C5.9: Mathematical Mechanical Biology Alain Goriely

dd/mm/yyyy

Do not turn this page until you are told that you may do so

SOLUTIONS

Solution 1.

(a). $[\mathrm{BS}]$ Definition: \mathbf{d}_{i} : director basis, \mathbf{n} : resultant force, \mathbf{u} : Darboux or curvature vector, \mathbf{m} : resultant moment, \mathbf{d}_{3} : the tangent vector, Γ is the ratio of the torsional stiffness to the bending stiffness, and K the intrinsic curvature. ($)^{\prime}$ denotes the derivative with respect to arc-length. We have $(\mathbf{n} . \mathbf{n})^{\prime}=2 \mathbf{n} \cdot \mathbf{n}^{\prime}=\mathbf{0}$, that is $\mathbf{n} \cdot \mathbf{n}=I_{1}$. Similarly, $(\mathbf{n} \cdot \mathbf{m})^{\prime}=\left(\mathbf{m}^{\prime} \cdot \mathbf{n}\right)+\left(\mathbf{m} \cdot \mathbf{n}^{\prime}\right)=\left(\mathbf{d}_{3} \times \mathbf{n}\right) . \mathbf{n}=\mathbf{0}$ and $\mathbf{n} . \mathbf{m}=I_{2}$.
We have

$$
\begin{aligned}
\frac{d \boldsymbol{n}}{d s}= & \frac{d}{d s}\left(\mathrm{n}_{1} \mathbf{d}_{1}+\mathrm{n}_{2} \mathbf{d}_{2}+\mathrm{n}_{3} \mathbf{d}_{3}\right) \\
= & \frac{d \mathrm{n}_{1}}{d s} \mathbf{d}_{1}+\mathrm{n}_{1} \frac{\partial \mathbf{d}_{1}}{\partial s}+\frac{d \mathrm{n}_{2}}{d s} \mathbf{d}_{2}+\mathrm{n}_{2} \frac{\partial \mathbf{d}_{2}}{\partial s}+\frac{d \mathrm{n}_{3}}{d s} \mathbf{d}_{3}+\mathrm{n}_{3} \frac{\partial \mathbf{d}_{3}}{\partial s} \\
= & \left(\frac{d \mathrm{n}_{1}}{d s}-\mathrm{n}_{2} \mathbf{u}_{3}+\mathrm{n}_{3} \mathbf{u}_{2}\right) \mathbf{d}_{1}+ \\
& \left(\frac{d \mathrm{n}_{2}}{d s}+\mathrm{n}_{1} \mathrm{u}_{3}-\mathrm{n}_{3} \mathrm{u}_{1}\right) \mathbf{d}_{2}+ \\
& \left(\frac{d \mathrm{n}_{3}}{d s}-\mathrm{n}_{1} \mathbf{u}_{2}+\mathrm{n}_{2} \mathbf{u}_{1}\right) \mathbf{d}_{3}
\end{aligned}
$$

That is,

$$
\begin{align*}
& \frac{d \mathrm{n}_{1}}{d s}-\mathrm{n}_{2} \mathrm{u}_{3}+\mathrm{n}_{3} \mathrm{u}_{2}=0 \tag{1}\\
& \frac{d \mathrm{n}_{2}}{d s}+\mathrm{n}_{1} \mathrm{u}_{3}-\mathrm{n}_{3} \mathrm{u}_{1}=0 \tag{2}\\
& \frac{d \mathrm{n}_{3}}{d s}-\mathrm{n}_{1} \mathbf{u}_{2}+\mathrm{n}_{2} \mathbf{u}_{1}=0 \tag{3}
\end{align*}
$$

A similar computation for \mathbf{m} gives

$$
\begin{aligned}
& \frac{d \mathrm{~m}_{1}}{d s}-\mathrm{m}_{2} \mathrm{u}_{3}+\mathrm{m}_{3} \mathrm{u}_{2}-\mathrm{n}_{2}=0 \\
& \frac{d \mathrm{~m}_{2}}{d s}+\mathrm{m}_{1} \mathrm{u}_{3}-\mathrm{m}_{3} \mathrm{u}_{1}+\mathrm{n}_{1}=0 \\
& \frac{d \mathrm{~m}_{3}}{d s}-\mathrm{m}_{1} \mathrm{u}_{2}+\mathrm{m}_{2} \mathrm{u}_{1}=0
\end{aligned}
$$

We use the constitutive law for \mathbf{m} to obtain

$$
\begin{align*}
& \frac{d \mathbf{u}_{1}}{d s}-\mathbf{u}_{2} \mathbf{u}_{3}+\Gamma \mathbf{u}_{3} \mathbf{u}_{2}-\mathrm{n}_{2}=0 \tag{4}\\
& \frac{d \mathbf{u}_{2}}{d s}+\left(\mathbf{u}_{1}-K\right) \mathbf{u}_{3}-\Gamma \mathbf{u}_{3} \mathbf{u}_{1}+\mathrm{n}_{1}=0 \tag{5}\\
& \Gamma \frac{d \mathbf{u}_{3}}{d s}+K \mathbf{u}_{2}=0 \tag{6}
\end{align*}
$$

(b). [S] First, we have the trivial solution $\kappa=\tau=0$ that exists for all applied force N. Second, If $\mathbf{n}=\alpha \mathbf{u}$, then (6), (7), (8) are automatically satisfied. Taking \mathbf{u}_{i} to be constant and $\mathbf{u}_{2}=0$ in Equations (9), (10), (11) leads to $\mathrm{n}_{1}=\Gamma \tau \kappa-(\kappa-K) \tau$ which implies $\alpha=\Gamma \tau-(1-K / \kappa) \tau$. The solutions are either helices $(\kappa \neq 0 \neq \tau)$, rings $(\kappa \neq 0=\tau)$, or straight rods $(\kappa=0 \tau)$.
(c). $[\mathrm{N}]$ Since $M=\mathbf{m} . \mathbf{e}_{z}$ and \mathbf{e}_{z} is along \mathbf{n}, we have that $M=0$ implies $I_{2}=0$, that is $\mathbf{m} . \mathbf{u}=0$. That is

$$
\begin{equation*}
\kappa(\kappa-K)+\Gamma \tau^{2}=0 \tag{7}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
(\kappa-K / 2)^{2}+\Gamma \tau^{2}=K^{2} / 4 \tag{8}
\end{equation*}
$$

an ellipse in the $\kappa-\tau$ plane. We have $N^{2}=\alpha^{2} \mathbf{u}^{2}=\alpha^{2}\left(\kappa^{2}+\tau^{2}\right)$. Therefore, for a given N, if $\kappa \neq 0 \neq \tau$, there exist two solutions with $\pm \tau$ corresponding to helices with equal radii and pitch but opposite chirality. If $\tau=0$ then $\kappa=K$ and $N=0$ and the solution is a multi-covered ring. If $\kappa=0=\tau$, then the solution is a straight rod which exists for all values of N (see Figure)

(d). [N] We solve $\kappa(\kappa-K)+\Gamma \tau^{2}=0$ with respect to $\tau^{2}=\Gamma^{-1} \kappa(K-\kappa)$ and substitute the result in $N^{2}=\tau^{2}\left(\Gamma^{2}-(1-K / \kappa)\right)^{2}\left(\kappa^{2}+\tau^{2}\right)$ to find

$$
\begin{equation*}
N^{2}=\Gamma^{-1} \kappa(K-\kappa) \kappa^{-2}\left(\kappa \Gamma^{2}-(\kappa-K)\right)^{2}\left(\kappa^{2}+\Gamma^{-1} \kappa(K-\kappa)\right) \tag{9}
\end{equation*}
$$

In the limit $\kappa \rightarrow 0$, we find $N_{\text {crit }}=K^{2} / \Gamma$.

Solution 2.

(a). [B] The elastic energy of a fluid biomembrane with surface Σ is given by

$$
\begin{equation*}
\mathcal{E}=\int_{\Sigma} \mathrm{d} S\left[\sigma+2 \kappa\left(H-H_{0}\right)^{2}+\bar{\kappa} K_{G}\right] \tag{10}
\end{equation*}
$$

where

- H and K_{G} are the mean and Gaussian curvatures,
- σ is the surface tension,
- κ is the bending modulus,
- $\bar{\kappa}$ is the saddle-splay modulus,
- H_{0} is the intrinsic mean curvature of the biomembrane.

We can ignore the contribution of K_{G}, the Gaussian curvature, since according to the Gauss-Bonnet theorem the contribution of the Gaussian curvature to the elastic energy for a closed surface is a topological constant.
(b) $[\mathrm{SN}]$ The surface Σ can be represented by a height function $h=h(x)$ of class C^{2}. Define $r_{x}=\left(1,0, h_{x}\right), r_{y}=(0,1,0)$. The metric is

$$
G=\left(\begin{array}{cc}
1+h_{x}^{2} & 0 \tag{11}\\
0 & 1
\end{array}\right)
$$

with determinant $g=1+h_{x}^{2}$. The unit normal is $\mathbf{n}=\left(-h_{x}, 0,1\right) / \sqrt{g}$ and the extrinsic curvature matrix is

$$
K=\left(\begin{array}{cc}
h_{x x} / \sqrt{g} & 0 \tag{12}\\
0 & 0
\end{array}\right)
$$

so that the principal curvature matrix is

$$
L=G^{-1} K=\left(\begin{array}{cc}
g^{-3 / 2} h_{x x} & 0 \tag{13}\\
0 & 0
\end{array}\right)
$$

from which we obtain the Gaussian curvature $\operatorname{det}(L)=0$ and mean curvature $H=g^{-3 / 2} h_{x x} / 2$. The area element is $\mathrm{d} S=g \mathrm{~d} x \mathrm{~d} y$.
In the small-gradient approximation, we have $H=h_{x x} / 2$ so that

$$
\begin{equation*}
\mathcal{E}=\frac{1}{2} w \int_{0}^{L} \mathrm{~d} x\left[\sigma h_{x}^{2}+\kappa h_{x x}^{2}\right] \tag{14}
\end{equation*}
$$

(c). $[\mathrm{SN}]$ The first variation $h \rightarrow h+\tau$ is carried out by repeated integrations by part to obtain

$$
\begin{align*}
\frac{1}{w} \delta E= & \int_{0}^{L}\left[\kappa h_{x x x x}-\sigma h_{x x}\right] \tau \mathrm{d} x \\
& \left.\left.+\left(\sigma h_{x}-\kappa h_{x x x}\right) \tau\right]_{0}^{L}+\kappa h_{x x} \tau_{x}\right]_{0}^{L} \tag{15}
\end{align*}
$$

The shape equation is

$$
\begin{equation*}
\lambda^{2} h_{x x x x}-h_{x x}=0 \tag{16}
\end{equation*}
$$

Page 4 of 7
with $\lambda^{2}=\kappa / \sigma$. Both terms in the boundary conditions must be satisfied so that we must have at each boundary ($h_{x x}=0$ or h_{x} fixed (so that $\tau_{x}=0$) AND $\left(h_{x}=\lambda^{2} h_{x x x}\right.$ or h fixed (so that $\left.\tau=0\right)$).
(d). $[\mathrm{N}]$ The general solution of the shape equation is

$$
\begin{equation*}
h(x)=C_{1}+C_{2} x+C_{3} \sinh (x / \lambda)+C_{4} \cosh (x / \lambda) . \tag{17}
\end{equation*}
$$

The boundary conditions are $h(0)=h_{0}, h(L)=0, h_{x x}(0)=h_{x x}(L)=0$ so that $C_{3}=C_{4}=0$ and $C_{1}=h_{0}, C_{2}=-h_{0} / L$.

Solution 3.

(a) [B] The growth stretch is defined as

$$
\begin{equation*}
\gamma=\frac{\partial s}{\partial S_{0}} \tag{18}
\end{equation*}
$$

and its evolution is given by

$$
\begin{equation*}
\frac{\partial \gamma}{\partial t}=K \gamma u \tag{19}
\end{equation*}
$$

where $K>0$ is a constant.
(b) $[\mathrm{S}]$ The problem is symmetric with respect to the origin, so the solution for u is even and we only look at the solution for $s \geqslant 0$ (solutions shown for $s>0$ or for both $s<0$ and $s>0$ are equally accepted as valid). The solution of $u_{s s}=Q / D$ is $u=\frac{Q}{2 D} s^{2}+C_{1} s+C_{2}$. For $l<l_{\text {crit }}$, the second constant is set by the behaviour at the origin where we have $u_{s}=0$, that is $C_{1}=0$, which gives

$$
\begin{equation*}
u_{1}=\frac{Q}{2 D}\left(s^{2}-l^{2}\right)+U \tag{20}
\end{equation*}
$$

The critical length is the value of l such that $u_{1}(s=0)=0$ that is $l_{\text {crit }}=\sqrt{2 U D / Q}$, the penetration length.
For $l>l_{\text {crit }}$, the no-flux condition at an arbitrary point $s=a$ leads to

$$
u_{2}= \begin{cases}0 & \text { if } s \in[0, a] \tag{21}\\ \frac{Q}{D}(s-a)^{2}, & \text { if } s \in\left[a, a+l_{\text {crit }}\right]\end{cases}
$$

(c) $[\mathrm{SN}]$ Since $\partial_{t} \gamma=\partial_{t}\left(\partial_{S_{0}} s\right)=K \gamma u$, we have

$$
\begin{equation*}
\partial_{t} s\left(S_{0}, t\right)=\int_{0}^{S_{0}} K \gamma u\left(s\left(\sigma_{0}, t\right), t\right) d \sigma_{0} \tag{22}
\end{equation*}
$$

And, by changing variables in the integral and using $d s=\gamma d S_{0}$, we have

$$
\begin{equation*}
\partial_{t} s\left(S_{0}, t\right)=\int_{0}^{s} K u(\sigma, t) d \sigma . \tag{23}
\end{equation*}
$$

In particular, the equation for the length is given by

$$
\begin{equation*}
\frac{\partial l(t)}{\partial t}=\int_{0}^{l} K u(\sigma, t) d \sigma . \tag{24}
\end{equation*}
$$

Consider first the solution for $l<l_{\text {crit }}$. In this case, we use $u=u_{1}$ and we have

$$
\begin{align*}
\frac{\partial l(t)}{\partial t} & =K \int_{0}^{l}\left(\frac{Q}{2 D}\left(\sigma^{2}-l^{2}\right)+U\right) d \sigma \tag{25}\\
& =-\frac{K Q}{3 D} l^{3}+K U l . \tag{26}
\end{align*}
$$

For $l \ll l_{\text {crit }}, \frac{\partial l(t)}{\partial t} \sim K U l$ and

$$
\begin{equation*}
l(t) \sim L_{0} \exp (K U t) \tag{27}
\end{equation*}
$$

For $l>l_{\text {crit }}$, we use $u=u_{2}$ and we have now

$$
\begin{align*}
\frac{\partial l(t)}{\partial t} & =\frac{K Q}{2 D} \int_{a}^{a+l_{\text {crit }}}(\sigma-a)^{2} d \sigma \tag{28}\\
& =\frac{2 U K}{3} l_{\text {crit }} \tag{29}
\end{align*}
$$

That is,

$$
\begin{equation*}
l(t)=\frac{2 U K}{3} l_{\text {crit }}\left(t-t_{\text {crit }}\right)+l_{\text {crit }} \tag{30}
\end{equation*}
$$

and we conclude that, for $l \gg l_{\text {crit }}$, growth is linear in time with velocity $\frac{2 U K}{3} l_{\text {crit }}$. (Note: students do no need to find the time $t_{\text {crit }}$ as they are only asked about the asymptotic behaviour).

