In this course we use the (fairly) standard notation below to compare the sizes of two functions of a (usually integer) variable $n \geqslant 1$. Here we assume always that $g(n)>0$. If necessary, to ensure this we only consider $n \geqslant n_{0}$ for some suitable n_{0}.
$f=O(g)$ means there exists a constant C such that $|f(n)| \leqslant C g(n)$ for all n (or all $n \geqslant n_{0}$),
$f=o(g)$ means that $f(n) / g(n) \rightarrow 0$ as $n \rightarrow \infty$,
$f=\Theta(g)$ means that $f=O(g)$ and $g=O(f)$, so there exist constants $c, C>0$ such that $c g(n) \leqslant f(n) \leqslant C g(n)$ for all n,
$f \sim g$ means that $f(n) / g(n) \rightarrow 1$ as $n \rightarrow \infty$.
Less standard but still common:
$f=\Omega(g)$ means that $g=O(f)$, i.e., there exists a constant $c>0$ such that $f(n) \geqslant c g(n)$ for all n.

Note that there is an implicit restriction to values of n such that $g(n)$ is both defined and positive. For example, $f=O(n / \log n)$ means there exists C such that $|f(n)| \leqslant$ $C n / \log n$ for all $n \geqslant 2$.

More generally, we may compare a function of n with a formula involving $O(\cdot)$ or $o(\cdot)$ notation; then each occurrence refers to a function with the corresponding property. For example,

$$
f=n^{3}+O\left(n^{2}\right)
$$

means there is a function $g(n)$ with $g=O\left(n^{2}\right)$ such that $f(n)=n^{3}+g(n)$. In other words, there exists a constant C such that

$$
n^{3}-C n^{2} \leqslant f(n) \leqslant n^{3}+C n^{2}
$$

Similarly,

$$
f \geqslant(2-o(1)) n^{2}
$$

means there is a function $g(n)$ with $g \rightarrow 0$ such that $f(n) \geqslant(2-g(n)) n^{2}$ for all n, i.e., that $\lim \inf f(n) / n^{2} \geqslant 2$. In other words,

$$
\forall \varepsilon>0 \exists n_{0} \forall n \geqslant n_{0}: f(n) \geqslant(2-\varepsilon) n^{2}
$$

Note that saying, for example, $f(n)=o(1)$ makes no statement about the sign of f; formally $1+o(1)$ and $1-o(1)$ mean the same thing.

Warning: some people/books use $f \ll g$ to mean $f=o(g)$; others use it to mean $f=O(g)$. Some people use $f=\omega(g)$ to mean $g=o(f)$, i.e., $f / g \rightarrow \infty$, but the notation $\omega(n)$ is often used in a different way, as the default notation for a function of n that tends to infinity. I will try to avoid these.

