
Further Partial Differential Equations 1–1

1 Similarity Solutions

Pre-amble

The notes for this course were mainly written by the previous lecturer, Ian Griffiths. I
recommend bringing copies of the lecture and board notes to lectures, and then annotating
over the top of them. Please send any corrections or comments to dalwadi@maths.ox.ac.uk.
Mohit Dalwadi, January 2025

1.1 Introduction

You are preparing a breakfast before you head out for your lectures for the day. You set up
the frying pan ready to make some pancakes. As you carefully pour your oil into the pan
you watch the spreading behaviour: the oil forms a shape that is very close to a circle, which
expands outwards with time, slowing in its rate of expansion as it grows. The next day you’re
a little more tired and so when you deposit your oil into the pan it doesn’t quite form a
circular blob. But you notice that as it spreads out, the oil ‘corrects’ for your error and forms
a circular shape once again. When the oil has spread across the pan you add your pancake
batter. As you do so, you notice the spreading phenomenon is very similar, correcting for
deviations from a circle in the initial blob of pancake mix you deposit and then spreading out
and slowing as it does so.

Before you eat your pancake you decide to add some maple syrup onto the top. Once
again the same pattern of events repeats itself. Your morning observations have uncovered a
sense of universality in spreading. But can we quantify this more than simply through daily
observations? Well, if you were to plot a graph of radius of the oil, pancake mix, or maple
syrup, as a function of time, on log–log axes then you would see that, after a short transient
the graph would settle to a straight line with a gradient of 1/8. In other words, the radius of
the liquid, r, spreads in time like r ∝ t1/8, whether it’s the oil, the pancake mix or the maple
syrup and no matter how much of the liquid we initially deposit.†

The universality of our breakfast activities doesn’t just apply to the spreading rate. If
we were to take side-view photos to capture the height of each of the spreading liquids then
the shape of the profile would be identical provided we stretched our photos vertically, so
each liquid had the same peak height, and horizontally, so they had the same radius of the
spreading front of the liquid.

This kind of behaviour extends much more generally, encompassing the spreading of liquids
on tilted surfaces (e.g., rain running down a window pane), the spreading of liquid on a porous
surface (e.g., spreading of honey on porous toast) and geological applications such as carbon
sequestration, where we are trapping CO2 underground.

†To be strictly correct, this is only true for Newtonian fluids. If the fluid is non-Newtonian, such as pancake
batter, then the behaviour will be a little different.
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Figure 1.1: Schematic of liquid draining down a wall. The liquid profile is given by ĥ(ẑ, t̂) at
vertical position ẑ and time t̂.

In this first chapter we will explore the idea of this universality to see what it means
mathematically and why so many seemingly different phenomena can all be described in the
same way.

1.2 Spreading of a liquid on a vertical liquid-coated wall

Let us begin by considering the spreading of liquid on a vertical surface (see figure 1.1 for a
schematic). Such a set-up could describe water running down a window pane. We assume
here for simplicity that the entire surface of the wall is coated with liquid. If parts of the
wall were dry then we would have contact lines, which correspond to places where we have
air–liquid–solid junctions. We will study these in Section 1.4. If we let ẑ denote the vertical
position on the wall then the thickness of the liquid ĥ as a function of vertical height ẑ and
time t̂ is governed by

∂ĥ

∂t̂
+
∂Q̂

∂ẑ
= 0, Q̂ =

ρgĥ3

3µ
, (1.1)

where ρ and µ denote respectively the density and viscosity of the liquid, g denotes acceleration
due to gravity and Q̂ is the flux of fluid (see Problem Sheet 1 for a derivation of this equation).
Note that here, and elsewhere in these notes, we will use the convention that a hatted (̂ )
variable represents a dimensional quantity; we will not, however, use hats for dimensional
parameters (such as density, viscosity and acceleration due to gravity). We note that (1.1)
may be written as a single equation:

∂ĥ

∂t̂
+
ρg

3µ

∂

∂ẑ

(
ĥ3
)

= 0. (1.2)

We will work with this form, but we note that all of the physical problems that we cover in
this chapter may be expressed in the conservative form (1.1).

Equation (1.2) is a first-order hyperbolic equation so we require one initial condition ĥ(ẑ, 0)
and one boundary condition, for example ĥ(0, t̂) = 0, to solve this. We can solve this problem
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Figure 1.2: Analytic solution for the spreading of a liquid on a vertical substrate
with an initial condition (a) ĥ(ẑ, 0) = tanh(5ẑ) at t̂ = 5; (b) ĥ(ẑ, 0) = tanh(5ẑ) +
2 (1−Heaviside(ẑ − 1)) ẑ(ẑ − 1) at t̂ = 2. The red dashed lines show the similarity solution,
towards which all profiles evolve, regardless of the initial condition. The blue dot-dashed line
shows the initial condition.

analytically using the method of characteristics (see Problem Sheet 1). If we do this, we find
that, irrespective of the initial condition, the liquid evolves towards a similar configuration
(see figure 1.2).

Given our observation that two very different initial conditions eventually end up pos-
sessing the same time-dependent profile, let us analyse the system in a different way to try
to extract and understand this property. Before we proceed any further though, we will first
non-dimensionalize the system. This will allow us to work with the simplest form of the sys-
tem. When non-dimensionalizing, we choose characteristic scales that reduce the problem to
its simplest form. In this case, we choose to non-dimensionalize by introducing the following
scales:

ẑ = ẑ0z, t̂ = t̂0t, ĥ = ĥ0h, (1.3)

where ẑ0, t̂0 and ĥ0 are length, time and liquid thickness scales that we are free to choose;
generally it is useful to choose these using typical scales in the problem. If we choose

t̂0 =
µẑ0

ρgĥ20
(1.4)

then the dimensionless equation is

∂h

∂t
+

1

3

∂

∂z

(
h3
)

= 0. (1.5)

We can use the initial condition to choose appropriate values for ĥ0 and ẑ0, for example the
height of the liquid as ẑ =∞. However, there is no natural length scale to allow us to choose
x̂0, meaning that we are free to choose this however we like. Indeed, the lack of a natural
length scale indicates that a similarity solution may be possible.

Now that we have a dimensionless system we are in a position to analyse this more easily.
First, we shall seek a solution of the form

h(z, t) = f(η) where η =
z

tα
, (1.6)

where α is to be determined. On the face of it, it is not obvious why we should seek a solution
of this form. We will look into why this is the case later on. However, if we do so and
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substitute this into (1.5) then we find that if we choose α = 1 the problem is transformed
from a partial differential equation into an ordinary differential equation in terms of the new
variable η as

(f2 − η)f ′ = 0. (1.7)

From here we immediately obtain the solution

f = η1/2 =
(z
t

)1/2
, (1.8)

or, in dimensional terms,

ĥ =

(
µ

ρg

)1/2( ẑ
t̂

)1/2

. (1.9)

If we plot this function we find that it does an excellent job of replicating the analytic solution
for the thickness profile (figure 1.2). However, we never used the initial condition to derive
the similarity solution. As a result, the similarity solution cannot satisfy an arbitrary initial
condition ĥ(ẑ, 0). In fact, as t̂ → 0 ĥ → ∞. This highlights the fact that our solution does
not accurately capture the early time behaviour. In fact, the system ‘forgets’ this initial
information over time. Indeed, all initial conditions approach the same time-evolving state,
but just take different amounts of time to reach that point.

The analysis we have performed is advantageous because it bypasses the need to deter-
mine an analytic solution of the entire system, which is often difficult, if not impossible. The
similarity solution (and in this case the non-dimensionalization (1.4) alone) tells us the para-
metric dependence of the problem: there is a parametric grouping, ρg/µ, that indicates how
the liquid spreads. This tells us how the experiment will change if, for example, we used a
more viscous liquid or a more dense liquid and also tells us the typical time taken for a given
liquid to drain under gravity.

Before we move on to another example, we will finish by examining the equation using an
even simpler scaling-law approach. Here, we approximate derivatives ∂y/∂x ∼ Y/X, where
Y and X correspond to the typical variations in y and x respectively. If we substitute this
scaling ansatz into (1.5) and assume that the two terms in our equation are in balance then
we get

H

T
∼
(
ρg

3µ

)
H3

Z
, (1.10)

which may be rearranged to give

H ∼
(

3µ

ρg

)1/2(Z
T

)1/2

. (1.11)

This result tells us almost as much information as the similarity solution, namely, that the
height scales like (ẑ/t̂)1/2 and that the dependence on the parameters appears as a prefactor
of the form (µ/ρg)1/2. The only part that we are missing is the numerical prefactor (which,
in this case happens to be 1/

√
3).

To summarize what we have seen: a scaling law gives the long-time functional ((ẑ/t̂)1/2)
and parametric (µ/ρg)1/2 dependence of the solution; the similarity solution gives the long-
time solution; the analytic solution gives the correct behaviour for all time.
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1.3 The heat equation

We will now move onto the familiar example of the heat equation for temperature T̂ ,

∂T̂

∂t̂
+
∂Q̂

∂x̂
= 0, Q̂ = −D∂T̂

∂x̂
, (1.12)

where x̂ denotes space, t̂ denotes time and D denotes the (constant) diffusivity; Q̂ is the heat
flux. This may be written as the following single equation

∂T̂

∂t̂
= D

∂2T̂

∂x̂2
, (1.13)

We require one initial condition T̂ (x̂, 0) and two boundary conditions, say,

T̂ (x̂, t̂)→ T̂−∞ as x̂→ −∞, (1.14a)

T̂ (x̂, t̂)→ T̂+∞ as x̂→ +∞, (1.14b)

where T̂±∞ are constants.
As in the previous example, before we proceed any further, we non-dimensionalize the

system via:

x̂ = x̂0x, t̂ =
x̂20
D
t, T̂ =

(
T̂+∞ − T̂−∞

)
T + T̂−∞. (1.15)

Note that this non-dimensionalization is only suitable if T̂−∞ 6= T̂+∞. We shall suppose this
is the case for now, then study the case where T̂−∞ = T̂+∞ afterwards. As in the previous
example, there is no natural lengthscale, so x̂0 is arbitrary. With these scalings, the governing
equation (1.13) becomes

∂T

∂t
=
∂2T

∂x2
, (1.16)

while the boundary conditions (1.14) become

T (x, t)→ 0 as x→ −∞, (1.17a)

T (x, t)→ 1 as x→ +∞. (1.17b)

In this example, trying our simple scaling arguments, where we set ∂y/∂x ∼ Y/X, gives
only that X2/T ∼ 1. This provides evidence that our similarity variable is x/t1/2 but doesn’t
provide any further functional form for the solution T . We therefore proceed as in the previous
example to seek a similarity solution of the form T = f(η) where η = x/tα. Substituting
this ansatz into (1.16) we find that we require α = 1/2, which confirms our simple scaling
argument prediction above. Choosing α = 1/2, the governing equation becomes

f ′′ +
η

2
f ′ = 0, (1.18)

where primes denote differentiation, while the boundary conditions become

f → 0 as η → −∞, (1.19a)

f → 1 as η → +∞. (1.19b)
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Figure 1.3: Similarity solution for the heat equation with (a) T̂−∞ = 0, T̂+∞ = 1 and D = 1
for times t = 0, 0.1, 0.5, 1; (b) T̂−∞ = 0, T̂+∞ = 0 and D = 1 for times t = 0.02, 0.1, 0.5, 1

The solution to (1.18) subject to (1.19) is

f =
1

2

(
1 + erf

(η
2

))
, (1.20)

where

erf(ξ) =
2√
π

∫ ξ

0
e−s

2
ds (1.21)

is the error function. The solution in terms of dimensional variables is

T̂ =

(
T̂+∞ − T̂−∞

)
2

(
1 + erf

(
x̂

2
√
Dt̂

))
+ T̂−∞, (1.22)

We show this solution in figure 1.3(a).
As in the previous case, we did not use the initial condition to obtain this solution, and so

this result only holds for long time, unless the initial condition of (1.22), i.e., a step function
at x̂0 = 0 to the left of which, T̂ = T̂−∞ and to the right, T̂ = T̂+∞, happens to be the initial
condition that we impose. In that case, the similarity solution (1.22) is the analytic solution
for all time. The fact that all solutions evolve to (1.22) irrespective of the initial configuration
again shows that systems that possess similarity solutions lose the initial information for long
time.

This case was fairly similar to the previous example. However, now let’s make a small
change and consider the aforementioned case where T̂−∞ = T̂+∞. In this case we non-
dimensionalize instead via

x̂ = x̂0x, t̂ =
x̂20
D
t, T̂ = T̂+∞T + T̂+∞. (1.23)

Our dimensionless governing equation remains the same (1.16), but our boundary conditions
are now

T (x, t)→ 0 as x→ ±∞. (1.24)
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While seemingly similar to the previous problem, our similarity solution (1.22) gives the
trivial solution. However, if we integrate (1.16) over −∞ < x < ∞ and apply the boundary
conditions (1.24) we obtain∫ ∞

−∞
T (x, t) dx =

∫ ∞
−∞

T (x, 0) dx = E, say, (1.25)

where E is the dimensionless energy in the system. This gives an additional constraint that
was not required in the previous case (in that case the total initial energy in the domain
was infinite). Substituting our previous similarity ansatz T = f(η) with η = x/t1/2 into this
equation we get

t1/2
∫ ∞
−∞

f dη = E, (1.26)

which can only hold if E = 0 (i.e., the trivial solution T = 0) since the left-hand side is a
function of t but the right-hand side is a constant. But E is prescribed. This means that we
need to seek a more general similarity ansatz. We try a solution of the form

T = tβf(η) where η =
x

tα
. (1.27)

Substituting this ansatz into (1.16) and (1.25) we find that we must choose α = 1/2 and
β = −1/2 to make the resulting system depend only on η. In doing so, equations (1.16) and
(1.25) become, respectively:

f ′′ +
1

2
ηf ′ +

1

2
f = 0, (1.28a)∫ ∞

−∞
f dη = E. (1.28b)

We can solve (1.28) to obtain the solution

f =
E

2
√
π

e−η
2/4, (1.29)

thus giving the full dimensional solution

T̂ =
Ê

2
√
πDt̂

exp

(
− x̂2

4Dt̂

)
+ T̂+∞, (1.30)

where Ê is the dimensional counterpart to E, defined by

Ê =

∫ ∞
−∞

(
T̂ (x̂, t̂)− T̂+∞

)
dx̂. (1.31)

Again, we have not imposed an initial condition, which indicates that all initial profiles
evolve to (1.30) in the long term. In this case, if the initial profile is proportional to a delta
function centred at the origin, T (x, 0) = Eδ(x) then the similarity solution and the analytic
solution are equivalent. We show this solution in figure 1.3(b).

Thus we have shown in this section that the form of the similarity solution depends on
both the governing equation and the boundary conditions. We note that in this case the
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Figure 1.4: Schematic of a liquid droplet on a horizontal surface. The profile is ĥ(x̂, t̂) and
the droplet front is located at x̂f (t̂).

ansatz was chosen somewhat arbitrarily. Before we proceed to the next example, we will
consider a method for determining the form of the similarity solution. To do this, we pose
the following rescalings for our independent variables:

x = ax̃, t = bt̃, T = cT̃ . (1.32)

If we substitute these scalings into (1.16) and (1.25), we find that we recover the original
equation and boundary condition in terms of the new primed variables if and only if we
choose a2 = b and ac = 1. This means that

x

t1/2
=

x̃

t̃1/2
and Tt1/2 = T̃ t̃1/2. (1.33)

This indicates that the groupings x/t1/2 and Tt1/2 are invariants of the system, and this is
the information we need to guide us into proposing the ansatz that the solution depends on
x/t1/2 = η and has a form f(η) = t1/2T (x, t).

1.4 Spreading of liquid on a horizontal plate

The next example we consider is the spreading of a finite blob of liquid under gravity on
a horizontal plate (see figure 1.4 for a schematic). Such a phenomenon is termed a gravity
current. The governing equation is (see [lyle2005axisymmetric] for details)

∂ĥ

∂t̂
+
∂Q̂

∂x̂
= 0, Q̂ = −∆ρg

3µ
ĥ3
∂ĥ

∂x̂
, (1.34)

where Q̂ is the fluid flux and ∆ρ is the density difference between the spreading liquid and
the surrounding fluid. For water spreading in air, ∆ρ is approximately equal to the water
density (since the density of air is much lower than that of water) but this equation could
also be used to describe spreading of a viscous liquid such as oil at the bottom of the sea.
All other variables are defined as before. This is a nonlinear diffusion equation with diffusion
coefficient proportional to ĥ3 (cf. equation (1.13) with ĥ replaced with T̂ and D replaced with
∆ρgĥ3/3µ).

The system (1.34) may be written as a single equation,

∂ĥ

∂t̂
− ∆ρg

3µ

∂

∂x̂

(
ĥ3
∂ĥ

∂x̂

)
= 0, (1.35)
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We need one initial condition ĥ(x̂, 0) and two boundary conditions to close the system
(cf. spreading on a vertical wall where we only needed one boundary condition from which
the information propagates away). One boundary condition is

ĥ(x̂f (t̂), t̂) = 0, (1.36)

where x̂f (t̂) denotes the position of the front of the liquid drop at time t̂. But x̂f itself
is unknown so we need another boundary condition. This comes in the form of volume
conservation:

V̂ (t̂) =

∫ x̂f (t̂)

0
ĥ(x̂, t̂) dx̂, (1.37)

where V̂ (t̂) is a prescribed amount of fluid. Here we have used symmetry to only define the
problem for x̂ > 0 so V̂ is half of the total amount of fluid on the plate. If we deposit a blob
of liquid and simply watch it spread then V̂ will be a constant; the time dependence in V̂
allows for possibilities where we are injecting fluid. Note that for the spreading of a liquid on
a vertical substrate considered in Section 1.2 there was an infinite amount of liquid, and so
we did not have an associated volume conservation law. The spreading of an infinite amount
of liquid on a vertical substrate considered in Section 1.2 is analogous to the first example
considered in Section 1.3 while the spreading of a finite droplet is analogous to the second
example considered in Section 1.3.

The final condition to close the problem is

ĥ3
∂ĥ

∂x̂
→ 0 as x̂→ x̂f . (1.38)

which corresponds to no fluid flux Q̂ at the leading edge. Since we already know that ĥ = 0
at x̂ = −x̂f on first glance this condition may not appear to provide any extra information.
However, the condition places a constraint on how well behaved the solution is at the contact
line, which, along with (1.36) and (1.37) forms a closed problem for (1.35).

Solving the system (1.35)–(1.38) numerically can be challenging since (1.37) is a global
constraint rather than a boundary condition and (1.38) only enforces how well behaved the
solution is at the front. However, we can transform each of these into boundary conditions,
which are much easier to work with in a numerical scheme.

First, if we integrate (1.35) over 0 < x̂ < x̂f and apply (1.37) and (1.38) then this gives

−∆ρg

3µ
ĥ3
∂ĥ

∂x̂
= V̂ ′(t̂) on x̂ = 0, (1.39)

where a prime denotes differentiation. This replaces the global condition (1.37).
Second, we rescale into a region local to the moving front by introducing the coordinate

change (x̂, t̂)→ (ξ̂, τ̂) defined by

x̂ = x̂f (τ̂) + εξ̂, t̂ = τ̂ , (1.40)

and rescale the height in this region local to the front,

ĥ(x̂, t̂) = ε1/3Ĥ(ξ̂, τ̂), (1.41)
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where ε � 1; the ε1/3 choice is made to achieve a leading-order balance at the front. In this
new coordinate system, (1.35) becomes

ε
∂Ĥ

∂τ̂
−

dx̂f
dτ̂

∂Ĥ

∂ξ̂
− ∆ρg

3µ

∂

∂ξ̂

(
Ĥ3∂Ĥ

∂ξ̂

)
= 0. (1.42)

Considering this equation at leading order in ε we find that we can integrate the resulting
equation and apply the condition (1.36) to obtain the local behaviour at the front

Ĥ2∂Ĥ

∂ξ̂
= − 3µ

∆ρg

dx̂f
dτ̂

on x̂ = x̂f , (1.43)

which in terms of the original variables gives

ĥ2
∂ĥ

∂x̂
∼ − 3µ

∆ρg

dx̂f

dt̂
as x̂→ x̂f . (1.44)

This condition informs us of the solution behaviour as we approach the contact point, which
is more useful than (1.38) when solving this numerically as this allows us to initiate the
numerical scheme accurately.

Thus the system (1.35) subject to (1.36), either (1.37) or (1.39), and either (1.38) or
(1.44), plus an initial condition ĥ(x̂, 0) forms a closed problem.

We will restrict our attention to the case of a finite blob of liquid, so V̂ = constant. Ana-
lytic solutions are not possible, so we proceed directly to analysing the system using similarity
solutions. First, we perform the simple scaling argument, setting derivatives ∂y/∂x = Y/X.
Substituting into (1.35) and (1.37) gives

H

T
∼ ∆ρg

3µ

H4

X2
, HX ∼ V̂ , (1.45)

which may be rearranged to obtain the scalings

x̂ ∼

(
∆ρgV̂ 3

3µ

)1/5

t̂1/5, ĥ ∼
(

∆ρg

3µV̂ 2

)−1/5
t̂−1/5. (1.46)

As in the case of vertical drainage, the scaling laws quickly reveal the parametric dependence
of the problem. The scaling laws also tell us how we could perform experiments with different
fluids and replicate the same results. For example, if we conducted an experiment with a
liquid that has half the density and half the viscosity of another liquid then the results would
be identical. As in the previous examples, the scaling arguments also give insight into the
correct form of the similarity solution that we should seek. However, as before, while the
scaling argument gives us a lot of information, it does not tell us the shape of the interface.

We now consider the full similarity solution. Before doing so, we non-dimensionalize the
problem via the following scalings:

x̂ = x̂0x, x̂f = x̂0xf , t̂ = t̂0t, ĥ = ĥ0h, (1.47)

where we choose

x̂0 = x̂f (0), t̂0 =
3µx̂f (0)5

∆ρgV̂ 3
, ĥ0 =

V̂

x̂f (0)
. (1.48)
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Here the timescale is chosen to remove all parameter dependence in the governing equation
(1.34).

The governing equation and boundary conditions are then

∂h

∂t
− ∂

∂x

(
h3
∂h

∂x

)
= 0, (1.49)

h = 0, on x = xf (t) (1.50)∫ xf

0
hdx = 1, (1.51)

h2
∂h

∂x
∼ −

dxf
dt

as x→ xf , (1.52)

We seek a solution of the form h(x, t) = tβf(η) where η = x/tα. Substituting into (1.49)–
(1.52) we find that we must choose α = 1/5 and β = −1/5, which is consistent with the
prediction of the scaling analysis, equation (1.46). The system then becomes(

f3f ′
)′

+
1

5

(
f + ηf ′

)
= 0, (1.53)

f = 0, on η = ηf , (1.54)∫ ηf

0
f dη = 1, (1.55)

f2f ′ ∼ −1

5
ηf as η → ηf , (1.56)

where

ηf =
xf (t)

t1/5
(1.57)

denotes the position of the front in similarity variables. Note that (1.57) enforces an assump-
tion on the motion of the contact line.

We then make a second change of variables to decouple the position of the front, ηf , from
the differential equation:

s =
η

ηf
, k(s) =

f(ηfs)

η
2/3
f

. (1.58)

Then the system becomes(
k3k′

)′
+

1

5

(
k + sk′

)
= 0, (1.59)

k(1) = 0, (1.60)

ηf =

(∫ 1

0
k(s) ds

)−3/5
, (1.61)

k2k′ = −1 as s→ 1. (1.62)

The solution to (1.59)–(1.62) is

k =

(
3

10

)1/3 (
1− s2

)1/3
(1.63)
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with

ηf =

[(
3

10

)1/3 π1/2

5

Γ(1/3)

Γ(5/6)

]−3/5
≈ 1.411, (1.64)

where Γ is the Gamma function defined by

Γ(z) =

∫ ∞
0

xz−1e−x dx. (1.65)

In dimensional terms, the solution is

ĥ(x̂, t̂) =
η
2/3
f

t̂1/5

(
∆ρg

3µV̂ 2

)−1/5
k

(
x̂

x̂f

)
, (1.66a)

x̂f (t̂) = ηf t̂
1/5

(
∆ρgV̂ 3

3µ

)1/5

. (1.66b)

Comparing this with (1.46) we see that the scaling analysis provided the time dependence and
the parametric dependence but lacked the shape that this similarity solution (1.66) provides.

In every example we have considered so far, we have been able to determine the required
solution by a scaling argument. Examples of this kind are called similarity solutions of the
first kind. In the next section we will explore an example where our scaling analysis alone
does not determine the solution. In these cases, we have a similarity solution of the second
kind.

1.5 Spreading of a groundwater mound

We will continue with the theme of a spreading liquid on an impermeable horizontal plate, but
where the liquid is within a porous medium. Such an example could describe the spreading
of oil in a well in the earth. In this case, as the liquid drains it may leave behind a residue in
the pores. Thus we have two regions (see figure 1.5):
(i) Region 1: A region in which the fluid is invading the surrounding porous medium, so
∂ĥ/∂t̂ > 0 (see figure 1.5). Here, the height is governed by the porous-medium equa-
tion [barenblatt1996scaling],

φ
∂ĥ

∂t̂
+
∂Q̂

∂x̂
= 0, Q̂ = −∆ρgK

µ
ĥ
∂ĥ

∂x̂
. (1.67)

where K and φ are respectively the permeability and porosity of the porous medium.
(i) Region 2: A region in which the fluid is draining, so ∂ĥ/∂t̂ < 0, leaving behind a region
partially occupied by fluid. We suppose that the fraction of space occupied by fluid in the
drained region is a constant, 0 ≤ s ≤ 1 (the light blue region in figure 1.5). In this region the
equation governing the height is [barenblatt1996scaling]

(1− s)φ∂ĥ
∂t̂

+
∂Q̂

∂x̂
= 0, Q̂ = −∆ρgK

µ
ĥ
∂ĥ

∂x̂
. (1.68)
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ĥ

x̂

Region 1

Porous medium

Region 2

g

x̂f (t̂)x̂s(t̂)

Figure 1.5: Schematic of a groundwater mound comprising a porous medium (shaded grey).
Region 1 denotes the x̂ domain where the liquid (blue) is invading the porous medium. Here
there is a region of fully saturated medium (dark blue) surrounded by dry porous medium
(grey). Region 2 denotes the x̂ domain where the liquid is draining from the porous medium.
This leaves behind a residue (light blue) while the dark blue region corresponds to the porous
medium that is still fully saturated.

We denote the position of the moving front by x̂f (t̂) and the position of the joint that
separates the two regions by x̂s(t̂). Thus, Regions 1 and 2 can also be respectively described
by x̂s ≤ x̂ ≤ x̂f and 0 ≤ x̂ ≤ x̂s (see figure 1.5).

We have two second-order partial differential equations with two additional unknowns: x̂s
and x̂f . We therefore require initial conditions for the two regions and six boundary conditions
(four for the equations and two for the two unknowns). We apply the following boundary
conditions:

ĥ(x̂f , t̂) = 0, (1.69)

∂ĥ

∂t̂
(x̂s, t̂) = 0, (1.70)

which respectively define the front and the joint location and so determine x̂s and x̂f . We
then apply

ĥ
∂ĥ

∂x̂
= 0 at x̂ = 0, (1.71)

ĥ
∂ĥ

∂x̂
= 0 at x̂ = x̂f , (1.72)

which represent, respectively, no flux at the centre and at the front. We close the problem by
enforcing continuity of height ĥ and flux ĥ∂ĥ/∂x̂ at the joint.

As for the case of a spreading droplet considered in Section 1.4, on first glance, condition
(1.72) appears to give no additional information than (1.69). However, it does indicate the
behaviour of the solution near the contact line, which is sufficient to close the problem. As
in Section 1.4, we can also consider a local analysis near the contact line to transform (1.72)
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into a condition that allows us to obtain a numerical solution more easily. We achieve this by
making a change of variables (x̂, t̂)→ (ξ̂, τ̂) defined by

x̂ = x̂f (τ̂) + εξ̂, t̂ = τ̂ , (1.73)

and scale the height in this region local to the front,

ĥ(x̂, t̂) = εĤ(ξ̂, τ̂). (1.74)

Substituting these scalings into (1.67) and considering the resulting equation at leading order,
we find that we can integrate the result and apply (1.69) to give the local behaviour

∂Ĥ

∂ξ̂
= − µφ

∆ρgK

dx̂f
dτ̂

, (1.75)

which in terms of the original variables yields

∂ĥ

∂x̂
(x̂f , t̂) = − µφ

∆ρgK

dx̂f

dt̂
. (1.76)

This condition replaces (1.72).
We employ the following non-dimensionalization:

x̂ = x̂0x, x̂s = x̂0xs, x̂f = x̂0xf , t̂ = t̂0t, ĥ = ĥ0h, (1.77)

with t̂0 = µφx̂20/∆ρgKĥ0. The resulting dimensionless system is then

∂h

∂t
− κ ∂

∂x

(
h
∂h

∂x

)
= 0, 0 ≤ x ≤ xs(t), (1.78)

∂h

∂t
− ∂

∂x

(
h
∂h

∂x

)
= 0, xs(t) ≤ x ≤ xf (t), (1.79)

where κ = 1/(1− s), subject to the boundary conditions

h(xf , t) = 0, (1.80)

∂h

∂t
(xs, t) = 0, (1.81)

∂h

∂x
(0, t) = 0, (1.82)

∂h

∂x
(xf , t) = −

dxf
dt

(1.83)

plus continuity in h and h∂h/∂x at x = xs.
As the liquid spreads and leaves a residue this means that we cannot apply a simple global

conservation law as we did in the previous cases. So, we try a similarity solution of the form

h = tβf(η) where η =
x

tα
. (1.84)

Substituting into (1.78) and (1.79) we find that the system can be written in similarity form
if β = 2α− 1:

κ(ff ′)′ + αηf ′ − (2α− 1)f = 0, 0 ≤ η ≤ ηs, (1.85)

(ff ′)′ + αηf ′ − (2α− 1)f = 0, ηs ≤ η ≤ ηf , (1.86)
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where ηf = xf/t
α and ηs = xs/t

α are defined by

f(ηf ) = 0, (1.87)

(2α− 1)f(ηs)− αηsf ′(ηs) = 0, (1.88)

which come from (1.80) and (1.81) respectively, while (1.82) and (1.83) become

f ′(0) = 0, (1.89)

f ′(ηf ) = −αηf , (1.90)

as well as continuity in f and f ′ at ηs. At this point, unlike in all of our previous examples,
we have no information to determine the value of α. We thus proceed further, keeping α
arbitrary for the moment.

We make a change of variable by defining z = η/ηf and k(z) = f(ηfz)/η
2
f . In terms of

this new variable and function, the equations and boundary conditions are

κ
(
kk′
)′

+ αzk′ − (2α− 1)k = 0, 0 ≤ z ≤ zs, (1.91)(
kk′
)′

+ αzk′ − (2α− 1)k = 0, zs ≤ z ≤ 1, (1.92)

subject to

k(1) = 0, (1.93)

(2α− 1)k(zs)− αzk′(zs) = 0, (1.94)

k′(0) = 0, (1.95)

k′(1) = −α, (1.96)

and continuity in k and k′ at zs, where zs = ηs/ηf . Within this system we have eliminated the
unknown front location. We now have one additional boundary condition and so this forms
an eigenvalue problem: for a given κ there is a value of α for which there exists a solution.
Thus, for this problem the natural similarity variables do not emerge from a scaling argument
and instead these emerge as part of the solution. Such problems are called similarity solutions
of the second kind.

Importantly, in this case the similarity solution only provides the shape of the interface
h up to a constant, since k is scaled with the unknown ηf . To determine the appropriate
scaling we must use conservation of mass. However, as mentioned earlier, there is no integral
conservation law in this case since some of the liquid is retained in the pores. Thus, to deter-
mine the scaling coefficient we must compare our similarity solution with the full numerical
solution at one point in time. As a result, the similarity solution in this case provides only
part of the solution, namely the shape and there is one effective fitting parameter determined
from the full numerical simulation.

1.6 Summary

We have seen in this chapter how a scaling law can provide a significant amount of information
about the solution of a partial differential equation system. A similarity solution of the first
kind provides the full behaviour for long time but cannot capture the early-time behaviour
(unless the actual solution happens by chance to have the same early-time behaviour as the
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similarity solution). We obtain a similarity solution of the second kind when we cannot
fully determine the form of the similarity solution from the governing equation and boundary
condition. The functional dependence in this case emerges from the solution to the ordinary
differential equation, which forms an eigenvalue problem. The similarity solution of the second
kind provides the shape of the solution up to a scaling constant.
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