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HEALTH WARNING:

The following lecture notes are meant as a rough guide to the lectures. They are not meant
to replace the lectures. You should expect that some material in these notes will not be
covered in class and that extra material will be covered during the lectures (especially longer
proofs, examples, and applications). Nevertheless, I will try to follow the notation and the
overall structure of the notes as much as possible.

1 Background: basic geometry of surfaces

� Geometry

Here, we introduce basic notions of differential geometry for surfaces. Of particular im-
portance are the definition of the area and length elements and the notions of mean and
Gaussian curvatures. The Gauss-Bonnet theorem (given without proof) will also be impor-
tant in our discussion of mechanics.

For simplicity we consider here an orientable parametrised surface Σ defined by the position
vectors

x = x(ξ1, ξ2) ∈ R3, (ξ1, ξ2) ∈M ⊂ R2. (1)

We assume that x is at least of class C2 and such that the tangent vectors

ri =
∂x

∂ξi
, i = 1, 2 (2)

are linearly independent for all (ξ1, ξ2) ∈M . Since Σ is orientable, we can define a normal vector
(see Fig. 1)

n =
r1 × r2

||r1 × r2||
, (3)

where ||a|| =
√

a · a. Note that by definition {r1, r2,n} forms a basis (but not necessarily or-
thonormal – it turns out that it is not always advantageous to use an orthonormal basis to
describe surfaces).

1.1 Length and area

To identify key quantities, we first compute the area of a surface
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Figure 1: Tangent vectors (red and blue) on an ellipsoid parameterised by two angles (thin black
line). The normal vector (in black) is simply obtained as the cross product of the two tangent
vectors.

� Area element

We start with

A =

∫
Σ

dS (4)

That is,

A =

∫∫
M

√
g11g22 − g2

12 dξ1dξ2 (5)

where gij = ri.rj
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Alternatively, we can write

A =

∫∫
M

√
det(G) dξ1dξ2 (6)

which naturally leads to the definition of G = (gij), the matrix of the metric tensor.
Next, we compute a length element

� Length element

We start with a curve r = r(t) defining a path γ on Σ

L =

∫
γ

ds (7)

That is,
ds2 = gijdξ

idξj (8)

and

L =

∫
I

√
gij ξ̇iξ̇j dt (9)

Associated with the metric we have defined the first fundamental form ds2 = gijdξ
idξj.

1.2 Curvatures

We are interested in defining curvatures on the surface Σ. We consider a curve C on Σ passing
through a point P and parameterised by its arc length s and define t as the tangent vector of C
at P .

We know from Module 1 that the curvature of the curve C at a point P is obtained as |t′|. It
is therefore natural to define the curvature vector

k =
dt

ds
(10)

and decompose it into two components, the normal curvature vector kn and the geodesic curvature
vector kg

k = kn + kg (11)

where kn = −knn is along the normal vector1, that is

kn = −n · dt
ds
, kg = ||kg|| =

∣∣∣∣t · (dtds × n

)∣∣∣∣ . (12)

1Note the choice of sign designed to ensure that the normal curvature of a sphere of radius R is indeed kn = +1/R
rather than −1/R if we take n to be outer normal vector.
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The normal curvature kn is a property of the surface itself and gives the curvature in a planar slice
spanned by the normal and tangent vector (see Fig. 1.2) whereas the geodesic curvature gives the
curvature on the curve on the surface (it is identically zero for a geodesic curve).

Figure 2: The normal curvature of a curve on a surface in a given direction t is given by the
curvature of the curve obtained as the intersection of the surface with the plane spanned by n and
t .

We can compute explicitly the normal curvature for a given curve.
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� The normal curvature

That is,
kn = Kij(ξ

i)′(ξj)′ (13)

where

Kij = Kji = −n · ∂rj
∂ξi

(14)

which naturally leads to the definition of K = (Kij), the matrix of the extrinsic curvature
tensor. This tensor is naturally associated with the second fundamental form Kijdξ

idξj.
A natural question is to determine the extremal values of the normal curvature as we vary the

tangent vector at P .
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� Principal curvatures

That is, the principal curvatures are the eigenvalues of the principal curvature matrix

L = G−1K. (15)

Define e1 and e2 as the orthonormal eigenvectors associated with the principal curvatures k1 and
k2. We can write

t = cos θ e1 + sin θ e2 (16)

and, in general, we have (Euler’s theorem 1760, see Fig. 1.2)

kn = k1 cos2 θ + k2 sin2 θ. (17)

The principal curvatures can be used to defined the mean curvature H and Gaussian curvature
KG as follows

2H = tr(L) = k1 + k2, (18)

KG = det(L) = k1k2. (19)

It can be shown that the Gaussian curvature is intrinsic to the surface (in the sense that it only
depends on the metric and not on the normal vector). This result is contained in the Gauss’ famous
Theorema Egregium (remarkable theorem). Note that KG is independent of the parameterisation
but that H can change sign (depending on the choice of the normal vector).

A minimal surface is such that H = 0 identically for all points. These surfaces play a particu-
larly important role in a number of important problems and we will indeed see that the vanishing
of the mean curvature naturally arises as a condition to minimise the area.

The Gaussian curvature is particularly important in the classification of surfaces as either
elliptic (KG > 0), hyperbolic (KG < 0), or parabolic (KG = 0).

1.3 The Gauss-Bonnet theorem

An important result of global topology is the Gauss-Bonnet theorem (Bonnet 1848). Let Σ be
a compact two-dimensional Riemannian manifold with boundary ∂Σ. Let KG be the Gaussian
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Figure 3: The principal curvatures of a surface are the maximal values of the normal curvature at
a point and geometrically correspond to the inverse radius of the best fitting circles (of maximal
radii).

curvature of Σ, and kg the geodesic curvature of ∂Σ. Then∫
Σ

KGdS +

∫
∂Σ

kgds = 2πχ(Σ), (20)

where χ(Σ) is the Euler characteristic of Σ, a global topological property, which, for a surface of
genus2 p is given by χ(Σ) = 2− 2p.

Of particular interest for us is the case of a closed orientable surface for which∫
Σ

KGdS = 4π(1− p). (21)

1.4 Examples

Examples of different minimal surfaces are given in Fig. 4. A Mathematica file that can create
these graphs can be downloaded with the Lecture Notes material (“Curvature Computation.nb”).

2In three-dimensions, the genus of an orientable surface is given by the number of handles, a sphere has genus
0, a torus or a mug has genus 1, and so on.
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Figure 4: Different minimal surfaces. Left: the helicoid, Right: the catenoid. Middle: The helico-
catenoid. Tangent vectors (red and blue). The normal vector (in black) is simply obtained as the
cross product of the two tangent vectors.
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2 Fluid biomembranes

� Motivation

Many biological membranes are made of lipid bilayers. Mechanically, these structures and
synthetic lipid vesicles resist bending, stretching but are fluid in the plane and as such do not
resist shear. In this Chapter we consider the model of Canham (1970)-Helfrich (1973)-Evans
(1973) to describe the response of such membranes under pressure.

2.1 The biomembrane model

We have the following assumptions:

A1. The biomembrane is thin enough with respect to its maximal radius of curvature and typical
length so that it can be represented by a surface Σ.

A2. The biomembrane is shearless (offers no resistance to shear) but resists bending and stretch-
ing.

A3. The energy associated with change in bending is given by the lowest polynomial in the
surface mean and Gaussian curvatures that preserve the parameterisation and the energy of
stretching by the change of area.

A pedantic but important remark: A membrane is a membrane but is not a membrane,
in the sense that the term membrane used in biology is the same term used by biophysicists
but not the same as the term “membrane” used in mechanics. In mechanics a membrane is a
two-dimensional structure that can resist tension but not compression or bending. A plate is an
initially flat structure that resists bending, tension, and compression (it can be unshearable or
shearable depending on the theory). A shell is an initially curved surface that resists bending,
tension, and compression (it can be unshearable or shearable depending on the theory). We will
use the term biomembrane or fluid membrane to describe a shearless structure that can resist
bending and stretching.
Following the assumptions, we posit that the elastic energy of a biomembrane with surface Σ is
given by

E =

∫
Σ

dS
[
γ + 2κ(H −H0)2 + κ̄KG

]
(22)

where

• H and KG are the mean and Gaussian curvatures defined in the previous section,

• γ is the surface tension (as usually found in a theory of surfactant),

• κ is the bending modulus (confusing but standard notation),

• κ̄ is the saddle-splay modulus,

• H0 is the intrinsic mean curvature of the biomembrane.
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In general, one can find the shape of the surface by minimising the energy E with respect to
all continuous deformations of a given reference shape. Typically, the system is subject to other
constraints such as constant volume or constant pressure. In such cases, we can introduce the
corresponding Lagrange multiplier and minimise an amended function. For instance, for constant
volume V = V0, the shape will be obtained by minimising

EP = E − P (V − V0) (23)

subject to the condition V = V0. Here P is the Lagrange multiplier (which, of course can be
identified as the pressure). Similarly for the case of constant pressure, we will need to minimise

EV = E − PV. (24)

Note that the set of extrema of EP and EV are the same but their stability will be in general
different.

Remember that from the Gauss-Bonnet theorem for a closed surface, we have∫
Σ

KGdS = 4π(1− p). (25)

Therefore, for a closed surface the energy contribution of the Gaussian curvature during deforma-
tion is constant (as long as the topology of the surface does not change) and can be ignored when
determining the shape of the membrane.

Dimensionally, κ is an energy and γ is an energy per length squared. Therefore, we can define
a typical length scale of tension versus bending given by

λtb =

√
κ

γ
. (26)

� Estimates
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Figure 5: The height function (or Monge parameterisation) of a surface. Note that this represen-
tation is not valid if the surface curves back on itself (for instance in the case on the right).

2.2 The shape equation in the Monge representation

In order to find the shape of the surface we need to minimise the corresponding energy. This is
in general a difficult task as the variations of the curvatures with respect to the deformation need
to be found in general. To illustrate this process, we consider here a simpler, but important, case
where the surface Σ can be represented by a height function h = h(x, y) of class C2. That is,

h : U ∈ R2 → R, (∇h)2 <∞, (27)

where ∇ = ex∂x + ey∂y. The position vector for points on the surface is simply

r = (x, y, h(x, y)) (28)

� Normal and metric

We first compute the normal and metric

So that, we have for example, n = g−1/2 (−∇h+ ez) , g = det(G) = 1 + (∇h)2.
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We can now compute the mean and Gaussian curvatures

� Curvatures in Monge representation

So that, we have

2H = −g−3/2
[
hxx(1 + h2

y) + hyy(1 + h2
x)− 2hxyhxhy

]
, (29)

and
KG = g−2

(
hxxhyy − h2

xy

)
. (30)

The mean curvature can also be written in a coordinate free form as

2H = ∇ ·
(
g−1/2∇h

)
= −∇ · n (31)

2.2.1 Area minimisation

Note that if κ = κ̄ = H0 = 0 and γ is constant, the energy for the biomembrane simplifies to the
well-known energy given in the theory of surface tension (in the absence of gravity)

ES = γ

∫
Σ

dS. (32)

We can now use Monge representation to obtain the condition for area minimisation
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� Condition for area minimisation

And we find the two equivalent local conditions for the existence of a minimal surface

∇ · n = 0 ⇐⇒ H = 0. (33)

Note that this condition remains valid even in the general case (where a surface cannot be
represented by a height function) but only provides necessary conditions.

2.2.2 Small gradient approximation

We further restrict our analysis to the case of κ̄ = H0 = 0 and for small gradients |(∇h)| � 1.
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� Energy

That is, the energy now reads

E2 =
1

2

∫∫
dxdy

[
κ(4h)2 + γ(∇h)2

]
. (34)

This form of the energy is now sufficiently simple as to allow us to compute the first variation with
respect to h (that is h → h + δh). To keep track of terms on the domain boundary we need to
do the variation from first principles, analogously to the derivation of the Euler-Lagrange equations
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� First variation of the energy

That is, we have

δE2 =

∫∫
dxdy4 [κ(4h)− γh] δh

+

∮
ds N · [κ(4h)∇δh+ (γ∇h− κ∇4h)δh] . (35)

where N is the outer normal to the projected surface contour on the x− y plane.
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A necessary condition for minimisation is δE2 = 0. The vanishing of the area integral provides
the shape equation

4
(
4− λ−2

)
h = 0 (36)

where λ = λtb is the typical length scale introduced in (26).
The vanishing of the line integral leads to boundary conditions for our fourth-order problem.

We have two sets of conditions to satisfy.

1) For the first term in the bracket, we fix either the normal component of the contour so that

N ·∇h = Cst⇒ N ·∇δh = 0 (37)

or, we impose 4h = 0 on ∂Σ.

2) Similarly, we need to either fix h at the boundary so that δh = 0 at the boundary, or we
impose

N ·∇h = λ−2N ·∇4h, (38)

for h on the boundary.

Together, this leads to four different possible sets of boundary conditions (or any combinations in
different parts of the domain).

2.3 Examples

2.3.1 One-dimensional fluid membranes

As a first particular case of the shape equation (36), we consider the case where h = h(x) only,
that is we assume that the sheet is uniform along the y axis. In this case, we have

∂4xh− λ−2∂2xh = 0, (39)

which is exactly the form of the beam equation in module 1, where λ−2 = F/(EI) plays the role of
an effective tension. We conclude that in the small gradient approximation and in one dimension,
a uniform elastic fluid membrane behaves as an elastic beam under tension.

2.3.2 Flicker spectroscopy

A possible method to measure the elastic parameters of the membrane is provided by measuring the
spectrum of thermal undulations via light microscopy. [1, 2]. This is known as Flicker spectroscopy.
It is typically performed on closed membranes but the analysis of a square membrane will still
provide interesting information.

Consider a square membrane of size L×L with periodic boundary conditions. We expand the
height of the membranes h(r) = h(x, y) as a double Fourier series:

h =
∑
q

hqeiq·r , q =
2π

L

(
nx
ny

)
, nx, ny ∈ Z . (40)

Next, we compute the fluctuations of this membrane in thermal equilibrium.
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� Flicker Fluctuation

That is, we have 〈
|hq|2

〉
=

2kbT

L2(κq4 + σq2)
(41)

The coefficients
〈
|hq|2

〉
(known as the static structure factors) can be measured from the

spectrum. Fitting it to Eq. (41) yields the bending modulus and surface tension of the membrane
(see Fig. 6).
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Figure 6: Flicker spectrum of a fluctuating membrane. The dashed line is a fit of the form
(kBT/κ + c1(qγ)c2)−1 which helps to find the asymptotic value; the inset shows the unscaled
spectrum. The fit leads to κ = 12.5kBT , with an error estimated to be ±1kbT . (Figure 1 from
The Journal of Chemical Physics 125(20):204905 December 2006, reproduced without permission).
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3 Axisymmetric Membranes and Shells

� Elastic membranes and shells

We consider the axisymmetric deformation of membranes and shells in linear and nonlinear
elasticity. These have biological application in modelling the dformation and mechanics of
red blood cells in physiological flows and also modelling filamentous growth of biological
structures in the context of fungi and hyphae for instance. We start with a simple elastic
membrane before considering the general case. Most of these notes follow the derivations
from [3, 4, 5, 6], which are motivated by in the context of filamentous growth.

3.1 Elastic membranes with linear constitutive laws

We begin by considering an extensible axisymmetric elastic membrane filled with an incompressible
viscous fluid under pressure and that there is no normal shear stress. This type of formulation
has been used successfully to describe the shape of red blood cells and other biomembranes [7, 8]
and we adapt it here to include the effects of pressure induced stretch, growth and geometry
dependent elastic properties of the membrane. We assume that the shape of the membrane
remains axisymmetric in the deformation. Here, to derive a full set of equations, we use a method
based on rational mechanics, we proceed in three steps: kinematics, mechanics, and constitutive
laws.

3.1.1 Kinematics

θ(σ)

σ        

(σ) r

s=s(σ)   

s = σ=0

C

n

nt
t

x

y

zφ

Figure 7: Basic membrane and shell geometry. A material point σ is measured by its arc-length,
s(σ) from the apex of the shell and its axial position r(σ) on a curve C, n and t denotes the normal
and tangent vectors at that point. The angle θ(s) is the angle between the normal direction. The
membrane is taken to be axisymmetric where ϕ is the azimuthal angle.

We assume that the shape of the membrane remains axisymmetric in the deformation. As
shown in Figure 7, the membrane surface S is defined by revolving a planar curve C around
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the z-axis. The reference planar curve C is parameterized by a parameter σ counted from the
intersection O of the surface with the z-axis. The shell geometry is characterized by the distance
from the axis r = r(σ) and the angle θ = θ(σ) between the normal to C at σ and the z-axis. The
arclength at any time s = s(σ) is measured from O. Before deformation or growth, the material
parameter σ is chosen to be the arc length, s = σ, and the initial shell configuration is referred
to as the reference configuration. If we consider axisymmetric deformation of the surface, we can
define the radial stretch ratio

λϕ =
r

ρ
, (42)

at a given (material) point as the ratio between the original radius ρ at that point and the new
radius r, and the stretch ratio

r

ρ
r

Figure 8: Definitions of stretches. We consider a reference curve before and after deformation.

λs =
∂s

∂σ
, (43)

as the amount of stretching of the body coordinates with respect to arclength. These two stretches
(λϕ, λs) completely define the deformation of an axisymmetric reference shape. The geometric
variables satisfy the equations

dr

ds
= cos(θ),

dz

ds
= − sin(θ), (44)

Two other important measures of the geometry of the surface are the principal curvatures which
are given by

κs =
dθ

ds
, κϕ =

sin θ

r
. (45)

Note 1: If the we have an incompressible shell the third deformation variable, λ3, measuring
changes in the normal thickness of the shell, is simply related to λs and λϕ through the incom-
pressibility condition λsλϕλ3 = 1.

Note 2: A modelling choice must be made at this point. Is the membrane, the reduction to a
surface of a 3D body (as one would expect say of a rubber balloon), or is the membrane a true
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elastic surface (called “an elastic sheet”) with no transverse structure (as one would model a lipid
bilayer)? This leads to slightly different formulation of the problem. Haughton has a nice review
paper on the subject [9].

3.1.2 Mechanics

q
q

r(m)

x

y

z

s=m=0

 Pressure difference P

tqeq

tses

Figure 9: The surface S with stresses (ts, tϕ).

We now define the stresses acting on the membrane surface: let ts be the tension on the surface
along the tangent es, in the direction of increasing arclength; and let tϕ be the tension along the
unit vector eϕ, normal to es in a plane tangent to S, and in the direction of increasing azimuthal
angle ϕ (see Figure 9).

The equations for mechanical equilibrium for a surface of revolution in the normal and tan-
gential direction results from the balance of force and moments acting on a surface element.
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� Mechanical force balance

That is, we have,

P = κsts + κϕtϕ, (46)

∂(rts)

∂s
− tϕ

∂r

∂s
+ rf = 0, (47)

where P is the pressure difference across the membrane, and f is the shear stress on the
membrane.

This last term could be taken to represent the drag forces exerted by the surrounding medium
on the membrane. Appropriate modeling of this effect is nontrivial. For now, this term will be
set to zero in our analysis.

We proceed to consider moments.
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� Mechanical moment balance

Hence

∂

∂s
(rms)−mϕ cos θ = 0. (48)

Note: The two equations (46, 47) can be written in terms of r and θ by using the geometric
relation es = cos θer + sin θez, and ∂θ/∂s = κs, and take the form

ts
∂θ

∂s
+

sin θ

r
tϕ = P, (49)

∂ts
∂s

=
cos θ

r
(tϕ − ts). (50)

In the case of constant pressure P we can verify that there is an integral of equations (49, 50),
i.e. a function of the variables constant along the curve C, given by:

C = r2 (2tsκϕ − P ) . (51)

In particular, for all solutions (r(σ), θ(σ)) crossing the z-axis, we have C = 0 and P = 2tsκϕ.

3.1.3 Constitutive laws

From the general theory of elasticity for isotropic incompressible material, the tensions in the
directions of the stretches are given by

ti = λi
∂W

∂λi
− p, i = s, ϕ, 3. (52)

Here p is a Lagrange multiplier for incompressibility. A 3D membrane relationship is derived by
using the membrane assumption, that states t3 = 0, to eliminate p, whilst λ3 is eliminated as
incompressibility gives λ3λ2λφ = 1.
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Regardless of the general model of material properties, one can generally write the constitutive
relationships in the form

ts = Afs(λs, λϕ). (53)

tϕ = Afϕ(λs, λϕ), (54)

Moments. Finally, we need to specify a constitutive relationship for the bending moments.
The bending moments are assumed to be isotropic and proportional to the change in the surface’s
mean curvature, i.e.

mϕ = ms = B(κs + κϕ −K0), (55)

where K0 is the sum of membrane curvtaures in the absence of bending moments and B is the
bending modulus [E. A. Evans and R. Skalak. Mechanics and thermodynamics of biomembranes.
CRC Press, Inc, Boca Raton, Florida, 1980].

Combining this with equation (48) immediately implies

κs + κϕ = K1,

where K1 is a constant.
In summary To find the membrane shape, that is r, z, with constant pressure the complete

system of membrane equations can be written as the closed system

ds

dσ
= λs, (56)

dz

dσ
= −λs sin(θ), (57)

dr

dσ
= λs cos(θ), (58)

dθ

dσ
= λsκs = λs

(
K1 −

sin θ

r

)
, (59)

dts
dσ

= λsA

[
cos θ

r
(fϕ − fs)

]
. (60)

P = Afs

(
K1 −

sin θ

r

)
+ Afφ ·

sin θ

r
(61)

with fs = fs(λs,
r
ρ
), fϕ = fϕ(λs,

r
ρ
), with initial profile z = z0(σ), r = ρ(σ), from which initial

curvatures and thus K1 can be found.

Note 1: computationally, we have a system of 5 differential equations and one algebraic equation
for the variables {s, z, r, θ, ts, λs}. It can usually easily be solved numerically for given boundary
conditions. Some care may be needed to find the correct boundary condition at σ = 0. This can
sometimes be determined asymptotically for simple configurations (see Exercises).

Note 2: If volume rather than pressure is kept constant, then the pressure becomes a Lagrange
multiplier that enforces the volume constraint. Starting from a guess pressure, one can iterate the
computation by computing the solution for each pressure under a volume constraint).
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Note 3: In the case of a surface incompressibility (typical for bilayers), one needs to modify
the strain energy density with the constraint, the associated new “surface pressure” will then need
to be determined as part of the unknowns. This is a possible way to relate this theory to the fluid
membranes section above.

3.1.3.1 Variable moduli. A deformation of the membrane can follow from either an increase
in pressure or a softening of the walls. The softening can easily be taken into account by using a
material dependent elastic function A = A(σ). A general form of p = P/A can be taken as

p =
P

2

[
1− tanh(

σ − σ1

α
)

]
+ β, (62)

where P is the internal pressure and the parameters σ1 and α describe the length of the extension
zone. Since limσ→∞ p = β, the parameter β describes the effective pressure in distal regions.
Close to the deformation tip (σ = 0), the walls are soft and the elastic coefficient minimal. In
the distal regions, the walls are set and the elastic coefficient A is, comparatively, very large, so
that the effective pressure is small (equal to β). Note that a decreased modulus or increased
pressure (or vice versa) are, at the mechanical level, indistinguishable, trivial mathematically,
highly non-trivial biologically.

3.1.4 Inflation of a spherical membrane

It is of interest to consider the inflation of a spherical membrane.

� The spherical membrane

We start with a shell of initial radius A0 and deform it to a new shell of radius a and we
define λ = a/A0.
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