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SOLUTIONS

Solution 1.
(a).[BS] Definition: di: director basis, n: resultant force, u: Darboux or curvature vector, m:

resultant moment, d3: the tangent vector, Γ is the ratio of the torsional stiffness to the bending
stiffness, and K the intrinsic curvature. ( )′ denotes the derivative with respect to arc-length.
We have (n.n)′ = 2n.n′ = 0, that is n.n = I1. Similarly, (n.m)′ = (m′.n)+(m.n′) = (d3×n).n = 0
and n.m = I2.
We have

dn

ds
=

d

ds
(n1d1 + n2d2 + n3d3)

=
dn1

ds
d1 + n1

∂d1

∂s
+
dn2

ds
d2 + n2

∂d2

∂s
+
dn3

ds
d3 + n3

∂d3

∂s

=

(
dn1

ds
− n2u3 + n3u2

)
d1 +(

dn2

ds
+ n1u3 − n3u1

)
d2 +(

dn3

ds
− n1u2 + n2u1

)
d3,

That is,

dn1

ds
− n2u3 + n3u2 = 0, (1)

dn2

ds
+ n1u3 − n3u1 = 0, (2)

dn3

ds
− n1u2 + n2u1 = 0. (3)

A similar computation for m gives

dm1

ds
−m2u3 + m3u2 − n2 = 0,

dm2

ds
+ m1u3 −m3u1 + n1 = 0,

dm3

ds
−m1u2 + m2u1 = 0.

We use the constitutive law for m to obtain

du1

ds
− u2u3 + Γu3u2 − n2 = 0 (4)

du2

ds
+ (u1 −K)u3 − Γu3u1 + n1 = 0 (5)

Γ
du3

ds
+Ku2 = 0. (6)

(b). [S] First, we have the trivial solution κ = τ = 0 that exists for all applied force N . Second,
If n = αu, then (6),(7),(8) are automatically satisfied. Taking ui to be constant and u2 = 0 in
Equations (9), (10), (11) leads to n1 = Γτκ− (κ−K)τ which implies α = Γτ − (1−K/κ)τ . The
solutions are either helices (κ 6= 0 6= τ), rings (κ 6= 0 = τ), or straight rods (κ = 0τ).

(c). [N] Since M = m.ez and ez is along n, we have that M = 0 implies I2 = 0, that is
m.u = 0. That is

κ(κ−K) + Γτ2 = 0 (7)
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which can be written as
(κ−K/2)2 + Γτ2 = K2/4, (8)

an ellipse in the κ − τ plane. We have N2 = α2u2 = α2(κ2 + τ2). Therefore, for a given N , if
κ 6= 0 6= τ , there exist two solutions with ±τ corresponding to helices with equal radii and pitch
but opposite chirality. If τ = 0 then κ = K and N = 0 and the solution is a multi-covered ring. If
κ = 0 = τ , then the solution is a straight rod which exists for all values of N (see Figure)

K/2 K

τ

(d). [N] We solve κ(κ −K) + Γτ2 = 0 with respect to τ2 = Γ−1κ(K − κ) and substitute the
result in N2 = τ2

(
Γ2 − (1−K/κ))2(κ2 + τ2

)
to find

N2 = Γ−1κ(K − κ)κ−2
(
κΓ2 − (κ−K))2(κ2 + Γ−1κ(K − κ)

)
(9)

In the limit κ→ 0, we find Ncrit = K2/Γ.
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Solution 2.

(a).[B] The elastic energy of a fluid biomembrane with surface Σ is given by

E =

∫
Σ

dS
[
σ + 2κ(H −H0)2 + κ̄KG

]
(10)

where

• H and KG are the mean and Gaussian curvatures,

• σ is the surface tension,

• κ is the bending modulus,

• κ̄ is the saddle-splay modulus,

• H0 is the intrinsic mean curvature of the biomembrane.

We can ignore the contribution of KG, the Gaussian curvature, since according to the Gauss-Bonnet
theorem the contribution of the Gaussian curvature to the elastic energy for a closed surface is a
topological constant.

(b)[SN] The surface Σ can be represented by a height function h = h(x) of class C2. Define
rx = (1, 0, hx), ry = (0, 1, 0). The metric is

G =

(
1 + h2

x 0
0 1

)
(11)

with determinant g = 1 + h2
x. The unit normal is n = (−hx, 0, 1)/

√
g and the extrinsic curvature

matrix is

K =

(
hxx/
√
g 0

0 0

)
, (12)

so that the principal curvature matrix is

L = G−1K =

(
g−3/2hxx 0

0 0

)
, (13)

from which we obtain the Gaussian curvature det(L) = 0 and mean curvature H = g−3/2hxx/2.
The area element is dS = gdxdy.
In the small-gradient approximation, we have H = hxx/2 so that

E =
1

2
w

∫ L

0
dx
[
σh2

x + κh2
xx

]
. (14)

(c).[SN] The first variation h→ h+ τ is carried out by repeated integrations by part to obtain

1

w
δE =

∫ L

0
[κhxxxx − σhxx] τdx

+(σhx − κhxxx)τ ]L0 + κhxxτx]L0 . (15)

The shape equation is
λ2hxxxx − hxx = 0 (16)
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with λ2 = κ/σ. Both terms in the boundary conditions must be satisfied so that we must have at
each boundary (hxx = 0 or hx fixed (so that τx = 0)) AND (hx = λ2hxxx or h fixed (so that τ = 0)).

(d).[N] The general solution of the shape equation is

h(x) = C1 + C2x+ C3 sinh(x/λ) + C4 cosh(x/λ). (17)

The boundary conditions are h(0) = h0, h(L) = 0, hxx(0) = hxx(L) = 0 so that C3 = C4 = 0 and
C1 = h0, C2 = −h0/L.
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Solution 3.

(a)[B] The growth stretch is defined as

γ =
∂s

∂S0
, (18)

and its evolution is given by
∂γ

∂t
= Kγu. (19)

where K > 0 is a constant.

(b)[S] The problem is symmetric with respect to the origin, so the solution for u is even and we
only look at the solution for s > 0 (solutions shown for s > 0 or for both s < 0 and s > 0 are
equally accepted as valid). The solution of uss = Q/D is u = Q

2Ds
2 + C1s + C2. For l < lcrit, the

second constant is set by the behaviour at the origin where we have us = 0, that is C1 = 0, which
gives

u1 =
Q

2D
(s2 − l2) + U. (20)

The critical length is the value of l such that u1(s = 0) = 0 that is lcrit =
√

2UD/Q, the penetration
length.
For l > lcrit, the no-flux condition at an arbitrary point s = a leads to

u2 =

{
0 if s ∈ [0, a],
Q
D (s− a)2, if s ∈ [a, a+ lcrit].

(21)

u(s)
U

s

lcr crl<l crl>l

a
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(c)[SN] Since ∂tγ = ∂t(∂S0s) = Kγu, we have

∂ts(S0, t) =

∫ S0

0
Kγu(s(σ0, t), t)dσ0 (22)

And, by changing variables in the integral and using ds = γdS0, we have

∂ts(S0, t) =

∫ s

0
Ku(σ, t)dσ. (23)

In particular, the equation for the length is given by

∂l(t)

∂t
=

∫ l

0
Ku(σ, t)dσ. (24)

l (t)

Exponential 
growth

Linear
growth

tcr

l cr t

Consider first the solution for l < lcrit. In this case, we use u = u1 and we have

∂l(t)

∂t
= K

∫ l

0
(
Q

2D
(σ2 − l2) + U)dσ, (25)

= −KQ
3D

l3 +KUl. (26)

For l� lcrit,
∂l(t)
∂t ∼ KUl and

l(t) ∼ L0 exp(KUt) (27)

For l > lcrit, we use u = u2 and we have now

∂l(t)

∂t
=

KQ

2D

∫ a+lcrit

a
(σ − a)2dσ, (28)

=
2UK

3
lcrit (29)

That is,

l(t) =
2UK

3
lcrit(t− tcrit) + lcrit (30)

and we conclude that, for l� lcrit, growth is linear in time with velocity 2UK
3 lcrit. (Note: students

do no need to find the time tcrit as they are only asked about the asymptotic behaviour).
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