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SOLUTIONS

Solution 1.

(a).[BS] Definition: d;: director basis, n: resultant force, u: Darboux or curvature vector, m:
resultant moment, d3: the tangent vector, I' is the ratio of the torsional stiffness to the bending
stiffness, and K the intrinsic curvature. () denotes the derivative with respect to arc-length.

We have (n.n)’ = 2n.n’ = 0, that isn.n = [;. Similarly, (n.m)’ = (m’.n)4+(m.n’) = (dgxn).n =0
and nm = I,.

We have
dn d
E = df (n1d1 + nody + n3d3)
dn1 Bdl dng adg dn3 8d3
- 14 724 772 L YB3y 993
ds 1+ 95 + 2+n28s+d5 3+n368
dn
= <1 — nauz + n3u2> d; +
ds
dng 4
—= 4+ nyuz — n3u
ds 1u3 3u1
dns n
— — nyu nau
ds 1U2 2U1
That is,
d
% — Ngus + naug — O, (1)
d
%—i—nlu;;—ngul =0, (2)
d
%—IHUQ—FnQUl =0. (3)
A similar computation for m gives
d
o mau3 4+ mguz — ng = 0,
ds
d
amz miug — mguy +ny =0,
ds
d
ams miug + mouy = 0.
ds
We use the constitutive law for m to obtain
du
T; — uguz + l'ugus —ny =0 (4)
du
T;+(U1—K)U3—FU3U1+n1:O (5)
du
rd—f” + Ku, = 0. (6)

(b). [S] First, we have the trivial solution x = 7 = 0 that exists for all applied force N. Second,
If n = au, then (6),(7),(8) are automatically satisfied. Taking u; to be constant and us = 0 in
Equations (9), (10), (11) leads to ny = I'rk — (k — K)7 which implies o« = I'r — (1 — K/k)7. The
solutions are either helices (k # 0 # 7), rings (k # 0 = 7), or straight rods (x = 07).

(c). [N] Since M = m.e, and e, is along n, we have that M = 0 implies I» = 0, that is
m.u = 0. That is
k(k—K)+T7%=0 (7)

Page 2 of 7



which can be written as

(k — K/2)* + T2 = K?/4, (8)
an ellipse in the x — 7 plane. We have N? = o?u® = o?(k? + 72). Therefore, for a given N, if
Kk # 0 # T, there exist two solutions with +7 corresponding to helices with equal radii and pitch

but opposite chirality. If 7 =0 then x = K and N = 0 and the solution is a multi-covered ring. If
k = 0 = 7, then the solution is a straight rod which exists for all values of N (see Figure)

(d). [N] We solve k(k — K) + I't? = 0 with respect to 72 = I'"'x(K — k) and substitute the
result in N? = 72 (I'? — (1 — K/k))*(k* + 72) to find

N? =T (K — k)2 (k% — (k — K))*(k* + T 7'6(K — K)) 9)

In the limit x — 0, we find Ney = K2/T.
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Solution 2.
(a).[B] The elastic energy of a fluid biomembrane with surface ¥ is given by
5:1/d3k+2MH—JhF+ﬂKd (10)
)

where
e H and K¢ are the mean and Gaussian curvatures,

e o is the surface tension,

k is the bending modulus,
e £ is the saddle-splay modulus,
e Hj is the intrinsic mean curvature of the biomembrane.

We can ignore the contribution of K¢, the Gaussian curvature, since according to the Gauss-Bonnet
theorem the contribution of the Gaussian curvature to the elastic energy for a closed surface is a
topological constant.

(b)[SN] The surface ¥ can be represented by a height function h = h(z) of class C?. Define
ry = (1,0, hy), ry = (0,1,0). The metric is

C(1+R2 0
G= ( 0 1 (11)
with determinant g = 1 + h2. The unit normal is n = (—hg,0,1)/,/g and the extrinsic curvature

matrix is /
A hae/\/g O
K= (P ), 2

so that the principal curvature matrix is

73/2h 0
_ -1 _ g TT
L=G K—< 0 o)’ (13)

from which we obtain the Gaussian curvature det(L) = 0 and mean curvature H = g~3/2h,, /2.
The area element is d.S = gdxdy.
In the small-gradient approximation, we have H = hy, /2 so that

1 L
&= 2w/ dz [ahi + Iihiz] . (14)
0

(c).[SN] The first variation h — h + 7 is carried out by repeated integrations by part to obtain

1 L
—E = / [khygre — Ohgy| Td
w 0
+(ohy — lihxm)T]OL + lihme]OL. (15)

The shape equation is
)\thx:ca: - hxz =0 (16)
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with A2 = x/o. Both terms in the boundary conditions must be satisfied so that we must have at
each boundary (hg; = 0 or hy fixed (so that 7, = 0)) AND (h; = A?hgu, or h fixed (so that 7 = 0)).

(d).[N] The general solution of the shape equation is
h(z) = C1 + Cox + Cssinh(x/\) + Cycosh(z/N). (17)

The boundary conditions are h(0) = hg, h(L) = 0, hyz(0) = hyy(L) = 0 so that C3 = C4 = 0 and
C1 = hg, Ca = —ho/L.
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Solution 3.

(a)[B] The growth stretch is defined as

0s
= — 18
and its evolution is given by
2l
— = K~u. 19
5 = Ku (19)

where K > 0 is a constant.

(b)[S] The problem is symmetric with respect to the origin, so the solution for u is even and we
only look at the solution for s > 0 (solutions shown for s > 0 or for both s < 0 and s > 0 are
equally accepted as valid). The solution of ugs = Q/D is u = %82 + C1s + Cy. For I < I, the
second constant is set by the behaviour at the origin where we have us, = 0, that is C; = 0, which

gives
Q

~ 2D

The critical length is the value of [ such that u;(s = 0) = 0 that is lis = 1/2U D/Q, the penetration
length.
For [ > I, the no-flux condition at an arbitrary point s = a leads to

Uz = % 2 ?fs = 0.0 &1
E(3 — a) , if se [a,a‘i‘lcrit]-

uy (s> = 1)+ U. (20)

I
Lol
S
~
7]
~

l<lcr l cr > lcr
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(c)[SN] Since 0yy = 0¢(0s,s) = K~u, we have
So

0¢s(50,t) = ; K~u(s(oo,t),t)dog (22)

And, by changing variables in the integral and using ds = ydSp, we have

0s(So,t) = /OS Ku(o,t)do. (23)

In particular, the equation for the length is given by

l
ala(;):/o Ku(o,t)do. (24)
Al(D y
inear
growth
l Exponential
cr
growth t
. =
tcr

Consider first the solution for [ < l.j¢. In this case, we use u = u; and we have

ol(t) Q. o
T - K (02— 2
5 /0(2D(0 1+ U)do, (25)
_ KQp
= 35 +KUL (26)
For | < lerit, 242 ~ KUT and
I(t) ~ Lo exp(KUt) (27)

For | > l.it, we use u = us and we have now

al (t) K7Q a+lerig

5 = 3D (o0 — a)2da, (28)
2UK
= Tlcrit (29)
That is,
2UK
l(t) = Tlcrit (t - tcrit) + lcrit (30)

and we conclude that, for [ > [.;, growth is linear in time with velocity %lcm. (Note: students

do no need to find the time ¢ as they are only asked about the asymptotic behaviour).
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