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1. INTRODUCTION

We will start by considering a theorem that is not actually part of this course – namely Bézout’s
Theorem – but a clean and general result which readily motivates the worth of projective
geometry. (For those interested, the theorem is part of the Part B course Algebraic Curves.)

Bezout’s Theorem is a …rst signi…cant result in algebraic geometry. There as many di¤er-
ent types of geometry as there are di¤erent properties of interest to geometers. Di¤erential
geometry, for example, is interested in smooth objects (spaces and maps) to which calculus
can be applied. Riemannian geometry is focused on metric properties. Algebraic geometry is
unsurprisingly interested in objects that can be described using algebraic language, and proved
using the theorems of algebra.

So, for example, curves de…ned by polynomials such as x2+xy+y2 = 1 would be of interest to
an algebraic geometer whereas the curve with equation y = ex would not be. Bézout’s Theorem
addresses a natural …rst question: how many times do two curves, de…ned by polynomials of
degrees m and n, intersect?

If we begin with m = n = 1 then we are talking about two lines. These typically meet
in a point but we recognize that this wouldn’t be the case if the lines are parallel. If m = 1
and n = 2, so that we’re considering a line and a conic, then there can be as many as two
intersections. We appreciate that there may be no intersections – with y = 0 and y = x2 + 1 –
but that can be circumvented by working with complex numbers, and we can see that the answer
might be just one – with y = 0 and y = x2 – but we could think of this as a double contact or
repeated root in some sense. But we are still left with cases like y = x and (y ¡ x)2 = 1 which
appear to have no intersection, or y = 0 and y2 = x which has one ‘single contact’ intersection.
Consider the m = n = 2 case and you’ll …nd the number of intersections can be 0, 1, 2, 3, 4.

Fig. 1a – no real intersections Fig. 1b – one double contact

Fig 1c. – no intersections Fig. 1d. – one single contact
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Perhaps, then, the best we can do is to say that the two curves meet in at most mn points.
Even the use of complex numbers and appreciation of multiple contacts cannot completely
resolve the issue. It turns out, though, that all we are missing is the notion of points at
in…nity. Once we properly introduce the notion of parallel lines meeting at a point at in…nity
then Bézout’s Theorem states that the two curves have mn intersections, counting multiple
contacts, using complex numbers, and including points at in…nity.

So given two parallel lines, we will agree that they meet at some idealized point at in…nity.
As lines should only meet once this point at in…nity lies in both directions. Given a third
parallel line, it will meet each of these two lines in a point at in…nity, and so in fact at the
same point at in…nity. So to each family of parallel lines there is a single point at in…nity. Put
another way there is a point at in…nity for each gradient m; that is, the lines y = mx + c all
meet in the same point at in…nity. And we need to remember to allow m = 1 as a possible
gradient, relating to the family of parallel vertical lines. These points at in…nity make the line
at in…nity.

Fig. 2 – parallel lines

Note though that these ‘points at in…nity’ aren’t special in any way, or rather we’ve only
made them special by our choice of where to put our a¢ne xy-axes. The family of parallel lines
passing through a point at in…nity, properly judged from in…nity, would not look any di¤erent
from the family of lines passing through the origin.

If we return to our earlier examples, when Bézout appeared not to hold:

² y = 0, y2 = x. The parabola and line meet a second time at the point at in…nity at the
‘end’ of the x-axis

² y = x, (y ¡ x)2 = 1. The two lines y = x § 1 both meet y = x at a point at in…nity in
the same way that y = 0 and y2 = x2 meet at the origin.
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1.1 The Projective Plane

We need, then, a rigorous, formal way of introducing these points at in…nity if we are to prove
geometric results involving them. For …xed m, the lines y = mx + c all meet at a point at
in…nity. This point at in…nity is where the points (x,mx) move to as x ! §1. So it’s the
ratio of x and y that is important here. Somehow we want to include all the points (x, y)
of the standard a¢ne plane R2 and a line at in…nity including the points (1,m1) where
m 2 R [ f1g.

We cannot make easy meaning of (1,m1) but if we recognize this 1 as the consequence of
some erroneous division by zero, then we can describe our ‘extended’ plane using homogeneous
co-ordinates, …rst introduced by Möbius in 1827.

De…nition 1 Given real x0, x1, x2, not all zero, then we write [x0 : x1 : x2] for the equivalence
class of (x0, x1, x2) 2 R3nf0g under the equivalence relation

(x0, x1, x2) » (λx0, λx1, λx2) where λ 6= 0.

How does this help us with the previous discussion? Well if x0 6= 0 then we may divide
by x0 (i.e. set λ = 1/x0) to see that such equivalence classes can be represented as [1 : x : y]
where x = x1/x0 and y = x2/x0. These are ‘most’ of the equivalence classes and [1 : x : y] can
be identi…ed with the point (x, y) 2 R2. And the remaining equivalence classes, when x0 = 0
are [0 : 1 : m] when x1 6= 0 which corresponds to the point at in…nity (1,m1), and …nally
[0 : 0 : 1] which corresponds to m = 1’ the point at in…nity of the vertical lines.

If we return to the earlier ‘problematic’ examples we see now that

² y = 0, y2 = x. The parabola and line meet a second time at [0 : 1 : 0].

² y = x, (y ¡ x)2 = 1. The two lines y = x§ 1 both meet y = x at [0 : 1 : 1].

Whilst here, and remembering that x = x1/x0 and y = x2/x0, we can see that the a¢ne
lines y = mx+ c would become

x2 = mx1 + cx0

and that this line passes through the point at in…nity [0 : 1 : m]. Further the parabola y2 = x
would become x22 = x0x1 and we see this does indeed pass through the point [0 : 1 : 0].

The variables x1/x0 and x2/x0 are known as inhomogeneous co-ordinates.
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2. PROJECTIVE SPACES

In this chapter we de…ne the basic objects of study in this course, projective spaces. Looking to
generalize the earlier discussion we consider projective spaces over any …eld F, not just R or C.
Further we will consider …nite-dimensional spaces over F so that we can also better appreciate
the e¤ect on a projective space of a change of basis.

So throughout V will denote a …nite-dimensional vector space over a …eld F. We shall denote
by F¤ the multiplicative group of non-zero elements of F.

De…nition 2 The projective space P(V ) consists of the equivalence classes [v], where v 2
V, v 6= 0V , under the equivalence relation v » λv for all λ 2 F¤.

Note that P(V ) can equally be identi…ed as the set of 1-dimensional subspaces of V . Or, in
the language of group actions, we might write

P(V ) =
V nf0V g

F¤
,

where F¤ acts by scalar multiplication.

Remark 3 Note that, currently, a projective space is simply a set. It has no particular algebraic
structure. We will shortly discuss the topology of some projective spaces.

De…nition 4 We de…ne the dimension of P(V ) as dimV ¡1. This re‡ects our intuition that
factoring out the F¤ action has lowered the dimension by one.

We will use the notation Pd to denote a projective space of dimension d and will write FPd

if we wish to highlight the underlying …eld.
If dimP(V ) = 1 then P(V ) is called a projective line, and if dimP(V ) = 2 then P(V ) is

called a projective plane.

Example 5 (a) The real projective line RP1is

R2 ¡ f(0, 0)g

R¤
.

As a quotient topological space this is the circle. It is straightforwardly homeomorphic to
S1/ f§1g which in turn is homeomorphic to

upper semi-circle

¡1 » 1
»= S1.

(b) The complex projective line CP1is

C2 ¡ f(0, 0)g

C¤
.

As a quotient topological space this is the sphere, the Riemann sphere most naturally, as we can
identify z 2 C with [1 : z] and 1 as [0 : 1] .
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(c) The real projective plane RP2 was the subject of the discussion in the previous chapter.
Topologically it is S2/ f§1g , a spherical shell with antipodal points identi…ed, or equivalently
a single hemisphere with diametrically opposite boundary points identi…ed. By ‡attening the
hemisphere into a disc we can see this is homeomorphic to a closed disc with diametrically
opposite boundary points identi…ed, as in Figure 3.

Fig. 3 – real projective plane

RP2 is compact as S2 is compact. Note that the region between the two horizontal lines is a
Möbius band. Consequently RP2 is not orientable.

De…nition 6 If U is a subspace of V , then P(U) is a subset of P(V ) called a linear subspace.
In particular, if dimU = 2, we obtain a projective line (usually just referred to as a line) in
P(V ). If dimU = 3, we obtain a projective plane. If dimU = dimV ¡ 1, then we call P(U)
a hyperplane.

Proposition 7 Through any 2 distinct points in P(V ), there is a unique projective line.

Proof Let [u] 6= [v] in P(V ), so u, v are linearly independent. The unique line containing
[u], [v] is now P(hu, vi). Certainly this is a projective line and if P(U) were another such line
with dimU = 2 then we’d have u, v 2 U and so U = hu, vi.

We can immediately see that intersection properties are nicer in a projective plane than in
the Euclidean plane.

Proposition 8 In a projective plane, any two distinct projective lines meet in a unique point.

Proof We can write the projective plane as P(V ) for a 3-dimensional vector space V and the
projective lines as P(U1),P(U2) for two distinct 2-dimensional subspaces U1 and U2 of V .

Now recall the dimension formula

dim(U1 + U2) + dim(U1 \ U2) = dim(U1) + dim(U2).

As U1, U2 are distinct 2-dimensional subspaces, the sum U1+U2 strictly contains U1 and hence
is of dimension greater than 2, so is the full 3-dimensional space V . Hence the formula shows
U1 \ U2 is 1-dimensional, and this represents the unique point in projective space where P(U1)
meets P(U2).
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2.1 Homogeneous Co-ordinates.

Say that dimV = n+1 and v0, . . . , vn is a basis for V . Then any v 2 V can be uniquely written

v = x0v0 + x1v1 + ¢ ¢ ¢+ xnvn

and so [v] can be given the homogeneous co-ordinates

[v] = [x0 : x1 : ¢ ¢ ¢ : xn],

which are unique up to multiplication by a non-zero scalar. Recall that not all of x0, . . . , xn
can be zero.

Example 9 Let P(V ) be a projective line and P0, P1, P2 be three distinct points in P(V ). Then
there is a basis for V with respect to which

P0 = [1: 0], P1 = [1: 1], P2 = [0: 1].

Note that the inhomogeneous co-ordinates of P0, P1, P2 are 0, 1,1 respectively.

Solution Say that P0 = [v0] and P1 = [v1]. As P0 6= P1 then v0, v1 are linearly independent and
hence a basis of V. So, if P2 = [v2] we may write

v2 = α0v0 + α1v1

and as P0, P1, P2 are distinct then neither α0 nor α1 are zero. So with respect to the basis
fα0v0, α1v1g for V it’s the case that P0, P1, P2 respectively have the homogeneous co-ordinates
above.

Remark 10 This result may seem familiar from the study of Möbius transformations, where
we saw three distinct points of the extended complex plane can be mapped to 0, 1,1 by a unique
Möbius transformation. We shall see in due course that the Möbius transformations are the
projective transformations of CP1.

Example 11 Consider the line in a¢ne space R2 with equation y = 2x. We can complete this
to a projective line in RP2 by embedding R2 in RP2 via (x, y) 7! [1 : x : y]. Recall that x = x1/x0
and y = x2/x0 so that in terms of homogeneous co-ordinates [x0 : x1 : x2], the projective line
has equation x2 ¡ 2x1 = 0.

Example 12 Write down the equation of the line connecting the points [1 : 2 : 0] and [0 : 1 : 1]
in P(F3). What is its equation in inhomogeneous co-ordinates? What is its point at in…nity?

Solution Let x0, x1, x2 be the homogeneous co-ordinates in F3. A (projective) line has the form
P(U) where U is a 2-dimensional subspace of F3 and such subspaces have an equation of the
form

a0x0 + a1x1 + a2x2 = 0.
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So we have a0 + 2a1 = 0 and a1 + a2 = 0, so that the (projective) line has equation

¡2a1x0 + a1x1 ¡ a1x2 = 0.

Or, as such equations are unique only up to multiplication by a non-zero scalar, then we can
write this as

2x0 ¡ x1 + x2 = 0.

In terms of inhomogeneous co-ordinates x = x1/x0 and y = x2/x0, this is the line 2¡x+ y = 0
and its point at in…nity (when x0 = 0) is [0 : 1 : 1].

Example 13 What projective conic does the hyperbola xy = 1 correspond to in P2? What are
its points at in…nity? What are the points at in…nity of the parabola y2 = x?

Solution Recalling that x = x1/x0 and y = x2/x0 then the projectivized version of the hy-
perbola has equation x1x2 = x20. Note that its two points at in…nity are [0 : 1 : 0] and [0 : 0 : 1],
respectively the points at in…nity of the x-axis and y-axis, the hyperbola’s asymptotes. The
parabola y2 = x has projectivized equation x22 = x1x0 which has point at in…nity [0 : 1 : 0].

Generally, we may decompose n-dimensional projective space FPn = P(Fn+1) as the union
of 2 sets

S1 = f[x0 : . . . : xn] j x0 = 0 : xi not all 0g

Saff = f[x0 : . . . : xn] j x0 6= 0g

Clearly S1 may be identi…ed with projective space FPn¡1 of dimension one lower. In Sa® , every
point may be written as [1 : t1 : . . . : tn] where ti = xi/x0, and this sets up an identi…cation of
Sa® with Fn. So we have a disjoint union

FPn = Fn [ FPn¡1. (2.1)

Intuitively, we are adding some points at in…nity – in fact a hyperplane at in…nity FPn¡1– to
the a¢ne space Fn to obtain the projective space FPn. As we mentioned in the introduction,
this ensures that projective space has nicer properties than a¢ne space, especially as regards
intersection properties. For example, going back to Proposition 8, we can see that parallel lines
in a¢ne space F2 generate projective lines in FP2 that meet in the FP1 at in…nity. Likewise
distinct projective planes in P3 meet in a projective line.

It is important to realise that the decomposition (2.1) is not canonical. There is nothing
special or di¤erent about the points at in…nity. They are deemed such only by our choice of
where to place an a¢ne space Fn within the projective space FPn. We could , for example,
choose any other co-ordinate xi and decompose projective space according to whether xi is zero
or non-zero.

In fact, it is often useful to consider the subsets Ui of FPn given by

Ui = f[x0, . . . , xn] j xi 6= 0g

The Ui cover FPn, as every point in FPn has some co-ordinate xi non-zero. As above, each
Ui may be identi…ed with Fn. So we have covered projective space by open sets each with an
identi…cation with a¢ne space. If F = R or C this endows RPn and CPn with the structure of
an n-dimensional manifold and n-dimensional complex manifold respectively.
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Remark 14 (O¤-syllabus) If we take the …eld F to be R or C then in fact we can put a topology
on projective space, related to the Euclidean topology on Rn or Cn.

For Rn+1, this proceeds by observing that De…nition 2 is equivalent to saying that

RPn =
fv 2 Sn ½ Rn+1g

v » ¡v

(where Sn is the unit sphere in Rn+1), because every non-zero vector v = (x1, . . . , xn) 2 Rn+1

may be scaled by R¤ to an element of norm one, which is unique up to replacing v by ¡v. So
we have exhibited real projective space as the quotient of the sphere by a Z2 action. We can
thus endow real projective space with the quotient topology, which is compact (as the sphere is
a compact subset of Euclidean space) and Hausdor¤ (as it is the quotient of a Hausdor¤ space
by the action of a …nite (and hence compact) group). Similar ideas may be used to topologize
complex projective space.

Real and complex projective spaces may thus be viewed as compacti…cations of the corre-
sponding a¢ne spaces. In particular, the projective lines over these …elds are the one-point
compacti…cations of R and C respectively. In the complex case, we may view the projective line
as the Riemann sphere and in the real case we obtain the circle (Example 5).

For general …elds F, we do not have an analogue of the Euclidean topology on Fn, so these
ideas are not applicable. In algebraic geometry there is a standard topology for projective spaces
over general …elds, the Zariski topology, but it has very di¤erent properties – in particular
it has fewer open sets and is not Hausdor¤. (This is covered more in the Part C Algebraic
Geometry course.)

More generally we can see that subsets of projective space can be de…ned by the zero sets
of homogeneous polynomials. We say a polynomial P (x) is homogeneous of degree j if there
exists a positive integer j such that P (λx) = λjP (x) for all x. (Equivalently, all the terms in
P (x) are of total degree j). For example, x0x

2
1 + x0x1x2 + x32 is homogeneous of degree 3, but

x0 + x1x2 is not homogeneous.
Homogeneity is the condition that ensures that the equation P (x) = 0 is well-de…ned on

projective space. A projective algebraic variety is a subset of projective space de…ned by a
system of homogeneous polynomial equations. If the equations are all of degree 1 we de…ne the
linear subspaces. We shall later investigate the case of quadrics, which are de…ned by a single
homogeneous quadratic polynomial; in a projective plane quadrics are referred to as conics.

2.2 Axiomatization of Projective Planes (O¤-syllabus)

Alternatively an axiomatic approach can be taken to introducing projective planes. In this
approach, a projective plane consists of collections P of points and L of lines satisfying:

² given two distinct points, there is a unique line containing them.

² any two lines have at least one point in common.
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² any line contains at least three points.

² there are at least two lines.

The above actually provides a somewhat more general notion of what it is to be a projec-
tive plane. The smallest projective plane is the order 2 Fano plane (named after the Italian
mathematician Gino Fano (1871-1952)) which is often represented as below:

Fig. 4 – Fano plane

Here the dots are points and the line segments/circle are lines. This is the same as F2P
2. The

order of a projective plane is one less than the number of points in any projective line.
However there are four non-isomorphic projective planes of order 9, the usual F9P

2 and
three further planes in which Desargues’ Theorem does not hold (see later). The only known
…nite projective planes have an order which is the power of a prime. There is no projective
plane of order 10, but this is only known to be true using lengthy computer elimination and it
is still an open problem as to whether there is a projective plane of order 12.
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3. PROJECTIVE TRANSFORMATIONS

Whenever we introduce a class of mathematical objects, we are always interested in the transfor-
mations between them. For example with groups we consider homomorphisms, with topological
spaces we consider continuous maps, and with vector spaces linear maps.

We have de…ned projective spaces in terms of quotients of vector spaces. It is therefore
natural to consider maps of projective spaces induced by linear maps of vector spaces. The
obvious de…nition is

τ : [v] 7! [Tv]

where [v] is the point of projective space represented by v 2 V nf0g.
There are two potential problems we must consider …rst. One, as always with de…ning maps

on quotient spaces, is to check that the map is well-de…ned. That is, we must check that if
[v] = [w] then [Tv] = [Tw]. In our situation this is clear from the linearity of T , and the
fact that [v] = [w] if and only if v is a non-zero scalar multiple of w. The second problem is
that only non-zero vectors represent points of projective space, so we need Tv to be non-zero
whenever v is, that is, we need T to be injective.

De…nition 15 If T : V ! W is an injective linear transformation, we de…ne the associated
projective linear transformation by

τ : v 7! [Tv]

We will generally be interested in the case when V =W, so that T is invertible.

Note that any non-zero scalar multiple of T represents the same projective transformation
as does T . In fact, the assignment T 7! τ de…nes a homomorphism from GL(V ), the group
of invertible linear transformations of V , onto the group of projective linear transformations of
P(V ). The kernel of this map is the (normal) subgroup of scalar invertible linear transforma-
tions, that is, non-zero scalar multiples of the identity. Therefore, using the …rst isomorphism
theorem for groups, we can make the de…nition.

De…nition 16 The group of projective linear transformations of P(V ) is

PGL(V ) =
GL(V )

fλI j λ 2 F¤g
.

More concretely, if we identify V with Fn+1 by choosing a basis, then we write the group
PGL(V ) as PGL(n+ 1,F), the quotient of the group of (n + 1) £ (n + 1) invertible matrices
over F by the subgroup of non-zero scalar matrices.

Of course we can write projective transformations in terms of homogeneous co-ordinates.
We illustrate this in the case of the projective line.
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Example 17 Consider an invertible linear map T : F2 ! F2 given by T (x, y) = (ax+ by, cx+
dy) with ad ¡ bc 6= 0.

Working on an a¢ne patch y 6= 0, we can rewrite the associated projective linear transfor-
mation of FP1 as ·

x

y
: 1

¸

7!

·
ax+ by

cx+ dy
: 1

¸

,

so in terms of the inhomogeneous co-ordinate t = x
y

then T is the map

t 7!
at+ b

ct+ d
.

In the case F = C, we have encountered these transformations before: they are the Möbius
transformations of the Riemann sphere CP1. (The point at in…nity 1 in the Riemann sphere
is here identi…ed with [1, 0]).

Example 18 Find the order of the group PGL(2,F) where F is a …nite …eld with q elements.

Solution A representative of an element of PGL(2,F) is an invertible matrix and so its columns
form a basis for F2. The …rst column can therefore be any vector in F2nf0g, and there are
q2 ¡ 1 such vectors. Now the second column needs to be independent of the …rst column. As
F¤ = Fnf0g then there are q ¡ 1 vectors that are dependent on the …rst vector and so q2 ¡ q
independent vectors. The number of invertible matrices over F is then (q2¡1)(q2¡q). However
each transformation in PGL(2,F) is represented by q ¡ 1 invertible matrices (which are scalar
multiples of one another). Finally we have

jPGL(2,F)j =
(q2 ¡ 1)(q2 ¡ q)

(q ¡ 1)
= (q ¡ 1)q(q + 1).

We may recall from complex analysis the result that given an ordered triple of distinct
points in the Riemann sphere, there is a unique Möbius transformation sending the triple to
(0, 1,1). Hence the group PGL(2,C) of Möbius transformations acts transitively on the set
of ordered triples of distinct points in the projective line.

What does the condition that the points are distinct mean in terms of projective geometry?
Well, two points in projective space are equal if and only if their representative vectors are
proportional, which for two vectors is equivalent to saying they are dependent. This motivates
the following de…nition.

De…nition 19 In an n-dimensional projective space FPn, we say that n + 2 points are in
general position if each subset of n+1 of these points has linearly independent representative
vectors

So in the n = 1 case, this just says we have a triple of distinct points. And four points are
in general position in P2 if no three are collinear.

We now prove the following theorem, which generalises the above result about Möbius
transformations.
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Theorem 20 (General position theorem) Let X0,X1, . . . ,Xn+1 and Y0, Y1, . . . , Yn+1 be two
(n + 2)-tuples of points in n-dimensional projective space, such that each (n + 2)-tuple is in
general position. Then there exists a unique projective linear transformation τ such that τ (Xi) =
Yi for each i.

Proof Let Xi = [vi] for i = 0, . . . , n + 1, that is, vi is a representative vector for Xi. The
general position hypothesis implies that v0, . . . , vn form a basis for the vector space. For the
last point Xn+1, we have

vn+1 =
nX

i=0

λivi

for some scalars λi.
Now, all the λi are non-zero, a(for if one is zero then we get a dependency relation between

vn+1 and n of the other vi. So we may in fact replace vi by λivi and take

vn+1 =
nX

i=0

vi

Again using general position, this representation of vn+1 is unique.
Similarly we can take Yi = [wi] for i = 0, . . . , n+1, with wn+1 =

Pn
i=0wi, where w0, . . . , wn

is a basis.
Now there exists a linear transformation T with T (vi) = wi for i = 0, . . . , n. Linearity and

the formulae for vn+1, wn+1 also imply T (vn+1) = wn+1, as required.
If S is another linear transformation inducing a projective transformation with the required

property, then Svi = µiwi for i = 0, . . . , n+ 1, where µi are non-zero scalars. Now

µn+1wn+1 = Svn+1 =
nX

i=0

Svi =
nX

i=0

µiwi,

so wn+1 =
Pn

i=0(µi/µn+1)wi and by uniqueness of this representation we see all the µi are equal.
Hence S = µT and they induce the same projective map.

Remark 21 The general position theorem might also be appreciated as follows: given n + 2
points X0, . . . ,Xn+1 in general position in an n-dimensional projective space P(V ) then there
is a basis for V with respect to which the n+ 2 points have co-ordinates

[1 : 0 : ¢ ¢ ¢ : 0] , [0 : 1 : ¢ ¢ ¢ : 0] , . . . [0 : 0 : ¢ ¢ ¢ : 1] , [1 : 1 : ¢ ¢ ¢ : 1] .

This follows as, given any basis, the points with the above co-ordinates are in general position,
and so the projective map found in the previous theorem might instead be viewed as a change
of basis map.

Example 22 In the projective plane, four points are in general position if and only if no 3 are
collinear. So we see that any two such quadruples in the plane are projectively equivalent. In
the projective line, the ordered quadruples

[1 : 0] , [0 : 1] , [1 : 1] , [1 : 2] , [1 : 0] , [0 : 1] , [1 : 1] , [1 : 3] ,
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are not projectively equivalent. The only projective transformation mapping the …rst three points
of the …rst quadruple to the …rst three points of the second quadruple is the identity, and it
clearly does not pair up the fourth points. We will meet the cross-ratio in the next chapter
which explains which quadruples in a projective line are equivalent.

As an application of the general position theorem, we prove a celebrated classical result of
projective geometry, Desargues’ Theorem. (Girard Desargues 1591-1661 was a French mathe-
matician and pioneer of projective geometry.)

Theorem 23 (Desargues, 1648) Let O,A,A0, B,B0, C, C 0 be seven distinct points in a pro-
jective space such that the lines AA0, BB0 and CC 0 are distinct and concurrent at O. Then the
points of intersection

P = BC \ B0C 0, Q = CA \ C 0A0, R = AB \A0B0,

are collinear.

Fig.5 – Desargues’ Theorem

Proof Fix a representative vector x for O. As O,A,A0 are distinct, and so in general position,
then we can choose representative vectors a, a0 such that

x = a+ a0

and likewise we can choose representative vectors b, b0, c, c0 such that x = b+ b0 and x = c+ c0.
These equations imply a ¡ b = b0 ¡ a0 = r. As a ¡ b 2 ha, bi is a representative vector for
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a point on the line AB and a0 ¡ b0 similarly represents a point on the line A0B0 then r is a
representative vector of R = AB \ A0B0. Similarly b ¡ c and c ¡ a are representative vectors
for P = BC \ B0C 0 and Q = CA \ C 0A0 respectively. But then

p+ q + r = (b ¡ c) + (c ¡ a) + (a ¡ b) = 0

so that these three representative vectors are linearly dependent. Hence the points they repre-
sent are collinear.

The Theorem of Pappus is another classical result. It may be viewed as a version of Pascal’s
theorem (Theorem 52) for a degenerate conic. Again it employs general position arguments.

Theorem 24 (Pappus, 4th century) Let A,B,C and A0, B0, C 0 be two collinear triples of
distinct points in the projective plane. Then the three points

P = AB0 \ A0B, Q = CA0 \ C 0A R = BC 0 \ B0C,

are collinear.

Fig.6 – Pappus’ Theorem

Proof Exercise 8 on problem sheet 1.

Remark 25 (O¤-syllabus) Recall earlier, §2.2, that we gave a list of four axioms for what it
is to be a projective plane. In a similar fashion projective spaces of higher dimensions than
two can be axiomatized. It turns out that any projective space of dimension at least three is
Desarguesian in that Desargues’ Theorem necessarily holds in them. Hilbert was the …rst to
appreciate that (axiomatized) projective planes need not be Desarguesian. It turns out that
Desargues’ theorem holds in a projective plane P if and only if P = P(V ) where V is a ‘vector
space’ over a division ring – a division ring satis…es all the axioms of a …eld other than the
commutativity of multiplication, an example being the quaternions. In turn a Desarguesian
projective plane can be expressed as a projective space of a vector space over a …eld if and only
if Pappus’ Theoem holds.
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4. CROSS-RATIO

Let us return to the case of the projective line. We know that any two ordered triples of distinct
points are equivalent under the action of the projective linear group. What can we say about
ordered quadruples? It turns out that there is a single numerical invariant which distinguishes
orbits of ordered quadruples of distinct points in the projective line under the projective group.

De…nition 26 Let xi = [ξi : ηi], where i = 0, . . . , 3, be four distinct points in the projective line
FP1. The cross-ratio of the ordered quadruple is

(x0x1 : x2x3) =
(x2 ¡ x0)(x3 ¡ x1)

(x3 ¡ x0)(x2 ¡ x1)
=
(ξ0η2 ¡ ξ2η0)(ξ1η3 ¡ ξ3η1)

(ξ0η3 ¡ ξ3η0)(ξ1η2 ¡ ξ2η1)
, (4.1)

where the xi are inhomogeneous co-ordinates and so care is need if any are 0 or 1. (Modern
use of the cross-ratio dates to 1806 by Lazare Carnot, but Pappus was making implicit use of
the cross-ratio in the fourth century.)

We can observe that if we scale any pair (ξi, ηi) then the numerator and denominator both
scale by the same factor, so the quotient on the right hand side is unchanged. The cross-ratio
is therefore well-de…ned. Moreover, under projective transformations

µ
ξi ξj
ηi ηj

¶

7!

µ
a b
c d

¶µ
ξi ξj
ηi ηj

¶

by the determinant product rule we see that each bracket ξiηj ¡ ξjηi scales by the (non-zero!)
determinant ad ¡ bc, and hence the cross-ratio is invariant under a projective transformation.
Thus we have shown:

Proposition 27 The cross-ratio is a projective invariant.

So any 2 quadruples that are projectively equivalent must have the same cross-ratio. What
about the converse? We would like to show that any two quadruples with the same cross-ratio
are projectively equivalent. Stated like that, it seems like an involved calculation, but we can
greatly simplify it using the general position theorem. As a result of that theorem, we may
assume x0, x1, x2 to be the points [1 : 0], [0 : 1], [1 : 1]. Then

(x0x1 : x2x3) =
(1.1¡ 0.1)(0.η3 ¡ ξ3.1)

(1.η3 ¡ 0.ξ3)(0.1¡ 1.1)
=

ξ3
η3

As the points are distinct, we may write x3 = [λ : 1] for λ 6= 0, 1, and now the cross-
ratio is λ. So any quadruple of distinct points is projectively equivalent to the quadruple
[1 : 0], [0 : 1], [1 : 1], [λ : 1], where λ is the cross-ratio. We have therefore proved the following
result.

Theorem 28 Two ordered quadruples of distinct points in the projective line are projectively
equivalent if and only if their cross-ratios are equal.
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Remark 29 (O¤-syllabus) Notice that the cross-ratio in (4.1) does not take the values 0, 1 or
1. The cross-ratio thus sets up a bijection between

² ordered quadruples of distinct points in FP1 modulo the action of the projective linear
group PGL(2,F), and

² the projective line FP1 with points 0, 1,1 removed.

Take F = C now. Note that as x2 coincides with x0 or x3 coincides with x1 then the cross-
ratio approaches 0. Likewise as x3 coincides with x0 or x2 coincides with x1 then the cross-ratio
approaches 1. Finally as x3 coincides with x2 or x1 coincides with x0 the cross-ratio approaches
1. Thus, in some sense all of CP1 can be used to represent orbits of quadruples, though we have
found 0, 1,1 each correspond to two orbits and no point of CP1 corresponds to an orbit with
more than two points coinciding.

The question of how this correspondence might be completed to include the points 0, 1,1
by allowing members of the quadruple to coincide suitably is a subtle one that leads into the
branch of algebraic geometry known as Geometric Invariant Theory. In the above example,
considering all ordered quadruples, the cross-ratios other that 0, 1,1 parameterize the ‘stable’
orbits, 0, 1,1 are the ‘semistable’ orbits, and the remaining ‘unstable’ orbits (where two or
more points coincide) are omitted.

We conclude by remarking that the cross-ratio has some interesting symmetries.

Theorem 30 The cross-ratio obeys the following equations:

(x0x1 : x2x3) = (x1x0 : x3x2) = (x2x3 : x0x1),

(x0x1 : x2x3) = (x1x0 : x2x3)
¡1,

(x0x2 : x1x3) = 1¡ (x0x1 : x2x3).

Proof Each of these identities is routine. We shall prove these using inhomogeneous co-
ordinates for ease of notation.

(a) That

(x2 ¡ x0)(x3 ¡ x1)

(x3 ¡ x0)(x2 ¡ x1)
=
(x3 ¡ x1)(x2 ¡ x0)

(x2 ¡ x1)(x3 ¡ x0)
=
(x0 ¡ x2)(x1 ¡ x3)

(x1 ¡ x2)(x0 ¡ x3)

are trivial identities.
(b) Likewise

(x2 ¡ x0)(x3 ¡ x1)

(x3 ¡ x0)(x2 ¡ x1)
=

µ
(x2 ¡ x1)(x3 ¡ x0)

(x3 ¡ x1)(x2 ¡ x0)

¶¡1

is an immediate identity.
(c) Finally

(x0x2 : x1x3) + (x0x1 : x2x3) =
(x1 ¡ x0)(x3 ¡ x2)

(x3 ¡ x0)(x1 ¡ x2)
+
(x2 ¡ x0)(x3 ¡ x1)

(x3 ¡ x0)(x2 ¡ x1)

=
(x1 ¡ x0)(x3 ¡ x2)¡ (x2 ¡ x0)(x3 ¡ x1)

(x3 ¡ x0)(x1 ¡ x2)

=
x1x3 + x0x2 ¡ x2x3 ¡ x0x1

(x3 ¡ x0)(x1 ¡ x2)
= 1.
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Example 31 (1997 B3 #8) Let p1, p2, p3, p4 be distinct points in CP1 with (p1p2 : p3p4) = α.
Suppose that for each permutation σ 2 S4 we have

¡
pσ(1)pσ(2) : pσ(3)pσ(4)

¢
=

½
α if σ is even,
α if σ is odd.

Show that α can take one of only two possible values, which you should …nd. Identify the
subgroup of PGL(2,C) which preserves the set fp1, p2, p3, p4g .

Remark 32 In general, given distinct points (p1p2 : p3p4) = λ, then the permuted cross-ratio¡
pσ(1)pσ(2) : pσ(3)pσ(4)

¢
can take 6 values, namely

λ, 1¡ λ,
1

λ
,

λ ¡ 1

λ
,

1

1¡ λ
,

λ

λ ¡ 1
,

in light of the cross-ratio identities given in the previous theorem. For such general λ the only
σ which …x the cross-ratio are the Klein 4-group

V4 = fe, (12) (34) , (13) (24) , (14) (23)g .

However, for certain special values of λ, such at α, the 6 cross-ratios above will not be distinct
and a larger subgroup of S4 will preserve the cross-ratio and so the set fp1, p2, p3, p4g .

Solution As (12) is odd then

α = (p1p2 : p3p4) = (p2p1 : p3p4)
¡1 = α¡1

and as (23) is odd then

α = (p1p2 : p3p4) = 1¡ (p1p3 : p2p4) = 1¡ α.

Hence jαj = 1 and Reα = 1
2
. This means

α =
1§

p
3i

2
.

For these two values of α the subgroup of PGL(2,C) …xing the set fp1, p2, p3, p4g is isomorphic
to A4. Given τ which …xes the set, inducing a permuation σ of the points, we have

α = (τ (p1) τ (p2) : τ (p3) τ (p4)) =
¡
pσ(1)pσ(2) : pσ(3)pσ(4)

¢

and so σ must be even. Conversely given such even σ then the cross-ratios
¡
pσ(1)pσ(2) : pσ(3)pσ(4)

¢

and (p1p2 : p3p4)are equal and so there is a unique transformation τ e¤ecting this permutation.
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5. DUALITY

We shall now apply some more linear algebra theory to projective geometry. We recall that
for any vector space V over F we can associate the dual space V ¤ of linear maps (functionals)
f : V ! F. In the …nite-dimensional case (which we are only concerned with in these notes), V
and V ¤ are isomorphic, since they are of equal dimension; however this isomorphism depends
on a choice of basis and so is not canonical. However, the double dual V ¤¤, that is the dual of
V ¤, is canonically isomorphic to V . Explicitly, the map

φ : V ! V ¤¤

de…ned by
(φ(v))(f) = f(v) for f 2 V ¤, v 2 V

is a canonical isomorphism between V and V ¤¤.
We then have an inclusion-reversing correspondence between subspaces of V and subspaces

of V ¤, given by associating to U 6 V its annihilator

U± = ff 2 V ¤ j f(u) = 0 for all u 2 Ug

We recall the following results from Part A Linear Algebra.

Proposition 33 For subspaces U, U1, U2 of V we have
(a) if U1 6 U2 then U±

2 6 U±
1 : that is, taking the annihilator reverses inclusion.

(b) (U1 + U2)
± = U±

1 \ U±
2 .

(c) (U1 \ U2)
± = U±

1 + U±
2 .

(d) dimU + dimU± = dimV.
(e) (U±)± = φ(U).

The last statement (e) follows from the obvious fact that φ(U) 6 (U±)±, and the dimension
formula (d).

We shall use the canonical isomorphism φ to identify spaces with their double duals, and
subspaces with their double annihilators, without further comment.

Turning to projective spaces, we obtain an inclusion-reversing duality correspondence
between linear subspaces of P(V ) and linear subspaces of P(V ¤), given by associating P(U±)
with P(U).

In particular, points of P(V ¤) correspond to hyperplanes in P(V ), represented by n-dimensional
subspaces of V if dimV = n + 1. This is of course just the assignment to [f ], where f 2
V ¤nf0g, of the hyperplane P(ker f) in P(V ). In terms of homogeneous co-ordinates, the point
[a0 : . . . : an] in P(V ¤) corresponds to the hyperplane with equation a0x0 + ¢ ¢ ¢ + anxn = 0 in
P(V ) (note that scaling the ai does not alter the hyperplane). Conversely, hyperplanes in P(V ¤)
correspond to points in P(V ¤¤) = P(V ).

In general, if P(U) is an m-dimensional linear subspace of Pn = P(V ), then U has dimension
m+ 1, so U± has dimension (n+ 1)¡ (m+ 1) = n ¡ m, and hence P(U±) is a linear subspace
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of P(V ¤) of dimension n ¡ m ¡ 1. Speci…cally, in P2 points dualize to lines and vice versa; in
P3 points dualize to planes and vice versa, and lines to lines.

For the projective plane, the duality interchanges points and lines. If [x], [y] are 2 points on
a line L then the lines [x±], [y±] meet at the point [L±]. More generally a set of collinear points
corresponds under duality to a set of concurrent lines. We can interpret [x±] as the locus in the
dual plane parameterizing lines through x in the original plane.

To more formally present these facts: we have L = P(hx, yi) = P(hxi+ hyi). This has dual

P(hx, yi±) = P((hxi+ hyi)±) = P(hxi± \ hyi±).

Notice in fact for the projective plane that Proposition 7 and Proposition 8 are dual to
each other, in the sense that we get one from the other via duality. In general each theorem
in projective geometry will have a dual version. Moreover once having proved a theorem in all
projective spaces P(V ) then this theorem applies equally well to dual projective spaces P(V ¤)
and so the dual theorem is a free consequence of proving the original theorem. The dual of the
theorem two distinct points lie on a unique line has (in general) the dual theorem two distinct
hyperplanes each contain a unique linear subspace of dimension dimP(V )¡ 2.

Example 34 The dual of Desargues’ Theorem in the plane is as follows:
Let π, α, α0, β, β0, γ, γ0 be seven distinct lines in a projective plane such that the points

α \ α0, β \ β0, γ \ γ0

are distinct and all lie on π. Then the three lines joining α \ β and α0 \ β0, joining β \ γ and
β0 \ γ0, and joining γ \ α and γ0 \ α0, are concurrent.

Example 35 Give a projective plane P2, we can de…ne four lines to be in general position if
no three of them are concurrent. This is equivalent to the four points they represent in (P2)¤

being in general position.
Under duality a line α0x0 + α1x1 + α2x2 = 0 in P2 corresponds to the point [α0 : α1 : α2] in

the dual space P2¤. So by the general position theorem, four lines in P2 which are in general
position can be assumed to have the equations

x0 = 0, x1 = 0, x2 = 0, x0 + x1 + x2 = 0

without any loss of generality.

Example 36 (1998 B3 #5)
(a) Let P(V ) be a projective plane. Suppose that p1, . . . , p6 are distinct points in P(V ) and

l1, . . . , l4 are distinct lines in P(V ), such that each line lj contains exactly 3 of the points pi.
Show that no pi is contained in 3 of the lines lj, and hence (or otherwise) prove that each point
pi is the intersection of exactly two of l1, l2, l3 and l4.

(b) Let q1, . . . , q4 be the points in P(V ¤) dual to the lines l1, . . . , l4 in P(V ). By considering
the dual statement (or otherwise), prove that q1, . . . , q4 are in general position in P(V ¤). Explain
brie‡y how you could use this fact to show that the group G of projective transformations of
P(V ) preserving the set fp1, . . . , p6g is isomorphic to the group S4.
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Solution (a) Without loss of generality suppose, for a contradiction, that p1 lies on each of
l1, l2, l3. By a possible relabelling we might then assume that the other two points on l1 are
p2, p3. The two other points on l2 must be di¤erent as l1 6= l2, call them p4, p5, but we then run
out of points to put on l3. A contradiction.

Suppose for a contradiction that p1 lies only on line l1 and none of l2, l3, l4. We can label
the points on l2 as p2, p3, p4. As l3 6= l2 only one of these points may lie on l3, so say p5 and p6
lie on l3 and then we have no points to assign to l4. A contradiction.

Consequently each point pi lies on precisely two lines as required.

(b) q1, . . . , q4 not being in general position in P(V ¤) means that three of the points are
collinear. The dual statement is that three of l1, . . . , l4 are concurrent. Their intersection
cannot be one of the pi by (a) but then we have to assign nine points to these three lines alone
– a contradiction. Given any permutation σ of the qi there is a unique projective transformation
of P(V ¤) e¤ecting that permutation on the qi as they are in general position (and so is then
any reordering of them). Thus the group of transformations in PGL(V ¤) preserving q1, . . . , q4
is isomorphic to S4. Necessarily the dual of that map preserves the set fl1, l2, l3, l4g and so
preserves the set of intersections fp1, . . . , p6g .
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6. BILINEAR FORMS AND QUADRICS

The next piece of algebra we consider in the context of projective geometry is the theory of
bilinear forms. Throughout this section, we will assume that charF 6= 2.

De…nition 37 A symmetric bilinear form, on a vector space V over a …eld F, is a map
B : V £ V ! F such that

(i) B(v, w) = B(w, v)
(ii) B is linear in v (and hence, by (i), also in w)

If an addition we have the property
(iii) if B(v, w) = 0 for all w then v = 0,

then we say the form is nondegenerate or nonsingular.

More concretely, if we choose a basis e0, . . . , en then a bilinear form is given by

B(v, w) = vTMw

for the symmetric matrix M such that [M ]ij = B(ei, ej). Nondegeneracy of the form B is equiv-
alent to invertibility of the matrix M . Symmetric matrices form a vector space of dimension
1
2
dimV (dimV + 1), so we can form linear combinations of bilinear forms.

Remark 38 In Part A Linear Algebra we focused particularly on inner products. Over R,
these are symmetric bilinear forms which satisfy the extra condition of positive de…niteness
(that is B(v, v) > 0 for v 6= 0). Over C, positive de…niteness requires the form to be conjugate
symmetric, rather than symmetric, and sesquilinear, rather than bilinear – that is, the form
is linear in one variable and conjugate linear in the other. We shall focus instead on bilinear
forms and drop the positive de…niteness property. In fact, for most purposes nondegeneracy is
a good replacement for positive de…niteness. In particular, nondegeneracy is actually equivalent
to the statement that the map from V to V ¤ de…ned by v 7! B(v, .) is an isomorphism.

Any bilinear form is determined (if the characteristic of F does no equal 2), by the associated
quadratic form

Q(v) = B(v, v),

for we can recover B via the polarization identity

B(v, w) =
1

4
(B(v + w, v + w)¡ B(v ¡ w, v ¡ w)) =

1

4
(Q(v + w)¡Q(v ¡ w)).

And over R or C we can diagonalise quadratic forms.

Theorem 39 If v 7! Q(v) = B(v, v) is a quadratic form de…ned on a vector space, then
(i) if F = C, there is a basis e0, . . . , en with respect to which

Q(v) = λ20 + ¢ ¢ ¢+ λ2r
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where v =
Pn

i=0 λiei and where r + 1 is the rank of B.
(ii) if F = R, there is a basis e0, . . . , en with respect to which

Q(v) = λ20 + ¢ ¢ ¢+ λ2r ¡ λ2r+1 ¡ ¢ ¢ ¢ ¡ λ2r+s

where v =
Pn

i=0 λiei and where r + s+ 1 is the rank of B.

Proof Write B(v, v) = vTXv =
P

i,j Xijvivj in some basis, where X is a symmetric matrix. If
X = 0 then there is nothing to prove. Otherwise, we can assume that some Xii is non-zero;
this is because if Xij 6= 0 where i 6= j we can introduce new variables

yi =
1

2
(vi + vj), yj =

1

2
(vi ¡ vj)

and now vivj = y2i ¡ y2j .
Now we complete the square.

1

Xii

Ã
X

j

Xijvj

!2

= Xiiv
2
i + 2

X

j 6=i

Xijvjvi + terms involving the other vj.

So, by introducing the new variable ~yi =
P

Xijvj , we can put B into the form

B(v, v) =
1

Xii

~y2i + terms involving the other vj .

Now we repeat the process until we have diagonalised B to diag(β0, . . . , βn): rescaling the
variables appropriately by now setting for non-zero βi

yi 7!
p
βiyi over C and yi 7!

p
jβijyi over R,

now brings it into the desired forms. Note that over R we cannot change the sign of the
coe¢cient of y2i by rescaling.

Remark 40 Note that over R we might simplify this argument by beginning with the spectral
theorem, but that the spectral theorem would not help with the complex case as we are interested
in symmetric rather than conjugate symmetric (i.e. Hermitian) forms.

Notice that the form is nondegenerate exactly when r = n (in the complex case) and
r + s = n (in the real case).

Example 41 Consider the form on R3.

x0x1 + x1x2 + x2x0.

We change variables to

y0 =
1

2
(x0 + x1), y1 =

1

2
(x0 ¡ x1), y2 = x2
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to generate some non-zero diagonal terms. The form is now

y20 ¡ y21 + 2y2y0.

We complete the square, writing this as

(y0 + y2)
2 ¡ y22 ¡ y21

so on putting z0 = y0 + y2 and z1 = y1, z2 = y2 we get the required form

z20 ¡ z21 ¡ z22

over the reals. If we work over C, then scaling z1, z2 by i brings us into the standard form of a
nondegenerate quadratic form over C.

We have seen that linear subspaces of projective space P(V ) are projectivisations of sub-
spaces of V , and hence are determined by systems of homogeneous linear equations. The next
simplest subsets of projective space de…ned by polynomial equations are the quadrics, which
are de…ned by the vanishing of a quadratic form.

De…nition 42 A quadric is the locus of points in a projective space de…ned by an equation
Q(v) = 0, where v 7! Q(v) = B(v, v) is a (not identically zero) quadratic form.

In the case that the projective space is a projective plane then quadrics are more typically
referred to as conics.

We remark that this does indeed de…ne a subset of projective space, as Q(v) is homogeneous
of degree 2 in v.

Example 43 In RP2 consider the conic de…ned by the quadratic form

Q(x0, x1, x2) = x20 + x21 ¡ x22.

In inhomogeneous co-ordinates x = x1/x0, y = x2/x0 this could be considered as the hyperbola

1 + x2 ¡ y2 = 0.

This has points at in…nity [0 : 1 : 1] and [0 : 1: ¡ 1] at the end of the asymptotes.
We might instead have considered the conic using the inhomogeneous co-ordinates x = x0/x2,

y = x1/x2 and then we would be considering the circle with equation

x2 + y2 ¡ 1 = 0

which has no points at in…nity.

Example 44 Find a projective transformation which takes the parabola y2 = x to the circle
x2 + y2 = 1. (Here we are using inhomogeneous co-ordinates x = x1/x0, y = x2/x0.)

BILINEAR FORMS AND QUADRICS 24



Solution In homogeneous co-ordinates these conics (call them C1, C2) are de…ned by the equa-
tion x22 = x1x0 and x21 + x22 ¡ x20 = 0 and so by the matrices

B1 =

0

@
0 1

2
0

1
2
0 0

0 0 1

1

A , B2 =

0

@
¡1 0 0
0 1 0
0 0 1

1

A .

Consider the e¤ect of a projective transformation [T ] on the …rst conic. Then

[x] 2 [T ] (C1) ()
£
T¡1

¤
[x] 2 C1

() (T¡1x)TB1T
¡1x = 0.

() xT (T¡1)TB1T
¡1x = 0.

And if we want T to map C1 to C2 then we need

xT (T¡1)TB1T
¡1x = 0 () xTB2x = 0,

so it is su¢cient to have
(T¡1)TB1T

¡1 = B2

or equivalently that
B1 = T TB2T.

Now the matrix B1 is symmetric and has eigenvalues §1/2, 1. So there is an orthogonal matrix
P such that

P TB1P = diag(¡1/2, 1/2, 1).

If we now take Q = diag(
p
2,

p
2, 1) then we have

QTP TB1PQ = diag(¡1, 1, 1) = B2.

So we might choose T = (PQ)¡1. Calculating P gives

P =

0

@

1p
2

1p
2
0

¡ 1p
2

1p
2
0

0 0 1

1

A ,

and then

T = (PQ)¡1 =

0

@
1 1 0

¡1 1 0
0 0 1

1

A

¡1

=

0

@

1
2

¡1
2
0

1
2

1
2

0
0 0 1

1

A .

Proposition 45 We assume charF 6= 2. If a quadric contains three distinct, collinear points
then it contains the entire line.
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Proof We may choose representative vectors x and y so that the points are [x] , [y] , [x+ y] .
Then we have

B(x,x) = 0 = B(y,y)

and
0 = B(x+ y,x+ y) = B(x,x) + 2B(x,y) +B(y,y)

so that B(x,y) = 0 as well as 2 6= 0. Then for any point [αx+ βy] of the line we have

B(αx+ βy, αx+ βy) = α2B(x,x) + 2αβB(x,y) + β2B(y,y) = 0

as required.

De…nition 46 We say a quadric is nonsingular if the associated symmetric bilinear form is
nondegenerate. On choosing a basis, this is equivalent to the symmetric matrix de…ning the
form being invertible.

Example 47 Over C, our diagonalization theorem tells us that a conic can be put into one of
the following three forms:

(i) z20 + z21 + z22 = 0;

(ii) z20 + z21 = 0;

(iii) z20 = 0.

Case (i) is the general case, when the conic is nonsingular. The remaining two cases are
the two kinds of singular conics. Case (ii) is a pair of distinct lines – on putting the conic in
the above form z20 + z21 = 0 we see the lines are z0¡ iz1 = 0 and z0+ iz1 = 0, which meet at the
point [0 : 0 : 1] in the plane. Case (iii) is the most degenerate – it is a double line, i.e. a line
with multiplicity two. We can think of Cases (ii) and (iii) as singular limits or degenerations
of the generic nonsingular conics.

In fact generally, for conics, but not higher dimensional quadrics, we have:

Proposition 48 A conic in FP2 which contains a line is singular.

Proof Take two points on the line in the conic and a point o¤ the line. If we choose represen-
tative vectors e0, e1, e2 for these three points, they form a basis and say that X = (Xij) is a
symmetric matrix over F representing the conic. Points on the line have representative vectors
αe0 + βe1 so that

(αe0 + βe1)
TX(αe0 + βe1) = 0

for all α, β. But this means that X has the form

X =

0

@
0 0 X02

0 0 X12

X02 X12 X22

1

A

which is a singular matrix.
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Proposition 49 Non-empty, nonsingular conics in RP2 are projectively equivalent.

Proof By our earlier theorem any conic’s equation can be put in the form

x20 + ¢ ¢ ¢+ x2r ¡ x2r+1 ¡ ¢ ¢ ¢ ¡ x2r+s = 0.

As r+s is the rank and the conic is non-singular then r+s+1 = 3 and so we are left considering
the possibilities:

x20 + x21 + x22 = 0

x20 + x21 ¡ x22 = 0

x20 ¡ x21 ¡ x22 = 0

¡x20 ¡ x21 ¡ x22 = 0.

The …rst and last are empty conics (as we’re working over R, and there is no point [0 : 0 : 0])
and the second two are clearly projectively equivalent (by permuting x0, x1, x2 accordingly).

Remark 50 We might then view an ellipse as a conic which does not intersect the line at
in…nity, a parabola as a conic which is tangential to the line at in…nity, and a hyperbola as a
conic which intersects the line at in…nity in two points.

Proposition 51 Through each point P of a non-singular conic C in FP2 there is a unique line
which meets the conic only once. This line is called the tangent line to C at P.

Proof Say that the conic is represented by the invertible symmetric matrix X with respect to
some basis and say that P = [x] . We then have that Xx 6= 0 as X is invertible and xTXx = 0
as P lies on the conic.

A line in FP2 has the form P(hx,yi) where y is independent of x. This line will meet the
conic at points satisfying

0 = (αx+ βy)TX(αx+ βy) = 2αβyTXx+ β2yTXy.

For the line to meet the conic only at P (when β = 0) we must have that

2λyTXx+ yTXy 6= 0 for all scalars λ 2 F.

This is only possible if yTXx = 0 and yTXy 6= 0. The plane of vectors y perpendicular to Xx
uniquely speci…es a plane in F3 and so uniquely speci…es a line in FP2.

Pappus’ Theorem might be viewed as a special case of the following theorem as applying to
singular conics.

Theorem 52 (Pascal’s Mystic Hexagon, 1640) Let A,B,C,A0, B0, C 0 be six distinct points
on a non-singular conic. Then the intersections

P = AB0 \ A0B, Q = AC 0 \ A0C, R = BC 0 \ B0C,
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are collinear.

Fig. 7 – Pascal’s Theorem

Proof The conic contains no line and hence the points A,B,A0, B0 are in general position. So
we may assume them to have homogeneous co-ordinates

A = [1: 0 : 0] , B = [0: 1 : 0] , A0 = [0: 0 : 1] , B0 = [1: 1 : 1] .

Let C = [x : y : z] and C 0 = [X : Y : Z], noting that x, y, z,X, Y, Z are necessarily non-zero or
else three points will be collinear. We then have

P = AB0 \A0B = fx1 = x2g \ fx0 = 0g = [0: 1 : 1] ,

Q = AC 0 \A0C = fZx1 = Y x2g \ fyx0 = xx1g = [xY : yY : yZ] ,

R = BC 0 \B0C = fZx0 = Xx2g \ f(z ¡ y)x0 + (x ¡ z)x1 + (y ¡ x)x2 = 0g

= [(x ¡ z)X : (x ¡ y)Z + (y ¡ z)X : (x ¡ z)Z] .

Now the conic is represented by the symmetric matrix

0

@
0 α β
α 0 ¡α ¡ β
β ¡α ¡ β 0

1

A ,

for some α, β, in order to pass through A,B,A0, B0. As C also lies on the conic, we also have
that

αxy + βxz ¡ (α+ β)yz = 0,

so that
α

β
=

z(y ¡ x)

y(x¡ z)
.

As C 0 similarly lies on the conic then

z(y ¡ x)

y(x ¡ z)
=

Z(Y ¡ X)

Y (X ¡ Z)
.
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Multiplying up, and grouping the XY, Y Z,ZX terms, this is equivalent to

z(y ¡ x)XY + x (z ¡ y)Y Z + y(x¡ z)ZX = 0.

Now the three points P,Q,R are collinear precisely when

¢ =

¯
¯
¯
¯
¯
¯

0 1 1
xY yY yZ

(x ¡ z)X (x¡ y)Z + (y ¡ z)X (x ¡ z)Z

¯
¯
¯
¯
¯
¯
= 0.

Note

¢ =

¯
¯
¯
¯
¯
¯

0 0 1
xY y(Y ¡ Z) yZ

(x¡ z)X (x ¡ y)Z + (y ¡ z)X ¡ (x¡ z)Z (x ¡ z)Z

¯
¯
¯
¯
¯
¯

= xY [(x ¡ y)Z + (y ¡ z)X ¡ (x¡ z)Z]¡ yX(x ¡ z) (Y ¡ Z)

= x(x ¡ y)Y Z + x(y ¡ z)Y X ¡ x(x ¡ z)Y Z ¡ yXY (x ¡ z) + yXZ (x ¡ z)

= x(z ¡ y)Y Z + z (y ¡ x)XY + y (x ¡ z)XZ

= 0,

using the earlier condition.

Remark 53 Given 5 points in a projective plane, no three of which are collinear, there is a
unique nonsingular conic through the points (Sheet 2, Exercise 3). The converse of Pascal’s
theorem applies to 6 points, speci…cically: 6 points A,B,C,A0, B0, C 0, no three of which lie on
a line, all lie on a conic if the intersections P,Q,R are collinear.

De…nition 54 The singular points of a quadric Q(v) = vTXv = 0 are those points [v]
where Xv = 0.

So in case (ii) of Example 47, where X = diag(1, 1, 0), the unique singular point is [0, 0, 1],
the intersection point of the pair of lines. In case (iii) we have X = diag(1, 0, 0), then the
singular points are the points on the line z0 = 0 : in other words every point on the conic is
singular.

Remark 55 The conic is nonsingular if and only if X is invertible, which is equivalent to the
only solution to Xv = 0 being v = 0. So the conic is nonsingular if and only it has no singular
points in projective space. This justi…es the terminology in the de…nition above.

If we work over C or R, then we may further understand the notion of a singular point using
ideas of multivariable di¤erentiation. The conic is de…ned by the equation f = 0 where f : v 7!
vTXv. The derivative of f at v, in the sense of multivariable calculus, is dfv : h 7! 2hTXv,
which has maximal rank one unless Xv = 0. So the singular points are the points where dfv
has less than maximal rank, and hence where the manifold structure on the conic breaks down.
In Example 47, this happens in case (ii) exactly where the lines intersect.
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Nonsingular conics actually have a very nice description. If we …x a point x on the conic,
and take a projective line not containing x, then projection from x onto the line actually sets
up a bijection between the conic and the line. (If F = C, this in fact de…nes a homeomorphism
between the conic and the projective line, and hence the Riemann sphere, though note this is
not a projective equivalence).

Theorem 56 Let C be a nonsingular conic in the projective plane, and let x be a point of C.
Let l be a projective line in the plane not containing x. Then there is a bijection α : l ! C such
that x, y, α(y) are collinear, for y 2 l.

Fig. 8 – rational parameterization

Remark 57 Note that the dual of the set of lines through x is a line in the dual plane. It would
be more natural to set up a bijection between C and the lines through x. Under this bijection x
corresponds to the tangent line through x.

Proof Let B denote the nondegenerate, symmetric, bilinear form whose quadratic form Q
de…nes the conic C. Let x = [v] be a point on C, so that B(v, v) = 0.

For each y 2 l = P(U), we want to see when (other than at x) the projective line containing
x and y meets the conic. We will …nd that there is a unique such point α(y).

Let y 2 P(U) have representative vector u 2 U. As x = [v] does not lie on P(U) then x 6= y
and v, u are linearly independent. Consider the 2-dimensional space Wu spanned by v and u,
so the projective line we are constructing is P(Wu). Observe that the bilinear form B cannot
be identically zero on the space Wu as C is non-singular.

With respect to the basis v, u, the form Q restricted to Wu is

Q(λv + µu) = 2λµB(v, u) + µ2B(u, u)

and B(v, u), B(u, u) are not both zero. So the projective line P(Wu) meets the conic at two
points. One is the basepoint x = [v], corresponding to (λ, µ) = (1, 0). The other, corresponding
to (λ, µ) = (B(u, u),¡2B(v, u)), is de…ned to be α(y). Note that α is injective as given any
point z 6= x on the conic, the projective line through x, z meets the line P(U) in a unique point
y. Moreover, α(y) = x exactly when B(v, u) = 0, which de…nes a unique point in P(U).

We have set up a bijection between a nonsingular conic and the projective line. This kind
of bijection is called a rational parameterization.
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The existence of a rational parameterization for the conic has some nice applications in
the theory of Diophantine equations. These are polynomial equations where we are primarily
interested in rational or integral solutions.

Example 58 Consider the equation

X2 ¡ Y 2 ¡ Z2 = 0,

whose solutions are Pythagorean triples. As our basepoint on the conic de…ned by the above
equation we may take [1 : 1: 0]. We can take X = 0 as the projective line, which does not contain
the basepoint. So if y is a point on the projective line with representative vector u = (0, λ1, λ2)
then

α(y) = B(u, u)v ¡ 2B(u, v)u

= ¡(λ21 + λ22)(1, 1, 0) + 2λ1(0, λ1, λ2)

= (¡(λ21 + λ22), λ
2
1 ¡ λ22, 2λ1λ2).

It is clear that this does indeed give solutions to the equations. Replacing X by its negative, we
obtain the familiar formula for Pythagorean triples:

X = s2 + t2 : Y = s2 ¡ t2 : Z = 2st,

and by taking s, t to be rational (respectively, integral) we get the solution in rational numbers
(respectively, integers). For example, (s, t) = (2, 1) gives (X, Y, Z) = (5, 3, 4), while (s, t) =
(3, 2) and (4, 3) give the triples (13, 5, 12) and (25, 7, 24) respectively.

Example 59 Find a rational parameterization for the conic x2 + xy + y2 = 1.

Solution A point on the conic is (1, 0) . This time we will set up a bijection with lines passing
through (1, 0) , which have the form y = q(x ¡ 1) where q is rational. We then …nd

x2 + xq(x ¡ 1) + q2(x ¡ 1)2 = 1

which factorizes to
(x ¡ 1)

¡
x+ 1 + qx+ q2(x¡ 1)

¢
= 0.

The second root is

x =
q2 ¡ 1

1 + q + q2
,

so that

y = q(x ¡ 1) =
¡q(2 + q)

1 + q + q2

so that

x =
q2 ¡ 1

1 + q + q2
, y =

¡q(2 + q)

1 + q + q2
.

Note that the point (1,¡1) is achieved only by setting the parameter q =1. Alternatively we
can present all the solutions projectively as

[x0 : x1 : x2] =
£
q2 + q + 1: q2 ¡ 1: ¡ q(2 + q)

¤
.
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Example 60 Find all the rational solutions to Pell’s equation

x2 ¡ 2y2 = 1.

Solution We will work with the inhomogeneous co-ordinates x and y. Note that the point (1, 0)
satis…es Pell’s equation and consider the line y = q(x¡1) where q is rational. Substituting this
into Pell’s equation we …nd that

x2 ¡ 2q2(x¡ 1)2 = 1.

This factorizes easily (and in any case we know x = 1 to be a root of the equation) and so we
have

(x ¡ 1)(x+ 1¡ 2q2(x ¡ 1)) = 0.

The second root for x is then

x =
2q2 + 1

2q2 ¡ 1
,

and

y = q(x ¡ 1) =
2q

2q2 ¡ 1
.

Example 61 Determine all the rational solutions (x, y) 2 Q2 of the equation

x2 + 3xy + 2y2 + y = 1.

Solution The projectivized curve has equation

x2 + 3xy + 2y2 + yz ¡ z2 = 0

which has associated matrix

X =
1

2

0

@
2 3 0
3 4 1
0 1 ¡2

1

A .

As the third column added to twice the second column equals three times the …rst column, X is
singular and so in the conic. In fact, one can quickly spot that the de…ning equation factorizes
as

(x+ y + 1) (x+ 2y ¡ 1) = 0.

Thus the conic consists of two lines and the rational points on the conic either have the form
(q,¡q ¡ 1) or (1¡ 2q, q) where q is rational. (If one fails to spot the factorization then it can
be found by applying the quadratic formula, treating x as a constant and solving for y.)

Note that the two lines meet at (¡3, 2) , which agrees with [¡3: 2 : 1] being the singular
point of the conic. We see

X

0

@
¡3
2
1

1

A =
1

2

0

@
2 3 0
3 4 1
0 1 ¡2

1

A

0

@
¡3
2
1

1

A = 0.
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As X has rank 2, then this is the only singular point of the conic.

Given a non-singular conic C in a projective plane P2, then at each point there is a uniquely
de…ned tangent line. This leads to a well-de…ned map from the conic to the dual projective
space P2¤. It turns out the image of C is a non-singular conic, called the dual conic in P2¤.

Example 62 Find a rational parameterization for the dual conic in P2¤ of x21+x1x2+x22 = x20.

Solution In the earlier example we found a rational parameterization for the conic to be

[x0 : x1 : x2] =
£
q2 + q + 1: q2 ¡ 1: ¡ q(2 + q)

¤
.

From our earlier proof of the existence of tangent lines, we know that any point x in the conic
has tangent line with equation yTXx = 0 where the symmetric matrix X represents the bilinear
form.

Recall that we identify the line α0x0 + α1x1 + α2x2 = 0 with the point [α0 : α1 : α2] in the
dual space. As a symmetric matrix representing the conic is

X =

0

@
¡1 0 0
0 1 1

2

0 1
2
1

1

A ,

then the dual conic has a rational parameterization

[α0 : α1 : α2] =

·

¡q2 ¡ q ¡ 1: q2 ¡ 1¡
1

2
q(2 + q) :

1

2
(q2 ¡ 1)¡ q(2 + q)

¸

=
£
¡2q2 ¡ 2q ¡ 2: q2 ¡ 2q ¡ 2: ¡ q2 ¡ 4q ¡ 1

¤
.

With this notion of a dual conic, we can describe the dual of Pascal’s Theorem which is in
fact another classical theorem of geometry, Brianchon’s Theorem.

Theorem 63 (Brianchon, 1810) If a hexagon is circumscribed about a conic, the three di-
agonals are concurrent.

In the Part B course B3.3 Algebraic Curves, you will see that nonsingular curves of higher
degree in the projective plane do not admit rational parameterizations. Indeed, over C such
curves are not homeomorphic to the Riemann sphere. The genus of a degree d nonsingular
curve in the complex projective plane is 1

2
(d ¡ 1)(d ¡ 2) which is only zero for d = 1, 2 i.e. the

case of lines and conics, whilst a nonsingular cubic is topologically a torus.
For further reading, introducing more ideas of algebraic geometry, see:

² F. Kirwan, Complex algebraic curves, LMS Student Texts, CUP, 1992.

² K. Smith, L. Kahanpää, P. Kekäläinen and W. Traves, An invitation to algebraic geometry,
Springer Universitext, 2000.
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