

P(B ∩ C)
=

P(Ai ∩B | C)

P(B | C)
. (3)

To bound the numerator, note that P(Ai ∩ B | C) 6 P(Ai | C) = P(Ai), since Ai is
independent of the family of events (Aj : j ∈ S0). Hence, by the assumption of the
theorem,

P(Ai ∩B | C) 6 P(Ai) 6 xi
∏
j : i→j

(1− xj). (4)

For the denominator in (3), write S1 as {j1, . . . , ja} and S0 as {k1, . . . , kb}. Then

P(B | C) = P(Ac
j1
∩ · · · ∩ Ac

ja | C)

=
a∏
t=1

P(Ac
jt | C ∩ A

c
j1
∩ · · · ∩ Ac

jt−1
).

In each conditional probability in the product, we condition on the intersection of at
most r− 1 events Ac

j, and jt is not one of their indices, so the induction hypothesis (1)
applies, and thus

P(B | C) >
a∏
t=1

(1− xjt) =
∏
j∈S1

(1− xj) >
∏
j : i→j

(1− xj)

since S1 ⊆ {j : i→ j}. Together with (3) and (4) this gives P(Ai | B ∩ C) 6 xi, which
is exactly (2). This completes the proof by induction.

Dependency digraphs are slightly slippery. First recall that given the eventsA1, . . . , An,
we cannot construct D simply by taking i→ j if Ai and Aj are dependent. Considering
three events such that each pair is independent but (A1, A2, A3) is not, a legal depen-
dency digraph must have at least one edge from vertex 1 (since A1 is not independent
of the family (A2, A3)), and similarly from each other vertex.

The same example shows that (even minimal) dependency digraphs are not unique:
in this case there are 8 minimal dependency digraphs.

There is an important special case where dependency digraphs are easy to construct;
we state it as a simple lemma.

Lemma 3.2. Suppose that (Xα)α∈F is a family of independent random variables, and
that A1, . . . , An are events where Ai is determined by (Xα : α ∈ Fi) for some Fi ⊆ F .
Then the (di)graph in which, for distinct i and j, i→ j (and so also j → i) if and only
if Fi ∩ Fj 6= ∅ is a dependency digraph for A1, . . . , An.
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Proof. For each i, the events (Aj : j 6= i, i 6→ j) are (jointly) determined by the variables
(Xα : α ∈ F \ Fi), and Ai is independent of this family of variables.

We now turn to a more user-friendly version of the local lemma. The out-degree of
a vertex i in a digraph D is simply the number of vertices j such that i→ j.

Theorem 3.3 (Local Lemma, Symmetric version). Let A1, . . . , An be events having
a dependency digraph D with all out-degrees at most d. If P(Ai) 6 p for all i and
ep(d+ 1) 6 1, then P(

⋂
iA

c
i ) > 0.

Proof. Set xi = 1/(d + 1) for all i and apply Theorem 3.1. We have |{j : i→ j}| 6 d,
and (1 + 1/d)d 6 e, so

xi
∏
j : i→j

(1− xj) >
1

d+ 1

(
d

d+ 1

)d
>

1

e(d+ 1)
> p > P(Ai),

and Theorem 3.1 applies.

Remark. Considering d + 1 disjoint events each with probability 1/(d + 1) shows that
the constant (here e) must be > 1. In fact, the constant e is best possible for large d.

Example (Hypergraph colouring).

Theorem 3.4. Let H be an r-uniform hypergraph in which each edge meets at most d
other edges. If d+ 1 6 2r−1/e then H has a 2-colouring.

Proof. Colour the vertices randomly in the usual way, each red/blue with probability
1/2, independently of the others. Let Ai be the event that the ith edge ei is monochro-
matic, so P(Ai) = 21−r = p.

By Lemma 3.2 we may form a dependency digraph for the Ai by joining i to j (both
ways) if ei and ej share one or more vertices. The maximum out-degree is at most d
by assumption, and

ep(d+ 1) 6 e21−r(2r−1/e) = 1.

Now Theorem 3.3 gives P(∩iAc
i ) > 0, so there exists a good colouring.

Example (Ramsey numbers again).

Theorem 3.5. If k > 3 and e21−(k2)
(
k
2

)(
n
k−2

)
6 1 then R(k, k) > n.

Proof. Colour the edges of Kn as usual, each red/blue with probability 1/2, indepen-
dently of the others. For each S ⊆ [n] with |S| = k, let AS be the event that the

complete graph on S is monochromatic, so P(AS) = 21−(k2).
For the dependency digraph, by Lemma 3.2 we may join S and T if they share an

edge, i.e., if |S ∩ T | > 2. The maximum degree d is

d = |{T : |S ∩ T | > 2}| <
(
k

2

)(
n

k − 2

)
.

By assumption ep(d+ 1) 6 1, so Theorem 3.3 applies, giving the result.
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Corollary 3.6. R(k, k) > (1 + o(1))k
√

2
e

2k/2.

Proof. Straightforward(ish) calculation; you won’t be asked to do it!

Note: this improves the bound from the first moment method by a factor of
√

2.
This is not much, but this is the best lower bound known!

Example (R(3, k)). In the previous example, the local lemma didn’t make so much
difference, because each event depended on very many others. If we consider off-diagonal
Ramsey numbers the situation changes, but we can’t use the symmetric form. The point
here is to understand how to apply the lemma when we have ‘two types’ of events; the
details of the calculation are not important.

Colour the edges of Kn red with probability p and blue with probability 1 − p,
independently of each other, where p = p(n)→ 0.

For each S ⊆ [n] with |S| = 3 let AS be the event that S spans a red triangle, and
for each T ⊆ [n] with |T | = k let BT be the event that T spans a blue Kk. Note that

P(AS) = p3 and P(BT ) = (1− p)(
k
2).

As usual, we can form the dependency digraph by joining two events if they involve
one or more common edges. Each A event is joined to

• at most 3n other A events, and

• at most
(
n
k

)
6 nk B events (as there are only

(
n
k

)
B events in total).

Also, each B event is joined to

• at most
(
k
2

)
n A events, and

• at most nk B events.

Our aim is to apply Theorem 3.1 with xi = x for all A events and xi = y for all B
events, to conclude that the probability that none of the AS or BT holds is positive,
which gives R(3, k) > n. The conditions are satisfied provided we have

p3 6 x(1− x)3n(1− y)n
k

(5)

and
(1− p)(

k
2) 6 y(1− x)(

k
2)n(1− y)n

k

. (6)

It turns out that

p =
1

6
√
n

x =
1

12n3/2
k ∼ 30

√
n log n y = n−k

satisfies (5) and (6) if n is large enough. This gives the following result.
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Theorem 3.7. There exists a constant c > 0 such that R(3, k) > ck2/(log k)2 if k is
large enough.

Proof. The argument above shows that, for sufficiently large n, we have R(3, k) > n if
k ∼ 30

√
n log n, that is, if n ∼ k2

(60 log k)2 .

Remark. This bound is best possible apart from one factor of log k. Removing this
factor was not easy, and was a major achievement of J.H. Kim. We now (2016) know
that

(
1

4
+ o(1))

k2

log k
6 R(3, k) 6 (1 + o(1))

k2

log k
.
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4 Chernoff bounds

Often we are interested in whether a random graph G(n, p) has some property almost
always (with probability tending to one as n → ∞), or almost never. For example,
this is enough to allow us to show the existence of graphs with various combinations
of properties, using the fact that if two or three properties individually hold almost
always, then their intersection holds almost always. Sometimes, however, we need to
consider a number k of properties (events) that tends to infinity as n→∞. This means
that we would like tighter bounds on the probability that individual events fail to hold.

For example, let G = G(n, p) and consider its maximum degree ∆(G). For any d
we have P(∆(G) > d) 6 nP(dv > d), where dv is the degree of a given vertex v. In turn
this is at most nP(X > d) where X ∼ Bin(n, p). To show that P(∆(G) > d) → 0 for
some d = d(n) we would need a bound of the form

P(X > d) = o(1/n). (7)

Recall that if X ∼ Bin(n, p) then µ = E[X] = np and σ2 = Var[X] = np(1 − p).
For example, if p = 1/2 then µ = n/2 and σ =

√
n/2. Chebyshev’s inequality gives

P(X > µ + λσ) 6 λ−2; to use this for (7) we need λ �
√
n (that is, λ/

√
n → ∞ as

n→∞). If p = 1/2 this gives λσ � n, which is useless.
On the other hand, the central limit theorem suggests that as n→∞

P(X > µ+ λσ) = P
(
X − µ
σ

> λ

)
→ P(N(0, 1) > λ) ≈ e−λ

2/2

where N(0, 1) is the standard normal distribution. But the → here is valid only for λ
constant, so again it is no use for (7) (and the final ≈ should really be ≈ λ−1e−λ

2/2,
valid for large λ).

Our next aim is to prove a bound similar to the above, but valid no matter how λ
depends on n.

Theorem 4.1. Suppose that n > 1 and p, x ∈ (0, 1). Let X ∼ Bin(n, p). Then

P(X > nx) 6

[(p
x

)x(1− p
1− x

)1−x
]n

if x > p,

and

P(X 6 nx) 6

[(p
x

)x(1− p
1− x

)1−x
]n

if x 6 p.

Note that the exact expression is in some sense not so important; what matters is
(a) the proof technique, and (b) that it is exponential in n if x and p are fixed.

Proof. The idea is simply to apply Markov’s inequality to the random variable etX for
some number t that we will choose so as to optimize the bound.
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Consider X as a sum X1+. . .+Xn where the Xi are independent with P(Xi = 1) = p
and P(Xi = 0) = 1− p. Then

E[etX ] = E[etX1etX2 · · · etXn ]

= E[etX1 ] · · ·E[etXn ]

= (pet + (1− p)e0)n,

where we used independence for the second equality.
For any t > 0, using the fact that y 7→ ety is increasing and Markov’s inequality, we

have

P(X > nx) = P(etX > etnx) (8)

6 E[etX ]/etnx

= [(pet + 1− p)e−tx]n.

To get the best bound we minimize over t (by differentiating and equating to zero).
For x > p, the minimum occurs when

et =
x

p

1− p
1− x

> 1,

so t > 0 and we can use this value: we obtain

P(X > nx) 6

[(
x

1− p
1− x

+ 1− p
)(p

x

)x(1− x
1− p

)x]n
=

[(p
x

)x(1− p
1− x

)1−x
]n
,

proving the first part of the theorem. (The case x = p is trivial since the bound is 1.)
For the second part, let Y = n − X, so Y ∼ Bin(n, 1 − p). Then P(X 6 nx) =

P(Y > n(1− x)), and apply the first part.

Remark. Theorem 4.1 gives the best possible bound among bounds of the form P(X >
nx) 6 g(x, p)n where g(x, p) is some function of x and p.

In the form above, the bound is a little hard to use. Here are some more practical
forms.

Corollary 4.2. Let X ∼ Bin(n, p). Then for h, t > 0

P
(
X > np+ nh

)
6 e−2h2n

and
P
(
X > np+ t

)
6 e−2t2/n.

Also, for 0 6 ε 6 1 we have

P
(
X > (1 + ε)np

)
6 e−ε

2np/4

and
P
(
X 6 (1− ε)np

)
6 e−ε

2np/2.
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Proof. Fix p with 0 < p < 1. For x > p or x < p Theorem 4.1 gives P(X > nx) 6 e−f(x)n

or P(X 6 nx) 6 e−f(x)n, where

f(x) = x log

(
x

p

)
+ (1− x) log

(
1− x
1− p

)
.

We aim to bound f(x) from below by some simpler function. Note that f(p) = 0. Also,

f ′(x) = log x− log p− log(1− x) + log(1− p),

so f ′(p) = 0 and

f ′′(x) =
1

x
+

1

1− x
.

If f ′′(x) > a for all x between p and p + h then (e.g., by Taylor’s Theorem) we get
f(p+ h) > ah2/2.

Now for any x we have f ′′(x) > infx>0{1/x+1/(1−x)} = 4, so f(p+h) > 2h2, giving
the first bound; the second is the same bound in different notation, setting t = nh.

For the third bound, if p 6 x 6 p(1 + ε) 6 2p then f ′′(x) > 1/x > 1/(2p), giving

f(p+ εp) > ε2p2

2
1
2p

, which gives the result.

For the final bound, if 0 < x 6 p then f ′′(x) > 1/x > 1/p, giving f(p − εp) >
ε2p2

2
1
p
.

Remark. Recall that σ =
√
np(1− p), so when p is small then εnp ∼ ε

√
npσ. The

central limit theorem suggests that the probability of a deviation this large should be
around e−ε

2np/2 as in the final bound above. The third bound is weaker (and can be
improved by replacing the 4 by a 3, but not by a 2).

In general, think of the bounds as of the form e−cλ
2

for the probability of being λ
standard deviations away from the mean. Alternatively, deviations on the scale of the
mean are exponentially unlikely.

The Chernoff bounds apply more generally than just to binomial distributions; they
apply to other sums of independent variables where each variable has bounded range.

Example (The maximum degree of G(n, p)).

Theorem 4.3. Let p = p(n) satisfy np > 10 log n, and let ∆ be the maximum degree
of G(n, p). Then

P
(
∆ > np+ 3

√
np log n

)
→ 0

as n→∞.

Proof. Let d = np+ 3
√
np log n. As noted at the start of the section,

P(∆ > d) 6 nP(dv > d) 6 nP(X > d)

where dv ∼ Bin(n− 1, p) is the degree of a given vertex, and X ∼ Bin(n, p). Applying
the third bound in Corollary 4.2 with ε = 3

√
log n/(np) 6 1, we have

nP(X > d) 6 ne−ε
2np/4 = ne−9(logn)/4 = nn−9/4 = n−5/4 → 0,

giving the result.
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Note that for large n there will be some vertices with degrees any given number of
standard deviations above the average. The result says however that all degrees will
be at most C

√
log n standard deviations above. This is best possible, apart from the

constant.
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5 Phase Transition in G(n, p)

[ Summary of what we know about G(n, p) in various ranges; most interesting near
p = 1/n. ]

5.1 Branching processes

Let Z be a probability distribution on the non-negative integers. The Galton–Watson
branching process with offspring distribution Z is defined as follows:

• Generation 0 consists of a single individual.

• Each individual in generation t has a (possibly empty) set of children. These sets
are disjoint and between them make up generation t+ 1.

• The number of children of each individual has distribution Z, and is independent
of everything else, i.e., of the history so far, and of other individuals in the same
generation.

We write Xt for the number of individuals in generation t, and X = (X0, X1, . . .) for
the random sequence of generation sizes. Note that X0 = 1, and given the values of
X0, . . . , Xt with Xt = k, the conditional distribution of Xt+1 is the sum of k independent
copies of Z.

Let λ = E[Z]. Then E[X0] = 1. Also E[Xt+1 | Xt = k] = kλ. Thus

E[Xt+1] =
∑
k

P(Xt = k)E[Xt+1 | Xt = k]

=
∑
k

P(Xt = k)kλ = λE[Xt].

Hence E[Xt] = λt for all t.
The branching process survives if Xt > 0 for all t, and dies out or goes extinct if

Xt = 0 for some t.
If λ = E[Z] < 1, then for any t we have

P(X survives) 6 P(Xt > 0) 6 E[Xt] = λt.

Letting t→∞ shows that P(X survives) = 0.
What if λ > 1? Note that any branching process with P(Z = 0) > 0 may die out –

the question is, can it survive?
We recall some basic properties of probability generating functions.

Definition. If Z is a random variable taking non-negative integer values, the probability
generating function of Z is the function fZ : [0, 1]→ R defined by

fZ(x) = E[xZ ] =
∞∑
k=0

P(Z = k)xk.
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The following facts are easy to check, say for the case E[Z] < ∞ which is all we
need:

• fZ(0) = P(Z = 0) and fZ(1) = 1.

• fZ is continuous on [0, 1].

• fZ is increasing.

• f ′Z(1) = E[Z].

• If P(Z > 2) > 0, then f ′Z is strictly increasing.

For the last three observations, note that for 0 < x 6 1 we have

f ′Z(x) =
∞∑
k=1

kP(Z = k)xk−1 > 0,

and
f ′′Z(x) =

∑
k>2

k(k − 1)P(Z = k)xk−2 > 0,

with strict inequality if P(Z > 2) > 0.
Let ηt = P(Xt = 0). Then η0 = 0 and

ηt+1 =
∑
k

P(X1 = k)P(Xt+1 = 0 | X1 = k) =
∑
k

P(Z = k)ηkt = fZ(ηt),

since, given the number of individuals in the first generation, the descendants of each
of them form an independent copy of the branching process.

Let XZ denote the Galton–Watson branching process with offspring distribution Z.
Let η = η(Z) denote the extinction probability of XZ , i.e., the probability that the
process dies out.

Theorem 5.1. For any probability distribution Z on the non-negative integers, η(Z)
is equal to the smallest solution x ∈ [0, 1] to fZ(x) = x.

Proof. Note that fZ(1) = 1 so there is a solution; continuity implies that there is a
smallest solution.

As above, let ηt = P(Xt = 0), so 0 = η0 6 η1 6 η2 · · · . Since the events {Xt = 0}
are nested and their union is the event that the process dies out, we have ηt → η as
t→∞.1

As shown above, ηt+1 = fZ(ηt). Since fZ is continuous, taking the limit of both
sides gives η = fZ(η), so η ∈ [0, 1] is a solution to fZ(x) = x.

1This is a lemma from Prelims probability: note that if A1 ⊆ A2 ⊆ A3 · · · , then
⋃

i>1 Ai is the
disjoint union of A1, A2 \ A1, A3 \ A2, . . . , and use countable (and finite) additivity to see that
P(An)→ P(

⋃
i>1 Ai) as n→∞.
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Let x0 be the smallest solution in [0, 1] to fZ(x) = x, so x0 6 η. Then 0 = η0 6 x0.
Since fZ is increasing, this gives

η1 = fZ(η0) 6 fZ(x0) = x0.

Similarly, by induction we obtain ηt 6 x0 for all t, so taking the limit, η 6 x0, and
hence η = x0.

Corollary 5.2. If E[Z] > 1 then η(Z) < 1, i.e., the probability that XZ survives is
positive. If E[Z] < 1, or if E[Z] = 1 and P(Z = 1) < 1, then η(Z) = 1.

Proof. The question is simply whether the curves fZ(x) and x meet anywhere in [0, 1]
other than at x = 1; sketch the graphs!

For the first statement, suppose for convenience that E[Z] < ∞. Then f ′Z(1) > 1,
so there exists ε > 0 such that fZ(1 − ε) < 1 − ε. Since fZ(0) > 0, applying the
Intermediate Value Theorem to fZ(x)− x, there must be some x ∈ [0, 1− ε] for which
fZ(x) = x. But then η 6 x 6 1− ε < 1.

We have already proved the second statement, so let us focus on the third, with
E[Z] = 1 and P(Z = 1) 6= 1. Note that P(Z > 2) > 0, so fZ(x) has strictly increasing
derivative. Since f ′Z(1) = 1, it follows that f ′Z(x) < 1 for 0 < x < 1. Since fZ(1) = 1,
it follows by the Mean Value Theorem that fZ(x) > x for all x ∈ [0, 1).

Note that when E[Z] > 1, there is a unique solution to fZ(x) = x in [0, 1); this
follows from the strict convexity of fZ .

Definition. For c > 0, a random variable Z has the Poisson distribution with mean c,
written Z ∼ Po(c), if

P(Z = k) =
ck

k!
e−c

for k = 0, 1, 2, . . ..

Lemma 5.3. Suppose n → ∞ and p → 0 with np → c, where c > 0 is constant. Let
Zn have the binomial distribution Bin(n, p), and let Z ∼ Po(c). Then Zn converges in
distribution to Z, i.e., for each fixed k, P(Zn = k)→ P(Z = k) as n→∞.

Proof. For k fixed,

P(Zn = k) =

(
n

k

)
pk(1− p)n−k ∼ nk

k!
pk(1− p)n =

(np)k

k!
e−np+O(np2) → ck

k!
e−c,

since np→ c and np2 → 0.

As we shall see shortly, there is a very close connection between components in
G(n, c/n) and the Galton–Watson branching process XPo(c) where the offspring dis-
tribution is Poisson with mean c. The extinction probability of this process will be
especially important.
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Theorem 5.4. Let c > 0. Then the extinction probability η = η(c) of the branching
process XPo(c) satisfies the equation

η = e−c(1−η).

Furthermore, η < 1 if and only if c > 1.

Proof. The probability generating function of the Poisson distribution with mean c is
given by

f(x) =
∞∑
k=0

ck

k!
e−cxk = ecxe−c = ec(x−1) = e−c(1−x).

The result now follows from Theorem 5.1 and Corollary 5.2.

5.2 Component exploration

In the light of Lemma 5.3, we may hope that the Poisson branching process gives a
good ‘local’ approximation to the neighbourhood of a vertex of G(n, c/n). To make
this precise, we shall ‘explore’ the component of a vertex in a certain way. First we
describe the (simpler) exploration for the branching process.

Exploration process for branching process.
Start with Y bp

0 = 1, meaning one live individual (the root). In step t, select a live
individual if there is one (otherwise nothing happens); this individual has Zt children
and then dies. Let Y bp

t be the number of individuals alive after t steps. Then

Y bp
t =

{
Y bp
t−1 + Zt − 1 if Y bp

t−1 > 0

0 if Y bp
t−1 = 0.

The process dies out if and only if Y bp
m = 0 for some m; in this case the total number

of individuals is min{m : Y bp
m = 0}.

Until it hits zero, the sequence (Y bp
t ) is a random walk with i.i.d. increments Z1 −

1, Z2 − 1, . . . taking values in {−1, 0, 1, 2, . . .}. Each increment has expectation E[Z −
1] = λ− 1. Thus λ < 1 implies negative drift and we can expect that with probability
1 the walk will hit 0, i.e., the process will die. (We have proved this by a different
method already.) If λ > 1 then the drift is positive, and with positive probability the
walk never hits 0, i.e., the process survives.

Component exploration in G(n, p).
Let v be a fixed vertex of a graph G. At each stage, each vertex u of G will be ‘live’,

‘unreached’, or ‘processed’. Yt will be the number of live vertices after t steps; there
will be exactly t processed vertices, and Ut = n− t− Yt unreached vertices.

At t = 0, mark v as live and all other vertices as unreached, so Y0 = 1 and U0 = n−1.
At each step t, pick a live vertex w, if there is one. For each unreached w′, check

whether ww′ ∈ E(G); if so, make w′ live. After completing these checks, set w to be
processed.
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Let Rt be the number of w′ which become live during step t. (Think of this as the
number of vertices Reached in step t.) Then

Yt =

{
Yt−1 +Rt − 1 if Yt−1 > 0
0 if Yt−1 = 0.

The process stops at the first m for which Ym = 0. At this point we have reached
all vertices in the component Cv of G containing v, since each vertex of Cv must have
become live at some step, and then been processed. In particular, |Cv| = m.

So far, G could be any graph. Now suppose that G = G(n, p). Then each edge
is present with probability p independently of the others. No edge is tested twice (we
only check edges from live to unreached vertices, and then one end becomes processed).
It follows that conditional on the event Y0 = y0, . . . , Yt−1 = yt−1, the number Rt of
vertices reached in step t has the distribution

Rt ∼ Bin(ut−1, p) where ut−1 = n− (t− 1)− yt−1. (9)

5.3 Vertices in small components

Let ρk(c) denote the probability that |XPo(c)| = k, where |X| =
∑

t>0Xt 6 ∞ denotes
the total number of individuals in all generations of the branching process X.

Lemma 5.5. Suppose that p = p(n) satisfies np→ c where c > 0 is constant. Let v be
a given vertex of G(n, p). For each constant k we have

P(|Cv| = k)→ ρk(c) as n→∞.

Proof. The idea is simply to show that the random walks (Yt) and (Y bp
t ) have almost the

same probability of first hitting zero at t = k. We do this by comparing the probabilities
of individual trajectories.

Define (Yt) and (Rt) as in the graph exploration above. Then |Cv| = k if and only
if Yk = 0 and Yt > 0 for all t < k. Let Sk be the set of all possible corresponding
sequences y = (y0, . . . , yk) of values for Y = (Y0, . . . , Yk), i.e., all sequences such that
y0 = 1, yk = 0, yt > 0 for t < k, and each yt is an integer with yt > yt−1 − 1. Then

P(|Cv| = k) =
∑
y∈Sk

P(Y = y).

Similarly,

ρk(c) = P
(
|XPo(c)| = k

)
=
∑
y∈Sk

P(Ybp = y).

Fix any sequence y ∈ Sk. For each t let rt = yt− yt−1 + 1, so (rt) is the sequence of
Rt values corresponding to Y = y. From (9) we have

P(Y = y) =
k∏
t=1

P
(
Bin(n− (t− 1)− yt−1, p) = rt

)
.
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In each factor, t−1, yt−1 and rt are constants. As n→∞ we have n−(t−1)−yt−1 ∼ n,
so (n − (t − 1) − yt−1)p → c. Applying Lemma 5.3 to each factor in the product, it
follows that

P(Y = y)→
k∏
t=1

P
(
Po(c) = rt

)
.

But this is just P(Ybp = y), from the exploration for the branching process. Summing
over the finite number of possible sequences y ∈ Sk gives the result.

We write Nk(G) for the number of vertices of a graph G in components with k
vertices. (So Nk(G) is k times the number of k-vertex components of G.)

Corollary 5.6. Suppose that np→ c where c > 0 is constant. For each fixed k we have
ENk(G(n, p)) ∼ nρk(c) as n→∞.

Proof. The expectation is simply
∑

v P(|Cv| = k) = nP(|Cv| = k) ∼ nρk(c).

Lemma 5.5 tells us that the branching process ‘predicts’ the expected number of
vertices in components of each fixed size k. It is not hard to use the second moment
method to show that in fact this number is concentrated around its mean.

Definition. Let (Xn) be a sequence of real-valued random variables and a a (constant)

real number. Then Xn converges to a in probability, written Xn
p→ a, if for all (fixed)

ε > 0 we have P(|Xn − a| > ε)→ 0 as n→∞.

Lemma 5.7. Suppose that E[Xn]→ a and E[X2
n]→ a2. Then Xn

p→ a.

Proof. Note that Var[Xn] = E[X2
n] − (EXn)2 → a2 − a2 = 0, and apply Chebyshev’s

inequality.

In fact, whenever we showed that some quantity Xn was almost always positive by
using the second moment method, we really showed more, that Xn/E[Xn]

p→ 1, i.e.,
that Xn is ‘concentrated around its mean’.

Lemma 5.8. Let c > 0 and k > 1 be constant, and let Nk = Nk(G(n, c/n)). Then

Nk/n
p→ ρk(c).

Proof. We have already shown that E[Nk/n]→ ρk(c).
Let Iv be the indicator function of the event that |Cv| = k, so Nk =

∑
v Iv and

N2
k =

∑
v

∑
w

IvIw = A+B,

where
A =

∑
v

∑
w

IvIwI{Cv=Cw}
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is the part of the sum from vertices in the same component, and

B =
∑
v

∑
w

IvIwI{Cv 6=Cw}

is the part from vertices in different components. [Note that we can split the sum even
though it’s random whether a particular pair of vertices are in the same component or
not.]

If Iv = 1, then |Cv| = k, so
∑

w IwI{Cv=Cw} = k. Hence A = kNk 6 kn, and
E[A] = o(n2).

Since all vertices v are equivalent, we can rewrite E[B] as

nP(|Cv| = k)E

[∑
w

IwI{Cv 6=Cw}

∣∣∣ |Cv| = k

]
where v is any fixed vertex. Now

∑
w IwI{Cv 6=Cw} is just Nk(G − Cv), the number of

vertices of G−Cv in components of size k. Exploring Cv as before, given that |Cv| = k
we have not examined any of the edges among the n− k vertices not in Cv, so G− Cv
has the distribution of G(n− k, c/n). Hence

E[B] = nP(|Cv| = k)E[Nk(G(n− k, c/n))].

Since n− k ∼ n, Lemma 5.5 gives

E[B] ∼ nP(|Cv| = k)(n− k)ρk(c) ∼ (nρk(c))
2.

Hence, E[N2
k ] = E[A] + E[B] ∼ (nρk(c))

2, i.e., E[(Nk/n)2]→ ρk(c)
2.

Lemma 5.7 now gives the result.

Let N6K(G) denote the number of vertices v of G with |Cv| 6 K, and let ρ6K(c) =
P
(
|XPo(c)| 6 K

)
.

With G = G(n, c/n), we have seen that for k fixed, Nk(G)/n
p→ ρk(c). Summing

over k = 1, . . . , K, it follows that if K is fixed, then

N6K(G)

n

p→ ρ6K(c). (10)

What if we want to consider components of sizes growing with n? Then we must be
more careful.

Recall that η(c) denotes the extinction probability of the branching process XPo(c),
so
∑∞

k=1 ρk(c) = η(c). In other words,

ρ6K(c) =
K∑
k=1

ρk(c)→ η(c) as K →∞.

If c > 1, then N6n(G)/n = 1, while ρ6n(c) → η(c) < 1, so we cannot extend the
formula (10) to arbitrary K = K(n). But we can allow K to grow at some rate.
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Lemma 5.9. Let c > 0 be constant, and suppose that k− = k−(n) satisfies k− → ∞
and k− 6 n1/4. Then the number N6k− of vertices of G(n, c/n) in components with at

most k− vertices satisfies N6k−/n
p→ η(c).

Proof. [Sketch; non-examinable] The key point is that since k− →∞, we have P(|XPo(c)| 6
k−)→ η(c).

To complete the proof, simply redo the calculations above (i.e., repeat the proofs
of Lemmas 5.5 and 5.8 with the following changes. Firstly, consider the set S of all
possible trajectories y that first hit zero at or before step k−. (Rather than ones hitting
0 at a specific time.)

Secondly, to deal with the problem that our trajectories now have length growing
with n, we need to be more careful in the calculations. For example, use the fact that
P
(
Bin(n−m, c/n) = r

)
and P(Po(c) = r) agree within a factor 1±O((r +m+ 1)2/n)

when r,m 6 n/4, say, to show that all trajectories in S have essentially the same
probability in the graph and branching process explorations.

For each fixed k, we know almost exactly how many vertices are in components of
size k. Does this mean that we know the whole component structure? Not quite: if
c > 1, so η = η(c) < 1, then Lemma 5.9 tells us that there are whp around (1 − η)n
vertices in components of size at least n1/4, say. But are these components really of
around that size, or much larger? Also, for c 6 1, whp there are o(n) vertices in
components of size at least n1/4, say. But are there any such vertices? How large is the
largest component?

To answer these questions, we return to the exploration process.

5.4 The phase transition

We say that an event (formally a sequence of events) holds with high probability or whp
if its probability tends to 1 as n→∞.

Theorem 5.10. Let 0 < c < 1 be constant. There is a constant A > 0 (which depends
on c) such that whp every component of G(n, c/n) has size at most A log n.

Proof. Recall that our exploration of the component Cv of G(n, c/n) containing a given
vertex v leads to a random walk (Yt)

m
t=0 with Y0 = 1, Ym = 0, and at each step

Yt = Yt−1 + Rt − 1 where, conditional on the process so far, Rt has the binomial
distribution Bin(ut−1, c/n), where ut−1 = n− (t− 1)− yt−1 depends on the value yt−1

of Yt−1. Here m = |Cv| is the (random, of course) first time the random walk hits 0.
Since ut−1 6 n, the conditional distribution ofRt is always dominated by a Bin(n, c/n)

distribution. More precisely, we can define independent variables R+
t ∼ Bin(n, c/n) so

that Rt 6 R+
t holds for all t for which Rt is defined. To see this, construct the random

variables step-by-step. At step t, we want (the conditional distribution of) Rt to be
Bin(x, c/n) for some x 6 n that depends what has happened so far. Toss x biased coins
to determine Rt, and then n− x further coins, taking the total number of heads to be
R+
t ; each coin has probability p of landing heads.
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Let (Y +
t ) be the walk with Y +

0 = 1 and increments R+
t − 1, so Yt 6 Y +

t for all t
until our exploration in G(n, c/n) stops. Then for any k we have

P(|Cv| > k) = P
(
Y0, . . . , Yk > 0

)
6 P

(
Y +

0 , . . . , Y
+
k > 0

)
6 P(Y +

k > 0).

But Y +
k has an extremely simple distribution:

Y +
k + k − 1 =

k∑
t=1

R+
t ∼ Bin(nk, c/n),

so

P(Y +
k > 0) = P(Y +

k + k − 1 > k) = P
(
Bin(nk, c/n) > k

)
= P

(
Bin(nk, c/n) > ck + (1− c)k

)
.

Since the mean of the binomial is ck, setting ε = min{(1− c)/c, 1}, the Chernoff bound
gives that this final probability is at most e−ε

2ck/4. If we set k = A log n (ignoring the
rounding to integers) with A = 8/(ε2c), then we have P(|Cv| > k) 6 e−2 logn = 1/n2.

By the union bound, the probability that there is any vertex in a component of size
> k is at most nP(|Cv| > k) 6 1/n = o(1), so whp there are no such vertices, i.e., no
components with more than k vertices.

We now turn to the supercritical case. Given a graph G, let Li(G) denote the
number of vertices in the ith largest component. Note that which component is the ith
largest may be ambiguous, if there are ties, but the value of Li(G) is unambiguous.

Theorem 5.11. Let c > 1 be constant, and let G = G(n, c/n). Then L1(G)/n
p→

1− η(c). Also, there is a constant A = A(c) such that L2(G) 6 A log n holds whp.

Proof. Since c > 1 our random walk has positive drift, at least to start with. Once the
number n − t − Yt of unreached vertices becomes smaller than n/c, this is no longer
true.

Fix any δ > 0, and let k+ = (1 − 1/c − δ)n. Now let R−t be independent random
variables with the distribution Bin(n/c + δn, c/n), defined so that R−t 6 Rt whenever
ut−1 > n − k+ = n/c + δn, i.e., whenever we have ‘reached’ at most k+ vertices. It is
possible to construct such R−t step-by-step as before. Let (Y −t ) be the random walk
starting with Y −0 = 1 and with increments R−t − 1. For any k 6 k+ we have

P(|Cv| = k) 6 P(Y1, . . . , Yk−1 > 0, Yk = 0) 6 P(Y −k 6 0).

Once again, Y −k has a simple distribution: it is Bin(nk(c−1 + δ), c/n)− k + 1. Hence

P(Y −k 6 0) 6 P(Y −k 6 1) = P
(
Bin(nk(c−1 + δ), c/n) 6 k

)
.
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The binomial has mean µ = k + δck, so k = µ(1 − ε) for ε = δc/(1 + δc), which
is a positive constant. By a Chernoff bound, the probability above is thus at most
e−ε

2µ/2 6 e−ε
2k/2.

Let k− = A log n where A = 6/ε2. Then for k− 6 k 6 k+ we have

P(|Cv| = k) 6 e−ε
2k/2 6 e−ε

2k−/2 6 e−3 logn = 1/n3.

Applying the union bound over k− 6 k 6 k+ and over all n vertices v, it follows that
whp there are no vertices at all in components of size between k− and k+. In other
words, whp all components are either small, i.e., of size at most k− = O(log n), or large,
i.e., of size at least k+ = (1− 1/c− δ)n.

From Theorem 5.9, we know that whp there almost exactly ηn vertices in small
components; hence there are almost exactly (1− η)n vertices in large components. To
finish the proof, all we need to do is to show that whp there is just one large component.

The simplest way to show this is just to choose δ > 0 so that (1−1/c−δ) > (1−η)/2.
Then whp there are < 2(1−1/c−δ)n = 2k+ vertices in large components, so we simply
don’t have enough vertices in large components to have two or more large components.
But is this possible? Such a δ exists if and only if (1 − 1/c) > (1 − η)/2, i.e., if and
only if η > 2/c− 1.

Recall that η = η(c) is the smallest solution to η = e−c(1−η). Furthermore (drawing
the graphs), for x < η we have x < e−c(1−x) and for η < x < 1 we have x > e−c(1−x). So
what we have to show is that x = 2/c − 1 falls into the first case, i.e., that 2/c − 1 <
e−c(1−(2/c−1)) = e2−2c.

Multiplying by c, let f(c) = ce2−2c + c− 2, so our task is to show that f(c) > 0 for
c > 1. This is easy by calculus: we have f(1) = 0, f ′(1) = 0 and f ′′(c) > 0 for c > 1.
(In fact f ′′(c) = 4(c− 1)e2−2c.)
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6 Correlation and concentration

6.1 Harris’s Lemma

In this section we turn to the following simple question and its generalizations. Does
conditioning on G = G(n, p) containing a triangle make G more or less likely to be
connected? Note that if we condition on a fixed set E of edges being present, then
this is the same as simply adding E to G(n, p), which does increase the chance of
connectedness. But conditioning on at least one triangle being present is not so simple.

Let X be any finite set, the ground set. For 0 6 p 6 1 let Xp be a random subset
of X obtained by selecting each element independently with probability p. A property
of subsets of X is just some collection A ⊆ P(X) of subsets of X. For example, the
property ‘contains element 1 or element 3’ may be identified with the set A of all subsets
A of X with 1 ∈ A or 3 ∈ A.

We write PXp (A) for

P(Xp ∈ A) =
∑
A∈A

p|A|(1− p)|X|−|A|.

Most of the time, we omit X from the notation, writing Pp(A) for PXp (A). When
|X| = n and p = 1

2
we have Pp(A) = |A|/2n.

We say thatA ⊆ P(X) is an up-set, or increasing property, if A ∈ A and A ⊆ B ⊆ X
implies B ∈ A. Similarly, A is a down-set or decreasing property if A ∈ A and B ⊆ A
implies B ∈ A. Note that A is an up-set if and only if Ac = P(X) \ A is a down-set.

To illustrate the definitions, consider the (for us) most common special case. Here
X consists of all

(
n
2

)
edges of Kn, and Xp is then simply the edge-set of G(n, p). Then

a property of subsets of X is just a set of graphs on [n], e.g., all connected graphs on
[n]. A property is increasing if it is preserved by adding edges, and decreasing if it is
preserved by deleting edges.

Lemma 6.1 (Harris’s Lemma). If A, B ⊆ P(X) are up-sets and 0 6 p 6 1 then

Pp(A ∩ B) > Pp(A)Pp(B). (11)

In other words, P
(
Xp ∈ A and Xp ∈ B

)
> P(Xp ∈ A)P(Xp ∈ B), i.e., P

(
Xp ∈ A |

Xp ∈ B
)
> P(Xp ∈ A), i.e., ‘increasing properties are positively correlated’.

Proof. We use induction on n = |X|. The base case n = 0 makes perfect sense and
holds trivially, though you can start from n = 1 if you prefer.

Now suppose that |X| = n > 1 and that the result holds for smaller sets X. Without
loss of generality, let X = [n] = {1, 2, . . . , n}.

For any C ⊆ P(X) let

C0 = {C ∈ C : n /∈ C} ⊆ P([n− 1])
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and
C1 = {C \ {n} : C ∈ C, n ∈ C} ⊆ P([n− 1]).

Thus C0 and C1 correspond to the subsets of C not containing and containing n respec-
tively, except that for C1 we delete n from every set to obtain a collection of subsets of
[n− 1].

Note that
Pp(C) = (1− p)Pp(C0) + pPp(C1). (12)

More precisely,
P[n]
p (C) = (1− p)P[n−1]

p (C0) + pP[n−1]
p (C1).

Suppose now that A and B ⊆ P([n]) are up-sets. Then A0, A1, B0 and B1 are all
up-sets in P([n − 1]). Also, A0 ⊆ A1 and B0 ⊆ B1. Let a0 = Pp(A0) etc, so certainly
a0 6 a1 and b0 6 b1.

Since (A ∩ B)i = Ai ∩ Bi, by (12) and the induction hypothesis we have

Pp(A ∩ B) = (1− p)Pp((A ∩ B)0) + pPp((A ∩ B)1)

= (1− p)Pp(A0 ∩ B0) + pPp(A1 ∩ B1)

> (1− p)a0b0 + pa1b1 = x,

say. On the other hand

Pp(A)Pp(B) =
(
(1− p)a0 + pa1

)(
(1− p)b0 + pb1

)
= y,

say. So it suffices to show that x > y. But

x− y =
(
(1− p)− (1− p)2

)
a0b0 − p(1− p)a0b1 − p(1− p)a1b0 + (p− p2)a1b1

= p(1− p)(a1 − a0)(b1 − b0) > 0,

recalling that a0 6 a1 and b0 6 b1.

Harris’s Lemma has an immediate corollary concerning two down-sets, or one up-
and one down-set.

Corollary 6.2. If U is an up-set and D1 and D2 are down-sets, then

Pp(U ∩ D1) 6 Pp(U)Pp(D1),

and
Pp(D1 ∩ D2) > Pp(D1)Pp(D2).

Proof. Exercise, using the fact that Dc
i is an up-set.
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6.2 Janson’s inequalities

We have shown (e.g., from the Chernoff bounds) that, roughly speaking, if we have many
independent events and the expected number that hold is large, then the probability
that none holds is very small. What if our events are not quite independent, but each
‘depends on’ only a few others?

As in the last section, let X be a finite set, let 0 6 p 6 1, and consider the random
subset Xp of X. Let E1, . . . , Ek be subsets of X, and let Ai be the event that Xp ⊇ Ei.
Note that each Ai is an up-set; up-sets of this particular type are called principal up-
sets. Let Z be the number of Ai that hold. [For example, we could take X as the set
of all

(
n
2

)
possible edges of G(n, p). Then Xp is the actual set of edges. If the Ei list all(

n
3

)
possible edge sets of triangles, then Z is the number of triangles in G(n, p).]
As usual, let µ = E[Z] =

∑
i P(Ai). As in Chapter 2, write i ∼ j if i 6= j and Ai

and Aj are dependent, i.e., if i 6= j and Ei ∩ Ej 6= ∅, and let

∆ =
∑
i

∑
j∼i

P(Ai ∩ Aj).

Theorem 6.3. In the setting above, we have P(Z = 0) 6 e−µ+∆/2.

Before turning to the proof, note that

P(Z = 0) = P(Ac
1 ∩ · · · ∩ Ac

k)

= P(Ac
1)P(Ac

2 | Ac
1) · · ·P(Ac

k | Ac
1 ∩ · · · ∩ Ac

k−1)

>
k∏
i=1

P(Ac
i ) =

k∏
i=1

(1− P(Ai)),

where we used Harris’s Lemma and the fact that the intersection of two or more down-
sets is again a down-set. In the (typical) case that all P(Ai) are small, the final bound
is roughly e−

∑
P(Ai) = e−µ, so (if ∆ is small), Theorem 6.3 is saying that the probability

that Z = 0 is not much larger than the minimum it could possibly be.

Proof. Let ri = P(Ai | Ac
1 ∩ · · · ∩ Ac

i−1). Note that

P(Z = 0) = P(Ac
1 ∩ · · · ∩ Ac

k) =
k∏
i=1

(1− ri) 6
k∏
i=1

e−ri = exp
(
−

k∑
i=1

ri

)
. (13)

Our aim is to show that ri is not much smaller than P(Ai).
Fix i, and let D1 be the intersection of those Ac

j where j < i and j ∼ i. Let D0 be the
intersection of those Ac

j where j < i and j 6∼ i. Then D0 depends only on the presence
of elements in

⋃
j 6∼iEj, which is disjoint from Ei, and it follows that P(Ai | D0) = P(Ai).
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Therefore

ri = P(Ai | D0 ∩D1) =
P(Ai ∩D0 ∩D1)

P(D0 ∩D1)

>
P(Ai ∩D0 ∩D1)

P(D0)
= P(Ai ∩D1 | D0)

= P(Ai | D0)− P(Ai ∩Dc
1 | D0)

= P(Ai)− P(Ai ∩Dc
1 | D0).

Next we want an upper bound for P(Ai ∩ Dc
1 | D0). Since D1 is a down-set, Dc

1 and
Ai ∩Dc

1 are up-sets. But now, since D0 is a down-set, Corollary 6.2 gives

P(Ai ∩Dc
1 | D0) 6 P(Ai ∩Dc

1)

= P

(
Ai ∩

⋃
j<i, j∼i

Aj

)

= P

( ⋃
j<i, j∼i

(Ai ∩ Aj)

)
6

∑
j<i, j∼i

P(Ai ∩ Aj).

Putting this result together with the previous one gives

ri > P(Ai)−
∑

j<i, j∼i

P(Ai ∩ Aj).

By (13) we thus have

P(Z = 0) 6 exp

(
−

k∑
i=1

P(Ai) +
∑
i

∑
j∼i, j<i

P(Ai ∩ Aj)

)
= exp(−µ+ ∆/2).

When ∆ is much larger than µ, Theorem 6.3 is not very useful. But there is a trick
to deduce something from it in this case.

Theorem 6.4. Under the assumptions of Theorem 6.3, if ∆ > µ then P(Z = 0) 6

e−
µ2

2∆ .

Proof. For any S ⊆ [k], by Theorem 6.3 we have

P(Z = 0) = P
( k⋂
i=1

Ac
i

)
6 P

(⋂
i∈S

Ac
i

)
6 e−µS+∆S/2, (14)
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where

µS =
∑
i∈S

P(Ai) =
k∑
i=1

I{i∈S}P(Ai)

and
∆S =

∑
i∈S

∑
j∈S, j∼i

P(Ai ∩ Aj) =
∑
i

∑
j∼i

I{i,j∈S}P(Ai ∩ Aj).

Suppose now that 0 6 r 6 1, and let S be the random subset of [k] obtained by
selecting each element independently with probability r. Then µS and ∆S become
random variables. By linearity of expectation we have

E[µS] =
∑
i

rP(Ai) = rµ

and
E[∆S] =

∑
i

∑
j∼i

P(Ai ∩ Aj)P(i, j ∈ S) = r2∆.

Thus E[µS −∆S/2] = rµ− r2∆/2.
Since a random variable cannot always be smaller than its expectation, there exists

some set S such that µS −∆S/2 > rµ− r2∆/2. Applying (14) to this particular set S
it follows that

P(Z = 0) 6 e−rµ+r2∆/2.

This bound is valid for any 0 6 r 6 1; to get the best result we optimize, which simply
involves setting r = µ/∆ 6 1. Then we obtain

P(Z = 0) 6 e−
µ2

∆
+ µ2

2∆ = e−
µ2

2∆ .

Together Theorems 6.3 and 6.4 give the following.

Corollary 6.5. Under the assumptions of Theorem 6.3

P(Z = 0) 6 exp
(
−min{µ/2, µ2/(2∆)}

)
.

Proof. For ∆ < µ apply Theorem 6.3; for ∆ > µ apply Theorem 6.4.

Remark. The proof of Janson’s inequalities above is based on that given by Boppana
and Spencer, but with a modification suggested by Lutz Warnke. With a little more
work the modified proof gives a more general result: A1, . . . , Ak can be arbitrary up-
sets, not just ones of the special form assumed above (principal up-sets). We take i ∼ j
if Ai and Aj are dependent. The extra work needed is to check that this rule gives a
valid dependency digraph; this is not true for general events, but is true for up-sets.
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How do the second moment method and Janson’s inequalities compare? Suppose
that Z is the number of events Ai that hold, let µ = E[Z], and let ∆ =

∑
i

∑
j∼i P(Ai∩

Aj), as in the context of Corollary 2.4. Then Corollary 2.4 says that if µ → ∞ and
∆ = o(µ2) (i.e., µ2/∆ → ∞), then P(Z = 0) → 0. More concretely, if µ > L and
µ2/∆ > L, then the proof of Corollary 2.4 gives

P(Z = 0) 6 2/L.

Janson’s inequality, in the form of Corollary 6.5, has more restrictive assumptions: the
events Ai have to be events of a specific type. When this holds, the ∆ there is the same
∆ as before. When µ > L and µ2/∆ > L, the conclusion is that

P(Z = 0) 6 e−L/2.

Both bounds imply that P(Z = 0) → 0 when µ and µ2/∆ both tend to infinity, but
when Janson’s inequalities apply, the concrete bound they give is exponentially stronger
than that from the second moment method.
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7 Clique and chromatic number of G(n, p)

We shall illustrate the power of Janson’s inequality by using it to study the chromatic
number of G(n, p). The ideas are more important than the details of the calculations.
We start by looking at something much simpler: the clique number.

Throughout this section p is constant with 0 < p < 1.
Recall that the clique number ω(G) of a graph G is the maximum k such that

G contains a copy of Kk. For k = k(n) let Xk be the number of copies of Kk in
G = G(n, p), and

µk := E[Xk] =

(
n

k

)
p(

k
2).

Note that
µk+1

µk
=

(
n

k + 1

)(
n

k

)−1

p(
k+1

2 )−(k2) =
n− k
k + 1

pk, (15)

which is a decreasing function of k. It follows that the ratio is at least 1 up to some
point and then at most 1, so µk first increases from µ0 = 1, µ1 = n, . . . , and then
decreases.

We define
k0 = k0(n, p) = min{k : µk < 1}.

Lemma 7.1. With 0 < p < 1 fixed we have k0 ∼ 2 log1/p n = 2 logn
log(1/p)

as n→∞.

Proof. Using standard bounds on the binomial coefficient
(
n
k

)
,(n

k

)k
pk(k−1)/2 6 µk 6

(en
k

)k
pk(k−1)/2.

Taking the kth root it follows that

µ
1/k
k = Θ

(n
k
p(k−1)/2

)
= Θ

(n
k
pk/2

)
.

Let ε > 0 be given.
If k 6 (1 − ε)2 log1/p n then k/2 6 (1 − ε) log1/p n, so (1/p)k/2 6 n1−ε, i.e., pk/2 >

n−1+ε. Thus µ
1/k
k is at least a positive constant times nn−1+ε/ log n = nε/ log n, so

µ
1/k
k > 1 if n is large. Hence µk > 1, so k0 > k.

Similarly, if k > (1+ε)2 log1/p n then pk/2 6 n−1−ε and if n is large enough it follows
that µk < 1, so k0 6 k. So for any fixed ε we have

(1− ε)2 log1/p n 6 k0 6 d(1 + ε)2 log1/p ne

if n is large enough, so k0 ∼ 2 log1/p n.
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Note for later that if k ∼ k0 then(
1

p

)k
= n2+o(1) (16)

so from (15) we have

µk+1

µk
=
n−O(log n)

Θ(log n)
n−2+o(1) = n−1+o(1). (17)

Lemma 7.2. With 0 < p < 1 fixed we have P
(
ω(G(n, p)) > k0

)
→ 0 as n→∞.

Proof. We have ω(G(n, p)) > k0 if and only if Xk0+1 > 0, which has probability at most
E[Xk0+1] = µk0+1. Now µk0 < 1 by definition, so by (17) we have µk0+1 6 n−1+o(1), so
µk0+1 → 0.

Let ∆k be the expected number of ordered pairs of distinct k-cliques sharing at least
one edge. This is exactly the quantity ∆ appearing in Corollaries 2.4 and 6.5 when we
are counting the k-cliques.

Lemma 7.3. Suppose that k ∼ k0. Then

∆k

µ2
k

6 max

{
n−2+o(1),

n−1+o(1)

µk

}
.

In particular, if µk →∞ then ∆k = o(µ2
k).

Proof. We have

∆k =

(
n

k

) k−1∑
s=2

(
k

s

)(
n− k
k − s

)
p2(k2)−(s2),

so
∆k

µ2
k

=
k−1∑
s=2

αs,

where

αs =

(
k
s

)(
n−k
k−s

)(
n
k

) p−(s2).

We will show that the αs first decrease then increase as s goes from 2 to k − 1. Let

βs =
αs+1

αs
=
k − s
s+ 1

k − s
n− 2k + s+ 1

p−s,

so

βs = n−1+o(1)

(
1

p

)s
. (18)
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In particular, using (16) we have βs < 1 for s 6 k/4, say, and βs > 1 for s > 3k/4. In
between we have βs+1/βs ∼ 1/p, so βs+1/βs > 1, and βs is increasing when s runs from
k/4 to 3k/4.

It follows that there is some s0 ∈ [k/4, 3k/4] such that βs 6 1 for s 6 s0 and βs > 1
for s > s0. In other words, the sequence αs decreases and then increases.

Hence, max{αs : 2 6 s 6 k − 1} = max{α2, αk−1}, so

∆k

µ2
k

=
k−1∑
s=2

αs 6 kmax{α2, αk−1} = no(1) max{α2, αk−1}.

Either calculating directly, or using α0 6 1, α2 = α0β0β1, and the approximate
formula for βs in (18), one can check that α2 6 n−2+o(1). Similarly, αk = 1/µk and
αk−1 = αk/βk−1 = n−1+o(1)/µk, using (18) and (16).

Theorem 7.4. Let 0 < p < 1 be fixed. Define k0 = k0(n, p) as above, and let G =
G(n, p). Then

P
(
k0 − 2 6 ω(G) 6 k0

)
→ 1

Proof. The upper bound is Lemma 7.2. For the lower bound, let k = k0− 2. Note that
µk0−1 > 1 by the definition of k0, so by (17) we have µk > n1−o(1), and in particular
µk → ∞. Then by Lemma 7.3 we have ∆k = o(µ2

k). Hence by the second moment
method (Corollary 2.4) we have P(ω(G) < k) = P(Xk = 0)→ 0.

Note that we have ‘pinned down’ the clique number to one of three values; with
only a very little more care, we can pin it down to at most two values. Indeed typically
we can specify a single value (when µk0−1 is much larger than one, µk0 much smaller
than one).

Using Janson’s inequality, we can get a very tight bound on the probability that the
clique number is significantly smaller than expected.

Theorem 7.5. Under the assumptions of Theorem 7.4 we have

P
(
ω(G) < k0 − 3

)
6 e−n

2−o(1)

.

Note that this is a truly tiny probability: the probability that G(n, p) contains no edges

at all is (1− p)(
n
2) = e−Θ(n2).

Proof. Let k = k0 − 3. Then arguing as above we have µk > n2−o(1). Hence by
Lemma 7.3 we have ∆k/µ

2
k 6 n−2+o(1), so µ2

k/∆k > n2−o(1). Thus by Janson’s inequality

(Corollary 6.5) we have P(Xk = 0) 6 e−n
2−o(1)

.

Why is such a good error bound useful? Because it allows us to study the chromatic
number, by showing that with high probability every subgraph of a decent size contains
a fairly large independent set.
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Theorem 7.6 (Bollobás). Let 0 < p < 1 be constant and let G = G(n, p). Then for
any fixed ε > 0, whp

(1− ε) n

2 logb n
6 χ(G) 6 (1 + ε)

n

2 logb n

where b = 1/(1− p).

Proof. Apply Theorem 7.4 to the complement Gc of G, noting that Gc ∼ G(n, 1 − p).
Writing α(G) for the independence number of G, we find that whp α(G) = ω(Gc) 6
k0(n, 1− p) ∼ 2 logb n. Since χ(G) > n/α(G), this gives the lower bound.

For the upper bound, let m = bn/(log n)2c, say. For each subset W of V (G) with
|W | = m, let EW be the event that G[W ] contains an independent set of size at least
k = k0(m, 1− p)− 3. Note that

k ∼ 2 logbm ∼ 2 logb n.

For each (fixed) W , applying Theorem 7.5 to the complement of G[W ], which has the
distribution of G(m, 1− p), we have

P(Ec
W ) 6 e−m

2−o(1)

= e−n
2−o(1)

.

Let E =
⋂
|W |=mEW . Considering the

(
n
m

)
6 2n possible sets W separately, the

union bound gives

P(Ec) = P(
⋃
W

Ec
W ) 6 2ne−n

2−o(1) → 0.

It follows that E holds whp. But when E holds one can colour by greedily choosing
independent sets of size at least k for the colour classes, until at most m vertices remain,
and then simply using one colour for each vertex. Since we use at most n/k sets of size
at least k, this shows that, when E holds,

χ(G(n, p)) 6
n

k
+m = (1 + o(1))

n

2 logb n
+m ∼ n

2 logb n
,

completing the proof.

Remark. The chromatic number of G(n, p) has been extensively studied, for various
ranges p = p(n). For p constant, as here, the tightest bounds currently known are due
to Annika Heckel (a DPhil student here in Oxford), who has given bounds of the form
n/(f(n, p) + o(1)) for a certain function f(n, p). The proof is based on an (extremely
complicated) application of the second moment method, with the number of ‘balanced’
colourings as the random variable.
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8 Postscript: other models

(These concluding remarks are non-examinable.) There are several standard models
of random graphs on the vertex set [n] = {1, 2, . . . , n}. We have focussed on G(n, p),
where each possible edge is included independently with probability p.

The model originally studied by the founders of the theory of random graphs, Erdős
and Rényi, is slightly different. Fix n > 1 and 0 6 m 6 N =

(
n
2

)
. The random

graph G(n,m) is the graph with vertex set [n] obtained by choosing exactly m edges
randomly, with all

(
N
m

)
possible sets of m edges equally likely.

For most natural questions (but not, for example, ‘is the number of edges even?’),
G(n, p) and G(n,m) behave very similarly, provided we choose the density parameters
in a corresponding way, i.e., we take p ∼ m/N .

Often, we consider random graphs of different densities simultaneously. In G(n,m),
there is a natural way to do this, called the random graph process. This is the random
sequence (Gm)m=0,1,...,N of graphs on [n] obtained by starting with no edges, and adding
edges one-by-one in a random order, with all N ! orders equally likely. Note that each
individual Gm has the distribution of G(n,m): we take the first m edges in a random
order, so all possibilities are equally likely. The key point is that in the sequence (Gm),
we define all the Gm together, in such a way that if m1 < m2, then Gm1 ⊂ Gm2 . (This
is called a ‘coupling’ of the distributions G(n,m) for different m.)

There is a similar coupling in the G(n, p) setting, the continuous time random graph
process. This is the random ‘sequence’ (Gt)t∈[0,1] defined as follows: for each possible
edge, let Ue be a random variable with the uniform distribution on the interval [0, 1],
with the different Ue independent. Let the edge set of Gt be {e : Ue 6 t}. (Formally
this defines a random function t 7→ Gt from [0, 1] to the set of graphs on [n].) One can
think of Ue as giving the ‘time’ at which the edge e is born; Gt consists of all edges born
by time t. For any p, Gp has the distribution of G(n, p), but again these distributions
are coupled in the natural way: if p1 < p2 then Gp1 ⊆ Gp2 .

Of course there are many other random graph models not touched on in this course
(as well as many more results about G(n, p)). These include other classical models,
such as the ‘configuration model’ for random regular graphs, random geometric graphs,
and also new ‘inhomogeneous’ models introduced as more realistic models for networks
in the real world.
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