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Preface
These notes are mostly based on the University of Oxford course ‘C2.2 Homological Algebra’ lectured
by Prof Kobi Kremnitzer during the 2023-24 Michaelmas term. Portions of the previous notes (Monnet
and Kremnitzer 2021) are reused, along with relevant parts of (Weibel 1994), upon which the course
is largely based. Another important reference is (Rotman 2009), which provides detailed and, at times,
meticulous proofs. I have labelled the source of many proofs (whether they are similar or different to
the ones presented) for the reader’s reference.

An overview of these notes follows. Section 1 states without proof some results from module theory
which we will use later. Section 2 is a crash course on category theory, based on which Section 3
constructs abelian categories in a step-by-step manner. In general, abelian categories serve as the
‘stage’ for homological algebra, but as we will see, 𝑅-𝐌𝐨𝐝, the category of 𝑅-modules, which is
‘concrete’ and thus easier to work with, is in fact a sufficient representative of abelian categories. Fo-
cusing on 𝑅-𝐌𝐨𝐝, we then move on to establish the module tensor product (Section 4), where the
tensor-hom adjunction emerges as a significant result. We then prove that 𝑅-𝐌𝐨𝐝 has enough
projectives and injectives in Section 5, a property crucial to constructing resolutions in 𝑅-𝐌𝐨𝐝.
Section 6 then discusses (co)chain complexes and their (co)homology, which originally arise in al-
gebraic topology but are viewed solely as algebraic entities here; they lead to the definition and several
important properties of resolutions. With all the tools in hand, in Section 7 we are able to define our
main protagonist, derived functors, which are proven to be homological 𝛿-functors, in some sense
a generalisation of (co)homology functors. The two main derived functors we study are Ext and Tor,
induced by Hom and tensor products respectively, as defined in Section 8. Ext and Tor possess a cru-
cial property of being balanced, which requires the introduction of mapping cones and double and
total complexes for proof. Further properties of Ext, including its ring structure and its connection
with module extensions, are discussed in Section 9 and Section 12, while further properties of Tor,
demonstrated by flat modules and the Universal Coefficient Theorem, are the topic of Section 10.
The machinery we build is also applied to construct Koszul (co)homology and group (co)homology
in Section 11 and Section 13, respectively.

For most of the proofs, I have tried to improve them by filling in more detailed steps by using available
references and adding cross-references to previous results in the notes. Two large deviations from the
lectures are Section 3 and Section 4. A lot more details are supplemented in both sections so as to
make them as self-contained as possible. I have also chosen to introduce module tensor products based
on (Rotman 2009), starting from the universal mapping problem of 𝑅-biadditive maps, whereas the
lectures used the tensor product of vector spaces as an initial motivation.

Homological Algebra is admittedly a challenging yet rewarding course. On a personal note, I chose to
work on these notes to enhance my own learning. As a learner, I acknowledge that these notes must
contain mistakes and improvable parts. Therefore, the reader is welcome to submit issues for any ad-
vice on GitHub (https://github.com/EricWay1024/Homological-Algebra-Notes), where these notes are
open-sourced and updated¹. One can also find a not-so-colourful version of these notes fit for printing
by following that link.

¹For anyone interested, I write these notes with Typst, a fairly new but much simpler alternative of LaTeX.

Finally, I would like to thank Prof Kobi Kremnitzer for delivering the lectures and Sebastian Monnet
for creating the previous version of these notes. I would also like to thank my friends Qixuan Fang for
reading these notes and offering feedback and Quanwen Chen for contributing to the GitHub work-
flows.

Yuhang Wei
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1. Module Theory Recap

Definition 1.1.  Let 𝑅 be a ring. A left 𝑅-module 𝑀  is an abelian group with maps 𝑅 × 𝑀 →
𝑀  (called multiplication), denoted as (𝑟, 𝑚) ↦ 𝑟 ⋅ 𝑚 = 𝑟𝑚, which satisfies:

𝑟(𝑚1 + 𝑚2) = 𝑟𝑚1 + 𝑟𝑚2,
(𝑟1 + 𝑟2)𝑚 = 𝑟1𝑚 + 𝑟2𝑚,

(𝑟1𝑟2)𝑚 = 𝑟1(𝑟2𝑚),
1𝑅 ⋅ 𝑚 = 𝑚.

A right 𝑅-module is defined similarly, but with multiplication on the right, namely 𝑚𝑟.

If 𝑅 is a commutative ring, then left and right 𝑅-modules are the same, and we call them 𝑅-
modules.

Definition 1.2.  Let 𝑀  be a left 𝑅-module. A submodule 𝑁  of 𝑀  satisfies:
• 𝑁  is a subgroup of (𝑀, +);
• 𝑟𝑛 ∈ 𝑁  for all 𝑟 ∈ 𝑅 and 𝑛 ∈ 𝑁 .

In this case we denote 𝑁 ⊂ 𝑀 .

Definition 1.3.  Let 𝑅 be a ring. Let 𝑀1, 𝑀2 be left 𝑅-modules. A map 𝜑 : 𝑀1 → 𝑀2 is a mod-
ule homomorphism if it satisfies:

𝜑(𝑥 + 𝑦) = 𝜑(𝑥) + 𝜑(𝑦),
𝜑(𝑟𝑥) = 𝑟𝜑(𝑥).

for all 𝑥, 𝑦 ∈ 𝑀1 and 𝑟 ∈ 𝑅.

Definition 1.4.  The kernel of a module homomorphism 𝜑 : 𝑀1 → 𝑀2 is defined as

Ker(𝜑) ≔ {𝑥 ∈ 𝑀1 : 𝜑(𝑥) = 0}.

The image of 𝜑 is defined as

Im(𝜑) ≔ {𝜑(𝑥) : 𝑥 ∈ 𝑀1}.

It can be shown that Ker(𝜑) ⊂ 𝑀1 and Im(𝜑) ⊂ 𝑀2.

Definition 1.5.  Let 𝑁 ⊂ 𝑀  be left 𝑅-modules. Define a left 𝑅-module on the quotient group
𝑀/𝑁  with

𝑟(𝑥 + 𝑁) = 𝑟𝑥 + 𝑁
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for all 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑀 . Then the quotient map 𝑀 → 𝑀/𝑁  is a module homomorphism and
𝑀/𝑁  is a quotient module.

Definition 1.6.  Let 𝑋 be a set. The free module with basis 𝑋 is defined as

𝑅⊕𝑋 = ⨁
𝑥∈𝑋

𝑅𝑥.

We have the inclusion map 𝑖 : 𝑋 → 𝑅⊕𝑋 between sets:

𝑖(𝑥) = 1𝑅 ⋅ 𝑥.

An element 𝑚 ∈ 𝑅⊕𝑋 can be written as

𝑚 = ∑
𝑥∈𝑋

𝑎𝑥𝑥,

where only finitely many 𝑎𝑥 ∈ 𝑅 is non-zero.

Proposition 1.7.  For any 𝑅-module 𝑀  and map between sets 𝜙 : 𝑋 → 𝑀 , there exists a unique
module homomorphism 𝜑 : 𝑅⊕𝑋 → 𝑀  that make the following commute:

↑
↑

𝜙

↑

∃!𝜑

𝑋 𝑅⊕𝑋

𝑀

Definition 1.8.  Let 𝑋 be a subset of 𝑅-module 𝑀  and let 𝑖 : 𝑋 → 𝑀  be the inclusion map. We
have the corresponding map 𝜎 : 𝑅⊕𝑋 → 𝑀 . We say
• 𝑋 is linear independent or free if 𝜎 is injective and 𝑋 is linear dependent otherwise;
• 𝑋 spans or generates 𝑀  if 𝜎 is surjective, in which case 𝑋 is a generating set of 𝑀 . A module

with a finite generating subset is called a finitely generated module.

A linear independent generating subset of 𝑀  is called a basis of 𝑀 , and a module with a basis
is called a free module.

Corollary 1.9.  Any 𝑅-module 𝑀  is isomorphic to a quotient of a free module.
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Proposition 1.10.  Any submodule of a free module over a PID is free.
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2. Basic Category Theory
This section is a crash course in category theory. The reader is advised to take the Category Theory
course concurrently and/or refer to other materials, e.g. (Awodey 2010).

2.1. Basic Definitions

Definition 2.1.1.  A category 𝒞 consists of
• A collection of objects ob 𝒞 and
• For every pair of objects 𝑋, 𝑌 ∈ ob 𝒞, a collection of morphisms Hom𝒞(𝑋, 𝑌 ), where for

𝑓 ∈ Hom𝒞(𝑋, 𝑌 ) we denote 𝑓 : 𝑋 → 𝑌  or 𝑋 →
𝑓

𝑌  and say 𝑋 is the domain of 𝑓  and 𝑌  is
the codomain of 𝑓 ;

such that
• For every object 𝑋, there exists an identity morphism id𝑋 ∈ Hom𝒞(𝑋, 𝑋);
• For every pair of morphisms 𝑓 : 𝑋 → 𝑌  and 𝑔 : 𝑌 → 𝑍 , there exists a composite morphism

𝑔 ∘ 𝑓 : 𝑋 → 𝑍 ,

subject to the axioms:
• For every morphism 𝑓 : 𝑋 → 𝑌 , we have id𝑦 ∘ 𝑓 = 𝑓 ∘ id𝑋 = 𝑓 ;
• For every triple of morphisms 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍 and ℎ : 𝑍 → 𝑊 , we have (ℎ ∘ 𝑔) ∘ 𝑓 =

ℎ ∘ (𝑔 ∘ 𝑓), which we simply denote as ℎ ∘ 𝑔 ∘ 𝑓 .

Notation 2.1.2.  We usually write 𝑋 ∈ 𝒞 when we mean 𝑋 ∈ ob 𝒞. We sometimes denote
Hom𝒞(𝑋, 𝑋) as End𝒞(𝑋) (the endomorphisms of 𝑋). We might simply write Hom instead
of Hom𝒞 if the underlying category is clear from the context.

Definition 2.1.3.  A category 𝒞 locally small if for every 𝑋, 𝑌 ∈ 𝒞, Hom𝒞(𝑋, 𝑌 ) is a set. A
category 𝒞 is small if it is locally small and further ob 𝒞 is a set.

These definitions above are to avoid set-theoretic size issues, which we shall not delve into. They are
employed when necessary to ensure that we do not run into paradoxes.

Example 2.1.4.  A discrete category 𝒞 is one where

Hom𝒞(𝑋, 𝑌 ) = {
{id𝑋} 𝑋 = 𝑌
∅ 𝑋 ≠ 𝑌

It does not contain more information than ob 𝒞, so it can be simply regarded as a collection of
objects, or a set when 𝒞 is small.

Example 2.1.5.  If ob 𝒞 = {𝑥}, then Hom𝒞(𝑥, 𝑥) is a monoid.

If you have never heard of monoids before, the above can be seen as the definition of a monoid. In
general, a category is a “generalised” monoid because in a category you can only compose two mor-
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phisms 𝑓, 𝑔 in certain situations (namely, when the codomain of 𝑓  and the domain of 𝑔 match), whereas
composition is allowed for any two elements of a monoid.

Example 2.1.6.  The following are the main categories we will be working with.
• The category 𝐒𝐞𝐭 has objects which are sets and morphisms which are functions between sets.

Notice in category theory we avoid talking directly about elements of a set, because a set,
which is an object of the category 𝐒𝐞𝐭, is “atomic” or inseparable.

• Let 𝑘 be a field. The category 𝐕𝐞𝐜𝐭𝑘 has objects which are vector spaces over 𝑘 and morphisms
which are linear transformations between vector spaces. We often denote Hom𝐕𝐞𝐜𝐭𝑘

 as Hom𝑘.
In particular, for any 𝑉 , 𝑊 ∈ 𝐕𝐞𝐜𝐭𝑘, Hom𝑘(𝑉 , 𝑊) is also a vector space.

• Let 𝑅 be a ring. The category 𝑅-𝐌𝐨𝐝 has objects which are left 𝑅-modules and morphisms
which are module homomorphisms. Similarly, we have the category 𝐌𝐨𝐝-𝑅 of right 𝑅-mod-
ules. We often denote Hom𝑅-𝐌𝐨𝐝 or Hom𝐌𝐨𝐝-𝑅 as Hom𝑅; it should be clear from the context
which one we are referring to.

• The category 𝐆𝐫𝐩 has objects which are groups and morphisms which are group homomor-
phisms. Similarly, we have the category 𝐀𝐛 of abelian groups.

Definition 2.1.7.  Let 𝒞, 𝒟 be categories. The product category 𝒞 × 𝒟 consists of objects
(𝐶, 𝐷) for 𝐶 ∈ 𝒞 and 𝐷 ∈ 𝒟, and morphisms (𝑓, 𝑔) : (𝐶1, 𝐷1) → (𝐶2, 𝐷2) for 𝑓 : 𝐶1 → 𝐶1
and 𝑔 : 𝐷1 → 𝐷2.

Definition 2.1.8.  A morphism 𝑓 : 𝐵 → 𝐶 is monic (or a monomorphism) if for any 𝑒1, 𝑒2 :
𝐴 → 𝐵 such that 𝑓 ∘ 𝑒1 = 𝑓 ∘ 𝑒2 we have 𝑒1 = 𝑒2. A morphism 𝑓 : 𝐵 → 𝐶 is epic (or an epi-
morphism) if for any 𝑔1, 𝑔2 : 𝐶 → 𝐷 such that 𝑔1 ∘ 𝑓 = 𝑔2 ∘ 𝑓  we have 𝑔1 = 𝑔2.

Note 2.1.9.  𝑓 : 𝐵 → 𝐶 is monic if and only if the induced map (𝑓 ∘ −) : Hom𝒞(𝐴, 𝐵) →
Hom𝒞(𝐴, 𝐶) is injective for any 𝐴, and 𝑓 : 𝐵 → 𝐶 is epic if and only if the induced map (− ∘
𝑓) : Hom𝒞(𝐶, 𝐷) → Hom𝒞(𝐵, 𝐷) is injective for any 𝐷.

Example 2.1.10.  In 𝐒𝐞𝐭, a monomorphism is equivalent to a one-to-one map and an epimor-
phism is equivalent to an onto map.

Example 2.1.11.  In the category of commutative rings, ℤ → ℚ is both monic and epic. Note
that if two maps agree on ℤ → 𝑅, they must also agree on ℚ → 𝑅, since a ring homomorphism
𝑓 : ℚ → 𝑅 is uniquely determined by 𝑓(1).
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Example 2.1.12.  In the category of commutative rings, for any ring 𝑅 and its ideal 𝐼 , 𝑅 → 𝑅/𝐼
is epic.

2.2. Categories with a Zero Object

Definition 2.2.1.  An initial object 𝐼  of category 𝒞 is an object such that for any 𝐴 ∈ ob 𝒞,
there exists a unique morphism 𝐼 → 𝐴.

A final object 𝑇  is an object such that for any 𝐴 ∈ ob 𝒞 there exists a unique morphism 𝐴 → 𝑇 .

Example 2.2.2.  In 𝐒𝐞𝐭, an initial object is equivalent to an empty set, while a final object is
equivalent to a one-element (or singleton) set.

Definition 2.2.3.  A zero object 0 is both initial and final.

Example 2.2.4.  In 𝑅-𝐌𝐨𝐝, a zero object is equivalent to the zero module.

Proposition 2.2.5.  If there is a zero object in the category, then for any 𝐵, 𝐶 ∈ 𝒞 we have a
zero morphism 0 ∈ Hom𝒞(𝐵, 𝐶) which factors through the zero object.

Proof.

↑0

↑

∃!

↑

∃!
𝐵 𝐶

0

It is clear from the commutative diagram. ∎

Notation 2.2.6.  In a commutative diagram, two paths with the same starting and ending points
correspond to two equal morphisms.

Notation 2.2.7.  We (ab)use the notation 0 to denote both a zero object and a zero morphism.

9



Definition 2.2.8.  In a category with a zero object, a kernel of 𝑓 : 𝐵 → 𝐶 is a morphism 𝑖 :
𝐴 → 𝐵 such that 𝑓 ∘ 𝑖 = 0 in a universal way. That is, for any 𝑖′ : 𝐴′ → 𝐵 such that 𝑓 ∘ 𝑖′ =
0, there exists a unique morphism ℎ : 𝐴′ → 𝐴 such that 𝑖′ = 𝑖 ∘ ℎ. We denote 𝑖 = ker(𝑓). Dia-
grammatically,

↑

𝑓

↑

𝑖

↑∃!

↑𝑖′
↑

↑

↑

𝐴

𝐵

𝐶𝐴′

0

Notation 2.2.9.  Sometimes, people might also say the object 𝐴 in the above definition is the kernel
of 𝑓  when the morphism 𝑖 is clear, and write 𝐴 = ker(𝑓). However, this easily leads to confusion
later on, so this note adapts the following non-standard notation: we write 𝐴 = Ker(𝑓) (with a
capital K) when we mean the object and 𝑖 = ker(𝑓) when we mean the morphism. Hence, we
would have

Ker(𝑓) ⟶
ker(𝑓)

𝐵 →
𝑓

𝐶

such that 𝑓 ∘ ker(𝑓) = 0 in a universal way. Similar notations will be used for concepts we de-
fine later.

Example 2.2.10.  In 𝐕𝐞𝐜𝐭𝑘, kernels are kernels.

Theorem 2.2.11.  A kernel is a monomorphism.

Definition 2.2.12.  A cokernel of 𝑓 : 𝐵 → 𝐶 is a morphism 𝑗 : 𝐶 → 𝐷 such that 𝑗 ∘ 𝑓 = 0 in
a universal way. We denote 𝑗 = coker(𝑓) and 𝐷 = Coker(𝑓).

Theorem 2.2.13.  A cokernel is an epimorphism.
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Example 2.2.14.  In 𝐕𝐞𝐜𝐭𝑘, the cokernel of 𝑇 : 𝑉 → 𝑊  is the quotient map 𝑊 → 𝑊/ im 𝑇 .

Lemma 2.2.15.  Let 𝐴 be any object. Then for the unique morphism 𝑓 : 𝐴 → 0, we
have ker(𝑓) = id𝐴 and coker(𝑓) = id0 = 0. Dually, for 𝑔 : 0 → 𝐴, we have ker(𝑔) = 0 and
coker(𝑔) = id𝐴.

Definition 2.2.16.  The opposite category of 𝒞 is a category 𝒞op where ob 𝒞op = ob 𝒞 and
Hom𝒞op(𝑥, 𝑦) = Hom𝒞(𝑦, 𝑥).

Proposition 2.2.17. A morphism 𝑓 : 𝐵 → 𝐶 is monic in 𝒞 if and only if 𝑓op : 𝐶 → 𝐵 is epic
in 𝒞op.

We say that “monic” and “epic” are dual concepts. Similarly, “initial objects” and “final objects” are
dual; “kernels” and “cokernels” are dual.

2.3. Products and Coproducts

Definition 2.3.1.  Let {𝐶𝑖 | 𝑖 ∈ 𝐼} be a family of objects, then their product ∏𝑖∈𝐼 𝐶𝑖 is an ob-
ject such that there exist 𝜋𝑗 : ∏𝑖∈𝐼 → 𝐶𝑗 for all 𝑗 ∈ 𝐼  in a universal way. That is, for any object
𝐷 with morphisms 𝑔𝑗 : 𝐷 → 𝐶𝑗 for all 𝑗 ∈ 𝐼 , there exists a unique morphism 𝐷 → ∏𝑖∈𝐼 .

↑∃!

↑

𝑔𝑗

↑

𝜋𝑗

𝐷 ∏𝑖∈𝐼 𝐶𝑖

𝐶𝑗

The coproduct of {𝐶𝑖 | 𝑖 ∈ 𝐼} is defined as their product in the opposite category 𝐶op.
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↑

∃!

↑

𝑓𝑗

↑

𝑖𝑗

𝐷 ∐𝑖∈𝐼 𝐶𝑖

𝐶𝑗

Example 2.3.2.  In 𝐒𝐞𝐭, let {𝑋𝑖 | 𝑖 ∈ 𝐼} be a family of sets.

∏
𝑖∈𝐼

𝑋𝑖 = {(𝑥𝑖)𝑖∈𝐼 | 𝑥𝑖 ∈ 𝑋𝑖}

and ∐𝑖∈𝐼 𝑋𝑖 is the disjoint union.

Remark 2.3.3.  We need to use tuples here for the ordering of elements; suppose we want to use
sets only, then it can be messy and arbitrary! This is an advantage of the language of category
theory over that of set theory.

Proposition 2.3.4.

Hom𝒞(𝐴, ∏ 𝐶𝑖) →∼ ∏ Hom𝒞(𝐴, 𝐶𝑖)

Proof. For any 𝐶𝑖, there exists 𝜋𝑖 : ∏ 𝐶𝑖 → 𝐶𝑖 satisfying the universal property. Define 𝜑 :
Hom𝒞(𝐴, ∏ 𝐶𝑖) → ∏ Hom𝒞(𝐴, 𝐶𝑖) as

𝑓 ↦ (𝜋𝑖 ∘ 𝑓)𝑖 = (𝜋1 ∘ 𝑓, …, 𝜋𝑛 ∘ 𝑓)

↑𝑓

↑

𝑔𝑖

↑

𝜋𝑖

𝐴 ∏ 𝐶𝑖

𝐶𝑖

Any (𝑔𝑖)𝑖 ∈ ∏ Hom𝒞(𝐴, 𝐶𝑖) can be factorised as (𝜋𝑖 ∘ 𝑓 ′)𝑖 for some unique 𝑓 ′ : 𝐴 → ∏ 𝐶𝑖 due to the
universal property of the product. The existence of 𝑓 ′ ensures that 𝜑 is surjective and the uniqueness
of 𝑓  ensures injectivity. Thus 𝜑 is a bijection. ∎
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Proposition 2.3.5. We have

Hom𝒞(∐ 𝐶𝑖, 𝐴) →∼ ∏ Hom𝒞(𝐶𝑖, 𝐴).

Proof. This is similar to the above case: we just reverse all the arrows.

↑

𝑓

↑

𝑔𝑖

↑

𝑖𝑖

𝐴 ∐ 𝐶𝑖

𝐶𝑖

Notice the asymmetry here. It is not coproduct on the right hand side because it is still a tuple of
arrows. ∎

2.4. Functors and Natural Transformations

Definition 2.4.1.  Let 𝒞, 𝒟 be categories. A functor 𝐹 : 𝒞 → 𝒟 consists of
• A map of objects ob 𝒞 → ob 𝒟;
• For every pair objects 𝐶1, 𝐶2 ∈ 𝒞, a map of morphisms

Hom𝒞(𝐶1, 𝐶2) → Hom𝒟(𝐹(𝐶1), 𝐹 (𝐶2))

subject to preserving morphism composition and identity morphisms.

Definition 2.4.2.  Now we can define 𝐂𝐚𝐭, the category of all (small) categories, where ob 𝐂𝐚𝐭
are small categories and Hom𝐂𝐚𝐭(𝒞, 𝒟) are functors between 𝒞 and 𝒟.

Definition 2.4.3.  Suppose 𝐹, 𝐺 : 𝒞 → 𝒟, then a natural transformation 𝛼 : 𝐹 ⇒ 𝐺 is de-
fined by a collection of morphisms in 𝒟 indexed by 𝑥 ∈ ob 𝒞:

{𝛼𝑥 : 𝐹 (𝑥) → 𝐺(𝑥)}𝑥∈ ob 𝒞

where the diagram commutes:
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↑𝛼𝑥

↑

𝐺(𝑓)

↑

𝐹(𝑓)

↑𝛼𝑥′

𝐹(𝑥) 𝐺(𝑥)

𝐹(𝑥′) 𝐺(𝑥′)

Definition 2.4.4.  The functor category Fun(𝒞, 𝒟) is a category where the objects are functors
𝒞 → 𝒟 and the morphisms are natural transformations.

Remark 2.4.5.  In 𝐂𝐚𝐭, the hom-sets are not only sets but also categories, which means that 𝐂𝐚𝐭
is a 2-category.

2.5. Adjoint Functors

Definition 2.5.1.  Functors 𝐿 : 𝒜 ⇄ ℬ : 𝑅 are adjoint if for all 𝐴 ∈ 𝒜, 𝐵 ∈ ℬ there exists a
bijection

𝜏𝐴𝐵 : Homℬ(𝐿(𝐴), 𝐵) →∼ Hom𝒜(𝐴, 𝑅(𝐵))

such that for any 𝑓 : 𝐴 → 𝐴′ and 𝑔 : 𝐵 → 𝐵′, the diagram commutes:

↑ ↑

↑𝜏𝐴′𝐵 ↑𝜏𝐴𝐵 ↑𝜏𝐴𝐵′

↑ ↑

Homℬ(𝐿(𝐴′), 𝐵)) Homℬ(𝐿(𝐴), 𝐵) Homℬ(𝐿(𝐴), 𝐵′)

Hom𝒜(𝐴′, 𝑅(𝐵)) Hom𝒜(𝐴, 𝑅(𝐵)) Hom𝒜(𝐴, 𝑅(𝐵′))

Remark 2.5.2.  Recall in linear algebra we have ⟨𝑇 𝑣, 𝑤⟩ = ⟨𝑣, 𝑇 ∗𝑤⟩, where the name “adjoint”
comes from.

Remark 2.5.3.  Equivalently, 𝜏  is a natural isomorphism between Homℬ(𝐿(−), −) and
Hom𝒜(−, 𝑅(−)), both of which are functors 𝒜op × ℬ → 𝐒𝐞𝐭. Note that 𝐴op is used here be-
cause Hom𝒜(−, 𝐵) is a contravariant functor.

Example 2.5.4.  Free is the left adjoint of Forget. For example, we define the functors between
𝐕𝐞𝐜𝐭𝑘 and 𝐒𝐞𝐭:
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Forget : 𝐕𝐞𝐜𝐭𝑘 → 𝐒𝐞𝐭
(𝑉 , +, ⋅) ↦ 𝑉

Free : 𝐒𝐞𝐭 → 𝐕𝐞𝐜𝐭𝑘

𝑋 ↦ 𝑘[𝑋]

Then we have:

Hom𝐕𝐞𝐜𝐭𝑘
(𝑘[𝑋], 𝑊) ≅ Hom𝐒𝐞𝐭(𝑋, Forget(𝑊))

𝑇 ↦ 𝑇 |𝑋
linearly extended 𝑓 ↤ 𝑓

2.6. Equivalence of Categories

Definition 2.6.1.  In a category 𝒞, objects 𝑋, 𝑌  are isomorphic if there exists 𝑓 : 𝑋 → 𝑌  and
𝑔 : 𝑌 → 𝑋 such that 𝑓 ∘ 𝑔 = id𝑌  and 𝑔 ∘ 𝑓 = id𝑋 . We say that 𝑓  and 𝑔 are isomorphisms.

In the functor category, an isomorphism (which is a natural transformation between functors) is often
called a natural isomorphism.

Consider 𝐂𝐚𝐭, then two small categories 𝒞 and 𝒟 are isomorphic if there are functors 𝐹 : 𝒞 → 𝒟 and
𝐺 : 𝒟 → 𝒞 such that 𝐹 ∘ 𝐺 = Id and 𝐺 ∘ 𝐹 = Id. However, this rarely happens. We hence introduce
the following weaker condition.

Definition 2.6.2.  Two categories 𝒞 and 𝒟 are equivalent if there are functors 𝐹 : 𝒞 → 𝒟 and
𝐺 : 𝒟 → 𝒞 such that there exist natural isomorphisms 𝜀 : 𝐹𝐺 ⇒ Id and 𝜂 : Id ⇒ 𝐺𝐹 . In this
way 𝐹(𝐺(𝑋)) ≅ 𝑋 instead of 𝐹(𝐺(𝑋)) = 𝑋.

It does not really matter here if we write 𝐹𝐺 ⇒ Id or Id ⇒ 𝐹𝐺 (the same for 𝐺𝐹 ) because it is a nat-
ural isomorphism, but the above way of writing is to ensure consistency with an alternative definition
of adjoint functors.

Remark 2.6.3.  Let 𝑋, 𝑌 ∈ 𝐓𝐨𝐩 and 𝑓 : 𝑋 ⇆ 𝑌 : 𝑔 be continuous maps. If 𝑓 ∘ 𝑔 ∼ id and 𝑔 ∘
𝑓 ∼ id then 𝑋, 𝑌  are homotopy equivalent. Natural transformations are similar to the notion of
homotopy.

2.7. Limits and Colimits

Definition 2.7.1.  Let 𝐼  be a small category and 𝐹 : 𝐼 → 𝒜 be a functor. Then 𝐹  is called a
diagram. Denote 𝐹(𝑖) = 𝐹𝑖 for all 𝑖 ∈ 𝐼 . A cone of 𝐹  is an object 𝐶 of 𝒜 with morphisms
{𝑓𝑖 : 𝐶 → 𝐹𝑖}𝑖∈𝐼 , such that for any 𝛼 : 𝑗 → 𝑖 in 𝐼 ,
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↑

𝑓𝑗

↑

𝑓𝑖

↑𝐹 (𝛼)

𝐶

𝐹𝑗 𝐹𝑖

commutes.

A limit is a universal cone; namely, 𝐿 is a limit of 𝐹  if it is a cone of 𝐹  with {𝜋𝑖 : 𝐿 → 𝐹𝑖}𝑖∈𝐼
and there exists a unique morphism ℎ : 𝐶 → 𝐿 for any cone 𝐶 of 𝐹  with {𝑓𝑖 : 𝐶 → 𝐹𝑖}𝑖∈𝐼  such
that 𝑓𝑖 = 𝜋𝑖 ∘ ℎ for all 𝑖 ∈ 𝐼 . We denote 𝐿 = lim𝐼 𝐹 .

↑

𝜋𝑗

↑

𝜋𝑖

↑𝐹 (𝛼)

↑

𝑓𝑗

↑

𝑓𝑖

↑

∃!

𝐿

𝐹𝑗 𝐹𝑖

𝐶

Notation 2.7.2.  Sometimes we write 𝐿 = lim 𝐹𝑖 when 𝐼  is clear from the context or is not im-
portant.

Dually, we define the colimit of 𝐹 . This concept is important enough to be restated as follows.

Definition 2.7.3.  Let 𝐼  be a small category and 𝐹 : 𝐼 → 𝒜 be a diagram. Denote 𝐹(𝑖) = 𝐹𝑖 for
all 𝑖 ∈ 𝐼 . A cocone of 𝐹  is an object 𝐶 of 𝒜 with morphisms {𝑓𝑖 : 𝐹𝑖 → 𝐶}𝑖∈𝐼 , such that for
any 𝛼 : 𝑗 → 𝑖 in 𝐼 ,

↑
𝑓𝑗

↑

𝑓𝑖

↑𝐹 (𝛼)

𝐶

𝐹𝑗 𝐹𝑖

commutes.
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A colimit is a universal cocone; namely, 𝐿 is a colimit of 𝐹  if it is a cocone of 𝐹  with
{𝜋𝑖 : 𝐹𝑖 → 𝐿}𝑖∈𝐼  and there exists a unique morphism ℎ : 𝐿 → 𝐶 for any cocone 𝐶 of 𝐹  with
{𝑓𝑖 : 𝐹𝑖 → 𝐶}𝑖∈𝐼  such that 𝑓𝑖 = ℎ ∘ 𝜋𝑖 for all 𝑖 ∈ 𝐼 . We denote 𝐿 = colim𝐼 𝐹 .

↑
𝜋𝑗

↑

𝜋𝑖

↑𝐹 (𝛼)

↑

𝑓𝑗

↑

𝑓𝑖

↑
∃!

𝐿

𝐹𝑗 𝐹𝑖

𝐶

Proposition 2.7.4.  If any limit or colimit exists, then it is unique up to a unique isomorphism.

Notation 2.7.5.  Hence we usually say “the” limit (or kernel, product, etc.) instead of “a” limit of a
diagram.

Example 2.7.6.  If 𝐼  is a discrete category, then lim𝐼 𝐹 = ∏𝑖∈𝐼 𝐹𝑖 is the product and
colim𝐼 𝐹 = ∐𝑖∈𝐼 𝐹𝑖 is the coproduct.

Example 2.7.7. Let 𝐼 = ● ⇉ ● be the category with two objects and two parallel morphisms
between them. Let 𝐹 : 𝐼 → 𝒞 be a functor which maps 𝐼  to

𝐴 ⇉
𝑓

𝑔
𝐵

in 𝒞. Then when lim𝐼 𝐹  exists, we have two associated morphisms ℎ : lim𝐼 𝐹 → 𝐴 and ℎ′ :
lim𝐼 𝐹 → 𝐴, such that 𝑓 ∘ ℎ = ℎ′ = 𝑔 ∘ ℎ. We define the equaliser of 𝑓  and 𝑔 as this ℎ :
lim𝐼 𝐹 → 𝐴, denoted as eq(𝑓, 𝑔). We also dually define the coequaliser of 𝑓  and 𝑔 using
colim𝐼 𝐹 , denoted as coeq(𝑓, 𝑔), such that coeq(𝑓, 𝑔) ∘ 𝑓 = coeq(𝑓, 𝑔) ∘ 𝑔. Continuing with
Notation 2.2.9, we have

Eq(𝑓, 𝑔) ⟶
eq(𝑓,𝑔)

𝐴 ⇉
𝑓

𝑔
𝐵 ⟶

coeq(𝑓,𝑔)
Coeq(𝑓, 𝑔).
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Proposition 2.7.8.  In a category with a zero object, eq(𝑓, 0) = ker 𝑓  and coeq(𝑓, 0) = coker 𝑓 .

Proposition 2.7.9.  An equaliser is a monomorphism. A coequaliser is an epimorphism.

Proposition 2.7.10.  Let 𝐿 : 𝒜 ⇆ ℬ : 𝑅 be an adjunction and

𝐿(colim 𝐴𝑖) ≅ colim 𝐿(𝐴𝑖)
𝑅(lim 𝐵𝑖) ≅ lim 𝑅(𝐵𝑖)

Proof. Take 𝑋 ∈ ℬ.

Homℬ(𝐿(colim 𝐴𝑖), 𝑋) ≅ Hom𝒜(colim 𝐴𝑖, 𝑅(𝑋)) ≅ lim Hom𝒜(𝐴𝑖, 𝑅(𝑋))
≅ lim Homℬ(𝐿(𝐴𝑖), 𝑋) ≅ Homℬ(colim 𝐿(𝐴𝑖), 𝑋).

If we move colimit out of Hom, it becomes limit. (This has been seen for products and coproducts.) We
then apply Yoneda Lemma to show 𝐿(colim 𝐴𝑖) and colim 𝐿(𝐴𝑖) are isomorphic. ∎

Remark 2.7.11.  Left adjunction preserves colimits and right adjunction preserves limits. In par-
ticular, left adjunction preserves cokernels and are right exact; right adjunction preserves kernels
and are left exact (to be defined later).

Proposition 2.7.12.  A category 𝒞 has all finite limits if and only if it has finite products and
equalizers.

Proof. (Awodey 2010, Proposition 5.21). ∎

2.8. Subobjects and Quotient Objects
(Awodey 2010, Section 5.1). This section offers some new vocabulary to describe things we already
have seen.

Definition 2.8.1.  Let 𝐴 be an object of category 𝒞. A subobject of 𝐴 is a monomorphism 𝑢 :
𝑆 → 𝐴.

Give two subobjects 𝑢 : 𝑆 → 𝐴 and 𝑣 : 𝑇 → 𝐴 of 𝐴, we define the relation of inclusion of sub-
objects by 𝑢 ⊆ 𝑣 if and only if there exists 𝑓 : 𝑆 → 𝑇  such that 𝑢 = 𝑣 ∘ 𝑓 . Such 𝑓  is unique if it
exists, since 𝑣 is a monomorphism.

We say two subobjects 𝑢 : 𝑆 → 𝐴 and 𝑣 : 𝑇 → 𝐴 of 𝐴 are equivalent if 𝑢 ⊆ 𝑣 and 𝑣 ⊆ 𝑢.
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Proposition 2.8.2.  Let 𝑢 : 𝑆 → 𝐴 and 𝑣 : 𝑇 → 𝐴 be two equivalent subobjects of 𝐴, then 𝑆
and 𝑉  are isomorphic objects.

Notation 2.8.3.  Sometimes instead of saying 𝑢 : 𝑆 → 𝐴 is a subobject of 𝐴, we may say 𝑆 is a
subobject of 𝐴 when the monomorphism 𝑢 is clear from the context.

Proposition 2.8.4.  In category 𝒞, 𝑖 : 𝐴 → 𝐵 is the equaliser of 𝑓, 𝑔 : 𝐵 → 𝐶 if and only if 𝑖 is
the largest subobject of 𝐵 such that 𝑓 ∘ 𝑖 = 𝑔 ∘ 𝑖. In particular, 𝑖 : 𝐴 → 𝐵 is the kernel of 𝑓 :
𝐵 → 𝐶 if and only if 𝑖 is the largest subobject of 𝐵 such that 𝑓 ∘ 𝑖 = 0.

The dual concept of subobjects is quotient objects.
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3. Abelian Categories

3.1. 𝐀𝐛-enriched Categories
We have seen, for example, that in 𝐕𝐞𝐜𝐭𝑘 every hom-set not only is a collection (or set) of morphisms
but also has some “additional structures”, i.e., a vector space. This leads to the idea of enriched cate-
gories, where enriching means equipping the hom-sets with “additional structures”. The following is
an instance where every hom-set is an abelian group.

Definition 3.1.1.  We call a category 𝒞 𝐀𝐛-enriched if every Hom𝒞(𝑋, 𝑌 ) is a abelian group,
subject to bilinear morphism composition, namely

(𝑓 + 𝑔) ∘ ℎ = 𝑓 ∘ ℎ + 𝑔 ∘ ℎ and 𝑓 ∘ (𝑘 + ℎ) = 𝑓 ∘ 𝑘 + 𝑓 ∘ ℎ

for all 𝑓, 𝑔 : 𝑌 → 𝑍 and ℎ, 𝑘 : 𝑋 → 𝑌 .

Remark 3.1.2.  An equivalent way to put the bilinearity is the following: the composition map-
pings

𝑐𝑋𝑌 𝑍 : Hom𝒞(𝑋, 𝑌 ) × Hom𝒞(𝑌 , 𝑍) → Hom𝒞(𝑋, 𝑍), (𝑓, 𝑔) ↦ 𝑔 ∘ 𝑓

are group homomorphisms in each variable (Borceux 1994, vol. 2Definition 1.2.1).

Definition 3.1.3.  Let 𝒞 be an 𝐀𝐛-enriched category and 𝑋, 𝑌 ∈ 𝒞. The zero morphism 0 ∈
Hom𝒞(𝑋, 𝑌 ) is defined as the identity of the abelian group Hom𝒞(𝑋, 𝑌 ).

However, note that an 𝐀𝐛-enriched category needs not have a zero object, so this is actually a rede-
finition of a zero morphism from Proposition 2.2.5. We will see later that the two definitions match
when the zero object is present. Since group homomorphisms map identity to identity, we have the
following:

Proposition 3.1.4.  In an Ab-enriched category, let 𝑋 →
𝑔

𝑌 →
𝑓

𝑍 →
ℎ

𝑊 . If 𝑓  is a zero morphism,
then 𝑓 ∘ 𝑔 and ℎ ∘ 𝑓  are zero morphisms.

We can also define functors between 𝐀𝐛-enriched categories which respect the abelian group struc-
tures of the hom-set:

Definition 3.1.5.  If 𝒞, 𝒟 are 𝐀𝐛-enriched, we call 𝐹 : 𝒞 → 𝒟 an additive functor if

Hom𝒞(𝑋, 𝑌 ) → Hom𝒟(𝐹(𝑋), 𝐹(𝑌 ))

is a group homomorphism for any 𝑋, 𝑌 ∈ 𝒞.

Proposition 3.1.6.  If 𝒞 is an Ab-enriched category, then so is 𝒞op.
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Proof. The definition is self-dual. Namely, reversing all the arrows in 𝒞 breaks neither the group struc-
ture on hom-sets nor the bilinear morphism composition. ∎

An 𝐀𝐛-enriched category needs not have a zero object. Nevertheless, once it has an initial or final
object, it has a zero object, as shown below.

Proposition 3.1.7. Let ∗ be an object in an Ab-enriched category, then the followings are equiv-
alent:
(1) ∗ is a final object;
(2) ∗ is an initial object;
(3) ∗ is a zero object.

Proof. (3) ⇒ (1) and (3) ⇒ (2) is obvious. We only prove (1) ⇒ (3), and (2) ⇒ (3) follows from duality.

Suppose ∗ is a terminal object and let id∗ : ∗ → ∗ be the unique morphism in the abelian group of
Hom𝒞(∗, ∗), and so id∗ = 0. For any object 𝐴 and 𝑓 : ∗ → 𝐴 (because Hom𝒞(∗, 𝐴) contains at least
the zero morphism), we have

𝑓 = 𝑓 ∘ id∗ = 𝑓 ∘ 0 = 0 ∈ Hom𝒞(∗, 𝐴).

So there is a unique morphism from ∗ to 𝐴 and therefore ∗ is also initial. ∎

In fact, a final object is an empty product and an initial object an empty coproduct, and the previous
result can be generalised.

Proposition 3.1.8.  In an Ab-enriched category 𝒞, let 𝑋1, 𝑋2 be two objects. Then
(1) If the product 𝑋1 × 𝑋2 exists, then the coproduct 𝑋1 ⊔ 𝑋2 also exists and is isomorphic to

𝑋1 × 𝑋2;
(2) If the coproduct 𝑋1 ⊔ 𝑋2 exists, then the product 𝑋1 × 𝑋2 also exists and is isomorphic to

𝑋1 ⊔ 𝑋2.

Proof. (Monnet and Kremnitzer 2021, Proposition 3.7) and (Borceux 1994, vol. 2Proposition 1.2.4). We
prove statement (1) and leave (2) to duality.

Suppose the product 𝑋1 × 𝑋2 exists with projections 𝑝𝑘 : 𝑋1 × 𝑋2 → 𝑋𝑘. By definition of products,
there are unique morphisms 𝑖𝑘 : 𝑋𝑘 → 𝑋1 × 𝑋2 such that the following diagrams commute.

↑

𝑝1 ↑𝑝2

↑

id𝑋1 ↑

0

↑

∃!𝑖1

↑
id𝑋2

↑

0

↑

∃!𝑖2

𝑋1 × 𝑋2𝑋1 𝑋2

𝑋1

𝑋2
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Explicitly, we have for 𝑗, 𝑘 ∈ {1, 2},

𝑝𝑗 ∘ 𝑖𝑘 = {
id𝑋𝑗

if 𝑗 = 𝑘

0 otherwise

Then we have

𝑝1 ∘ (𝑖1𝑝1 + 𝑖2𝑝2) = 𝑝1, 𝑝2 ∘ (𝑖1𝑝1 + 𝑖2𝑝2) = 𝑝2.

By definition of products, id𝑋1×𝑋2
 is the unique morphism ℎ : 𝑋1 × 𝑋2 → 𝑋1 × 𝑋2 with 𝑝𝑘 ∘ ℎ =

𝑝𝑘 for each 𝑘, so 𝑖1𝑝1 + 𝑖2𝑝2 = id𝑋1×𝑋2
. We claim that

𝑋1 →
𝑖1

𝑋1 × 𝑋2 ←
𝑖2

𝑋2

is a universal cocone and thus a coproduct. Suppose 𝑋1 →
𝑓1

𝐴 ←
𝑓2

𝑋2 is another cocone. Then we have
a map

𝜑 = 𝑓1 ∘ 𝑝1 + 𝑓2 ∘ 𝑝2 : 𝑋1 × 𝑋2 → 𝐴

such that for 𝑘 = 1, 2, 𝜑 ∘ 𝑖𝑘 = 𝑓𝑘. This gives a commutative diagram
↑𝑖1 ↑ 𝑖2

↑𝑓1 ↑ 𝑓2↑

𝜑

𝑋1 𝑋2𝑋1 × 𝑋2

𝐴

It remains to show that 𝜑 is unique. To see this, note that for any such 𝜑 we have

𝜑 = 𝜑 ∘ id𝑋1×𝑋2

= 𝜑 ∘ (𝑖1𝑝1 + 𝑖2𝑝2)
= 𝜑𝑖1 ∘ 𝑝1 + 𝜑𝑖2 ∘ 𝑝2

= 𝑓1 ∘ 𝑝1 + 𝑓2 ∘ 𝑝2.

∎

Definition 3.1.9.  Let 𝒞 be an 𝐀𝐛-enriched category and let 𝑋1, 𝑋2 ∈ 𝒞. The biproduct of 𝑋1
and 𝑋2 is an object 𝑋1 ⊕ 𝑋2 with morphisms 𝑝𝑘 : 𝑋1 ⊕ 𝑋2 → 𝑋𝑘 and 𝑖𝑘 : 𝑋𝑘 → 𝑋1 ⊕ 𝑋2 for
𝑘 = 1, 2, such that
• 𝑝𝑘 ∘ 𝑖𝑘 = 1𝑋𝑘

;
• 𝑝𝑗 ∘ 𝑖𝑘 = 0 for 𝑘 ≠ 𝑗;
• 𝑖1 ∘ 𝑝1 + 𝑖2 ∘ 𝑝2 = 1𝑋1⊕𝑋2

.

Corollary 3.1.10.  In an 𝐀𝐛-enriched category, a binary biproduct is both a product and a co-
product, and a binary product (or a binary coproduct) is a biproduct.

22



Proof. This follows from the proof of Proposition 3.1.8. ∎

Remark 3.1.11. This extends to all finite products and coproducts but does not extend to infinite
products or coproducts.

Lemma 3.1.12.  In an 𝐀𝐛-enriched category, an additive functor preserves biproducts.

Proof. Notice that an additive functor preserves identity morphisms, zero morphisms, morphism com-
positions and morphism additions, and they are all we need in the definition of biproducts. ∎

Being able to add and subtract parallel morphisms means we can rephrase the definitions for a
monomorphism and epimorphism.

Proposition 3.1.13.  In an 𝐀𝐛-enriched category 𝒞, 𝑓 : 𝐵 → 𝐶 is a monomorphism if and only
if 𝑓 ∘ 𝑢 = 0 implies 𝑢 = 0 for all 𝑢 : 𝐴 → 𝐵. Dually, 𝑓 : 𝐵 → 𝐶 is an epimorphism if and only
if 𝑣 ∘ 𝑓 = 0 implies 𝑣 = 0 for all 𝑣 : 𝐶 → 𝐷.

Proof. 𝑓 : 𝐵 → 𝐶 is a monomorphism, if and only if (𝑓 ∘ −) : Hom𝒞(𝐴, 𝐵) → Hom𝒞(𝐴, 𝐶) is injec-
tive for any 𝐴, if and only if (𝑓 ∘ −) (as a ℤ-homomorphism) has kernel 0. ∎

3.2. Additive Categories
Inspired by Proposition 3.1.7 and Proposition 3.1.8, we naturally define the following:

Definition 3.2.1.  An 𝐀𝐛-enriched category 𝒞 is additive if it has all finite biproducts, includ-
ing the zero object.

Now we can reconcile the two definitions we have had for zero morphisms.

Proposition 3.2.2.  In an additive category 𝒞, let 𝑓 : 𝐴 → 𝐵. Then 𝑓  is the identity of
Hom𝒞(𝐴, 𝐵) if and only if it can be factored as 𝐴 → 0 → 𝐵.

Proof. Since Hom𝒞(𝐴, 0) has an unique element ℎ, it must be the identity of the group. Similarly,
Hom𝒞(0, 𝐵) contains only the identity 𝑔. The composition 𝑔 ∘ ℎ is the identity of Hom𝒞(𝐴, 𝐵) by
Proposition 3.1.4. ∎

Proposition 3.2.3.  In an additive category, if a monomorphism 𝑖 : 𝐴 → 𝐵 is a zero morphism,
then 𝐴 is the zero object. Dually, if an epimorphism 𝑝 : 𝐶 → 𝐷 is a zero morphism, then 𝐷 is
the zero object.

Proof. Take any 𝑋 and 𝑢 : 𝑋 → 𝐴, we have

𝑋 →
𝑢

𝐴 →
𝑖

𝐵.
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𝑖 = 0, so 𝑖 ∘ 𝑢 = 0; but since 𝑖 is monic, 𝑢 = 0 by Proposition 3.1.13. Therefore there is a unique (zero)
morphism from any 𝑋 to 𝐴, so 𝐴 is final and thus zero. ∎

Proposition 3.2.4. (Rotman 2009, Proposition 5.89). Let 𝑓 : 𝐴 → 𝐵 be a morphism in an addi-
tive category 𝒞. If ker 𝑓  exists, then 𝑓  is monic if and only if ker 𝑓 = 0. Dually, if coker 𝑓  exists,
then 𝑓  is epic if and only coker 𝑓 = 0.

Proof. Let ker 𝑓  be 𝑖 : 𝐾 → 𝐴. Suppose 𝑖 = 0. Since we know a kernel is a monomorphism, by
Proposition 3.2.3, 𝐾 = 0. To show that 𝑓  is monic, take any 𝑢 : 𝑋 → 𝐴 such that 𝑓 ∘ 𝑢 = 0. Then by
the universal property of a kernel, there exists a unique morphism ℎ : 𝑋 → 𝐾 such that 𝑢 = 𝑖 ∘ ℎ.
Thus 𝑢 factors through 𝐾 = 0, so 𝑢 = 0, proving 𝑓  is monic by Proposition 3.1.13.

↑
ℎ

↑
𝑢

↑𝑓↑𝑖
𝐾 𝐴 𝐵

𝑋

On the other hand, suppose 𝑓  is monic. Then ker 𝑓 = 0 directly follows from Proposition 3.1.13. ∎

3.3. Pre-abelian Categories
Now inspired by Proposition 3.2.4, we define the following:

Definition 3.3.1.  An additive category 𝒞 is pre-abelian if any morphism has a kernel and a
cokernel.

Corollary 3.3.2.  Let 𝑓  be a morphism in a pre-abelian category. 𝑓  is monic if and only if ker 𝑓
= 0. Dually, 𝑓  is epic if and only if coker 𝑓 = 0.

In fact, we get more than just kernels and cokernels:

Proposition 3.3.3.  A pre-abelian category has all finite limits and colimits.

Proof. Let 𝒞 be a pre-abelian category. Since eq(𝑓, 𝑞) = ker(𝑓 − 𝑔), 𝒞 has all equalisers and coequalis-
ers. We also know that 𝒞 has all finite products and coproducts as an additive category. Thus it has all
finite limits and colimits by Proposition 2.7.12. ∎

Proposition 3.3.4.  If 𝒞 is pre-abelian, for every morphism 𝑓 : 𝑋 → 𝑌 , there exists a unique
morphism 𝐺 → 𝐷 as shown below.
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↑ker(𝑓) ↑𝑓 ↑coker(𝑓)

↑

coker(ker(𝑓))

↑

ker(coker(𝑓))

↑∃!

𝐾 𝑋 𝑌 𝐶

𝐺 𝐷

Proof. Since coker(𝑓) ∘ 𝑓 = 0, by the universal property of kernel, there exists 𝑐 : 𝑋 → 𝐷 such
that 𝑓 = ker(coker(𝑓)) ∘ 𝑐. Since 𝑓 ∘ ker(𝑓) = 0, we have ker(coker(𝑓)) ∘ 𝑐 ∘ ker(𝑓) = 0. Now notice
ker(coker(𝑓)) is monic, and hence by Corollary 3.3.2, ker(ker(coker(𝑓))) = 0. By the universal prop-
erty of kernel again, there exists 𝑑 : 𝐾 → 0 such that 𝑐 ∘ ker(𝑓) = ker(ker(coker(𝑓))) ∘ 𝑑. Thus 𝑐 ∘
ker(𝑓) factors through the zero object and thus is 0. The desired morphism is obtained from the uni-
versal property of cokernel.

↑ker(𝑓) ↑𝑓 ↑coker(𝑓)

↑

coker(ker(𝑓))

↑

ker(coker(𝑓))

↑∃!

↑

𝑐

↑

ker(ker(coker(𝑓)))

↑

𝑑

𝐾 𝑋 𝑌 𝐶

𝐺 𝐷

0

∎

Definition 3.3.5. In a pre-abelian category, we define the coimage of a morphism 𝑓  as

coim(𝑓) = coker(ker(𝑓))

and image of 𝑓  as

im(𝑓) = ker(coker(𝑓)).

Continuing with Notation 2.2.9, we have 𝐺 = Coim(𝑓) and 𝐷 = Im(𝑓) in the above diagram.
We call 𝑓  strict if the map Coim(𝑓) → Im 𝑓  is an isomorphism.

3.4. Abelian Categories
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Definition 3.4.1.  A pre-ablian category is abelian if all morphisms are strict.

Corollary 3.4.2.  In an abelian category, every morphism 𝑓 : 𝑋 → 𝑌  has a factorisation

𝑋 →
𝑔

Im(𝑓) →
ℎ

𝑌 ,

where 𝑔 is an epimorphism and ℎ is a monomorphism.

Proof. Notice 𝑔 = coker(ker(𝑓)) = coim(𝑓) and ℎ = ker(coker(𝑓)) = im(𝑓). ∎

We can always write 𝑓 = im(𝑓) ∘ coim(𝑓) and consider im(𝑓) as a subobject of 𝑌 .

Remark 3.4.3.  The followings are two equivalent definitions of an abelian category:
• A pre-abelian category where every monomorphism is a kernel and every epimorphism is a

cokernel;
• A pre-abelian category where every monomorphism is the kernel of its cokernel and every

epimorphism is the cokernel of its kernel.

We prove part of the equivalence:

Proposition 3.4.4.  In an abelian category, every monomorphism is the kernel of its cokernel,
and every epimorphism is the cokernel of its kernel.

Proof. Use the diagram in the proof of Proposition 3.3.4. Let 𝑓  be a monomorphism, then ker(𝑓) = 0
and 𝐾 = 0. It is not to hard to find 𝐺 = 𝑋 and coker(ker(𝑓)) = id𝑋 . Since 𝐷 and 𝐺 are isomorphic,
we see that 𝑋 is isomorphic to 𝐷 and thus 𝑓 = ker(coker(𝑓)). ∎

Remark 3.4.5.  Now it is time to give a list of properties that abelian categories have, packing
everything we have picked up along the way:
• Every hom-set is an abelian group subject to bilinear morphism composition;
• It has a zero object and has a zero morphism between any two objects, which is the identity

of the abelian group and factors through 0;
• It has all limits and colimits;
• Any finite product and coproduct coincide as the biproduct;
• 𝑓  is monic if and only if 𝑓 ∘ 𝑢 = 0 implies 𝑢 = 0, if and only if ker 𝑓 = 0, if and only if 𝑓 =

im(𝑓);
• 𝑔 is epic if and only if 𝑣 ∘ 𝑔 = 0 implies 𝑣 = 0, if and only if coker 𝑔 = 0, if and only if 𝑔 =

colim(𝑔);
• 𝑓  is monic and 𝑓 = 0 implies the domain of 𝑓  is 0;
• 𝑔 is epic and 𝑔 = 0 implies the codomain of 𝑔 is 0;
• Coim(𝑓) → Im(𝑓) is an isomorphism;
• Any 𝑓  can be factorised as 𝑓 = ker(coker(𝑓)) ∘ coker(ker(𝑓)) = im(𝑓) ∘ coim(𝑓).

We now introduce the most important member in the family of abelian categories.
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Proposition 3.4.6.  For any ring 𝑅, the category 𝑅-𝐌𝐨𝐝 is an abelian category. In particular,
𝐀𝐛 is an abelian category.

Proof. (𝑅-𝐌𝐨𝐝 is 𝐀𝐛-enriched.) For any 𝐴, 𝐵 ∈ 𝑅-𝐌𝐨𝐝, the set Hom𝑅(𝐴, 𝐵) of module homomor-
phisms 𝐴 → 𝐵 can be naturally seen as an abelian group under pointwise addition. It is easy to check
that the composition is bilinear.

(𝑅-𝐌𝐨𝐝 is additive.) We know that the direct sum exists as a coproduct for any finite family of mod-
ules (𝑀𝑖)𝑖∈𝐼  in 𝑅-𝐌𝐨𝐝.

(𝑅-𝐌𝐨𝐝 is pre-abelian.) Let 𝑓 : 𝐴 → 𝐵 be a morphism in 𝑅-𝐌𝐨𝐝. Then

Ker(𝑓) = {𝑎 ∈ 𝐴 : 𝑓(𝑎) = 0}

with ker(𝑓) : Ker(𝑓) → 𝐴 being the inclusion map, is a categorical kernel. Also,

Coker(𝑓) = 𝐵/ Im(𝑓)

where Im(𝑓) = {𝑓(𝑎) ∈ 𝐵 : 𝑎 ∈ 𝐴}, with coker(𝑓) : 𝐵 → Coker(𝑓) being the quotient map, is a cat-
egorical cokernel.

(𝑅-𝐌𝐨𝐝 is abelian.) We find

Coker(ker(𝑓)) = 𝐴/ Ker(𝑓) ≅ Im(𝑓)

by the First Isomorphism Theorem and

Ker(coker(𝑓)) = Im(𝑓)

by construction. Hence the image and coimage coincide up to isomorphism, i.e., any 𝑓  is strict. ∎

Remark 3.4.7.  Note that the product and coproduct of a family (𝑀𝑖)𝑖∈𝐼  coincide when 𝐼  is finite
but differ when 𝐼  is infinite:

⨆
𝑖∈𝐼

𝑀𝑖 = ⨁
𝑖∈𝐼

𝑀𝑖 = {(𝑚𝑖)𝑖∈𝐼 | 𝑚𝑖 ∈ 𝑀𝑖, 𝑚𝑖 = 0 for almost all 𝑖},

∏
𝑖∈𝐼

𝑀𝑖 = {(𝑚𝑖)𝑖∈𝐼 | 𝑚𝑖 ∈ 𝑀𝑖}.

Proposition 3.4.8.  In 𝑅-𝐌𝐨𝐝, a monomorphism is equivalent to an injective homomorphism
and an epimorphism is equivalent to a surjective homomorphism.

Example 3.4.9. If 𝒜 is an abelian category and 𝒞 is any small category, then the category of
functors Fun(𝒞, 𝒜) is abelian.
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Example 3.4.10.  The category of Banach spaces over ℝ is not an abelian category, but a quasi-
abelian category.

3.5. Exact Sequences and Functors
Note 3.5.1.  All discussions in this section are limited to an abelian category.

We have trekked a long way to establish abelian categories. The key element that we seek from an
abelian category is the notion of exactness:

Definition 3.5.2.  In an abelian category, a sequence of maps 𝐴 →
𝑓

𝐵 →
𝑔

𝐶 is called exact at 𝐵
if ker 𝑔 = im 𝑓  (as equivalent subobjects of 𝐵).

Definition 3.5.3.  In an abelian category, a short exact sequence 0 → 𝐴 →
𝑓

𝐵 →
𝑔

𝐶 → 0 is
exact at 𝐴, 𝐵 and 𝐶 , or “exact everywhere”.

Lemma 3.5.4.  im(0 → 𝐴) = 0 and im(𝐴 → 0) = 0.

Proposition 3.5.5.  0 → 𝐴 →
𝑓

𝐵 →
𝑔

𝐶 → 0 is a short exact sequence if and only if 𝑓  is monic,
𝑔 is epic, and ker 𝑔 = im 𝑓 .

Proof.
• Exactness at 𝐴 ⇔ ker 𝑓 = im(0 → 𝐴) = 0 ⇔ 𝑓  is monic.
• Exactness at 𝐵 ⇔ ker 𝑔 = im 𝑓 .
• Exactness at 𝐶 ⇔ im 𝑔 = ker(𝐶 → 0) = id𝐶  ⇔ 𝑔 = coim(𝑔) ⇔ 𝑔 is epic.

∎

Proposition 3.5.6.  If 0 → 𝐴 →
𝑓

𝐵 →
𝑔

𝐶 → 0 is a short exact sequence, then 𝑓 = ker 𝑔 and 𝑔 =
coker 𝑓 .

Proof. 𝑓  is monic, so 𝑓 = im(𝑓) = ker(𝑔). 𝑔 is epic, so 𝑔 = coim(𝑔) = coker(ker(𝑔)) = coker(𝑓). ∎

Corollary 3.5.7.  0 → 𝐴 →
𝑓

𝐵 →
𝑔

𝐶 → 0 can be rewritten as

0 → Im(𝑓) → 𝐵 →
coker(𝑓)

Coker(𝑓) → 0
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or

0 → Ker(𝑔) →
ker(𝑔)

𝐵 → Coim(𝑔) → 0.

Proposition 3.5.8.  If 𝐴 →
𝑓

𝐵 → 𝐶 → 𝐷 →
𝑔

𝐸 is an exact sequence, then

0 → Coker(𝑓) → 𝐶 → Ker(𝑔) → 0

is a short exact sequence.

Definition 3.5.9.  A short exact sequence 0 → 𝐴 → 𝐵 → 𝐶 → 0 is split if 𝐵 is isomorphic to
𝐴 ⊕ 𝐶 .

Lemma 3.5.10 (Splitting Lemma).  Let 0 → 𝐴 →
𝑓

𝐵 →
𝑔

𝐶 → 0 be a short exact sequence. The
followings are equivalent:
(1) The short exact sequence is split;
(2) There exists a retraction² 𝑟 : 𝐵 → 𝐴 such that 𝑟 ∘ 𝑓 = id𝐴;
(3) There exists a section 𝑠 : 𝐶 → 𝐵 such that 𝑔 ∘ 𝑠 = id𝐶 .

²The terms “retraction” and “section” come from algebraic topology, but for our purpose they are nothing more than
certain morphisms.

Proof. Although it is possible to give a purely category-theoretic proof, as can be seen (Noix07 2014),
we give a proof in 𝑅-𝐌𝐨𝐝, which is in fact sufficient in view of Theorem 3.7.11.

(1) ⇒ (2) and (1) ⇒ (3) are trivial by the definition of biproducts.

(2) ⇒ (1). We first claim that 𝐵 = Im 𝑓 + Ker 𝑟. Take any 𝑏 ∈ 𝐵, then plainly 𝑏 = 𝑓𝑟(𝑏) + (𝑏 − 𝑓𝑟(𝑏)).
Since 𝑟(𝑏 − 𝑓𝑟(𝑏)) = 𝑟(𝑏) − 𝑟𝑓𝑟(𝑏) = 0, we have 𝑏 − 𝑓𝑟(𝑏) ∈ Ker 𝑟. Also obviously 𝑓𝑟(𝑏) ∈ Im 𝑓 .

We further claim that 𝐵 = Im 𝑓 ⊕ Ker 𝑟. Suppose 𝑏 ∈ Im 𝑓 ∩ Ker 𝑟, then there exists 𝑎 ∈ 𝐴 such that
𝑏 = 𝑓(𝑎); also 𝑟(𝑏) = 0. Then 0 = 𝑟𝑓(𝑎) = 𝑎, so 𝑏 = 𝑓(𝑎) = 0.

Now we claim that Ker 𝑟 ≅ 𝐶 ; in particular, the restriction 𝑔|Ker 𝑟 : Ker 𝑟 → 𝐶 is an isomorphism.
Take any 𝑐 ∈ 𝐶 , then since 𝑔 is a surjection, there exists some 𝑓(𝑎) + 𝑘 ∈ 𝐵, where 𝑎 ∈ 𝐴 and 𝑘 ∈
Ker 𝑟, such that 𝑔(𝑓(𝑎) + 𝑘) = 𝑐. Note that 𝑔𝑓(𝑎) = 0, because 𝑓(𝑎) ∈ Im 𝑓 = Ker 𝑔 by exactness at
𝐵, so for any 𝑐 ∈ 𝐶 , there exists 𝑘 ∈ Ker 𝑟 such that 𝑔(𝑘) = 𝑐. Thus 𝑔|Ker 𝑟 is surjective. On the other
hand, if 𝑔(𝑘) = 0 for 𝑘 ∈ Ker 𝑟, then 𝑘 ∈ Ker 𝑔 = Im 𝑓 , but Im 𝑓 ∩ Ker 𝑟 = {0}, so 𝑘 = 0. Thus 𝑔|Ker 𝑟
is injective.

Finally, observe that 𝑓  is an injection, so Im(𝑓) ≅ 𝐴.

(3) ⇒ (1). The proof is similar as above and thus omitted. ∎
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Corollary 3.5.11. Let 𝑀, 𝑆, 𝑇  be 𝑅-modules.
• If 𝑀 = 𝑆 ⊕ 𝑇  and 𝑆 ⊆ 𝑁 ⊆ 𝑀 , then 𝑁 = 𝑆 ⊕ (𝑁 ∩ 𝑇).
• If 𝑀 = 𝑆 ⊕ 𝑇  and 𝑆′ ⊆ 𝑆, then 𝑀/𝑆′ = 𝑆/𝑆′ ⊕ (𝑇 + 𝑆′)/𝑆′.

Proof. (Rotman 2009, Corollary 2.24). ∎

Definition 3.5.12.  An additive functor 𝐹 : 𝒞 → 𝒟 is called
• right exact if the exactness of 𝐴 → 𝐵 → 𝐶 → 0 implies the exactness of 𝐹(𝐴) → 𝐹(𝐵) →

𝐹(𝐶) → 0;
• left exact if the exactness of 0 → 𝐴 → 𝐵 → 𝐶 implies the exactness of 0 → 𝐹(𝐴) →

𝐹(𝐵) → 𝐹(𝐶);
• exact if the exactness of 0 → 𝐴 → 𝐵 → 𝐶 → 0 implies the exactness of 0 → 𝐹(𝐴) →

𝐹(𝐵) → 𝐹(𝐶) → 0,

for any 𝐴, 𝐵, 𝐶 ∈ 𝒞.

Remark 3.5.13.  By definition, right exactness preserves cokernels, since 𝐶 is the cokernel of the
map 𝐴 → 𝐵 and 𝐹(𝐶) is the cokernel of the map 𝐹(𝐴) → 𝐹(𝐵). Similarly, left exactness pre-
serves kernels.

Lemma 3.5.14.  Let 𝒜 be an abelian category. Let 𝑀 ∈ 𝒜. The functor

Hom𝒜(𝑀, −) : 𝒜 → 𝐀𝐛

is left exact.

Proof. Let 0 → 𝐴 →
𝑓

𝐵 →
𝑔

𝐶 be exact in 𝒜, then we want to prove

0 → Hom𝒜(𝑀, 𝐴) →
𝑓∘−

Hom𝒜(𝑀, 𝐵) →
𝑔∘−

Hom𝒜(𝑀, 𝐶)

is exact in 𝐀𝐛.

Exactness at Hom𝒜(𝑀, 𝐴) is equivalent to (𝑓 ∘ −) being monic, so let us calculate Ker(𝑓 ∘ −). Let
𝑢 ∈ Hom𝒜(𝑀, 𝐴) such that (𝑓 ∘ −)(𝑢) = 0, i.e., 𝑓 ∘ 𝑢 = 0. But 𝑓  is monic, so 𝑢 = 0, and thus Ker(𝑓 ∘
−) = 0 and (𝑓 ∘ −) is monic.

Exactness at Hom𝒜(𝑀, 𝐵) is equivalent to Ker(𝑔 ∘ −) = Im(𝑓 ∘ −). To show that Ker(𝑔 ∘ −) ⊆
Im(𝑓 ∘ −), let 𝑣 ∈ Ker(𝑔 ∘ −). Then 𝑣 : 𝑀 → 𝐵 such that 𝑔 ∘ 𝑣 = 0. Note that 𝐴 = Ker(𝑔) and 𝑓 =
ker(𝑔), so by the universal property of kernel, there exists ℎ : 𝑀 → 𝐴 such that 𝑣 = 𝑓 ∘ ℎ, hence 𝑣 ∈
Im(𝑓 ∘ −). On the other hand, to show that Im(𝑓 ∘ −) ⊆ Ker(𝑔 ∘ −), notice that if 𝑣 ∈ Im(𝑓 ∘ −),
then 𝑣 = 𝑓 ∘ ℎ for some ℎ and then 𝑔 ∘ 𝑣 = 𝑔 ∘ 𝑓 ∘ ℎ = 0 since 𝑔 ∘ 𝑓 = 0. ∎

Remark 3.5.15.  The functor Hom𝒜(𝑀, −) fails to be exact in general because it does not neces-
sarily send an epimorphism to an epimorphism. For a counterexample, let 𝒜 = 𝐀𝐛 (where an
epimorphism is equivalent to a surjective homomorphism) and 𝑀 = ℤ/2ℤ. The quotient map
ℎ : ℤ → ℤ/4ℤ is an surjective homomorphism. On the other hand, for any abelian group 𝐴, an
element in Hom𝐀𝐛(ℤ/2ℤ, 𝐴) (i.e., a group homomorphism ℤ/2ℤ → 𝐴) is uniquely determined
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by an element in 𝐴 with order 2. Hence Hom𝐀𝐛(ℤ/2ℤ, ℤ) = 0 and Hom𝐀𝐛(ℤ/2ℤ, ℤ/4ℤ) =
ℤ/2ℤ, and we see the induced map

(ℎ ∘ −) : Hom𝐀𝐛(ℤ/2ℤ, ℤ) → Hom𝐀𝐛(ℤ/2ℤ, ℤ/4ℤ)

cannot be surjective.

Corollary 3.5.16. Dually, Hom𝒜(−, 𝑀) : 𝒜op → 𝐀𝐛 is also left exact.

Note 3.5.17.  What does left exactness mean for a contravariant functor? If 𝑋 → 𝑌 →
𝑍 → 0 is exact in 𝒜, then 0 → 𝑍 → 𝑌 → 𝑋 is exact in 𝒜op, and 0 → Hom𝒜(𝑍, 𝑀) →
Hom𝒜(𝑌 , 𝑀) → Hom𝒜(𝑋, 𝑀) is exact in 𝐀𝐛.

3.6. Projective and Injective Objects

Definition 3.6.1.  Let 𝒜 be an abelian category. An object 𝑃  is called projective if Hom𝒜(𝑃 , −)
is exact. Dually, an object 𝐼  is called injective if Hom𝒜(−, 𝐼) is exact.

In other words, 𝑃  is projective if for any short exact sequence 0 → 𝑋 → 𝑌 → 𝑍 → 0 in 𝒜,

0 → Hom𝒜(𝑃 , 𝑋) → Hom𝒜(𝑃 , 𝑌 ) → Hom𝒜(𝑃 , 𝑍) → 0

is a short exact sequence.

Proposition 3.6.2.  The followings are equivalent:
(1) 𝑃  is a projective object;
(2) For any epimorphism ℎ : 𝑌 → 𝑍 , the induced map (ℎ ∘ −) : Hom𝒜(𝑃 , 𝑌 ) → Hom𝒜(𝑃 , 𝑍)

is surjective;
(3) For any epimorphism ℎ : 𝑌 → 𝑍 and any morphism 𝑓 : 𝑃 → 𝑍 , there exists (not necessar-

ily unique) 𝑔 : 𝑃 → 𝑌  such that 𝑓 = ℎ ∘ 𝑔, i.e. the following commutes (which we refer to
as the lifting property):

↑

𝑓

↑↑ℎ↑ ∃𝑔

𝑃

0𝑍𝑌

(4) Any short exact sequence 0 → 𝐴 → 𝐵 → 𝑃 → 0 splits.

Proof. (1) ⇒ (2) is obvious; (2) ⇒ (1) by Lemma 3.5.14. (2) ⇔ (3) is also obvious.

(3) ⇒ (4).
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↑id𝑃

↑𝑔↑

𝑠

↑ ↑ ↑𝐴 𝐵 𝑃 00

𝑃

Since 𝑔 : 𝐵 → 𝑃  is an epimorphism, we can always find 𝑠 : 𝑃 → 𝐵 such that 𝑔 ∘ 𝑠 = id𝑃  by the lifting
property. Then (4) holds by Splitting Lemma 3.5.10.

(4) ⇒ (3). See (Rafael 2019). ∎

Corollary 3.6.3. Dually, the followings are equivalent:
(1) 𝐼  is injective;
(2) For any monomorphism ℎ : 𝑋 → 𝑌 , the induced map (− ∘ ℎ) : Hom𝒜(𝑌 , 𝐼) →

Hom𝒜(𝑋, 𝐼) is surjective;
(3) For any monomorphism ℎ : 𝑋 → 𝑌  and any 𝑓 : 𝑋 → 𝐼 , there exists 𝑔 : 𝑌 → 𝐼  such that

𝑓 = 𝑔 ∘ ℎ, i.e., the following commutes (which we refer to as the extension property):

↑

𝑓

↑ ↑ℎ

↑ ∃𝑔

𝐼

0 𝑋 𝑌

(4) Any short exact sequence 0 → 𝐼 → 𝐴 → 𝐵 → 0 splits.

3.7. Categories of Modules

Proposition 3.7.1.  Ring 𝑅 viewed as an object in 𝑅-𝐌𝐨𝐝 is projective.

Proof. It is equivalent to say the functor Hom𝑅(𝑅, −) is exact. In fact, Hom𝑅(𝑅, 𝑀) ≅ 𝑀  because
any module morphism 𝜑 : 𝑅 → 𝑀  is entirely determined by 𝜑(1𝑅). Given any short exact sequence
0 → 𝑀 → 𝑀 ′ → 𝑀″ → 0, if we apply Hom𝑅(𝑅, −), we get the same short exact sequence, which
is exact. ∎

Note 3.7.2. In 𝑅-𝐌𝐨𝐝, we have

Hom𝑅(𝑅, ⨁
𝑖∈𝐼

𝑀𝑖) = ⨁
𝑖∈𝐼

𝑀𝑖 = ⨁
𝑖∈𝐼

Hom𝑅(𝑅, 𝑀𝑖).

This does not follow from the universal property of the direct sum; this is because 𝑅 is special.
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Definition 3.7.3.  Let 𝒜 be an additive category. We call an object 𝐶 compact if the canonical
morphism

∐
𝑖∈𝐼

Hom𝒜(𝐶, 𝐺𝑖) → Hom𝒜(𝐶, ∐
𝑖∈𝐼

𝐺𝑖)

is an isomorphism for any family {𝐺𝑖}𝑖∈𝐼  of objects in 𝒜 such that ∐𝑖∈𝐼 𝐺𝑖 exists.

Remark 3.7.4.  You might find different definitions for an arbitrary category (not necessarily ad-
ditive), but they are equivalent under the additive context.

Definition 3.7.5.  In a category 𝒞 with coproducts, an object 𝐺 is called a generator if for any
𝑋 ∈ 𝒞, there is an epimorphism ∐𝐼 𝐺 → 𝑋 → 0.

Lemma 3.7.6.  𝑅 is a generator of 𝑅-𝐌𝐨𝐝.

Proof. Recall Corollary 1.9. ∎

Lemma 3.7.7.  In an abelian category 𝒜, any hom-set Hom𝒜(𝑋, 𝑌 ) can be seen as a right mod-
ule over ring End𝒜(𝑋), or equivalently a left module over End𝒜 (𝑋)op.

Proof. First notice End𝒜(𝑋) is indeed a ring with composition as multiplication. Take any 𝑚 ∈
Hom𝒜(𝑋, 𝑌 ) and 𝑟 ∈ End𝒜(𝑋). Define the multiplication 𝑚𝑟 as 𝑚 ∘ 𝑟 ∈ Hom𝒜(𝑋, 𝑌 ). It is easy to
verify that this makes Hom𝒜(𝑋, 𝑌 ) a right module over End𝒜(𝑋). ∎

Theorem 3.7.8 (Morita's Theorem).  Let 𝒜 be an abelian category. Assume 𝒜 has (small) co-
products. Assume that 𝑃  is a compact, projective generator. Let ring 𝑅 = End𝒜(𝑃 ), then the
functor

Hom𝒜(𝑃 , −) : 𝒜 → 𝐌𝐨𝐝-𝑅

is an equivalence of categories.

Note 3.7.9.  If 𝒜 = 𝑆-𝐌𝐨𝐝 for some ring 𝑆, we have observed that 𝑆 (as an object of 𝑆-𝐌𝐨𝐝)
is a compact, projective generator. In this case, 𝑅 = End𝑆(𝑆). We observe that any module ho-
momorphism 𝜑 : 𝑆 → 𝑆 is uniquely determined by 𝜑(1) ∈ 𝑆 with 𝜑(𝑠) = 𝑠𝜑(1), and the com-
position of two homomorphisms 𝜑1, 𝜑2 : 𝑆 → 𝑆 is in the opposite direction of multiplication
in 𝑆:

𝜑1(𝜑2(𝑠)) = 𝑠𝜑2(1)𝜑1(1)
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Therefore, 𝑅 = End𝑆(𝑆) = 𝑆op. Thus, indeed, we have 𝑆-𝐌𝐨𝐝 is equivalent to 𝐌𝐨𝐝-𝑅, which
is 𝐌𝐨𝐝-𝑆op.

Proof. (Rotman 2009, Theorem 5.55) and (Pareigis 1970, p. 211). Denote 𝐹 ≔ Hom𝒜(𝑃 , −) : 𝒜 →
𝐌𝐨𝐝-𝑅. Using the definition of categorical equivalence, we want to construct another functor 𝐺 :
𝐌𝐨𝐝-𝑅 → 𝒜 and show 𝐹𝐺 and 𝐺𝐹  are naturally isomorphic to identity functors. We see that in this
way 𝐺 should be left adjoint to 𝐹 , so 𝐺 must preserves colimits and in particular be right exact.

Inspired by the discussion above, we define 𝐺 in the following way. We first set 𝐺(𝑅) = 𝑃  and
𝐺(𝑅⊕𝐼) = 𝑃⊕𝐼 . Any morphism 𝑓 : 𝑅⊕𝐽 → 𝑅⊕𝐼  can be represented by a (possibly infinite) matrix
with entries 𝑎𝑖𝑗 ∈ 𝑅 for all 𝑖 ∈ 𝐼  and 𝑗 ∈ 𝐽 . However, notice that 𝑅 = End𝒜(𝑃 ) by definition and
thus the same matrix (𝑎𝑖𝑗)𝑖∈𝐼,𝑗∈𝐽

 can also be seen as a morphism 𝑃⊕𝐽 → 𝑃⊕𝐼 , which is defined to be
𝐺(𝑓). Now, for any 𝑅-module 𝑀 , we can find a presentation

𝑅⊕𝐽 →
𝑓

𝑅⊕𝐼 → 𝑀 → 0

Under 𝐺, this becomes

𝑃⊕𝐽 →
𝐺(𝑓)

𝑃⊕𝐼 → 𝐺(𝑀) → 0

where we define 𝐺(𝑀) = Coker(𝐺(𝑓)). It can be verified that 𝐺 is a functor.

Since 𝑃  is a projective object, 𝐹  is exact and preserves cokernels; since 𝑃  is compact, 𝐹  preserves
direct sums. On the other hand, 𝐺 is right exact and preserves direct sums by construction. Hence the
composites 𝐹𝐺 and 𝐺𝐹  are right exact and preserves direct sums. Now we check 𝐹𝐺 and 𝐺𝐹  are
naturally isomorphic to identity functors.

For 𝐹𝐺 : 𝐌𝐨𝐝-𝑅 → 𝐌𝐨𝐝-𝑅, we have

𝐹𝐺(𝑅) = 𝐹(𝑃) = Hom𝒜(𝑃 , 𝑃 ) = 𝑅

and hence 𝐹𝐺(𝑅⊕𝐼) = 𝑅⊕𝐼 . Now for any 𝑀 ∈ 𝐌𝐨𝐝-𝑅, there is a commutative diagram

↑ ↑ ↑

↑ ↑ ↑

↑ ↑ ↑

𝑅⊕𝐽 𝑅⊕𝐼 𝑀

𝐹𝐺(𝑅⊕𝐽) 𝐹𝐺(𝑅⊕𝐼) 𝐹𝐺(𝑀)

0

0

Since 𝐹𝐺 preserves cokernels, we see that 𝐹𝐺(𝑀) ≅ 𝑀 . Hence 𝐹𝐺 is naturally isomorphic to the
identity functor of 𝐌𝐨𝐝-𝑅.

For 𝐺𝐹 : 𝒜 → 𝒜, we have 𝐺𝐹(𝑃) = 𝐺(𝑅) = 𝑃 , so 𝐺𝐹(𝑃⊕𝐼) = 𝑃⊕𝐼 . Now take any 𝑋 ∈ 𝒜, since
𝑃  is a generator, we can find

𝑃⊕𝐽 → 𝑃⊕𝐼 → 𝑋 → 0

A similar argument as before gives the result. ∎

Remark 3.7.10.  𝒜 can have more than one compact, projective generator, say 𝑃1 and 𝑃2. Then
𝐴 = End𝒜 (𝑃1)

op‐ 𝐌𝐨𝐝 = End𝒜 (𝑃2)
op‐ 𝐌𝐨𝐝, where rings End𝒜(𝑃1) and End𝒜(𝑃2) are not

necessarily isomorphic. This is Morita equivalence of rings.
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For example, consider 𝐕𝐞𝐜𝐭𝑘 for some field 𝑘. Then 𝑘 and 𝑘𝑛 are both compact, projective gen-
erators of 𝐕𝐞𝐜𝐭𝑘. Then 𝑘 and 𝑀𝑛(𝑘) (𝑛 × 𝑛 matrices over 𝑘) both are equivalent to 𝐕𝐞𝐜𝐭𝑘 as
categories.

Theorem 3.7.11 (Freyd-Mitchell Embedding Theorem).  If 𝒜 is a small abelian category, there is
a ring 𝑅 and an exact, fully faithful embedding functor 𝒜 → 𝑅-𝐌𝐨𝐝.

Proof. (Weibel 1994, p. 25). ∎

This theorem indicates that we can embed an abstract category into a concrete one. From a practical
perspective, we can prove any reasonable statements for 𝑅-𝐌𝐨𝐝 and they will also hold for abelian
categories. An example is the following.

Lemma 3.7.12 (Snake Lemma).  Suppose we have a commutative diagram of objects in an abelian
category or 𝑅-𝐌𝐨𝐝

↑

𝑓

↑

𝑔

↑

ℎ

↑𝑖′ ↑𝑝′ ↑

↑ ↑𝑖 ↑𝑝
𝐴 𝐵 𝐶

𝐴′ 𝐵′ 𝐶′ 0

0

such that the rows are exact, then there is an exact sequence

Ker 𝑓 → Ker 𝑔 → Ker ℎ →
𝜕

Coker 𝑓 → Coker 𝑔 → Coker ℎ

where the connecting (homo)morphism 𝜕 is given by a well-defined formula

𝜕(𝑐′) = 𝑖−1𝑔𝑝′−1(𝑐′) + Im(𝑓)

where 𝑝′−1 means finding some element 𝑏′ ∈ 𝐵′ such that 𝑝′(𝑏′) = 𝑐′ and so on. Further, if
𝐴′ → 𝐵′ is monic, so is Ker 𝑓 → Ker 𝑔. If 𝐵 → 𝐶 is epic, so is Coker 𝑔 → Coker ℎ.

Proof. A detailed proof can be seen (Gardner 2023). We have the following commutative diagram:

35



↑

↑

𝑓

↑

↑

↑

𝑔

↑

↑

↑

ℎ

↑

↑𝑖′ ↑𝑝′ ↑

↑ ↑𝑖 ↑𝑝

↑

𝜕

↑𝑗 ↑𝑞

↑𝑗′ ↑𝑞′

𝐴 𝐵 𝐶

𝐴′ 𝐵′ 𝐶′

Ker 𝑓 Ker 𝑔 Ker ℎ

Coker 𝑓 Coker 𝑔 Coker ℎ

0

0

In the first row, consider map 𝑗′ ≔ 𝑖′|Ker 𝑓 : Ker 𝑓 → 𝐵′. We claim that 𝑗′ : Ker 𝑓 → Ker 𝑔. Indeed,
take any 𝑎′ ∈ Ker 𝑓 ⊆ 𝐴′, we have

𝑔(𝑗′(𝑎′)) = 𝑔(𝑖′(𝑎′)) = 𝑖(𝑓(𝑎′)) = 𝑖(0) = 0.

Then 𝑗′(𝑎′) ∈ Ker 𝑔 and thus 𝑗′ : Ker 𝑓 → Ker 𝑔. Similarly, 𝑞′ ≔ 𝑝′|Ker 𝑔 : Ker 𝑔 → Ker ℎ. We then
see the first row is exact because of the exactness of 𝐴′ → 𝐵′ → 𝐶′. Also, if 𝑖′ is an injection, i.e.,
Ker(𝑖′) = 0, then obviously Ker(𝑗′) = 0.

In the last row, define 𝑗 : Coker(𝑓) → Coker(𝑔) as 𝑎 + Im(𝑓) ↦ 𝑖(𝑎) + Im(𝑔) for any 𝑎 ∈ 𝐴. We
claim that this map is well-defined. If 𝑎1, 𝑎2 ∈ 𝐴 such that 𝑎1 + Im(𝑓) = 𝑎2 + Im(𝑓), then 𝑎1 − 𝑎2 ∈
Im(𝑓), thus there exists 𝑎′ ∈ 𝐴′ so that 𝑎1 − 𝑎2 = 𝑓(𝑎′). Then 𝑖(𝑎1 − 𝑎2) = 𝑖(𝑓(𝑎′)) = 𝑔(𝑖′(𝑎′)) ∈
Im(𝑔). Then

𝑗(𝑎1 + Im(𝑓)) = 𝑖(𝑎1) + Im(𝑔) = 𝑖(𝑎2) + Im(𝑔) = 𝑗(𝑎2 + Im(𝑓)).

So 𝑗 is well-defined. Similarly, we can define 𝑞 : Coker 𝑔 → Coker ℎ and show the exactness of the
last row. We can also see that the surjection of 𝑝 implies the surjection of 𝑞.

Now all arrows except 𝜕 are clear. Pick any 𝑐′ ∈ Ker ℎ ⊆ 𝐶′. Since 𝑝′ is surjective, there exists 𝑏′ ∈
𝐵′ so that 𝑝′(𝑏′) = 𝑐′. Now 0 = ℎ(𝑐′) = ℎ(𝑝′(𝑏′)) = 𝑝(𝑔(𝑏′)), so 𝑔(𝑏′) ∈ Ker 𝑝 = Im 𝑖, and there ex-
ists unique 𝑎 ∈ 𝐴 such that 𝑖(𝑎) = 𝑔(𝑏′). We thus define 𝜕 : Ker ℎ → Coker 𝑓  as 𝜕(𝑐′) = 𝑎 + Im(𝑓).
We claim this is a well-defined function. Then it suffices to show for any two choices 𝑏′

1, 𝑏′
2 of 𝑏′ and

corresponding choices 𝑎1, 𝑎2 of 𝑎, 𝜕(𝑐′) gives the same value. Since 𝑝′(𝑏′
1) = 𝑝′(𝑏′

2) = 𝑐′, we have
𝑏′
1 − 𝑏′

2 ∈ Ker(𝑝′) = Im(𝑖′). Thus we can write 𝑏′
1 − 𝑏′

2 = 𝑖′(𝑎′) for some 𝑎′ ∈ 𝐴′. Then 𝑖(𝑎1 − 𝑎2) =
𝑔(𝑏′

1 − 𝑏′
2) = 𝑔(𝑖′(𝑎′)) = 𝑖(𝑓(𝑎′)), but 𝑖 is injective, and hence 𝑎1 − 𝑎2 = 𝑓(𝑎′) ∈ Im 𝑓 .

We omit the proof of the exactness at Ker ℎ and Coker 𝑓 . ∎
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4. Tensor Product of Modules
4.1. Existence and Functoriality

Definition 4.1.1.  Let 𝑅 be a ring. Consider right 𝑅-module 𝑀 , left 𝑅-module 𝑁  and abelian
group 𝐴. A map 𝑓 : 𝑀 × 𝑁 → 𝐴 is called a balanced product (or we say it is 𝑅-biadditive)
if it satisfies:

𝑓(𝑥 + 𝑥′, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑓(𝑥′, 𝑦),
𝑓(𝑥, 𝑦 + 𝑦′) = 𝑓(𝑥, 𝑦) + 𝑓(𝑥, 𝑦′),

𝑓(𝑥𝑟, 𝑦) = 𝑓(𝑥, 𝑟𝑦).

for all 𝑥, 𝑥′ ∈ 𝑀 , 𝑦, 𝑦′ ∈ 𝑁  and 𝑟 ∈ 𝑅.

Definition 4.1.2.  The tensor product of a right 𝑅-module 𝑀  and a left 𝑅-module 𝑁  is an
abelian group 𝑀 ⊗𝑅 𝑁  with a balance product 𝑀 × 𝑁 → 𝑀 ⊗𝑅 𝑁  such that for any balanced
product 𝑓 : 𝑀 × 𝑁 → 𝐴, there exists a unique group homomorphism 𝑀 ⊗𝑅 𝑁 → 𝐴 that
makes the diagram commutes:

↑

𝑓
↑

∃!

↑𝑀 × 𝑁 𝑀 ⊗𝑅 𝑁

𝐴

We might simply say 𝑀 ⊗𝑅 𝑁  is the tensor product of 𝑀  and 𝑁 .

Remark 4.1.3.  In other words, 𝑀 ⊗𝑅 𝑁  is an initial object of the category of all balanced prod-
ucts 𝑀 × 𝑁 → 𝐴 (where a morphism is a group homomorphism 𝐴 → 𝐴′).

Lemma 4.1.4. The tensor product 𝑀 × 𝑁 → 𝑀 ⊗𝑅 𝑁  exists, up to a unique isomorphism, for
any right 𝑅-module 𝑀  and left 𝑅-module 𝑁 .

Proof. Consider the free abelian group 𝐹  with basis 𝑀 × 𝑁 , and let 𝑖 : 𝑀 × 𝑁 → 𝐹  be the inclusion
map. 𝐹  has a subgroup 𝐼  generated by all elements of the following forms

(𝑥 + 𝑥′, 𝑦) − (𝑥, 𝑦) − (𝑥′, 𝑦)
(𝑥, 𝑦 + 𝑦′) − (𝑥, 𝑦) − (𝑥, 𝑦′)

(𝑥𝑟, 𝑦) − (𝑥, 𝑟𝑦)

for 𝑥, 𝑥′ ∈ 𝑀 , 𝑦, 𝑦′ ∈ 𝑁  and 𝑟 ∈ 𝑅. Denote 𝑀 ⊗𝑅 𝑁 ≔ 𝐹/𝐼 , and denote the coset (𝑥, 𝑦) + 𝐼  by 𝑥 ⊗
𝑦, and define
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ℎ : 𝑀 × 𝑁 → 𝑀 ⊗𝑅 𝑁
(𝑥, 𝑦) ↦ 𝑥 ⊗ 𝑦

It is clear that ℎ is biadditive.

Let 𝑓 : 𝑀 × 𝑁 → 𝐴 be a balanced product, then there exists a homomorphism 𝑓 ′ : 𝐹 → 𝐴 which
linearly extends 𝑓  such that 𝑓 = 𝑓 ′ ∘ 𝑖. Now we see that 𝐼 ⊆ Ker 𝑓 ′ and thus 𝑓 ′ induces a map

𝑓 : 𝐹/𝐼 → 𝐴
(𝑥, 𝑦) + 𝐼 ↦ 𝑓 ′(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)

which is the same as saying

𝑓 : 𝑀 ⊗𝑅 𝑁 → 𝐴
𝑥 ⊗ 𝑦 ↦ 𝑓(𝑥, 𝑦)

Thus we see that 𝑓 ∘ ℎ = 𝑓 , and we can conclude that 𝑀 ⊗𝑅 𝑁  is a tensor product of 𝑀  and 𝑁 . The
uniqueness follows from the universal property. ∎

Lemma 4.1.5.  Let 𝜑 : 𝑀 → 𝑀 ′ and 𝜓 : 𝑁 → 𝑁 ′ be module homomorphisms, then there exists
a unique group homomorphism 𝜑 ⊗ 𝜓 : 𝑀 ⊗𝑅 𝑁 → 𝑀 ′ ⊗𝑅 𝑁 ′, such that

𝜑 ⊗ 𝜓 : 𝑚 ⊗ 𝑛 ↦ 𝜑(𝑚) ⊗ 𝜓(𝑛)

Proof. The function

𝑓 : 𝑀 × 𝑁 → 𝑀 ′ ⊗𝑅 𝑁 ′

(𝑚, 𝑛) ↦ 𝜑(𝑚) ⊗ 𝜓(𝑛)

is 𝑅-biadditive. Therefore, 𝑓  induces a unique homomorphism

𝑓 : 𝑀 ⊗𝑅 𝑁 → 𝑀 ′ ⊗𝑅 𝑁 ′

𝑚 ⊗ 𝑛 ↦ 𝜑(𝑚) ⊗ 𝜓(𝑛)

which we write as 𝜑 ⊗ 𝜓. ∎

Corollary 4.1.6.  (𝜑′ ∘ 𝜑) ⊗ (𝜓′ ∘ 𝜓) = (𝜑′ ⊗ 𝜓′) ∘ (𝜑 ⊗ 𝜓) for any 𝑀 →
𝜑

𝑀 ′ →
𝜑′

𝑀″ and
𝑁 →

𝜓
𝑁 ′ →

𝜓′

𝑁″.

Proof. Both send 𝑚 ⊗ 𝑛 to 𝜑′(𝜑(𝑚)) ⊗ 𝜓′(𝜓(𝑛)), but such a homomorphism should be unique. ∎

Corollary 4.1.7.  Let 𝑀  be a right 𝑅-module and 𝑁  be a left 𝑅-module, then we have functors

𝑀 ⊗𝑅 − : 𝑅-𝐌𝐨𝐝 → 𝐀𝐛
𝐵 ↦ 𝑀 ⊗𝑅 𝐵

(𝑔 : 𝐵 → 𝐵′) ↦ id𝑀 ⊗ 𝑔
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− ⊗𝑅 𝑁 : 𝐌𝐨𝐝-𝑅 → 𝐀𝐛
𝐴 ↦ 𝐴 ⊗𝑅 𝑁

(𝑓 : 𝐴 → 𝐴′) ↦ 𝑓 ⊗ id𝑁

4.2. Bimodules and Bilinearity

Definition 4.2.1.  Let 𝑅, 𝑆 be rings. An 𝑅-𝑆-bimodule is an abelian group 𝑀  being both a left
𝑅-module and a right 𝑆-module, satisfying:

𝑟(𝑚𝑠) = (𝑟𝑚)𝑠

for all 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆.

Example 4.2.2.  Any left 𝑅-module is an 𝑅-ℤ-bimodule, and any right 𝑅-module is a ℤ-𝑅-bi-
module.

Example 4.2.3.  When 𝑅 is commutative, any 𝑅-module can be seen as an 𝑅-𝑅-bimodule.

Proposition 4.2.4.  Let 𝑄, 𝑅, 𝑆 be rings, 𝑀  be a 𝑄-𝑅-bimodule, and 𝑁  be a 𝑅-𝑆-bimodule.
Then 𝑀 ⊗𝑅 𝑁  is a 𝑄-𝑆-bimodule.

Proof. Let 𝑞 ∈ 𝑄 and 𝑠 ∈ 𝑆. Then 𝑓 : 𝑚 ↦ 𝑞𝑚 is a homomorphism 𝑀 → 𝑀  and 𝑔 : 𝑛 ↦ 𝑛𝑠 is a ho-
momorphism 𝑁 → 𝑁 . Then 𝑓 ⊗ id𝑁  gives a left multiplication on 𝑀 ⊗𝑅 𝑁  and id𝑀 ⊗ 𝑔 gives a right
multiplication on 𝑀 ⊗𝑅 𝑁 , which satisfies (𝑓 ⊗ id𝑁) ∘ (id𝑀 ⊗ 𝑔) = 𝑓 ⊗ 𝑔 = (id𝑀 ⊗ 𝑔) ∘ (𝑓 ⊗ id𝑁).
∎

Definition 4.2.5.  If 𝑅 is a commutative ring and 𝑀, 𝑁, 𝐴 are 𝑅-modules, a map 𝑓 : 𝑀 × 𝑁 →
𝐴 is called 𝑅-bilinear if it is 𝑅-biadditive and also

𝑓(𝑟𝑥, 𝑦) = 𝑓(𝑥, 𝑟𝑦) = 𝑟𝑓(𝑥, 𝑦)

for all 𝑥 ∈ 𝑀 , 𝑦 ∈ 𝑁  and 𝑟 ∈ 𝑅.

Proposition 4.2.6.  Let 𝑅 be a commutative ring and 𝐴, 𝐵 be 𝑅-modules. Then 𝐴 ⊗𝑅 𝐵 is an
𝑅-module and ℎ : 𝐴 × 𝐵 → 𝐴 ⊗𝑅 𝐵 is 𝑅-bilinear.
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Further, for any 𝑅-bilinear map 𝑔 : 𝐴 × 𝐵 → 𝐶 , there exists an 𝑅-homomorphism 𝑔 : 𝐴 ⊗𝑅
𝐵 → 𝐶 such that 𝑔 = 𝑔 ∘ ℎ.

Proof. We view 𝐴, 𝐵 as 𝑅-𝑅-bimodules, then we easily see that 𝐴 ⊗𝑅 𝐵 is also an 𝑅-𝑅-bimodule (i.e.,
an 𝑅-module) with (left) multiplication given by (𝑎 ↦ 𝑟𝑎) ⊗ id𝐵, hence 𝑟(𝑎 ⊗ 𝑏) = (𝑟𝑎) ⊗ 𝑏 = 𝑎 ⊗
(𝑟𝑏) and ℎ is 𝑅-bilinear.

Suppose 𝑔 : 𝐴 × 𝐵 → 𝐶 is an 𝑅-bilinear map. Then 𝑔 is 𝑅-biadditive and 𝑔 induces a ℤ-homomor-
phism 𝑔 : 𝐴 ⊗𝑅 𝐵 → 𝐶 such that 𝑔 = 𝑔 ∘ ℎ. We only need to show that 𝑔 is also an 𝑅-homomorphism.
Let 𝑟 ∈ 𝑅. Then 𝑔(𝑟(𝑎 ⊗ 𝑏)) = 𝑔((𝑟𝑎) ⊗ 𝑏) = 𝑔(𝑟𝑎, 𝑏) = 𝑟𝑔(𝑎, 𝑏) = 𝑟𝑔(𝑎 ⊗ 𝑏). ∎

4.3. Further Properties

Proposition 4.3.1.  If 𝑅 is a ring, 𝑀  is a right 𝑅-module and 𝑁  is a left 𝑅-module, then there
is a natural ℤ-isomorphism

𝜏 : 𝑀 ⊗𝑅 𝑁 → 𝑁 ⊗𝑅op 𝑀
𝑚 ⊗ 𝑛 ↦ 𝑛 ⊗ 𝑚

Proof. This follows from the fact that a map 𝑓 : 𝑀 × 𝑁 → 𝐴 is 𝑅-biadditive if and only if the map 𝑔 :
𝑁 × 𝑀 → 𝐴 defined by 𝑔(𝑛, 𝑚) = 𝑓(𝑚, 𝑛) is 𝑅op-biadditive. ∎

Corollary 4.3.2.  If 𝑅 is a commutative ring and 𝑀 , 𝑁  are 𝑅-modules, then there is a natural
𝑅-isomorphism

𝜏 : 𝑀 ⊗𝑅 𝑁 → 𝑁 ⊗𝑅 𝑀
𝑚 ⊗ 𝑛 ↦ 𝑛 ⊗ 𝑚

Proposition 4.3.3.  Given right 𝑅-module 𝐴, 𝑅-𝑆-bimodule 𝐵, and left 𝑆-module 𝐶 , there is
an isomorphism

𝜃 : 𝐴 ⊗𝑅 (𝐵 ⊗𝑆 𝐶) ≅ (𝐴 ⊗𝑅 𝐵) ⊗𝑆 𝐶

given by 𝑎 ⊗ (𝑏 ⊗ 𝑐) ↦ (𝑎 ⊗ 𝑏) ⊗ 𝑐.

Proof. (Rotman 2009, Proposition 2.57). They are both solutions to the universal mapping problem of
triadditive functions, but the solution is unique. ∎

Corollary 4.3.4.  Let 𝑅 be a commutative ring, and let 𝑀1, 𝑀2, …, 𝑀𝑛 be 𝑅-modules. Let 𝜎 ∈
𝑆𝑛 (where 𝑆𝑛 is the symmetric group of degree 𝑛), then

(…(𝑀1 ⊗𝑅 𝑀2) ⊗𝑅 … ⊗𝑅 𝑀𝑛) ≅ (…(𝑀𝜎(1) ⊗𝑅 𝑀𝜎(2)) ⊗𝑅 … ⊗𝑅 𝑀𝜎(𝑛))
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Proof. Notice that both solve the universal mapping problem of 𝑅-𝑛-linear functions. ∎

Proposition 4.3.5.  Given ring 𝑅 and left 𝑅-module 𝑀 , there is a natural 𝑅-isomorphism

𝜑𝑀 : 𝑅 ⊗𝑅 𝑀 → 𝑀
𝑟 ⊗ 𝑚 ↦ 𝑟𝑚

Proof. 𝑓 : 𝑅 × 𝑀 → 𝑀  defined by (𝑟, 𝑚) ↦ 𝑟𝑚 is 𝑅-biadditive and thus induces an 𝑅-homomor-
phism 𝜑 : 𝑅 ⊗𝑅 𝑀 → 𝑀  with 𝑟 ⊗ 𝑚 ↦ 𝑟𝑚. Now 𝑔 : 𝑀 → 𝑅 ⊗𝑅 𝑀  defined by 𝑔 : 𝑚 ↦ 1 ⊗ 𝑚 sat-
isfies that 𝜑𝑔 and 𝑔𝜑 are identity maps, so 𝜑 is an 𝑅-isomorphism. ∎

4.4. Monoidal Categories and 𝑘-algebras

Definition 4.4.1.  A monoidal category is a category 𝒞 equipped with a bifunctor ⊗ : 𝒞 ×
𝒞 → 𝒞 associative up to a natural isomorphism, and an object 𝐼  that is both a left and right
identity for ⊗ up to a natural isomorphism.

Proposition 4.4.2.  Let 𝑅 be a commutative ring, then the category (𝑅-𝐌𝐨𝐝, ⊗𝑅) is a monoidal
category. In particular, for a field 𝑘, the category (𝐕𝐞𝐜𝐭𝑘, ⊗𝑘) is a monoidal category.

Proof. The identity for ⊗𝑅 in 𝑅-𝐌𝐨𝐝 is clearly given by 𝑅. ∎

Definition 4.4.3.  A monoid object in a monoid category (𝒞, ⊗, 𝐼) is an object 𝑀  with two
morphisms:
• 𝜇 : 𝑀 ⊗ 𝑀 → 𝑀  called multiplication,
• 𝜂 : 𝐼 → 𝑀  called unit,

such that the following diagrams commute:

↑𝜇

↑

𝜇

↑

𝜇 ⊗ id𝑀

↑𝛼 ↑id𝑀 ⊗ 𝜇
(𝑀 ⊗ 𝑀) ⊗ 𝑀 𝑀 ⊗ (𝑀 ⊗ 𝑀) 𝑀 ⊗ 𝑀

𝑀𝑀 ⊗ 𝑀

↑𝜂 ⊗ id𝑀 ↑

id𝑀 ⊗ 𝜂

↑

𝜇

↑

𝜆

↑

𝜌

𝐼 ⊗ 𝑀 𝑀 ⊗ 𝑀 𝑀 ⊗ 𝐼

𝑀
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where 𝛼, 𝜆, 𝜌 are natural isomorphisms for the associativity, the left identity and the right iden-
tity, respectively.

Definition 4.4.4.  Let 𝑘 be a field. A (unital associative) 𝑘-algebra is a monoid object in
(𝐕𝐞𝐜𝐭𝑘, ⊗𝑘).

Remark 4.4.5.  Let 𝑀  be a 𝑘-algebra, then 𝑀  is a 𝑘-vector space equipped with bilinear multipli-
cation 𝜇 : 𝑀 ⊗𝑘 𝑀 → 𝑀  and unit 𝜂 : 𝑘 → 𝑀  which sends 1 ∈ 𝑘 to 𝑖(1) ∈ 𝑀 , the multiplica-
tive unit.

An equivalent definition: 𝑀  is both a 𝑘-vector space and a unital ring, where the ring multipli-
cation satisfies

𝑎(𝑥𝑦) = (𝑎𝑥)𝑦 = 𝑥(𝑎𝑦)

for all 𝑎 ∈ 𝑘 and 𝑥, 𝑦 ∈ 𝑀 .

Remark 4.4.6.  (𝐕𝐞𝐜𝐭𝑘, ⊗𝑘) is a symmetric monoidal category, where the tensor product is
commutative.

Remark 4.4.7.  In 𝐒𝐞𝐭,

Hom(𝑋 × 𝑌 , 𝑍) = Hom(𝑋, Hom(𝑌 , 𝑍)).

𝐒𝐞𝐭 is a cartesian monoidal category, where the categorical product is the same as the tensor
product.

Remark 4.4.8.  For vector spaces 𝑉 , 𝑊  over field 𝑘,

dim(𝑉 ⊕ 𝑊) = dim 𝑉 + dim 𝑊, dim(𝑉 ⊗ 𝑊) = dim 𝑉 ⋅ dim 𝑊.

An alternative definition of the tensor product: let 𝑉  be a vector space with basis {𝑣𝑖}𝑖∈𝐼  and
𝑊  with {𝑤𝑗}𝑗∈𝐽

 and define 𝑉 ⊗𝑘 𝑊  to have basis {𝑣𝑖 ⊗ 𝑤𝑗}𝑖∈𝐼,𝑗∈𝐽
. This definition relies on

the choice of basis and can be inconvenient when we have to change basis.

4.5. Tensor-hom Adjunction

Proposition 4.5.1.  If 𝐵 is an 𝑅-𝑆-bimodule and 𝐶 is a right 𝑆-module, then Hom𝑆(𝐵, 𝐶) is a
right 𝑅-module.

Proof. Take any 𝑓 ∈ Hom𝑆(𝐵, 𝐶) and 𝑟 ∈ 𝑅, define right multiplication 𝑓𝑟 : 𝐵 → 𝐶 by 𝑓𝑟(𝑏) =
𝑓(𝑟𝑏). Then we see that (𝑓𝑟)(𝑏𝑠) = 𝑓(𝑟𝑏𝑠) = 𝑓(𝑟𝑏)𝑠 = (𝑓𝑟)(𝑏)𝑠 which indicates that 𝑓𝑟 still an 𝑆-
homomorphism 𝐵 → 𝐶 . ∎

Then this makes Hom𝑆(𝐵, −) a functor from 𝐌𝐨𝐝-𝑆 to 𝐌𝐨𝐝-𝑅.
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Theorem 4.5.2.  Let 𝑅, 𝑆 be rings. Let 𝐴 be a right 𝑅-module, 𝐵 be a 𝑅-𝑆-bimodule, and 𝐶 be
a right 𝑆-module. Then we have a canonical isomorphism

𝜏 : Hom𝑆(𝐴 ⊗𝑅 𝐵, 𝐶) →∼ Hom𝑅(𝐴, Hom𝑆(𝐵, 𝐶))

where for 𝑓 : 𝐴 ⊗𝑅 𝐵 → 𝐶 , 𝑎 ∈ 𝐴, and 𝑏 ∈ 𝐵,

𝜏(𝑓)(𝑎)(𝑏) = 𝑓(𝑎 ⊗ 𝑏)

Proof. 𝜏  is a group homomorphism because for any 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵,

𝜏(𝑓 + 𝑔)(𝑎)(𝑏) = (𝑓 + 𝑔)(𝑎 ⊗ 𝑏) = 𝑓(𝑎 ⊗ 𝑏) + 𝑔(𝑎 ⊗ 𝑏) = 𝜏(𝑓)(𝑎)(𝑏) + 𝜏(𝑔)(𝑎)(𝑏)

and hence 𝜏(𝑓 + 𝑔) = 𝜏(𝑓) + 𝜏(𝑔).

𝜏  is injective because if 𝜏(𝑓) = 0, then 𝑓(𝑎 ⊗ 𝑏) = 𝜏(𝑓)(𝑎)(𝑏) = 0 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Thus 𝑓 =
0 since it vanishes on all generators of 𝐴 ⊗𝑅 𝐵.

It remains to be shown that 𝜏  is surjective. Take any 𝑅-homomorphism 𝑔 : 𝐴 → Hom𝑆(𝐵, 𝐶), define
𝜑 : 𝐴 × 𝐵 → 𝐶 by 𝜑(𝑎, 𝑏) = 𝑔(𝑎)(𝑏). Now it is easy to check that 𝜑 is 𝑅-biadditive and hence there
exists a group homomorphism 𝜑̂ : 𝐴 ⊗𝑅 𝐵 → 𝐶 such that 𝜑̂(𝑎 ⊗ 𝑏) = 𝜑(𝑎, 𝑏) = 𝑔(𝑎)(𝑏) for all 𝑎 ∈
𝐴 and 𝑏 ∈ 𝐵. Therefore 𝑔 = 𝜏(𝜑̂) and 𝜏  is surjective.

Verifying the naturality of 𝜏  is omitted. ∎

Corollary 4.5.3.  Let 𝑅, 𝑆 be rings and let 𝐵 be a 𝑅-𝑆-bimodule. We have an adjunction

(− ⊗𝑅 𝐵) ⊣ Hom𝑆(𝐵, −)

where (− ⊗𝑅 𝐵) : 𝐌𝐨𝐝-𝑅 → 𝐌𝐨𝐝-𝑆 and Hom𝑆(𝐵, −) : 𝐌𝐨𝐝-𝑆 → 𝐌𝐨𝐝-𝑅.

Corollary 4.5.4.  The functor (− ⊗𝑅 𝐵) : 𝐌𝐨𝐝-𝑅 → 𝐌𝐨𝐝-𝑆 preserves colimits. In particular,
it preserves cokernels and is thus right exact; it also preserves direct sums.

Theorem 4.5.5.  Let 𝐴 be a left 𝑅-module, 𝐵 be a 𝑆-𝑅-bimodule, and 𝐶 be a left 𝑆-module, then
there is a canonical isomorphism

Hom𝑆(𝐵 ⊗𝑅 𝐴, 𝐶) →∼ Hom𝑅(𝐴, Hom𝑆(𝐵, 𝐶))

Thus (𝐵 ⊗𝑅 −) : 𝑅-𝐌𝐨𝐝 → 𝑆-𝐌𝐨𝐝 and Hom𝑆(𝐵, −) : 𝑆-𝐌𝐨𝐝 → 𝑅-𝐌𝐨𝐝 form an adjunc-
tion

(𝐵 ⊗𝑅 −) ⊣ Hom𝑆(𝐵, −)

Hence (𝐵 ⊗𝑅 −) preserves colimits and in particular is right exact.

4.6. Computations
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Example 4.6.1.  Let 𝑅 be a commutative ring. Given 𝑅-modules 𝑁  and 𝑀 , suppose we want to
calculate 𝑁 ⊗𝑅 𝑀 , then we can pick the relations and generators of 𝑁 :

𝑅⊕𝐽 → 𝑅⊕𝐼 → 𝑁 → 0

Consider 𝑅⊕𝐽 → 𝑅⊕𝐼 , this homomorphism between free modules can be represented by a (pos-
sibly infinite) matrix 𝑎𝑖𝑗 ∈ 𝑅. Therefore, we can write

𝑁 = Coker(𝑅⊕𝐽 →
(𝑎𝑖𝑗)

𝑅⊕𝐼)

Notice that the same matrix can also act as 𝑀⊕𝐽 → 𝑀⊕𝐼 , hence

𝑁 ⊗𝑅 𝑀 = Coker(𝑅⊕𝐽 →
(𝑎𝑖𝑗)

𝑅⊕𝐼) ⊗𝑅 𝑀 ≅ Coker(𝑅⊕𝐽 ⊗𝑅 𝑀 →
(𝑎𝑖𝑗)

𝑅⊕𝐼 ⊗𝑅 𝑀)

≅ Coker((𝑅 ⊗𝑅 𝑀)⊕𝐽 →
(𝑎𝑖𝑗)

(𝑅 ⊗𝑅 𝑀)⊕𝐼) ≅ Coker(𝑀⊕𝐽 →
(𝑎𝑖𝑗)

𝑀⊕𝐼)

Example 4.6.2.  Suppose 𝐼  is an ideal of 𝑅 generated by {𝑥𝑖}𝑖∈𝐽 , then we have short exact
sequence

0 → 𝐼 → 𝑅 → 𝑅/𝐼 → 0

On the other hand,

𝑅⊕𝐽 → 𝐼 → 0

and thus

𝑅⊕𝐽 →
(𝑥𝑗)

𝑅 → 𝑅/𝐼 → 0

Let 𝑀  be a left 𝑅-module, then

(𝑅/𝐼) ⊗𝑅 𝑀 ≅ Coker(𝑀⊕𝐽 →
(𝑥𝑗)

𝑀) = 𝑀/𝐼𝑀

Example 4.6.3.  The localisation of a commutative ring 𝑅 at element 𝑥 is defined as 𝑅[𝑡]/(𝑡𝑥 −
1), denoted as 𝑅[𝑥−1].

For 𝑅-module 𝑀 , we have

𝑅[𝑥−1] ⊗𝑅 𝑀 ≅ 𝑀[𝑥−1]

Proof. Notice that 𝑅[𝑡] ⊗𝑅 𝑀 = 𝑀[𝑡], because 𝑅[𝑡] ≅ ⨁∞
𝑖=1 𝑅 in 𝑅-𝐌𝐨𝐝. ∎

44



5. Enough Projectives and Injectives

Definition 5.1.  An abelian category 𝒜 is said to have enough projectives (resp. injectives) if
for any object 𝑀  there is an epimorphism 𝑃 → 𝑀 → 0 where 𝑃  is projective (resp. a monomor-
phism 0 → 𝑀 → 𝐼  where 𝐼  is injective).

For most of our homological algebra to work, an abelian category needs to have enough projectives
and injectives. We will show that 𝑅-𝐌𝐨𝐝 has enough projectives and injectives.

5.1. 𝑅-𝐌𝐨𝐝 has Enough Projectives

Lemma 5.1.1. Free 𝑅-modules are projective.

Proof. Let 𝐹 = ⨁𝑖∈𝐼 𝑅𝑥𝑖 be a free 𝑅-module with basis {𝑥𝑖 : 𝑖 ∈ 𝐼}. Suppose 𝜋 : 𝐴 → 𝐵 is an epi-
morphism and 𝑓 : 𝐹 → 𝐵 is a morphism, as in the following diagram:

↑

𝑓

↑↑𝜋↑

𝛼

𝐵 0𝐴

𝐹

Since 𝜋 is surjective, for each 𝑖 there is some 𝑎𝑖 ∈ 𝐴 with 𝜋(𝑎𝑖) = 𝑓(𝑥𝑖). Define map 𝛼 : 𝐹 → 𝐴 by
𝛼(𝑥𝑖) = 𝑎𝑖 and we have 𝑓 = 𝜋 ∘ 𝛼. ∎

Proposition 5.1.2. 𝑃  is a projective 𝑅-module if and only if 𝑃  is a direct summand of a free
module.

Proof. Assume 𝑃  is a projective. Then we can always find a free module 𝐹 = 𝑅⊕𝐼  such that 𝑔 : 𝐹 →
𝑃  is onto. Using the lifting property,

↑𝑔 ↑
↑

∃

↑

id

𝐹 𝑃 0

𝑃

So there exists a section 𝑃 → 𝐹  in the short exact sequence

0 → 𝐾 → 𝐹 → 𝑃 → 0

and hence 𝐹 ≅ 𝐾 ⊕ 𝑃 , where 𝐾 = Ker(𝑔). This shows that 𝑃  is a direct summand of a free module.
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Now we show a direct summand of a free module is projective. Suppose that 𝑃  is a direct summand
of a free module. Then there exists some 𝑅-module 𝑃 ′ such that 𝑃 ⊕ 𝑃 ′ is free. Let 𝜋 : 𝐴 → 𝐵 be a
surjection and let 𝑓 : 𝑃 → 𝐵 be some map. Let 𝑓 ′ : 𝑃 ⊕ 𝑃 ′ → 𝐵 be the map 𝑓 ′(𝑝, 𝑝′) = 𝑓(𝑝). Since
𝑃 ⊕ 𝑃 ′ is free, hence projective, 𝑓 ′ has a lift 𝛼′ : 𝑃 ⊕ 𝑃 ′ → 𝐴. Now define 𝛼 : 𝑃 → 𝐴 by 𝛼(𝑝) =
𝛼′(𝑝, 0) and it lifts 𝑓 , showing that 𝑃  is projective.

↑
𝜋

↑

↑

𝑓

↑

𝑓 ′
↑ 𝛼′↑

𝛼

↑

𝑖

𝐵 0𝐴

𝑃 ⊕ 𝑃 ′

𝑃

∎

Corollary 5.1.3.  𝑅-𝐌𝐨𝐝 has enough projectives.

Proof. For any module 𝑀 , we can find a free (and thus projective) module 𝐹  with a surjection 𝐹 →
𝑀 → 0. ∎

5.2. 𝐀𝐛 has Enough Injectives

Lemma 5.2.1 (Baer's Criterion).  A right (resp. left) 𝑅-module 𝑀  is injective if and only if for
every right (resp. left) ideal 𝐼  of 𝑅, every module homomorphism 𝐼 → 𝑀  can be extended to
𝑅 → 𝑀 .

Proof. (Monnet and Kremnitzer 2021, Theorem 5.8) and (Rotman 2009, Theorem 3.30).

“⇒”. Since any right ideal 𝐼  is a submodule of 𝑅, we can extend 𝐼 → 𝑀  to 𝑅 → 𝑀  simply by the
definition of injectivity of 𝑀 .

“⇐”.

↑ ↑ ↑

↑

𝑓

↑ 𝛼′

↑ 𝛼″

↑

𝐴 𝐴′ 𝐴″ 𝐵

𝑀

Fix some injection 𝑖 : 𝐴 → 𝐵 of 𝑅-modules, and some map 𝑓 : 𝐴 → 𝑀 . Without loss of generality,
assume that 𝐴 ⊆ 𝐵 and 𝑖 is the inclusion. We would like to extend 𝑓  to some map 𝐵 → 𝑀 .
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[Construction of 𝐴′ and 𝛼′ : 𝐴′ → 𝑀 .] Let Σ be the set whose elements are 𝑅-module maps 𝛼′ :
𝐴′ → 𝑀 , where 𝐴 ⊆ 𝐴′ ⊆ 𝐵 and 𝛼′ extends 𝑓 . We may give this set a partial order by saying that
𝛼′ ≤ 𝛼′′ when 𝐴′ ⊆ 𝐴′′ and 𝛼′′ extends 𝛼′. Suppose that 𝛼1 ≤ 𝛼2 ≤ … is an ascending chain in Σ,
with corresponding modules 𝐴1 ⊆ 𝐴2 ⊆ …. Let 𝐴′ = ⋃ 𝐴𝑛, and define 𝛼′ : 𝐴′ → 𝑀  by 𝛼′(𝑎) =
𝛼𝑖(𝑎) for 𝑎 ∈ 𝐴𝑖. It is easy to check that 𝛼′ is a well-defined element of Σ, and it is an upper bound on
the chain (in other words, we take the colimit of the chain). Since Σ is a partially ordered set in which
every ascending chain has an upper bound, by Zorn’s Lemma Σ has a maximal element, which we call
𝛼′ : 𝐴′ → 𝑀 .

To show that 𝑀  is injective, we need to show that 𝐴′ = 𝐵, since we then have an extension 𝛼 of 𝑓
to 𝐵.

[Construction of 𝜑 : 𝑅 → 𝑀 .] Suppose that 𝐴′ ≠ 𝐵. Let 𝑏 ∈ 𝐵 ∖ 𝐴′. Let

𝐼 = {𝑟 ∈ 𝑅 : 𝑏𝑟 ∈ 𝐴′}

Then 𝐼  is a right ideal of 𝑅, and we have a map

𝜑̃ : 𝐼 → 𝑀
𝑟 ↦ 𝛼′(𝑏𝑟).

By assumption, this extends to a map 𝜑 : 𝑅 → 𝑀 .

[Construction of 𝛼″ : 𝐴″ → 𝑀 .] Define

𝐴′′ = 𝐴′ + 𝑅𝑏 = {𝑎 + 𝑟𝑏 : 𝑎 ∈ 𝐴′, 𝑟 ∈ 𝑅} ⊆ 𝐵

We claim that there is a well-defined map

𝛼′′ : 𝐴′′ → 𝑀
𝑎 + 𝑏𝑟 ↦ 𝛼′(𝑎) + 𝜑(𝑟),

where 𝑎 ∈ 𝐴′ and 𝑟 ∈ 𝑅. To see that this is well-defined, suppose that 𝑎 + 𝑏𝑟 = 𝑎′ + 𝑏𝑟′ where 𝑎, 𝑎′ ∈
𝐴′ and 𝑟, 𝑟′ ∈ 𝑅. Then

𝑎 − 𝑎′ = 𝑏(𝑟′ − 𝑟) ∈ 𝐴′ ∩ 𝑏𝑅.

From this we see 𝑟 − 𝑟′ ∈ 𝐼 , and then we have

𝜑(𝑟′ − 𝑟) = 𝛼′(𝑏(𝑟′ − 𝑟)) = 𝛼′(𝑎 − 𝑎′).

Therefore, it follows that 𝛼′(𝑎) + 𝜑(𝑟) = 𝛼′(𝑎′) + 𝜑(𝑟′) so 𝛼′′ is well-defined. But then 𝛼′′ strictly
extends 𝛼′, contradicting maximality of 𝛼′. Hence 𝐴′ = 𝐵, so 𝑀  is injective. ∎

Definition 5.2.2.  Let 𝑅 be an integral domain. A 𝑅-module 𝑀  is called divisible if, for all 𝑟 ∈
𝑅 ∖ {0}, every element 𝑚 of 𝑀  can be “divided” by 𝑟, in the sense that there exists an element
𝑚′ in 𝑀  such that 𝑚 = 𝑟𝑚′. Equivalently, the multiplication by any non-zero 𝑟 ∈ 𝑅 defines a
surjective map from 𝑀  to 𝑀 .

Corollary 5.2.3.  If 𝑅 is a PID, then an 𝑅-module 𝑀  is injective if and only if it is divisible.
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Proof. (Rotman 2009, Corollary 3.35) and (Monnet and Kremnitzer 2021, Corollary 5.9). Let 𝑀  be an
injective 𝑅-module, and let 𝑚 ∈ 𝑀  and 𝑟 ∈ 𝑅 ∖ {0}. Set 𝐽 = 𝑟𝑅 (which is an ideal of 𝑅) and define
𝑓 : 𝐽 → 𝑀  by 𝑓(𝑟) = 𝑚. By Baer’s Criterion, we may extend 𝑓  to a homomorphism 𝑓 : 𝑅 → 𝑀 . Then

𝑚 = 𝑓(𝑟) = 𝑓(𝑟) = 𝑓(𝑟 ⋅ 1) = 𝑟 ⋅ 𝑓(1).

So taking 𝑚′ = 𝑓(1), we see that 𝑀  is divisible.

Suppose conversely that 𝑀  is a divisible 𝑅-module. Let 𝐽  be an ideal of 𝑅 and let 𝑓 : 𝐽 → 𝑀  be a
module homomorphism. If 𝐽  is the zero ideal, then trivially we may extend 𝑓  to the zero homomor-
phism 𝑅 → 𝑀 . Assume that 𝐽  is nonzero. Since 𝑅 is a PID, we have 𝐽 = 𝑅𝑟 for some nonzero 𝑟 ∈ 𝐽 .
Let 𝑚 = 𝑓(𝑟). Then since 𝑀  is divisible, there is some 𝑚′ ∈ 𝑀  such that 𝑚 = 𝑟𝑚′. Define 𝑓 : 𝑅 →
𝑀  by 𝑓(1) = 𝑚′. Clearly 𝑓  is an extension of 𝑓 , so 𝑀  is injective by Baer’s Criterion. ∎

Corollary 5.2.4.  In 𝐀𝐛, ℚ, ℤ𝑝∞ = ℤ[1
𝑝]/ℤ, ℚ/ℤ are injective.

Remark 5.2.5.  (Weibel 1994, Example 2.3.3). Every injective abelian group 𝐼 = 𝐼tor ⊕ 𝐼free, where
𝐼free (the torsion-free part) is a ℚ-vector space and 𝐼tor (the torsion part) is a direct sum of copies
of ℤ𝑝∞ . In particular, ℚ/ℤ = ⊕𝑝 ℤ𝑝∞ .

Lemma 5.2.6.  Direct sums of projectives are projectives. Dually, products of injectives are in-
jectives.

Proof. Suppose {𝑃𝑖 : 𝑖 ∈ 𝐼} is a family of projective modules. Then for each 𝑖 ∈ 𝐼 , by Proposition 5.1.2
we can write 𝐹𝑖 = 𝑃𝑖 ⊕ 𝑄𝑖 for some free 𝑅-module 𝐹𝑖 and 𝑅-module 𝑄𝑖. Then

⨁
𝑖∈𝐼

𝐹𝑖 = ⨁
𝑖∈𝐼

𝑃𝑖 ⊕ ⨁
𝑖∈𝐼

𝑄𝑖

Since ⨁𝑖∈𝐼 𝐹𝑖 is also a free module, ⨁𝑖∈𝐼 𝑃𝑖 is also projective. ∎

Lemma 5.2.7.  Let 𝐴 be an abelian group. Then for any non-zero 𝑎 ∈ 𝐴, there exists a group
homomorphism 𝜑 : 𝐴 → ℚ/ℤ such that 𝜑(𝑎) ≠ 0.

Proof. By the injectivity of ℚ/ℤ, it suffices to find a group homomorphism 𝜓 : ⟨𝑎⟩ → ℚ/ℤ and then
extend 𝜓 to 𝜑 : 𝐴 → ℚ/ℤ. To obtain such 𝜓, it suffices to give an element 𝜓(𝑎) ∈ ℚ/ℤ. We consider
the order of 𝑎 in 𝐴:
• If |𝑎| = ∞, then we can set 𝜓(𝑎) as any nonzero element of ℚ/ℤ;
• If |𝑎| = 𝑚 > 1, then we set 𝜓(𝑎) = 1

𝑚 + ℤ.

∎

Proposition 5.2.8.  𝐀𝐛 has enough injectives.

Proof. Define a map
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𝐼 : 𝐀𝐛 → 𝐀𝐛
𝐴 ↦ ∏

Hom𝐀𝐛(𝐴,ℚ/ℤ)
ℚ/ℤ.

For any 𝐴 ∈ 𝐀𝐛, 𝐼(𝐴) is injective as a product of injectives ℚ/ℤ. Consider canonical map

𝑒𝐴 : 𝐴 → 𝐼(𝐴)
𝑎 ↦ (𝜑(𝑎))𝜑∈ Hom𝐀𝐛(𝐴,ℚ/ℤ),

where, since 𝐼(𝐴) is a product, we need to define for each 𝜑 ∈ Hom𝐀𝐛(𝐴, ℚ/ℤ) the component 𝑒𝑎,𝜑 :
𝐴 → ℚ/ℤ, which we just define to be 𝜑 itself. Note that 𝑒𝐴 is an injective map by Lemma 5.2.7. Thus
we have 0 → 𝐴 →

𝑒𝐴
𝐼(𝐴) with 𝐼(𝐴) injective for any 𝐴 ∈ 𝐀𝐛, showing that 𝐀𝐛 has enough injectives.

∎

5.3. 𝑅-𝐌𝐨𝐝 has Enough Injectives

Proposition 5.3.1.  If an additive functor 𝑅 : ℬ → 𝒜 between abelian categories is right adjoint
to an exact functor and 𝐼  is injective in ℬ, then 𝑅(𝐼) is injective in 𝒜. Dually, if an additive
functor 𝐿 : 𝒜 → ℬ is left adjoint to an exact functor and 𝑃  is projective in 𝒜, then 𝐿(𝑃) is
projective in ℬ.

Proof. (Monnet and Kremnitzer 2021, Lemma 5.25) and (Weibel 1994, Proposition 2.3.10). We want to
show that

Hom𝒜(−, 𝑅(𝐼))

is exact. We have

Hom𝒜(−, 𝑅(𝐼)) ≅ Homℬ(𝐿(−), 𝐼)

but 𝐿 is exact by assumption and Homℬ(−, 𝐼) is exact because 𝐼  is injective in ℬ, so Homℬ(𝐿(−), 𝐼)
is a composition of exact functors and thus exact. ∎

With this proposition, we can prove that an abelian category has enough projectives or injectives by
constructing adjunctions.

Corollary 5.3.2.  If 𝐼  is an injective abelian group, then Hom𝐀𝐛(𝑅, 𝐼) is an injective right 𝑅-
module.

Proof. By Proposition 4.5.1, Hom𝐀𝐛(𝑅, 𝐼) is indeed a right 𝑅-module. Note that Hom𝐀𝐛(𝑅, −) is right
adjoint to (− ⊗𝑅 𝑅), which is simply the forgetful functor 𝐌𝐨𝐝-𝑅 → 𝐀𝐛 and is thus exact. Therefore
Hom𝐀𝐛(𝑅, 𝐼) is injective in 𝑅-𝐌𝐨𝐝. ∎

Example 5.3.3.  Hom𝐀𝐛(𝑅, ℚ/ℤ) is injective.
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Proposition 5.3.4.  𝑅-𝐌𝐨𝐝 has enough injectives.

Proof. Define map

𝐼 : 𝑅-𝐌𝐨𝐝 → 𝑅-𝐌𝐨𝐝
𝑀 ↦ ∏

Hom𝑅(𝑀, Hom𝐀𝐛(𝑅,ℚ/ℤ))
Hom𝐀𝐛(𝑅, ℚ/ℤ)

For any left 𝑅-module 𝑀 , 𝐼(𝑀) is injective as a product of injectives, and there is a canonical mor-
phism

𝑒𝑀 : 𝑀 → 𝐼(𝑀)
𝑚 ↦ (𝜑(𝑚))𝜑∈ Hom𝑅(𝑀, Hom𝐀𝐛(𝑅,ℚ/ℤ))

We would like to show that 𝑒𝑀  is an injective function. We only need to show that for any 0 ≠ 𝑚 ∈
𝑀 , there exists 𝜑 : 𝑀 → Hom𝐀𝐛(𝑅, ℚ/ℤ) such that 𝜑(𝑚) ≠ 0. Notice that we have

𝜑 ∈ Hom𝑅(𝑀, Hom𝐀𝐛(𝑅, ℚ/ℤ)) ≅ Hom𝐀𝐛(𝑀, ℚ/ℤ)

as before. Hence we only need to find some 𝜑 : 𝑀 → ℚ/ℤ in 𝐀𝐛 so that 𝜑(𝑚) ≠ 0, which is given
by Lemma 5.2.7. ∎
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6. Chain Complexes
6.1. Definitions
Let 𝒜 be an abelian category.

Definition 6.1.1.  A chain complex 𝐶∙ in 𝒜 is a family {𝐶𝑛}𝑛∈ℤ of objects in 𝒜 with mor-
phisms 𝑑𝑛 : 𝐶𝑛 → 𝐶𝑛−1 such that 𝑑𝑛 ∘ 𝑑𝑛−1 = 0, where 𝑑𝑛 are called differentials. The 𝑛-cy-
cles of 𝐶∙ are defined as

𝑍𝑛(𝐶) ≔ Ker 𝑑𝑛

and the 𝑛-boundaries are defined as

𝐵𝑛(𝐶) ≔ Im 𝑑𝑛+1.

Since 𝑑𝑛 ∘ 𝑑𝑛−1 = 0, we have

𝐵𝑛(𝐶) ↪ 𝑍𝑛(𝐶) ↪ 𝐶𝑛

(as subobjects) for all 𝑛.

The 𝑛-th homology is defined as

𝐻𝑛(𝐶) ≔ Coker(𝐵𝑛(𝐶) ↪ 𝑍𝑛(𝐶)).

Notation 6.1.2.  We often omit the subscript in 𝑑𝑛 and simply write 𝑑, so 𝑑𝑛 ∘ 𝑑𝑛−1 = 0 becomes
𝑑2 = 0. To emphasise that 𝑑 belongs to the chain complex 𝐶∙, we would write either 𝑑𝐶 , or 𝑑(𝐶)

𝑛
if we also need to explicitly specify the index. We sometimes also omit the dot in 𝐶∙ and simply
write 𝐶 . We might write 𝑍𝑛 = 𝑍𝑛(𝐶) and 𝐵𝑛 = 𝐵𝑛(𝐶).

Remark 6.1.3.  In the case of 𝑅-𝐌𝐨𝐝, an 𝑛-cycle in 𝐶𝑛 is an element 𝑥 ∈ 𝐶𝑛 such that 𝑑(𝑥) =
0, and an 𝑛-boundary in 𝐶𝑛 is an element 𝑦 ∈ 𝐶𝑛 such that there exists 𝑐′ ∈ 𝐶𝑛+1 such that
𝑑(𝑐′) = 𝑦. An 𝑛-boundary must be an 𝑛-cycle because 𝑑2 = 0. The 𝑛-th homology becomes a
quotient module³,

𝐻𝑛(𝐶) =
𝑍𝑛
𝐵𝑛

=
Ker 𝑑𝑛
Im 𝑑𝑛+1

An element in 𝐻𝑛(𝐶) can be written as 𝑥 + 𝐵𝑛, or simply [𝑥], for some 𝑛-cycle 𝑥.

³The slogan is that “homology is cycles modulo boundaries” or even “homology is kernel modulo image”.

Remark 6.1.4.  It is helpful to keep in mind two defining short exact sequences:

0 → 𝑍𝑛 → 𝐶𝑛 →
𝑑𝑛

𝐵𝑛−1 → 0,
0 → 𝐵𝑛 ↪ 𝑍𝑛 → 𝐻𝑛 → 0.

From these we know that exact functors preserve homology as they preserve short exact se-
quences.
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Definition 6.1.5.  We can form a category Ch(𝒜) where objects are chain complexes and mor-
phisms are chain maps 𝑢∙ : 𝐶∙ → 𝐷∙ which commutes with differentials

𝑢𝑑 = 𝑑𝑢.

Namely, for all 𝑛 ∈ ℤ,

↑𝑑

↑𝑑

↑

𝑢𝑛 ↑

𝑢𝑛−1

𝐶𝑛 𝐶𝑛−1

𝐷𝑛 𝐷𝑛−1

commutes.

Proposition 6.1.6.  Ch(𝒜) is an abelian category if 𝒜 is an abelian category.

Proof. (Rotman 2009, Proposition 5.100). ∎

Proposition 6.1.7.  A chain map 𝑢∙ : 𝐶∙ → 𝐷∙ induces a morphism 𝐻𝑛(𝑢) : 𝐻𝑛(𝐶) → 𝐻𝑛(𝐷).

Proof. It suffices to assume 𝒜 = 𝑅-𝐌𝐨𝐝. First we show that 𝑢𝑛 : 𝐶𝑛 → 𝐷𝑛 sends boundaries to
boundaries. Take boundary 𝑏 ∈ 𝐶𝑛, then there exists 𝑐 ∈ 𝐶𝑛+1 such that 𝑑(𝑐) = 𝑏. Thus 𝑢(𝑏) =
𝑢𝑑(𝑐) = 𝑑𝑢(𝑐), showing that 𝑢(𝑏) is a boundary in 𝐷𝑛. Next we show that 𝑢𝑛 : 𝐶𝑛 → 𝐷𝑛 sends cycles
to cycles. Take cycle 𝑧 ∈ 𝐶𝑛 such that 𝑑(𝑧) = 0. Then 𝑑𝑢(𝑧) = 𝑢𝑑(𝑧) = 𝑢(0) = 0, showing that 𝑢(𝑧)
is a cycle in 𝐷𝑛. Therefore, 𝑢𝑛 induces a function 𝐻𝑛(𝐶) → 𝐻𝑛(𝐷). ∎

Corollary 6.1.8.  𝐻𝑛 : Ch(𝒜) → 𝒜 is an additive functor.

Definition 6.1.9.  A chain map 𝐶∙ → 𝐷∙ is called a quasi-isomorphism if the induced maps
𝐻𝑛(𝐶) → 𝐻𝑛(𝐷) are isomorphisms for all 𝑛.

Proposition 6.1.10.  The followings are equivalent:
• 𝐶∙ is exact at every 𝐶𝑛;
• 𝐶∙ is acyclic, i.e., 𝐻𝑛(𝐶) = 0 for all 𝑛;
• 0 → 𝐶∙ is a quasi-isomorphism.
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Definition 6.1.11.  A cochain complex 𝐶∙ in 𝒜 is a family {𝐶𝑛}𝑛∈ℤ of objects in 𝒜 with
morphisms 𝑑𝑛 : 𝐶𝑛 → 𝐶𝑛+1 such that 𝑑𝑛 ∘ 𝑑𝑛+1 = 0, where 𝑑𝑛 are called differentials. The 𝑛
-cocycles of 𝐶∙ are

𝑍𝑛(𝐶) ≔ Ker 𝑑𝑛

and the 𝑛-coboundaries are

𝐵𝑛(𝐶) ≔ Im 𝑑𝑛−1.

We have

𝐵𝑛(𝐶) ↪ 𝑍𝑛(𝐶) ↪ 𝐶𝑛

(as subobjects) for all 𝑛.

The 𝑛-th cohomology are defined as

𝐻𝑛(𝐶) ≔ Coker(𝐵𝑛(𝐶) ↪ 𝑍𝑛(𝐶)).

We also define cochain maps similarly as before.

Example 6.1.12. (Weibel 1994, Application 1.1.4). Let 𝑋 be a topological space, and let 𝐶𝑘 =
𝐶𝑘(𝑋) be the free 𝑅-module on the set of continuous maps from the standard 𝑘-simplex Δ𝑘 to
X. Restriction to the 𝑖-th face of Δ𝑘(0 ≤ 𝑖 ≤ 𝑘) transforms a map Δ𝑘 → 𝑋 into a map Δ𝑘−1 →
𝑋, and induces an 𝑅-module homomorphism 𝜕𝑖 from 𝐶𝑘 to 𝐶𝑘−1. The alternating sums 𝑑 =
∑ (−1)𝑖𝜕𝑖 (from 𝐶𝑘 to 𝐶𝑘−1) assemble to form a chain complex

⋯ →
𝑑

𝐶2 →
𝑑

𝐶1 →
𝑑

𝐶0 → 0

called the singular chain complex of 𝑋. The 𝑛-th homology module of 𝐶∙(𝑋) is called the 𝑛
-th singular homology of 𝑋 (with coefficients in 𝑅) and is written 𝐻𝑛(𝑋; 𝑅).

6.2. Chain Homotopy

Definition 6.2.1.  A chain map 𝑓 : 𝐶∙ → 𝐷∙ is null homotopic if there are maps 𝑠𝑛 : 𝐶𝑛 →
𝐷𝑛+1 such that 𝑓 = 𝑑𝑠 + 𝑠𝑑, or more rigorously,

𝑓𝑛 = 𝑑𝑛+1𝑠𝑛 + 𝑠𝑛+1𝑑𝑛

for all 𝑛.
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↑𝑑 ↑𝑑

↑

𝑠

↑

𝑓

↑

𝑠

↑𝑑 ↑𝑑

𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1

𝐷𝑛+1 𝐷𝑛 𝐷𝑛+1

(Only the solid lines commute.) We denote 𝑓 ∼ 0 in this case.

Definition 6.2.2.  Two chain maps 𝑓  and 𝑔 from 𝐶∙ to 𝐷∙ are chain homotopic if 𝑓 − 𝑔 is null
homotopic. We denote 𝑓 ∼ 𝑔.

Remark 6.2.3.  𝑓 ∼ 𝑔 ⇔ 𝑓 − 𝑔 ∼ 0 ⇔ 𝑓 − 𝑔 = 𝑠𝑑 + 𝑑𝑠.

Lemma 6.2.4.  Suppose that chain maps 𝑓, 𝑔 : 𝐶∙ → 𝐷∙ are chain homotopic. Then the induced
maps 𝑓∗, 𝑔∗ : 𝐻𝑛(𝐶) → 𝐻𝑛(𝐷) are equal. In particular, if 𝑓 : 𝐶∙ → 𝐷∙ is null homotopic, then
𝑓∗ = 0 : 𝐻𝑛(𝐶) → 𝐻𝑛(𝐷).

Proof. (Monnet and Kremnitzer 2021, Lemma 2.32), (Weibel 1994, Lemma 1.4.5). Let ℎ be a chain ho-
motopy from 𝑓  to 𝑔. We have

𝑓𝑛 − 𝑔𝑛 = 𝑠𝑛−1 ∘ 𝑑(𝐶)
𝑛 + 𝑑(𝐷)

𝑛+1 ∘ 𝑠𝑛

for each 𝑛. Let 𝑥 ∈ 𝐻𝑛(𝐶). Then 𝑥 = [𝑐] for some cycle 𝑐 ∈ 𝑍𝑛𝐶 . We have

𝑓∗(𝑥) − 𝑔∗(𝑥) = [𝑓𝑛(𝑐) − 𝑔𝑛(𝑐)]

= [𝑠𝑛−1 ∘ 𝑑(𝐶)
𝑛 (𝑐) + 𝑑(𝐷)

𝑛+1 ∘ 𝑠𝑛(𝑐)]

= [𝑑(𝐷)
𝑛+1 ∘ 𝑠𝑛(𝑐)]

= 0,

The third equality is because 𝑐 is an 𝑛-cycle in 𝐶 and last equality is because 𝑑(𝐷)
𝑛+1 ∘ 𝑠𝑛(𝑐) is an 𝑛-

boundary in 𝐷. ∎

Corollary 6.2.5.  If the chain map id : 𝐶∙ → 𝐶∙ is null homotopic, then 𝐶∙ is acyclic.

Definition 6.2.6. (Weibel 1994, Translation 1.2.8). If 𝐶 = 𝐶∙ is a chain complex (resp. cochain
complex) and 𝑝 an integer, we form a new complex 𝐶[𝑝] as follows:
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𝐶[𝑝]𝑛 = 𝐶𝑛+𝑝 (resp. 𝐶[𝑝]𝑛 = 𝐶𝑛−𝑝)

with differential (−1)𝑝𝑑. We call 𝐶[𝑝] the 𝑝-th translate of 𝐶 . The way to remember the shift
is that the degree 0 part of 𝐶[𝑝] is 𝐶𝑝. The sign convention is designed to simplify notation later
on. Note that translation shifts homology:

𝐻𝑛(𝐶[𝑝]) = 𝐻𝑛+𝑝(𝐶) (resp. 𝐻𝑛(𝐶[𝑝]) = 𝐻𝑛−𝑝(𝐶)).

We make translation into a functor [𝑝] : Ch(𝒜) → Ch(𝒜) by shifting indices on chain maps.
That is, if 𝑓 : 𝐶 → 𝐷 is a chain map, then 𝑓[𝑝] is the chain map given by the formula

𝑓[𝑝]𝑛 = 𝑓𝑛+𝑝 (resp. 𝑓[𝑝]𝑛 = 𝑓𝑛−𝑝).

6.3. Exact Sequences
Recall that if 𝒜 is an abelian category, then Ch(𝒜) is also an abelian category. Therefore, we can form
short exact sequences with chain complexes, and it turns out that they naturally induce long exact
sequences in (co)homology.

Definition 6.3.1.  For chain complexes 𝐴∙, 𝐵∙, 𝐶∙,

0 → 𝐴∙ → 𝐵∙ → 𝐶∙ → 0

is a short exact sequence if 0 → 𝐴𝑛 → 𝐵𝑛 → 𝐶𝑛 → 0 is a short exact sequence for all 𝑛.

Theorem 6.3.2.  If 0 → 𝐴∙ →
𝑓

𝐵∙ →
𝑔

𝐶∙ → 0 is a short exact sequence of chain complexes, then
there is a natural map for each 𝑛

𝜕𝑛 : 𝐻𝑛(𝐶) → 𝐻𝑛−1(𝐴),

which we call the connecting homomorphism, making

… → 𝐻𝑛(𝐵) → 𝐻𝑛(𝐶) →
𝜕𝑛

𝐻𝑛−1(𝐴) → 𝐻𝑛−1(𝐵) → …

a long exact sequence. Further, 𝜕𝑛 is explicitly given by the well-defined expression

𝜕𝑛 = 𝑓−1𝑑𝐵𝑔−1.

If 0 → 𝐴∙ →
𝑓

𝐵∙ →
𝑔

𝐶∙ → 0 is a short exact sequence of cochain complexes, then we have the
connecting homomorphism

𝜕𝑛 : 𝐻𝑛(𝐶) → 𝐻𝑛+1(𝐴),

where the induced long exact sequence is

… → 𝐻𝑛(𝐵) → 𝐻𝑛(𝐶) →
𝜕𝑛

𝐻𝑛+1(𝐴) → 𝐻𝑛+1(𝐵) → …

and
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𝜕𝑛 = 𝑓−1𝑑𝐵𝑔−1.

Proof. Again, we assume the context of 𝑅-𝐌𝐨𝐝. This is an application of the Snake Lemma 3.7.12.

↑ ↑ ↑ ↑

↑

𝑑𝐴 ↑

𝑑𝐵 ↑

𝑑𝐶

↑ ↑ ↑ ↑
0 𝐴𝑛 𝐵𝑛 𝐶𝑛 0

0 𝐴𝑛−1 𝐵𝑛−1 𝐶𝑛−1 0

Using the Snake Lemma, if we write the cokernels (and shift up the index by 1), we get

𝐴𝑛
𝑑𝐴𝑛+1

→
𝐵𝑛

𝑑𝐵𝑛+1
→

𝐶𝑛
𝑑𝐶𝑛+1

→ 0

is exact, where 𝑑𝐴𝑛+1 = Im 𝑑; if we write the kernels, we get

0 → 𝑍𝑛−1(𝐴) → 𝑍𝑛−1(𝐵) → 𝑍𝑛−1(𝐶)

is also exact. Notice that 𝑑𝐴𝑛 ⊆ 𝑍𝑛−1(𝐴), so we can use 𝑑 to connect the rows again:

↑ ↑ ↑

↑ ↑ ↑

↑𝑑𝐴 ↑𝑑𝐵 ↑𝑑𝐶

𝐴𝑛
𝑑𝐴𝑛+1

𝐵𝑛
𝑑𝐵𝑛+1

𝐶𝑛
𝑑𝐶𝑛+1

0

0 𝑍𝑛−1(𝐴) 𝑍𝑛−1(𝐵) 𝑍𝑛−1(𝐶)

Notice that

Ker(
𝐴𝑛

𝑑𝐴𝑛+1
→
𝑑

𝑍𝑛−1(𝐴)) = 𝐻𝑛(𝐴)

and

Coker(
𝐴𝑛

𝑑𝐴𝑛+1
→
𝑑

𝑍𝑛−1(𝐴)) = 𝐻𝑛−1(𝐴)

and the other two columns are similar. By the Snake Lemma again, we have the connecting map:

𝐻𝑛(𝐴) → 𝐻𝑛(𝐵) → 𝐻𝑛(𝐶) →
𝜕𝑛

𝐻𝑛−1(𝐴) → 𝐻𝑛−1(𝐵) → 𝐻𝑛−1(𝐶)

Putting all these exact sequences together, we get the desired long exact sequence.

The explicit expression for 𝜕𝑛 follows directly from the Snake Lemma. ∎
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Theorem 6.3.3 (Naturality of 𝜕).  Given a morphism between short exact sequences of chain
complexes, i.e., a commutative diagram

↑ ↑𝑓 ↑𝑔 ↑

↑

𝛼

↑

𝛽

↑

𝛾

↑ ↑𝑓 ′ ↑𝑔′ ↑

0 𝐴∙ 𝐵∙ 𝐶∙ 0

0 𝐴′
∙ 𝐵′

∙ 𝐶′
∙ 0

then there is a morphism between long exact sequence, i.e., a commutative diagram

↑ ↑𝑓∗ ↑𝑔∗ ↑𝜕 ↑

↑ ↑𝑓 ′
∗ ↑𝑔′

∗ ↑𝜕′ ↑

↑

𝛼∗ ↑

𝛽∗ ↑

𝛾∗ ↑

𝛼∗

𝐻𝑛(𝐴) 𝐻𝑛(𝐵) 𝐻𝑛(𝐶) 𝐻𝑛−1(𝐴)

𝐻𝑛(𝐴′) 𝐻𝑛(𝐵′) 𝐻𝑛(𝐶′) 𝐻𝑛−1(𝐴′)

… …

… …

Proof. (Rotman 2009, Theorem 6.13). Since 𝐻𝑛 is a functor, the leftmost two squares commute. Take
[𝑐] ∈ 𝐻𝑛(𝐶) for some 𝑐 ∈ 𝑍𝑛(𝐶), we need to show that 𝛼∗𝜕([𝑐]) = 𝜕′𝛾∗([𝑐]).

Let 𝑏 ∈ 𝐵𝑛 be a lifting of 𝑐, i.e., 𝑔(𝑏) = 𝑐. Then 𝜕([𝑐]) = [𝑎], where 𝑓(𝑎) = 𝑑𝐵(𝑏). Therefore,
𝛼∗𝜕([𝑐]) = [𝛼(𝑎)].

On the other hand, since 𝛾 is a chain map, we have 𝑔′𝛽(𝑏) = 𝛾𝑔(𝑏) = 𝛾(𝑐). We see that 𝑏′ ≔ 𝛽(𝑏) ∈ 𝐵′
𝑛

is a lifting of 𝑐′ because 𝑔′(𝑏′) = 𝑔′(𝛽(𝑏)) = 𝛾(𝑔(𝑏)) = 𝛾(𝑐) = 𝑐′. Hence 𝜕′𝛾∗([𝑐]) = 𝜕′([𝛾(𝑐)]) =
[𝑎′], where 𝑓 ′(𝑎′) = 𝑑𝐵′(𝑏′) = 𝑑𝐵′(𝛽(𝑏)).

But

𝑓 ′(𝛼(𝑎)) = 𝛽(𝑓(𝑎)) = 𝛽(𝑑𝐵(𝑏)) = 𝑑𝐵′(𝛽(𝑏)) = 𝑓 ′(𝑎′)

and 𝑓 ′ is injective, so 𝛼(𝑎) = 𝑎′. ∎

Corollary 6.3.4. Let 𝒜 be an abelian category. Then homology induces a functor from the cat-
egory of short exact sequences of chain complexes in 𝒜 to the category of long exact sequences
in 𝒜.

6.4. Resolutions

Definition 6.4.1.  Let 𝒜 be an abelian category. Let 𝑀  be an object of 𝒜. A left resolution of
𝑀  is a complex 𝑃∙, where 𝑃𝑖 = 0 for negative 𝑖, with morphism 𝜀 : 𝑃0 → 𝑀  such that

… → 𝑃2 →
𝑑

𝑃1 →
𝑑

𝑃0 →
𝜀

𝑀 → 0
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is exact. If each 𝑃𝑖 is projective, then we call it a projective resolution. If 𝒜 is 𝑅-𝐌𝐨𝐝 or
𝐌𝐨𝐝-𝑅 and each 𝑃𝑖 is a free module, then we call it a free resolution.

In the same way, we define right resolutions and injective resolutions, only reversing all the
arrows.

Proposition 6.4.2.  𝑃∙ → 𝑀  is a resolution if and only if the following chain map 𝑓 : 𝑃∙ →
𝑀[0]

↑𝑑 ↑𝑑 ↑𝑑 ↑

↑ ↑ ↑ ↑

↑

0

↑

0

↑

𝜀

↑

…

… 𝑃2 𝑃1 𝑃0 0

0𝑀00…

is a quasi-isomorphism.

Proof. By definition, 𝑃∙ is a resolution if and only if

(1) 𝑃∙ is exact at 𝑃𝑛 for 𝑛 ≥ 1 and
(2) 𝑀 = Coker(𝑃1 →

𝑑
𝑃0).

On the other hand, 𝑓  is quasi-isomorphism if and only if
(3) 𝐻𝑛(𝑃 ) ≅ 𝐻𝑛(𝑀[0]) ≅ 0 for 𝑛 ≥ 1 and
(4) 𝐻0(𝑃 ) ≅ 𝐻0(𝑀[0]) ≅ 𝑀 .

(1) is obviously equivalent to (3). (4) is equivalent to 𝑀 ≅ 𝑃0/ Im(𝑑) = Coker(𝑃1 →
𝑑

𝑃0) and thus

equivalent to (2). ∎

By finding a resolution of a potentially “complicated” object 𝑀 , we can work with a chain complex of
“simple” objects, e.g. projective or injective objects.

Lemma 6.4.3.  If 𝒜 has enough projectives, then every object has a projective resolution. Dually,
if 𝒜 has enough injectives, then every object has an injective resolution.

Proof. (Monnet and Kremnitzer 2021, Lemma 5.20).
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↑

𝑖0

↑

𝜀1
↑

↑𝑑1 ↑𝜀0 ↑

↑

↑

𝑖1

↑
↑𝜀2

↑𝑑2

↑

↑

𝑖2

↑

↑ 𝑀 0𝑃0𝑃1

𝑀0

00

𝑀1

0

𝑃2

0

𝑀2

0

…

Let 𝑀 ∈ 𝒜. By definition of having enough projectives, let 𝜀0 : 𝑃0 → 𝑀  be an epimorphism where
𝑃0 is projective. Let 𝑀0 ≔ Ker 𝜀0, and we have short exact sequence

0 → 𝑀0 → 𝑃0 → 𝑀 → 0.

Now we can let 𝜀1 : 𝑃1 → 𝑀0 be an epimorphism and 𝑀1 ≔ Ker 𝜀1, obtaining the short exact se-
quence

0 → 𝑀1 → 𝑃1 → 𝑀0 → 0.

We define 𝑑1 = 𝑖0𝜀1 : 𝑃1 → 𝑃0 and then

𝑑1(𝑃1) = 𝑀0 = Ker 𝜀0.

Thus the chain in exact at 𝑃0. The procedure above can be then iterated for any 𝑛 ≥ 1 and the resultant
chain is infinitely long. ∎

Theorem 6.4.4 (Comparison Theorem).  In an abelian category 𝒜, let 𝑓 ′ : 𝑀 → 𝑁 . Consider
the commutative diagram, where the rows are chain complexes:

↑𝑑 ↑𝑑 ↑𝜀 ↑
↑↑𝜂↑𝑑′↑𝑑′

↑
↑

↑

𝑓2 ↑

𝑓1 ↑

𝑓0 ↑

𝑓 ′

𝑀

𝑁

0

0

𝑃0𝑃1𝑃2

𝑄0𝑄1𝑄2

Assume that 𝑃𝑛 is projective for all 𝑛 ≥ 0 and that 𝜂 : 𝑄∙ → 𝑁  is a resolution (i.e., the bottom
row is exact), then there is a chain map 𝑓∙ : 𝑃∙ → 𝑄∙ lifting 𝑓 ′ (i.e., 𝑓∙ makes the above diagram
commutative). Further, 𝑓∙ is unique up to a chain homotopy equivalence.

Proof. (Weibel 1994, Comparison Theorem 2.26), (Rotman 2009, Theorem 6.16). Set 𝑓−1 = 𝑓 ′. By induc-
tion, suppose that 𝑓𝑛 has been constructed. Note that for any 𝑎 ∈ 𝑃𝑛+1, we have
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𝑑′
𝑛 ∘ 𝑓𝑛 ∘ 𝑑𝑛+1(𝑎) = 𝑓𝑛−1 ∘ 𝑑𝑛 ∘ 𝑑𝑛+1(𝑎) = 0,

therefore 𝑓𝑛 ∘ 𝑑𝑛+1 : 𝑃𝑛+1 → 𝑄𝑛 lands in 𝑍𝑛(𝑄). On the other hand, due to the exactness of 𝑄∙, the
map 𝑑′

𝑛+1 : 𝑄𝑛+1 → 𝑍𝑛(𝑄) is an epimorphism. So we have the following:

↑
↑

𝑓𝑛+1

↑𝑑′
𝑛+1

↑

𝑓𝑛 ∘ 𝑑𝑛+1

𝑃𝑛+1

𝑍𝑛(𝑄) 0𝑄𝑛+1

where since 𝑃𝑛+1 is an projective object, the morphism 𝑓𝑛+1 : 𝑃𝑛+1 → 𝑄𝑛+1 exists such that the di-
agram commutes, i.e. 𝑑′

𝑛+1 ∘ 𝑓𝑛+1 = 𝑓𝑛 ∘ 𝑑𝑛+1.

For the uniqueness, let ℎ : 𝑃∙ → 𝑄∙ be another chain map lifting 𝑓 ′. We want to construct homotopy
𝑠 with terms 𝑠𝑛 : 𝑃𝑛 → 𝑄𝑛+1 such that

ℎ𝑛 − 𝑓𝑛 = 𝑑′
𝑛+1𝑠𝑛 + 𝑠𝑛−1𝑑𝑛

for all 𝑛 ≥ −1.

For the base case, set 𝑓−1 = ℎ−1 = 𝑓 ′, 𝑑0 = 𝜀, 𝑑−1 = 0, 𝑑′
0 = 𝜂, 𝑑−1 = 0. We construct 𝑠−2 = 𝑠−1 =

0, and the claim is trivially true for 𝑛 = −1.

For the induction step, assume we have constructed 𝑠𝑖 for 𝑖 ≤ 𝑛,

↑𝑑′
𝑛+2 ↑𝑑′

𝑛+1 ↑𝑑′
𝑛

↑𝑑𝑛+2 ↑𝑑𝑛+1 ↑𝑑𝑛

↑

ℎ𝑛+1 − 𝑓𝑛+1

↑

ℎ𝑛 − 𝑓𝑛

↑

ℎ𝑛−1 − 𝑓𝑛−1

↑

ℎ𝑛+2 − 𝑓𝑛+2

↑
↑

↑
↑

↑

𝑠𝑛

↑

𝑠𝑛−1

↑

𝑠𝑛+1

𝑃𝑛+1𝑃𝑛+2 𝑃𝑛 𝑃𝑛−1

𝑄𝑛+2 𝑄𝑛+1 𝑄𝑛 𝑄𝑛−1

(Again, only the solid lines commute.) We want to show the existence of 𝑠𝑛+1 which satisfies

𝑑′
𝑛+2𝑠𝑛+1 = ℎ𝑛+1 − 𝑓𝑛+1 − 𝑠𝑛𝑑𝑛+1.

We claim that (ℎ𝑛+1 − 𝑓𝑛+1 − 𝑠𝑛𝑑𝑛+1) sends 𝑃𝑛+1 to 𝑍𝑛+1(𝑄). First, notice that this claim would
indicate the existence of 𝑠𝑛+1, as we would have

↑

𝑠𝑛+1

↑𝑑′
𝑛+2

↑

ℎ𝑛+1 − 𝑓𝑛+1 − 𝑠𝑛𝑑𝑛+1

↑

𝑃𝑛+1

𝑍𝑛+1(𝑄)𝑄𝑛+2 0

where 𝑃𝑛+1 is projective and 𝑑′
𝑛+2 : 𝑄𝑛+2 → 𝑍𝑛+1(𝑄) is an epimorphism.

Now
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𝑑′
𝑛+1(ℎ𝑛+1 − 𝑓𝑛+1 − 𝑠𝑛𝑑𝑛+1) = 𝑑′

𝑛+1(ℎ𝑛+1 − 𝑓𝑛+1) − 𝑑′
𝑛+1𝑠𝑛𝑑𝑛+1

= 𝑑′
𝑛+1(ℎ𝑛+1 − 𝑓𝑛+1) − (ℎ𝑛 − 𝑓𝑛 − 𝑠𝑛−1𝑑𝑛)𝑑𝑛+1

= 𝑑′
𝑛+1(ℎ𝑛+1 − 𝑓𝑛+1) − (ℎ𝑛 − 𝑓𝑛)𝑑𝑛+1

= 0.

Hence (ℎ𝑛+1 − 𝑓𝑛+1 − 𝑠𝑛𝑑𝑛+1) sends 𝑃𝑛+1 to 𝑍𝑛+1(𝑄). ∎

Lemma 6.4.5 (Horseshoe Lemma). Suppose we have a commutative diagram

↑ ↑ ↑𝜀′↑
↑ ↑ ↑ ↑𝜀″

↑

↑𝑖𝐴

↑𝜋𝐴

↑

↑
↑

𝑃 ′
2 𝑃 ′

1 𝑃 ′
0 𝐴′

𝐴

𝐴″

0

0

𝑃 ″
0𝑃 ″

1𝑃 ″
2

…

…

0

0

where the column is exact and the rows are projective resolutions. Set 𝑃𝑛 = 𝑃 ′
𝑛 ⊕ 𝑃 ′′

𝑛 . Then the
𝑃𝑛 assemble to form a projective resolution 𝑃  of 𝐴, and the right-hand column lifts to an exact
sequence of complexes

0 → 𝑃 ′
∙ →

𝑖∙
𝑃∙ →

𝜋∙
𝑃 ″

∙ → 0,

where 𝑖𝑛 : 𝑃 ′
𝑛 → 𝑃𝑛 and 𝜋𝑛 : 𝑃𝑛 → 𝑃 ′′

𝑛  are the natural inclusion and projection, respectively.

Proof. (Weibel 1994, Horseshoe Lemma 2.2.8). Since 𝑃 ″
0  is projective and 𝜋𝐴 : 𝐴 → 𝐴″ is an epimor-

phism, we can lift 𝜀′′ : 𝑃 ″
0 → 𝐴″ to a map 𝜀′′ : 𝑃 ′′

0 → 𝐴. The direct sum of 𝜀′′ and 𝑖𝐴𝜀′ : 𝑃 ′
0 → 𝐴

gives a map 𝜀 : 𝑃0 → 𝐴. Then the diagram below commutes：
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↑ ↑ ↑𝜀′ ↑

↑ ↑ ↑𝜀 ↑

↑ ↑ ↑𝜀″ ↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

Ker(𝜀′)

Ker(𝜀)

Ker(𝜀″)

𝑃 ′
0

𝑃0

𝑃 ″
0

𝐴′

𝐴

𝐴″

0 0

0 0

0 0

0

0

0

0

0

0

where the right two columns are short exact sequences, and the Snake Lemma 3.7.12 shows that the
left column is exact and that Coker(𝜀) = 0, so that 𝑃0 maps onto 𝐴. This finishes the initial step and
brings us to the situation

↑ ↑𝑑′ ↑

↑

↑

↑

↑ ↑𝑑″

↑

↑

0

Ker(𝜀′)

Ker(𝜀)

Ker(𝜀″)

𝑃 ′
1

𝑃 ″
1

… 0

…

0

0

The filling in of the “horseshoe” now proceeds by induction. ∎
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7. Derived Functors

7.1. Homological 𝛿-functors
(Weibel 1994, Section 2.1). The next two definitions are stated separately for clarity.

Definition 7.1.1.  Let 𝒜, ℬ be abelian categories. A homological 𝛿-functor 𝑇  from 𝒜 to ℬ is
a collection of additive functors {𝑇𝑛 : 𝒜 → ℬ}𝑛≥0 such that
(1) (Existence of 𝛿). For each short exact sequence 0 → 𝐴 → 𝐵 → 𝐶 → 0 in 𝒜, there exist mor-

phisms 𝛿𝑛 : 𝑇𝑛(𝐶) → 𝑇𝑛−1(𝐴) for 𝑛 ≥ 1 such that

… → 𝑇𝑛+1(𝐶) →
𝛿

𝑇𝑛(𝐴) → 𝑇𝑛(𝐵) → 𝑇𝑛(𝐶) →
𝛿

𝑇𝑛−1(𝐴) → …

→ 𝑇1(𝐶) →
𝛿

𝑇0(𝐴) → 𝑇0(𝐵) → 𝑇0(𝐶) → 0

is a long exact sequence in ℬ. In particular, 𝑇0 is right exact;
(2) (Naturality of 𝛿). For each morphism of short exact sequences from 0 → 𝐴′ → 𝐵′ → 𝐶′ →

0 to 0 → 𝐴 → 𝐵 → 𝐶 → 0, the 𝛿’s above give a commutative diagram

↑ ↑

↑𝛿

↑𝛿
𝑇𝑛(𝐶′) 𝑇𝑛−1(𝐴′)

𝑇𝑛(𝐶) 𝑇𝑛−1(𝐴)

Definition 7.1.2.  Let 𝒜, ℬ be abelian categories. A cohomological 𝛿-functor 𝑇  from 𝒜 to ℬ
is a collection of additive functors {𝑇 𝑛 : 𝒜 → ℬ}𝑛≥0 such that

(1) (Existence of 𝛿). For each short exact sequence 0 → 𝐴 → 𝐵 → 𝐶 → 0 in 𝒜, there exist mor-
phisms 𝛿𝑛 : 𝑇 𝑛(𝐶) → 𝑇 𝑛+1(𝐴) for 𝑛 ≥ 0 such that

0 → 𝑇 0(𝐴) → 𝑇 0(𝐵) → 𝑇 0(𝐶) →
𝛿

𝑇 1(𝐴) → …

→ 𝑇 𝑛−1(𝐶) →
𝛿

𝑇 𝑛(𝐴) → 𝑇 𝑛(𝐵) → 𝑇 𝑛(𝐶) →
𝛿

𝑇 𝑛+1(𝐴) → …

is a long exact sequence in ℬ. In particular, 𝑇 0 is left exact;
(2) (Naturality of 𝛿). For each morphism of short exact sequences from 0 → 𝐴′ → 𝐵′ → 𝐶′ →

0 to 0 → 𝐴 → 𝐵 → 𝐶 → 0, the 𝛿’s above give a commutative diagram

↑ ↑

↑𝛿

↑𝛿
𝑇 𝑛(𝐶′) 𝑇 𝑛+1(𝐴′)

𝑇 𝑛(𝐶) 𝑇 𝑛+1(𝐴)
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Example 7.1.3.  Homology gives a homological 𝛿-functor

{𝐻𝑛 : Ch≥0(𝒜) → 𝒜}
𝑛≥0

,

where Ch≥0(𝒜) is the (full) subcategory of Ch(𝒜) whose objects are chain complexes 𝐶∙ such
that 𝐶𝑛 = 0 for all 𝑛 < 0.

Similarly, cohomology gives a cohomological 𝛿-functor

{𝐻𝑛 : Ch≥0(𝒜) → 𝒜}
𝑛≥0

,

where Ch≥0(𝒜) is defined similarly.

Example 7.1.4.  If 𝑝 is an integer, the collection {𝑇𝑛 : 𝐀𝐛 → 𝐀𝐛}𝑛≥0 of functors defined by

𝑇𝑛(𝐴) =

⎩
{
⎨
{
⎧𝐴/𝑝𝐴 𝑛 = 0

​𝑝𝐴 ≔ {𝑎 ∈ 𝐴 : 𝑝𝑎 = 0} 𝑛 = 1
0 𝑛 ≥ 2

form a homological 𝛿-functor (or a cohomological 𝛿-functor with 𝑇 0 = 𝑇1 and 𝑇 1 = 𝑇0).

Proof. Apply the Snake Lemma 3.7.12 to the commutative diagram

↑

𝑝

↑

𝑝

↑

𝑝

↑ ↑ ↑ ↑

↑ ↑ ↑ ↑

0 𝐴 𝐵 𝐶 0

0 𝐴 𝐵 𝐶 0

where 𝐴 →
𝑝

𝐴 is the map of multiplication by 𝑝 and so on, so that we get the exact sequence

0 → ​𝑝𝐴 → ​𝑝𝐵 → ​𝑝𝐶 →
𝛿

𝐴/𝑝𝐴 → 𝐵/𝑝𝐵 → 𝐶/𝑝𝐶 → 0.

∎

Definition 7.1.5.  A morphism 𝑓 : 𝑆 → 𝑇  of homological (resp. cohomological) 𝛿-functors is
a collection of natural transformations {𝑓𝑛 : 𝑆𝑛 → 𝑇𝑛}𝑛≥0 (resp. {𝑓𝑛 : 𝑆𝑛 → 𝑇 𝑛}𝑛≥0) which
commutes with 𝛿.

Remark 7.1.6.  This definition is equivalent to saying that there is a commutative “ladder diagram”
connecting the long exact sequences for 𝑆 and 𝑇  associated to any short exact sequence in 𝒜.
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Definition 7.1.7.  A homological 𝛿-functor 𝑇 = {𝑇𝑛} is universal if, given any other homo-
logical 𝛿-functor 𝑆 = {𝑆𝑛} and a natural transformation 𝑓0 : 𝑆0 → 𝑇0, there exists a unique
morphism

𝑓 = {𝑓𝑛 : 𝑆𝑛 → 𝑇𝑛}𝑛≥0 : 𝑆 → 𝑇

extending 𝑓0.

A universal cohomological 𝛿-functor 𝑇  is similarly defined.

Example 7.1.8.  If 𝐹 : 𝒜 → ℬ is an exact functor, then 𝑇0 = 𝐹  and 𝑇𝑛 = 0 for 𝑛 ≠ 0 defines a
universal homological 𝛿-functor 𝑇 : 𝒜 → ℬ.

7.2. Derived Functors
The main object of this section is to show that in an abelian category with enough projectives, left
derived functors, defined as follows, are homological 𝛿-functors.

Definition 7.2.1.  Let 𝒜 and ℬ be two abelian categories and let 𝐹 : 𝒜 → ℬ be a right exact
functor. Assume that 𝒜 has enough projectives. For any 𝐴 ∈ 𝒜, pick a projective resolution
𝑃∙ → 𝐴 by Lemma 6.4.3. Then 𝐿𝑖𝐹  given by

𝐿𝑖𝐹(𝐴) ≔ 𝐻𝑖(𝐹(𝑃))

is called the 𝑖-th left derived functor.

Remark 7.2.2.  (Rotman 2009, p. 344). To elaborate, given 𝐹 : 𝒜 → ℬ and 𝐴 ∈ 𝒜, to calculate
𝐿𝑖𝐹(𝐴) we need the following steps:
(1) Find a projective resolution of 𝐴 in 𝒜:

… → 𝑃2 → 𝑃1 → 𝑃0 → 𝐴 → 0;
(2) Delete 𝐴 to form the deleted projective resolution, i.e., the chain complex

… → 𝑃2 → 𝑃1 → 𝑃0 → 0,

(which is not exact at 𝑃0 unless 𝐴 = 0);
(3) Apply 𝐹  to form a chain complex in ℬ:

… → 𝐹(𝑃2) → 𝐹(𝑃1) → 𝐹(𝑃0) → 0;
(4) Calculate the 𝑖-th homology 𝐻𝑖(𝐹(𝑃)) of this chain complex.

In fact, our definition of the “functor” 𝐿𝑖𝐹  is still incomplete as we have not defined how it maps the
morphisms in 𝒜. However, we first need to show that for any object 𝐴 ∈ 𝒜, our definition of 𝐿𝑖𝐹(𝐴)
is independent of the choice of projective resolution 𝑃∙ → 𝐴. The following implies the case when
𝑖 = 0.
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Lemma 7.2.3.  𝐿0𝐹(𝐴) ≅ 𝐹(𝐴).

Proof. Consider the projective resolution of 𝐴:

…𝑃1 →
𝑑1

𝑃0 → 𝐴 → 0

By definition, 𝐿0𝐹(𝐴) = 𝐻0(𝐹(𝑃)) ≅ Coker(𝐹(𝑑1)). Since 𝐹  is right exact, it preserves cokernels,
so Coker(𝐹(𝑑1)) ≅ 𝐹(Coker(𝑑1)) = 𝐹(𝐴). ∎

Lemma 7.2.4.  Let 𝒜, ℬ, 𝐹 , 𝐴 be defined as in Definition 7.2.1. If 𝑃∙ → 𝐴 and 𝑄∙ → 𝐴 are two
projective resolutions, then there is a canonical isomorphism

𝐻𝑖(𝐹(𝑃)) ≅ 𝐻𝑖(𝐹(𝑄))

Proof. By the Comparison Theorem 6.4.4, there is a chain map 𝑓 : 𝑃∙ → 𝑄∙ lifting the identity id𝐴 :
𝐴 → 𝐴, which gives 𝑓∗ : 𝐻𝑖𝐹(𝑃) → 𝐻𝑖𝐹(𝑄). Notice that any other lift 𝑓 ′ : 𝑃∙ → 𝑄∙ is chain ho-
motopic to 𝑓  so 𝑓∗ = 𝑓 ′

∗ , so 𝑓∗ is canonical. We can also lift id𝐴 to a map 𝑔 : 𝑄∙ → 𝑃∙ and get 𝑔∗ :
𝐻𝑖𝐹(𝑄) → 𝐻𝑖𝐹(𝑃).

Notice 𝑔 ∘ 𝑓 : 𝑃∙ → 𝑃∙ and id𝑃 : 𝑃∙ → 𝑃∙ are both chain maps lifting id𝐴, and by the Comparison
Theorem 6.4.4 they are chain homotopic. Therefore 𝑔∗ ∘ 𝑓∗ = (𝑔 ∘ 𝑓)∗ = (id𝑃 )∗. Similarly, 𝑓∗ ∘ 𝑔∗ =
(id𝑄)

∗
, which gives an isomorphism 𝐻𝑖(𝐹(𝑃)) ≅ 𝐻𝑖(𝐹(𝑄)). ∎

Corollary 7.2.5.  If 𝐴 is projective, then 𝐿𝑖𝐹(𝐴) = 0 for 𝑖 ≠ 0.

Proof. Simply notice that … → 0 → 𝐴 → 𝐴 → 0 is a projective resolution of 𝐴. ∎

Now we complete the definition of 𝐿𝑖𝐹  and prove that it is indeed a functor.

Lemma 7.2.6.  If 𝑓 : 𝐴′ → 𝐴 a morphism in 𝒜, then there is a natural map

𝐿𝑖𝐹(𝑓) : 𝐿𝑖𝐹(𝐴′) → 𝐿𝑖𝐹(𝐴)

Proof. Let 𝑃 ′
∙ → 𝐴′ and 𝑃∙ → 𝐴 be projective resolutions. By the Comparison Theorem 6.4.4, 𝑓  lifts

to a chain map 𝑓 : 𝑃 ′
∙ → 𝑃∙, which gives a map 𝑓∗ : 𝐻𝑖𝐹(𝑃 ′) → 𝐻𝑖𝐹(𝑃). As any other lift is chain

homotopic to 𝑓 , the map 𝑓∗ is independent of the lift. ∎

Proposition 7.2.7.  𝐿𝑖𝐹 : 𝒜 → ℬ is an additive functor.

Proof. Let 𝐴 ∈ 𝒜 and 𝑃∙ → 𝐴 be a projective resolution. The chain map id𝑃  lifts id𝐴, so 𝐿𝑖𝐹(id𝐴) =
id𝐿𝑖𝐹(𝐴). Given 𝐴′ →

𝑓
𝐴 →

𝑔
𝐴″ in 𝒜 and projective resolutions 𝑃 ′

∙ → 𝐴′, 𝑃∙ → 𝐴, and 𝑃 ″
∙ → 𝐴″, we
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obtain lifts 𝑓 : 𝑃 ′
∙ → 𝑃∙ and 𝑔 : 𝑃∙ → 𝑃 ″

∙ . Then the composition 𝑔 ∘ 𝑓 : 𝑃 ′ → 𝑃 ″ is a lift of 𝑔 ∘ 𝑓 , so
𝑔∗ ∘ 𝑓∗ = (𝑔𝑓)∗ : 𝐻𝑖𝐹(𝑃 ′) → 𝐻𝑖𝐹(𝑃 ″). Therefore, 𝐿𝑖𝐹  is a functor.

If chain maps 𝑓1, 𝑓2 : 𝑃 ′
∙ → 𝑃∙ lift 𝑓1, 𝑓2 : 𝐴′ → 𝐴, then the chain map 𝑓1 + 𝑓2 lifts 𝑓1 + 𝑓2, so 𝑓1∗ +

𝑓2∗ = (𝑓1 + 𝑓2)∗ : 𝐻𝑖𝐹(𝑃 ′) → 𝐻𝑖𝐹(𝑃). Therefore, 𝐿𝑖𝐹  is an additive functor. ∎

Theorem 7.2.8.  Let 𝐹 : 𝒜 → ℬ be a right exact functor, then {𝐿𝑖𝐹}𝑖≥0 forms a universal ho-
mological 𝛿-functor.

Proof. (Weibel 1994, Theorem 2.4.6 and Theorem 2.4.7). First notice that 𝐿0𝐹 = 𝐹  is right exact. Given
a short exact sequence

0 → 𝐴′ → 𝐴 → 𝐴″ → 0

and projective resolutions 𝑃 ′
∙ → 𝐴′ and 𝑃 ″

∙ → 𝐴″, by the Horseshoe Lemma 6.4.5, there is a projective
resolution 𝑃∙ → 𝐴 such that 0 → 𝑃 ′

∙ → 𝑃∙ → 𝑃 ″
∙ → 0 is a short exact sequence of chain complexes

and for each 𝑛, 0 → 𝑃 ′
𝑛 → 𝑃𝑛 → 𝑃 ″

𝑛 → 0 is split. Since 𝐹  is additive, by Lemma 3.1.12, 𝐹  preserves
biproducts and thus preserves split exact sequences, so

0 → 𝐹(𝑃 ′
𝑛) → 𝐹(𝑃𝑛) → 𝐹(𝑃 ″

𝑛 ) → 0

is split exact in ℬ. (Notice that 𝐹  is not necessarily an exact functor, so 0 → 𝑃 ′
𝑛 → 𝑃𝑛 → 𝑃 ″

𝑛 → 0
being split is crucial.) Hence

0 → 𝐹(𝑃 ′
∙ ) → 𝐹(𝑃∙) → 𝐹(𝑃 ″

∙ ) → 0

is a short exact sequence of chain complexes. Hence applying homology gives the connecting homo-
morphisms and a long exact sequence

… → 𝐿𝑛+1𝐹(𝐴″) →
𝛿

𝐿𝑛𝐹(𝐴′) → 𝐿𝑛𝐹(𝐴) → 𝐿𝑛𝐹(𝐴″) →
𝛿

𝐿𝑛−1𝐹(𝐴′) → …

by Theorem 6.3.2.

We omit the proofs that 𝛿’s are natural and that {𝐿𝑖𝐹}𝑖≥0 is universal. ∎

Definition 7.2.9.  Let 𝒜 and ℬ be two abelian categories and let 𝐹 : 𝒜 → ℬ be a left exact
functor. Assume that 𝒜 has enough injectives and for any 𝐴 ∈ 𝒜 we have an injective resolution
𝐴 → 𝐼∙. Then the 𝑖-th right derived functor 𝑅𝑖𝐹  is defined as

𝑅𝑖𝐹(𝐴) ≔ 𝐻𝑖(𝐹(𝐼∙))

Note 7.2.10.  𝑅𝑖𝐹(𝐴) = (𝐿𝑖𝐹 op)op(𝐴).

Corollary 7.2.11.  Let 𝐹 : 𝒜 → ℬ be a left exact functor, then {𝑅𝑖𝐹}
𝑖≥0

 forms a universal co-
homological 𝛿-functor.
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8. Balancing Ext and Tor
8.1. Defining Ext and Tor

Definition 8.1.1.  Let 𝒜 be an abelian category. Let 𝐴, 𝐵 ∈ 𝒜 and let 𝐵 → 𝐼∙ be an injective
resolution. Recall that Hom𝒜(𝐴, −) : 𝒜 → 𝐀𝐛 is left exact by Lemma 3.5.14. If 𝒜 has enough
injectives, we define the right derived functor Ext𝑖

𝒜(𝐴, −) of Hom𝒜(𝐴, −) as

Ext𝑖
𝒜(𝐴, 𝐵) = Ext𝑖

𝒜(𝐴, −)(𝐵) ≔ 𝑅𝑖 Hom𝒜(𝐴, −)(𝐵) = 𝐻𝑖(Hom𝒜(𝐴, 𝐼∙)).

In particular, Ext0
𝒜(𝐴, 𝐵) = Hom𝒜(𝐴, 𝐵).

Notice that the contravariant functor Hom𝒜(−, 𝐵) : 𝒜op → 𝐀𝐛 is also left exact by Corollary 3.5.16.
Assume that 𝒜 has enough projectives, so 𝒜op has enough injectives. Let 𝑃∙ → 𝐴 be an projective
resolution in 𝒜, which can be seen as an injective resolution in 𝒜op. We can thus define another right
derived functor Ext𝑖

𝒜(−, 𝐵), given by

Ext𝑖
𝒜(−, 𝐵)(𝐴) ≔ 𝑅𝑖 Hom𝒜(−, 𝐵)(𝐴) = 𝐻𝑖(Hom𝒜(𝑃∙, 𝐵)).

The above two constructions are in fact isomorphic, i.e., Ext𝑖
𝒜(𝐴, −)(𝐵) ≅ Ext𝑖

𝒜(−, 𝐵)(𝐴), or

Ext𝑖
𝒜(𝐴, 𝐵) ≔ 𝑅𝑖 Hom𝒜(𝐴, −)(𝐵) ≅ 𝑅𝑖 Hom𝒜(−, 𝐵)(𝐴).

This isomorphism is called the balancing of Ext. Before proving the balancing of Ext, we present
some properties of Ext that it gives.

Proposition 8.1.2.  Let 0 → 𝐾 → 𝐿 → 𝑀 → 0 be a short exact sequence in 𝒜 and let 𝐴, 𝐵 ∈
𝒜. Then we have the induced long exact sequences

0 → Hom𝒜(𝐴, 𝐾) → Hom𝒜(𝐴, 𝐿) → Hom𝒜(𝐴, 𝑀) →

Ext1
𝒜(𝐴, 𝐾) → Ext1

𝒜(𝐴, 𝐿) → Ext1
𝒜(𝐴, 𝑀) → …

and

0 → Hom𝒜(𝑀, 𝐵) → Hom𝒜(𝐿, 𝐵) → Hom𝒜(𝐾, 𝐵) →

Ext1
𝒜(𝑀, 𝐵) → Ext1

𝒜(𝐿, 𝐵) → Ext1
𝒜(𝐾, 𝐵) → …

Proof. Simply notice that {Ext𝑖
𝒜(𝐴, −)}

𝑖≥0
 and {Ext𝑖

𝒜(−, 𝐵)}
𝑖≥0

 form two cohomological 𝛿-func-
tors. ∎

Proposition 8.1.3.  The followings are equivalent:
(1) 𝐵 is injective;
(2) Hom𝒜(−, 𝐵) is exact;
(3) Ext𝑖

𝒜(𝐴, 𝐵) = 0 for 𝑖 ≠ 0 and all 𝐴;
(4) Ext1

𝒜(𝐴, 𝐵) = 0 for all 𝐴.

Proof. (1) ⇔ (2) by the definition of injective objects.
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(1) ⇒ (3) by applying the dual of Corollary 7.2.5 to Ext𝑖
𝒜(𝐴, −).

(3) ⇒ (4) is trivial.

(4) ⇒ (2). Let 0 → 𝐴′ → 𝐴 → 𝐴″ → 0 be a short exact sequence in 𝒜, which induces the long exact
sequence

0 → Hom𝒜(𝐴′, 𝐵) → Hom𝒜(𝐴, 𝐵) → Hom𝒜(𝐴″, 𝐵) → Ext1
𝒜(𝐴′, 𝐵) → …

Since Ext1
𝒜(𝐴′, 𝐵) = 0 by assumption, Hom𝒜(−, 𝐵) is an exact functor. ∎

Proposition 8.1.4.  The followings are equivalent:
(1) 𝐴 is projective;
(2) Hom𝒜(𝐴, −) is exact;
(3) Ext𝑖

𝒜(𝐴, 𝐵) = 0 for 𝑖 ≠ 0 and all 𝐵;
(4) Ext1

𝒜(𝐴, 𝐵) = 0 for all 𝐵.

Example 8.1.5.  Let 𝑚, 𝑛 ∈ ℤ. Let us calculate Ext1
ℤ(ℤ/𝑚, ℤ/𝑛) in two different ways.

We may use the injective resolution of ℤ/𝑛:

0 → ℤ/𝑛 → ℚ/ℤ →
𝑛

ℚ/ℤ → 0.

Now delete ℤ/𝑛, apply Homℤ(ℤ/𝑚, −), and use Homℤ(ℤ/𝑚, ℚ/ℤ) ≅ ℤ/𝑚, we get

0 → ℤ/𝑚 →
𝑛

ℤ/𝑚 → 0.

Calculating the first cohomology of this sequence reveals that Ext1
ℤ(ℤ/𝑚, ℤ/𝑛) = 𝐻1 =

Coker(ℤ/𝑚 →
𝑛

ℤ/𝑚) ≅ ℤ/ gcd(𝑚, 𝑛).

On the other hand, we may invoke the balancing of Ext and use the projective resolution of
ℤ/𝑚:

0 → ℤ →
𝑚

ℤ → ℤ/𝑚 → 0.

Now delete ℤ/𝑚, apply Homℤ(−, ℤ/𝑛) (which is a contravariant functor), and use
Homℤ(ℤ, ℤ/𝑛) ≅ ℤ/𝑛, we get

0 → ℤ/𝑛 →
𝑚

ℤ/𝑛 → 0.

Again the first cohomology of the sequence gives ℤ/ gcd(𝑚, 𝑛).

Definition 8.1.6.  Let 𝑅 be a ring and 𝐵 be a left 𝑅-module. Since (− ⊗𝑅 𝐵) : 𝐌𝐨𝐝-𝑅 → 𝐀𝐛 is
right exact by Corollary 4.5.4 and 𝑅-𝐌𝐨𝐝 has enough projectives, we can define the left derived
functor Tor𝑅

𝑖 (−, 𝐵):

Tor𝑅
𝑖 (𝐴, 𝐵) = Tor𝑅

𝑖 (−, 𝐵)(𝐴) ≔ 𝐿𝑖(− ⊗𝑅 𝐵)(𝐴).
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Similarly, let 𝐴 be a right 𝑅-module, and (𝐴 ⊗𝑅 −) : 𝑅-𝐌𝐨𝐝 → 𝐀𝐛 is right exact by Theorem 4.5.5.
We can thus define the left derived functor Tor𝑅

𝑖 (𝐴, −):

Tor𝑅
𝑖 (𝐴, −)(𝐵) ≔ 𝐿𝑖(𝐴 ⊗𝑅 −)(𝐵).

The two constructions are again isomorphic, i.e.,

Tor𝑅
𝑖 (𝐴, 𝐵) ≔ 𝐿𝑖(− ⊗𝑅 𝐵)(𝐴) ≅ 𝐿𝑖(𝐴 ⊗𝑅 −)(𝐵).

This isomorphism is called the balancing of Tor, which gives the following property.

Proposition 8.1.7.  Let 0 → 𝐾 → 𝐿 → 𝑀 → 0 be a short exact sequence in 𝐌𝐨𝐝-𝑅 and let
𝐵 ∈ 𝑅-𝐌𝐨𝐝. Then we have the induced long exact sequence

… → Tor𝑅
1 (𝐾, 𝐵) → Tor𝑅

1 (𝐿, 𝐵) → Tor𝑅
1 (𝑀, 𝐵) → 𝐾 ⊗𝑅 𝐵 → 𝐿 ⊗𝑅 𝐵 → 𝑀 ⊗𝑅 𝐵 → 0.

If 0 → 𝐾 → 𝐿 → 𝑀 → 0 is instead a short exact sequence in 𝑅-𝐌𝐨𝐝 and let 𝐴 ∈ 𝐌𝐨𝐝-𝑅,
then we have the induced long exact sequence

… → Tor𝑅
1 (𝐴, 𝐾) → Tor𝑅

1 (𝐴, 𝐿) → Tor𝑅
1 (𝐴, 𝑀) → 𝐴 ⊗𝑅 𝐾 → 𝐴 ⊗𝑅 𝐿 → 𝐴 ⊗𝑅 𝑀 → 0.

In order to prove the balancing of Ext and Tor, we need two new tools: mapping cones and double
complexes, introduced in the following sections.

8.2. Mapping Cones

Definition 8.2.1. Let 𝑓 : 𝐵∙ → 𝐶∙ be a chain map. Define the mapping cone of 𝑓  as the chain
complex cone(𝑓)∙, given by

cone(𝑓)𝑛 = 𝐵𝑛−1 ⊕ 𝐶𝑛

with differential⁴

𝑑(𝑏, 𝑐) = (−𝑑(𝑏), 𝑑(𝑐) − 𝑓(𝑏))

for 𝑏 ∈ 𝐵𝑛−1 and 𝑐 ∈ 𝐶𝑛. We could also write the differential in the form of a matrix:

(
−𝑑𝐵

−𝑓
0

𝑑𝐶
) : (

𝐵𝑛−1

𝐶𝑛
) → (

𝐵𝑛−2

𝐶𝑛−1
)

Dually, let 𝑔 : 𝐵∙ → 𝐶∙ be a cochain map, then the mapping cone of 𝑔 is the cochain complex
cone(𝑔)∙ given by

cone(𝑔)𝑛 = 𝐵𝑛+1 ⊕ 𝐶𝑛

with differential

𝑑(𝑏, 𝑐) = (−𝑑(𝑏), 𝑑(𝑐) − 𝑓(𝑏))

for 𝑏 ∈ 𝐵𝑛+1 and 𝑐 ∈ 𝐶𝑛.

⁴In Example 8.3.7 there is an explanation for this definition.
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Lemma 8.2.2.  Let 𝑓 : 𝐵∙ → 𝐶∙ be a chain map. Then there is a long exact sequence in homology

… → 𝐻𝑛+1(cone(𝑓)) → 𝐻𝑛(𝐵) →
𝜕

𝐻𝑛(𝐶) → 𝐻𝑛(cone(𝑓)) → …

where the connecting morphism 𝜕 = 𝑓∗.

Proof. There is a short exact sequence of chain complexes:

0 → 𝐶 →
𝑖

cone(𝑓) →
𝜋

𝐵[−1] → 0,

where 𝑖 : 𝑐 ↦ (0, 𝑐) and 𝜋 : (𝑏, 𝑐) ↦ −𝑏. Notice that 𝐻𝑛+1(𝐵[−1]) = 𝐻𝑛(𝐵), so we get the corre-
sponding long exact sequence in homology as above by Theorem 6.3.2.

Further, we have 𝜕 = 𝑖−1𝑑cone(𝑓)𝜋−1 by Theorem 6.3.2. Let 𝑏 ∈ 𝐵𝑛 be a cycle. We can lift it to (−𝑏, 0)
in cone(𝑓). Apply the differential of cone(𝑓) to get 𝑑cone(𝑓)(−𝑏, 0) = (𝑑(𝑏), 𝑓(𝑏)) = (0, 𝑓(𝑏)). Thus
𝜕[𝑏] = [𝑓(𝑏)] = 𝑓∗[𝑏]. ∎

The following is the main function of the mapping cone.

Corollary 8.2.3.  A chain map 𝑓 : 𝐵∙ → 𝐶∙ is a quasi-isomorphism if and only if cone(𝑓) is
acyclic.

Proof. “⇒”. If 𝑓  is a quasi-isomorphism, then 𝑓∗ : 𝐻𝑛(𝐵) → 𝐻𝑛(𝐶) is an isomorphism for all 𝑛. Then
we have an exact sequence

𝐻𝑛(𝐵) →
𝑓∗

𝐻𝑛(𝐶) →
𝑖∗

𝐻𝑛(cone(𝑓)) →
𝜋∗

𝐻𝑛−1(𝐵) →
𝑓∗

𝐻𝑛−1(𝐶).

By exactness at 𝐻𝑛(𝐶), we have that Ker(𝑖∗) = Im(𝑓∗) = 𝐻𝑛(𝐶). So 𝑖∗ = 0 and Im(𝑖∗) = 0. By ex-
actness at 𝐻𝑛−1(𝐵), we have that Im(𝜋∗) = Ker(𝑓∗) = 0, so 𝜋∗ = 0 and Ker(𝜋∗) = 𝐻𝑛(cone(𝑓)).

By exactness at 𝐻𝑛(cone(𝑓)), we have

0 = Im(𝑖∗) = Ker(𝜋∗) = 𝐻𝑛(cone(𝑓)),

so cone(𝑓) is acyclic.

“⇐”. If cone (𝑓) is acyclic, then 𝐻𝑛(cone(𝑓)) = 0 and we have an exact sequence

0 → 𝐻𝑛(𝐵) →
𝑓∗

𝐻𝑛(cone(𝑓)) → 0,

which indicates that 𝑓∗ is an isomorphism. ∎

Remark 8.2.4.  The same result can be obtained for cochain maps.

There is a similar construction called the mapping cylinder, although we do not use it in these notes.

Definition 8.2.5.  The mapping cylinder of a chain map 𝑓 : 𝐵∙ → 𝐶∙ is defined as the chain
complex cyl(𝑓)𝑛 = 𝐵𝑛 ⊕ 𝐵𝑛−1 ⊕ 𝐶𝑛. The differential can be represented by the matrix
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⎝
⎜⎜
⎜⎛

𝑑𝐵
0
0

id𝐵
−𝑑𝐵

−𝑓

0
0

𝑑𝐶⎠
⎟⎟
⎟⎞.

Remark 8.2.6.  The reader is directed to (Weibel 1994, Section 1.5) for some topological remarks
on mapping cones and mapping cylinders.

8.3. Double and Total Complexes
Recall that if 𝒜 is an abelian category, Ch(𝒜) is also an abelian category. Then to define a “two-di-
mensional” complex, one may be tempted to consider the category Ch(Ch(𝒜)). However, what we
define next is slightly different from that.

Definition 8.3.1.  A double complex (or bicomplex) 𝐶 = 𝐶∙∙ in an abelian category 𝒜 is a
family {𝐶𝑝,𝑞} of objects in 𝒜 with maps 𝑑ℎ

𝑝,𝑞 : 𝐶𝑝,𝑞 → 𝐶𝑝−1,𝑞 and 𝑑𝑣
𝑝,𝑞 : 𝐶𝑝,𝑞 → 𝐶𝑝,𝑞−1 such

that

(𝑑ℎ)2 = (𝑑𝑣)2 = 0, 𝑑𝑣𝑑ℎ + 𝑑ℎ𝑑𝑣 = 0.

The total degree of a term 𝐶𝑝,𝑞 is defined as 𝑝 + 𝑞.

In other words, a double complex is an infinite two-dimensional grid of objects where each row (resp.
each column) is a chain complex, and the horizontal and vertical differentials anticommute. A diagram
for a double complex is shown as below; this is not a commutative (but an anticommutative) diagram.

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑ℎ ↑

𝑑ℎ ↑
↑↑

𝑑ℎ↑

𝑑ℎ

↑

𝑑ℎ ↑

𝑑ℎ ↑

↑↑↑
↑

↑
↑

↑↑↑

𝐶𝑝−1,𝑞+1 𝐶𝑝,𝑞+1 𝐶𝑝+1,𝑞+1

𝐶𝑝−1,𝑞 𝐶𝑝,𝑞 𝐶𝑝+1,𝑞

𝐶𝑝−1,𝑞−1 𝐶𝑝,𝑞−1 𝐶𝑝+1,𝑞−1

…

…

…

………

…

…

…

………
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Remark 8.3.2.  Because the differentials anticommute, 𝑑𝑣 cannot be seen as chain maps between
rows. We need to replace 𝑑𝑣

𝑝,𝑞 by 𝑓𝑝,𝑞 ≔ (−1)𝑝𝑑𝑣
𝑝,𝑞 (so that the signs alternate for adjacent

columns) to make the squares commute. For example, the following is a commutative diagram:

↑

𝑑ℎ ↑

𝑑ℎ

↑
𝑑ℎ ↑

𝑑ℎ

↑

𝑑𝑣

↑

−𝑑𝑣

↑

𝑑𝑣

↑

𝑑ℎ

↑

𝑑ℎ

↑

−𝑑𝑣

𝐶0,0 𝐶1,0 𝐶2,0

𝐶0,1 𝐶1,1 𝐶2,1 𝐶3,1

𝐶3,0

Therefore, 𝑓∙,𝑞 : 𝐶∙,𝑞 → 𝐶∙,𝑞−1 is a chain map between two adjacent rows. This also gives an
isomorphism between the category of bicomplexes in 𝒜 and Ch(Ch(𝒜)).

Definition 8.3.3.  Let 𝐶•• be a double complex. We say that 𝐶•• is an upper half-plane com-
plex if there is some 𝑞0 such that 𝐶𝑝,𝑞 = 0 for all 𝑞 < 𝑞0. Similarly, 𝐶•• is a right half-plane
complex if there is some 𝑝0 such that 𝐶𝑝,𝑞 = 0 for all 𝑝 < 𝑝0.

Definition 8.3.4.  Given 𝐶 = {𝐶𝑝,𝑞}, we can define the total complex TotΠ(𝐶), given by

TotΠ(𝐶)𝑛 = ∏
𝑝+𝑞=𝑛

𝐶𝑝,𝑞.

That is, the 𝑛-th term of TotΠ(𝐶) is the product of all terms in 𝐶 which has total degree 𝑛. When
for each 𝑛, only finitely many terms in 𝐶 has total degree 𝑛, we also define Tot⊕(𝐶), given by

Tot⊕(𝐶)𝑛 = ⨁
𝑝+𝑞=𝑛

𝐶𝑝,𝑞.

TotΠ(𝐶) and Tot⊕(𝐶) both have differential

𝑑 = 𝑑ℎ + 𝑑𝑣.

Notation 8.3.5.  If 𝐶 is a double complex, sometimes we write 𝐻𝑛(𝐶) to mean 𝐻𝑛(TotΠ(𝐶))
or 𝐻𝑛(Tot⊕(𝐶)).

Lemma 8.3.6.  In a total complex, we have that 𝑑2 = 0, so the total complex is indeed a chain
complex.

Proof. (Rotman 2009, Lemma 10.5).

𝑑2 = (𝑑ℎ + 𝑑𝑣)(𝑑ℎ + 𝑑𝑣) = (𝑑ℎ)2 + (𝑑ℎ𝑑𝑣 + 𝑑𝑣𝑑ℎ) + (𝑑𝑣)2 = 0.

(This is why we have defined double complexes in the anticommuting way.) ∎
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The total complex is illustrated by the colours in the following diagram; each “diagonal slice” is given
a different colour. For example, Tot(𝐶∙∙)0 is the product of all the blue terms. This diagram also helps
explain how the differential of the total complex works. For example, take

𝑐 = (…, 𝑐−1,1, 𝑐0,0, 𝑐1,−1, …) ∈ ∏
𝑝∈ℤ

𝐶−𝑝,𝑝 = Tot(𝐶)0.

Then

𝑑(𝑐) =

⎝
⎜⎜
⎜⎛…, 𝑑𝑣(𝑐−1,1) + 𝑑ℎ(𝑐0,0)⏟⏟⏟⏟⏟⏟⏟⏟⏟

∈𝐶−1,0

, 𝑑𝑣(𝑐0,0) + 𝑑ℎ(𝑐1,−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈𝐶0,−1

, …

⎠
⎟⎟
⎟⎞ ∈ Tot(𝐶)−1.

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑ℎ ↑
𝑑ℎ ↑

↑↑

𝑑ℎ↑

𝑑ℎ

↑

𝑑ℎ ↑

𝑑ℎ ↑

↑↑↑

↑
↑

↑

↑↑↑

𝐶−1,1 𝐶0,1 𝐶1,1

𝐶−1,0 𝐶0,0 𝐶1,0

𝐶−1,−1 𝐶0,−1 𝐶1,−1

…

…

…

………

…

…

…

………

Example 8.3.7.  Let 𝑓∙ : 𝐵∙ → 𝐶∙ be a chain map, then the following diagram forms a (two-
column) double complex. The reader is welcome to verify that the total complex of this double
complex is exactly cone(𝑓), which in particular helps explain why we have defined the differen-
tial of cone(𝑓) in that way.
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↑

−𝑓

↑

−𝑓

↑−𝑑

↑−𝑑

↑𝑑

↑𝑑

↑

−𝑓

↑ ↑

↑ ↑

𝐶𝑛 𝐵𝑛

𝐶𝑛−1 𝐵𝑛−1

𝐶𝑛−2 𝐵𝑛−2

… …

… …

Lemma 8.3.8 (Acyclic Assembly Lemma).  Let 𝐶 = {𝐶𝑝,𝑞} be a double complex. If
(1) 𝐶 is an upper half-plane complex with exact columns, or
(2) 𝐶 is a right half-plane complex with exact rows,

then TotΠ(𝐶) is acyclic. If
(3) 𝐶 is an upper half-plane complex with exact rows, or
(4) 𝐶 is a right half-lane complex with exact columns,

then Tot⊕(𝐶) is acyclic.

Proof. (Weibel 1994, Lemma 2.7.3) explains why proving (1) is sufficient to prove all four conditions, so
we work on (1) only. Let 𝐶 be an upper half-plane bicomplex with exact columns, where we assume
𝐶𝑝,𝑞 = 0 when 𝑞 < 0 (by translating 𝐶 up or down). It is sufficient to show that

𝐻0(TotΠ(𝐶)) = 0,

since by translating 𝐶 left and right, this will indicate that 𝐻𝑛(TotΠ(𝐶)) = 0 for all 𝑛.

Let

𝑐 = (…, 𝑐−2,2, 𝑐−1,1, 𝑐0,0) ∈ ∏ 𝐶−𝑝,𝑝 = TotΠ(𝐶)0

be a 0-cycle, i.e., 𝑑(𝑐) = 0. We will use induction to find elements 𝑏−𝑝,𝑝+1 ∈ 𝐶−𝑝,𝑝+1 for 𝑝 ≥ −1 such
that

𝑑𝑣(𝑏−𝑝,𝑝+1) + 𝑑ℎ(𝑏−𝑝+1,𝑝) = 𝑐−𝑝,𝑝.

For the base case, let 𝑏1,0 = 0 for 𝑝 = −1. Since the 0-th column is exact, there exists 𝑏0,1 ∈ 𝐶0,1 such
that 𝑑𝑣(𝑏0,1) = 𝑐0,0.
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↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑ℎ

𝐶0,1

𝐶0,0 𝐶1,0

0

By induction, suppose we have found 𝑏−𝑝+1,𝑝 and want to find 𝑏−𝑝,𝑝+1.

↑

𝑑𝑣

↑

𝑑𝑣

↑

𝑑ℎ

𝐶−𝑝,𝑝+1

𝐶−𝑝,𝑝 𝐶−𝑝+1,𝑝

𝐶−𝑝,𝑝−1

We compute that

𝑑𝑣(𝑐−𝑝,𝑝 − 𝑑ℎ(𝑏−𝑝+1,𝑝)) = 𝑑𝑣(𝑐−𝑝,𝑝) + 𝑑ℎ𝑑𝑣(𝑏−𝑝+1,𝑝)

= 𝑑𝑣(𝑐−𝑝,𝑝) + 𝑑ℎ(𝑐−𝑝+1,𝑝−1) − 𝑑ℎ𝑑ℎ(𝑏−𝑝+2,𝑝−1)
= 0,

where 𝑑𝑣(𝑐−𝑝,𝑝) + 𝑑ℎ(𝑐−𝑝+1,𝑝−1) = 0 because 𝑑(𝑐) = 0. Thus

𝑐−𝑝,𝑝 − 𝑑ℎ(𝑏−𝑝+1,𝑝) ∈ Ker(𝑑𝑣 : 𝐶−𝑝,𝑝 → 𝐶−𝑝,𝑝−1) = Im(𝑑𝑣 : 𝐶−𝑝,𝑝+1 → 𝐶−𝑝,𝑝),

since the (−𝑝)-th column is exact. So there exists 𝑏−𝑝,𝑝+1 such that

𝑑𝑣(𝑏−𝑝,𝑝+1) = 𝑐−𝑝,𝑝 − 𝑑ℎ(𝑏−𝑝+1,𝑝)

as desired. Now assembling all 𝑏−𝑝,𝑝+1 gives

𝑏 = (…, 𝑏−1,2, 𝑏0,1, 𝑏1,0) ∈ ∏ 𝐶−𝑝,𝑝+1 = TotΠ(𝐶)1

such that 𝑑(𝑏) = 𝑐, which proves that 𝐻0(TotΠ(𝐶)) = 0. ∎

Remark 8.3.9.  This lemma is also a consequence of spectral sequences.

A variant of the above lemma is the following, whose proof is similar (Monnet and Kremnitzer 2021,
Lemma 8.8).
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Lemma 8.3.10.  Let 𝐶 be a double complex such that for every 𝑛, there exist only finitely many
pairs (𝑝, 𝑞) such that 𝑝 + 𝑞 = 𝑛 and 𝐶𝑝,𝑞 ≠ 0. If 𝐶 has exact rows (or if 𝐶 has exact columns),
then Tot⊕(𝐶) is acyclic.

8.4. Balancing Tor

Definition 8.4.1.  Suppose (𝑃∙, 𝑑(𝑃)) is a chain complex in 𝐌𝐨𝐝-𝑅 and (𝑄∙, 𝑑(𝑄)) is a chain
complex in 𝑅-𝐌𝐨𝐝. We can form a double complex of abelian groups which we call the tensor
product double complex, denoted as 𝑃∙ ⊗𝑅 𝑄∙, where the (𝑝, 𝑞) term is 𝑃𝑝 ⊗𝑅 𝑄𝑞 and 𝑑ℎ

𝑝,𝑞 =
𝑑(𝑃)

𝑝 ⊗ 1 and 𝑑𝑣
𝑝,𝑞 = (−1)𝑝 ⊗ 𝑑(𝑄)

𝑞 . It has the tensor product total complex, Tot⊕(𝑃∙ ⊗𝑅 𝑄∙).

Lemma 8.4.2.  The differentials of 𝑃∙ ⊗𝑅 𝑄∙ anticommute, so 𝑃∙ ⊗𝑅 𝑄∙ is a double complex.

Proof. Notice that (𝑑(𝑃) ⊗ 1) ∘ (1 ⊗ 𝑑(𝑄)) = 𝑑(𝑃) ⊗ 𝑑(𝑄) = (1 ⊗ 𝑑(𝑄)) ∘ (𝑑(𝑃) ⊗ 1) by
Corollary 4.1.6, and alternating the signs for adjacent columns makes each square anticommute. ∎

Lemma 8.4.3.  If 𝑃  is a projective right 𝑅-module, then the functor (𝑃 ⊗𝑅 −) : 𝑅-𝐌𝐨𝐝 →
𝐀𝐛 is exact. If 𝑄 is a projective left 𝑅-module, then (− ⊗𝑅 𝑄) : 𝐌𝐨𝐝-𝑅 → 𝐀𝐛 is exact.⁵

⁵This lemma is the same as saying “every projective module is flat”, but we have yet to define flat modules. We will
revisit this claim in Corollary 10.1.3.

Proof. (Rotman 2009, Proposition 3.46, p. 132). We (very concisely) work on the right 𝑅-module case.
First notice that (𝑅 ⊗𝑅 −) is an isomorphism by Corollary 4.3.2, so the functor (𝑅 ⊗𝑅 −) is exact.
Then tensor product preserves direct sums by Corollary 4.5.4, so for a family of right 𝑅-modules 𝑀𝑖,
((⨁ 𝑀𝑖) ⊗𝑅 −) is exact, if and only if ⨁(𝑀𝑖 ⊗𝑅 −) is exact, if and only if each (𝑀𝑖 ⊗𝑅 −) is exact.
Now any free module 𝐹 , being a direct sum of 𝑅’s, must have that (𝐹 ⊗𝑅 −) is exact. Finally, 𝑃  is
projective, hence 𝑃  is a direct summand of some free module by Proposition 5.1.2, which indicates
that (𝑃 ⊗𝑅 −) is also exact. ∎

Theorem 8.4.4 (Balancing of Tor).  Let 𝐴 ∈ 𝐌𝐨𝐝-𝑅 and 𝐵 ∈ 𝑅-𝐌𝐨𝐝. For all 𝑛,

Tor𝑅
𝑛 (𝐴, 𝐵) ≔ 𝐿𝑛(− ⊗𝑅 𝐵)(𝐴) ≅ 𝐿𝑛(𝐴 ⊗𝑅 −)(𝐵).

Proof. (Weibel 1994, Theorem 2.7.2). (We drop the dots for chain complexes in this proof.) Choose a pro-
jective resolution 𝑃∙ →

𝜀
𝐴 in 𝐌𝐨𝐝-𝑅 and a project resolution 𝑄∙ →

𝜂
𝐵 in 𝑅-𝐌𝐨𝐝. We can view 𝐴, 𝐵

as chain complexes concentrated in degree 0. Now consider the double complexes 𝑃 ⊗𝑅 𝑄, 𝐴 ⊗𝑅
𝑄 and 𝑃 ⊗𝑅 𝐵, and we have bicomplex morphisms (where it might be helpful to recall the diagram
in Proposition 6.4.2):
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𝜀 ⊗ id𝑄 : 𝑃 ⊗𝑅 𝑄 → 𝐴 ⊗𝑅 𝑄

id𝑄 ⊗ 𝜂 : 𝑃 ⊗𝑅 𝑄 → 𝑃 ⊗𝑅 𝐵

which induce chain maps on the total complexes:

𝑓 : Tot⊕(𝑃 ⊗𝑅 𝑄) → Tot⊕(𝐴 ⊗𝑅 𝑄) = 𝐴 ⊗𝑅 𝑄
𝑔 : Tot⊕(𝑃 ⊗𝑅 𝑄) → Tot⊕(𝑃 ⊗𝑅 𝐵) = 𝑃 ⊗𝑅 𝐵

We claim that 𝑓  and 𝑔 are quasi-isomorphisms, which would give isomorphisms on homology and
thus prove the result, i.e.

𝐻∗(Tot⊕(𝑃 ⊗𝑅 𝑄)) ≅ 𝐻∗(𝐴 ⊗𝑅 𝑄) = 𝐿∗(𝐴 ⊗𝑅 −)(𝐵)

𝐻∗(Tot⊕(𝑃 ⊗𝑅 𝑄)) ≅ 𝐻∗(𝑃 ⊗𝑅 𝐵) = 𝐿∗(− ⊗𝑅 𝐵)(𝐴)

Now we form a double complex 𝐶 , obtained from 𝑃 ⊗𝑅 𝑄 by adding 𝐴 ⊗𝑅 𝑄 in the column 𝑝 = −1
using the augmentation 𝜀 : 𝑃0 → 𝐴,

↑

𝑑𝑃 ⊗ 1

↑

𝑑𝑃 ⊗ 1
↑

𝑑𝑃 ⊗ 1

↑

𝑑𝑃 ⊗ 1

↑

𝑑𝑃 ⊗ 1

↑

1 ⊗ 𝑑𝑄 ↑

−1 ⊗ 𝑑𝑄 ↑

1 ⊗ 𝑑𝑄

↑

1 ⊗ 𝑑𝑄 ↑

−1 ⊗ 𝑑𝑄↑

−1 ⊗ 𝑑𝑄

↑

𝑑𝑃 ⊗ 1

↑

1 ⊗ 𝑑𝑄

↑

−1 ⊗ 𝑑𝑄

↑

𝜀 ⊗ 1

↑

𝜀 ⊗ 1

↑

𝜀 ⊗ 1

𝑃0 ⊗ 𝑄1

𝑃0 ⊗ 𝑄0 𝑃1 ⊗ 𝑄0 𝑃2 ⊗ 𝑄0

𝑃1 ⊗ 𝑄1 𝑃2 ⊗ 𝑄1

𝑃0 ⊗ 𝑄2 𝑃1 ⊗ 𝑄2

𝐴 ⊗ 𝑄1

𝐴 ⊗ 𝑄2

𝐴 ⊗ 𝑄0

𝑃2 ⊗ 𝑄2

where 𝐶−1,𝑞 = 𝐴 ⊗ 𝑄𝑞 and 𝐶𝑝,𝑞 = 𝑃𝑝 ⊗ 𝑄𝑞 for any 𝑝, 𝑞 ≥ 0. Then

(Tot⊕(𝐶)[−1])𝑛 = Tot⊕(𝐶)𝑛−1 = Tor⊕(𝑃 ⊗𝑅 𝑄)𝑛−1 ⊕ (𝐴 ⊗ 𝑄𝑛)

Meanwhile, the mapping cone of 𝑓 : Tot⊕(𝑃 ⊗𝑅 𝑄) → 𝐴 ⊗𝑅 𝑄 has

cone(𝑓)𝑛 = Tot⊕(𝑃 ⊗𝑅 𝑄)𝑛−1 ⊕ (𝐴 ⊗ 𝑄𝑛).

Also

𝑑cone(𝑓) = (−(𝑑(𝑃) ⊗ 1 + (−1)𝑝 ⊗ 𝑑(𝑄)), 1 ⊗ 𝑑(𝑄) − 𝜀 ⊗ 1) = −𝑑Tot⊕(𝐶)[−1],

hence cone(𝑓) ≅ Tot⊕(𝐶)[−1]. To show that 𝑓  is a quasi-isomorphism, we need to show cone(𝑓) is
acyclic by Corollary 8.2.3. As any 𝑄𝑝 is projective, (− ⊗𝑅 𝑄𝑝) is exact by Lemma 8.4.3. Since 𝑃∙ → 𝐴
is a resolution, every row of 𝐶 is exact. Since 𝐶 is upper half-plane, Tot⊕(𝐶) is acyclic by Lemma 8.3.8.
So 𝑓  is a quasi-isomorphism.

Similarly, we can show that 𝑔 is a quasi-isomorphism by forming a double complex 𝐶′ obtained from
adding 𝐵 ⊗𝑅 𝑃  in the row 𝑞 = −1 of 𝑃 ⊗𝑅 𝑄. ∎

8.5. Balancing Ext
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Definition 8.5.1.  Given a chain complex (𝑃∙, 𝑑(𝑃)) and a cochain complex (𝐼∙, 𝑑(𝐼)), we can
form the Hom double complex

Hom(𝑃∙, 𝐼∙) = {Hom(𝑃𝑝, 𝐼𝑞)}
𝑝,𝑞

with differentials⁶

𝑑ℎ
𝑝,𝑞(𝑓) = (−1)𝑞𝑓 ∘ 𝑑(𝑃)

𝑝+1 ∈ Hom(𝑃𝑝+1, 𝐼𝑞)

𝑑𝑣
𝑝,𝑞(𝑓) = 𝑑𝑞

(𝐼) ∘ 𝑓 ∈ Hom(𝑃𝑝, 𝐼𝑞+1)

for 𝑓 ∈ Hom(𝑃𝑝, 𝐼𝑞).

Then we define the Hom cochain complex⁷ as

Tot⊕(Hom(𝑃 , 𝐼))

⁶Here we alternate the signs for adjacent rows (instead of adjacent columns, as in the tensor product double complex).
This sign convention, following (Monnet and Kremnitzer 2021, p. 76), is different from that in (Weibel 1994, p. 62).

⁷(Weibel 1994, p. 62) writes this as TorΠ(Hom(𝑃 , 𝐼)), but as we will see in this case any diagonal slice has only finite
terms, so their product and direct sum are the same.

An (anticommutative) diagram for the Hom double complex is as follows. The placeholder in function
compositions is written as □ (instead of − as in most parts of these notes) so that it is not confused
with the minus sign. Note particularly the signs and indices in the horizontal differentials. Also note
that each row and each column is a cochain complex.

↑□ ∘ 𝑑(𝑃)
1 ↑□ ∘ 𝑑(𝑃)

2

↑

𝑑0
(𝐼) ∘ □

↑

𝑑0
(𝐼) ∘ □

↑

𝑑0
(𝐼) ∘ □

↑

𝑑1
(𝐼) ∘ □

↑□ ∘ 𝑑(𝑃)
1 ↑□ ∘ 𝑑(𝑃)

2

↑

𝑑1
(𝐼) ∘ □

↑

𝑑1
(𝐼) ∘ □

↑−□ ∘ 𝑑(𝑃)
1 ↑−□ ∘ 𝑑(𝑃)

2

↑ ↑ ↑

↑
↑

↑Hom(𝑃0, 𝐼0)

Hom(𝑃0, 𝐼1)

Hom(𝑃0, 𝐼2) Hom(𝑃1, 𝐼2)

Hom(𝑃1, 𝐼1)

Hom(𝑃1, 𝐼0) Hom(𝑃2, 𝐼0)

Hom(𝑃2, 𝐼1)

Hom(𝑃2, 𝐼2)

… … …

…

…

…

Remark 8.5.2.  There are a few technicalities to be addressed here. They are not conceptually dif-
ficult but can be bewildering when first encountered.

Notice that in our original definition of a double complex, we would draw the arrows pointing
downwards and to the left, which we refer to as a canonical ordering. However, when we draw
the diagram for a Hom double complex, the arrows point upwards and to the right. Thus this
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is, strictly speaking, neither a upper half-plane complex nor a right half-plane complex, because
if we would like to turn the diagram into a canonically ordered one, we would need to reflect
it to the “third quadrant”. This ordering matters mainly because in this case, it would be more
convenient to apply Lemma 8.3.10 instead of Acyclic Assembly Lemma 8.3.8.

Another confusion that can easily arise from a non-canonical ordering is how to form the cor-
responding total complex. Apart from converting the diagram to a canonically ordered one by
reflection, a simple method is to select any object 𝐴 in the grid and draw a line 𝑙 connecting
the arrowheads of the two arrows departing from 𝐴. Then every “diagonal slice”, whose direct
sum is a term of the total complex, must be parallel to this line 𝑙. This is simply because each
arrow must point from one diagonal slice to another. For example, each diagonal slice of the
Hom double complex has a distinct colour in the above diagram, and hence we see

Tot⊕(Hom(𝑃 , 𝐼))𝑛 = ⨁
𝑝+𝑞=𝑛

Hom(𝑃𝑝, 𝐼𝑞)

This total complex is a cochain complex⁸ because the differentials point from Tot⊕(Hom(𝑃 , 𝐼))𝑛

to Tot⊕(Hom(𝑃 , 𝐼))𝑛+1.

⁸In fact, whether a total complex is a chain complex or a cochain complex can seem arbitrary, because this actually
depends on how we index the diagonals. Here we see the Hom total complex as a cochain complex because it is more
convenient in later proofs.

Remark 8.5.3.  Let 𝐼∙ be a cochain complex of abelian groups and let 𝑃∙ (resp. 𝑄∙) be a chain
complex of right (resp. left) 𝑅-modules, then there is a natural isomorphism

Hom𝐀𝐛(Tot⊕(𝑃 ⊗ 𝑄), 𝐼) ≅ Hom𝑅(𝑃 , TotΠ(Hom𝐀𝐛(𝑄, 𝐼))).

Theorem 8.5.4 (Balancing of Ext).  For all 𝑛,

Ext𝑛
𝑅(𝐴, 𝐵) = 𝑅𝑛 Hom𝑅(𝐴, −)(𝐵) ≅ 𝑅𝑛 Hom𝑅(−, 𝐵)(𝐴)

Proof. (Weibel 1994, Theorem 2.7.6, p.63). Take projective resolution 𝑃∙ →
𝜀

𝐴 and injective resolution
𝐵 →

𝜂
𝐼∙. We can view 𝐴 and 𝐵 as complexes concentrated at degree 0. We can form double cochain

complexes Hom(𝑃 , 𝐼), Hom(𝐴, 𝐼) and Hom(𝑃 , 𝐵). As in the proof of Theorem 8.4.4, we need to show
the maps on Hom cochain complexes

𝑓 : Hom(𝐴, 𝐼) → Tot⊕(Hom(𝑃 , 𝐼))
𝑔 : Hom(𝑃 , 𝐵) → Tot⊕(Hom(𝑃 , 𝐼))

are quasi-isomorphisms. This is equivalent to cone(𝑓) and cone(𝑔) being acyclic by (the dual of)
Corollary 8.2.3.

Let 𝐶 be the double complex Hom(𝑃 , 𝐼) with Hom(𝐴, 𝐼) added to the column 𝑝 = −1 using 𝜀 : 𝑃0 →
𝐴. We make it so that every added differential has a minus sign, as shown in the diagram.
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↑□ ∘ 𝑑(𝑃)
1 ↑□ ∘ 𝑑(𝑃)

2

↑
𝑑0

(𝐼) ∘ □
↑

𝑑0
(𝐼) ∘ □

↑
𝑑0

(𝐼) ∘ □

↑
𝑑1

(𝐼) ∘ □

↑□ ∘ 𝑑(𝑃)
1 ↑□ ∘ 𝑑(𝑃)

2

↑
𝑑1

(𝐼) ∘ □
↑

𝑑1
(𝐼) ∘ □

↑−□ ∘ 𝑑(𝑃)
1 ↑−□ ∘ 𝑑(𝑃)

2

↑ ↑ ↑
↑

↑
↑

↑
−𝑑0

(𝐼) ∘ □

↑
−𝑑1

(𝐼) ∘ □

↑

↑−□ ∘ 𝜀

↑−□ ∘ 𝜀

↑−□ ∘ 𝜀
Hom(𝑃0, 𝐼0)

Hom(𝑃0, 𝐼1)

Hom(𝑃0, 𝐼2) Hom(𝑃1, 𝐼2)

Hom(𝑃1, 𝐼1)

Hom(𝑃1, 𝐼0) Hom(𝑃2, 𝐼0)

Hom(𝑃2, 𝐼1)

Hom(𝑃2, 𝐼2)

… … …

…

…

…Hom(𝐴, 𝐼0)

Hom(𝐴, 𝐼1)

Hom(𝐴, 𝐼2)

…

We observe that cone(𝑓) ≅ Tot⊕(𝐶) (both their terms and differentials match). Every Hom(−, 𝐼𝑞) is
exact, so every row of 𝐶 is exact, then we can see that Tot⊕(𝐶) is acyclic by Lemma 8.3.10. Similarly,
we can show that cone(𝑔) is acyclic. Then applying cohomology yields

𝑅∗ Hom(𝐴, −)(𝐵) = 𝐻∗ Hom(𝐴, 𝐼)
≅ 𝐻∗Tot⊕(Hom(𝑃 , 𝐼))
≅ 𝐻∗ Hom(𝑃 , 𝐵) = 𝑅∗ Hom(−, 𝐵)(𝐴).

∎

Now that we have gained some experience with non-canonically ordered double complexes, we intro-
duce another form of a Hom double complex.

Definition 8.5.5.  Given two chain complexes (𝑃∙, 𝑑(𝑃)) and (𝑄∙, 𝑑(𝑄)), we can form the Hom
double complex

Hom(𝑃∙, 𝑄∙) = {Hom(𝑃𝑝, 𝑄𝑞)}𝑝,𝑞

with differentials

𝑑ℎ
𝑝,𝑞(𝑓) = (−1)𝑞𝑓 ∘ 𝑑(𝑃)

𝑝+1 ∈ Hom(𝑃𝑝+1, 𝑄𝑞)

𝑑𝑣
𝑝,𝑞(𝑓) = 𝑑(𝑄)

𝑞 ∘ 𝑓 ∈ Hom(𝑃𝑝, 𝑄𝑞−1)

for 𝑓 ∈ Hom(𝑃𝑝, 𝑄𝑞). Then we define the Hom cochain complex as TotΠ(Hom(𝑃 , 𝑄)).

We draw the (non-canonically ordered) double complex Hom(𝑃 , 𝑄) as follows. Note that each row is
a cochain complex, while each column is a chain complex.

81



↑□ ∘ 𝑑(𝑃)
1 ↑□ ∘ 𝑑(𝑃)

2

↑−□ ∘ 𝑑(𝑃)
1 ↑−□ ∘ 𝑑(𝑃)

2

↑□ ∘ 𝑑(𝑃)
1 ↑□ ∘ 𝑑(𝑃)

2

↑

𝑑(𝑄)
2 ∘ □

↑

𝑑(𝑄)
1 ∘ □

↑

𝑑(𝑄)
2 ∘ □

↑

𝑑(𝑄)
1 ∘ □

↑

𝑑(𝑄)
2 ∘ □

↑

𝑑(𝑄)
1 ∘ □

↑ ↑ ↑

↑
↑

↑Hom(𝑃0, 𝑄0) Hom(𝑃1, 𝑄0) Hom(𝑃2, 𝑄0)

Hom(𝑃0, 𝑄1) Hom(𝑃1, 𝑄1) Hom(𝑃2, 𝑄1)

Hom(𝑃0, 𝑄2) Hom(𝑃1, 𝑄2) Hom(𝑃2, 𝑄2)

… … …

…

…

…

The 𝑛-th term of the total cochain complex is

[TotΠ(Hom(𝑃∙, 𝑄∙))]
𝑛 = ∏

𝑝≥ max{0,𝑛}
Hom(𝑃𝑝, 𝑄𝑝−𝑛),

which is the product of infinitely many terms.

It turns out that this construction leads to a further way to compute Ext:

Theorem 8.5.6.  Let 𝑃∙ → 𝐴 and 𝑄∙ → 𝐵 be projective resolutions, then

Ext𝑛
𝑅(𝐴, 𝐵) ≅ 𝐻𝑛TotΠ(Hom𝑅(𝑃 , 𝑄)).

Proof. (Monnet and Kremnitzer 2021, Lemma 8.16). The proof is similar to previous ones, so we present
it briefly here.
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↑□ ∘ 𝑑(𝑃)
1 ↑□ ∘ 𝑑(𝑃)

2

↑−□ ∘ 𝑑(𝑃)
1 ↑−□ ∘ 𝑑(𝑃)

2

↑□ ∘ 𝑑(𝑃)
1 ↑□ ∘ 𝑑(𝑃)

2

↑

𝑑(𝑄)
2 ∘ □

↑

𝑑(𝑄)
1 ∘ □

↑

𝑑(𝑄)
2 ∘ □

↑

𝑑(𝑄)
1 ∘ □

↑

𝑑(𝑄)
2 ∘ □

↑

𝑑(𝑄)
1 ∘ □

↑ ↑ ↑

↑
↑

↑

↑

𝜂 ∘ □

↑

𝜂 ∘ □

↑

𝜂 ∘ □

↑−□ ∘ 𝑑(𝑃)
1 ↑−□ ∘ 𝑑(𝑃)

2 ↑

Hom(𝑃0, 𝑄0) Hom(𝑃1, 𝑄0) Hom(𝑃2, 𝑄0)

Hom(𝑃0, 𝑄1) Hom(𝑃1, 𝑄1) Hom(𝑃2, 𝑄1)

Hom(𝑃0, 𝑄2) Hom(𝑃1, 𝑄2) Hom(𝑃2, 𝑄2)

… … …

…

…

…

Hom(𝑃0, 𝐵) Hom(𝑃1, 𝐵) Hom(𝑃2, 𝐵)

Let 𝐶 be the double complex obtained by adding Hom(𝑃 , 𝐵) to the row 𝑞 = −1 of the double complex
Hom(𝑃 , 𝑄). Since each 𝑃𝑝 is projective, Hom(𝑃𝑝, −) is exact and so each column of 𝐶 is exact. 𝐶
can be turned into a (canonically ordered) upper half-plane complex (by reflecting it to the “second
quadrant”), so Lemma 8.3.8 applies and TotΠ(𝐶) is acyclic. Again, observe that TotΠ(𝐶) ≅ cone(𝑓)
where

𝑓 : TotΠ(Hom(𝑃 , 𝑄)) → Hom(𝑃 , 𝐵)

is the cochain map induced by 𝜂 : 𝑄∙ → 𝐵. Hence 𝑓  is a quasi-isomorphism, but 𝐻∗ Hom(𝑃 , 𝐵) ≅
Ext∗

𝑅(𝐴, 𝐵) by the proof of Theorem 8.5.4, so the result follows. ∎
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9. Ring Structure on Ext
9.1. Reinterpreting Ext
Let 𝐴, 𝐵 ∈ 𝑅-𝐌𝐨𝐝 with projective resolutions 𝑃∙ → 𝐴 and 𝑄∙ → 𝐵. Write the total cochain com-
plex TotΠ(Hom(𝑃 , 𝑄)) ≕ 𝑇 . Then Theorem 8.5.6 implies that

Ext𝑛
𝑅(𝐴, 𝐵) ≅ 𝐻𝑛(𝑇 ).

Recall that 𝑇 𝑛 = ∏ Hom𝑅(𝑃𝑖, 𝑄𝑖−𝑛) ∈ 𝐀𝐛. If 𝜑 ∈ 𝑇 𝑛, then we can write 𝜑 = ∏ 𝜑𝑖 where 𝜑𝑖 :
𝑃𝑖 → 𝑄𝑖−𝑛. Therefore, an element 𝜑 in 𝑇 𝑛 can be seen as a chain map 𝑃∙ → 𝑄∙[−𝑛] once we can
show that 𝜑 commutes with the differentials of 𝑃∙ and 𝑄∙[−𝑛]. We will show that this commuting
condition is (almost) equivalent to 𝜑 being a cocycle in 𝑇 𝑛. Further, if 𝜑 is a chain map 𝑃∙ → 𝑄∙[−𝑛],
then 𝜑 being null homotopic is (almost) equivalent to 𝜑 being a coboundary in 𝑇 𝑛. These equivalences
ultimately give rise to a new interpretation of Ext.

The word “almost” in the last paragraph is due to some sign issues of 𝜑. To address this, we define

𝜀𝑖 = {
1 if 𝑖 ≡ 0, 3 (mod 4)
−1 if 𝑖 ≡ 1, 2 (mod 4)

.

Then we define 𝜑̃𝑖 = 𝜀𝑛−𝑖𝜑𝑖 for each 𝜑𝑖 : 𝑃𝑖 → 𝑄𝑖−𝑛, and 𝜑̃ = ∏ 𝜑̃𝑖 ∈ 𝑇 𝑛. The following is some
simple observations of the definitions.

Lemma 9.1.1.  We have the following:
• 𝜀2

𝑖 = 1;
• 𝜀𝑖𝜀𝑖−1 = (−1)𝑖;
• 𝜑𝑖 = 𝜀𝑛−𝑖𝜑̃𝑖;
• The map 𝜑 ↦ 𝜑̃ is an automorphism of 𝑇 𝑛.

It turns out that we need to replace some 𝜑 with 𝜑̃ in our previous claims, as in the following.

Proposition 9.1.2.  𝜑 ∈ 𝑇 𝑛 is a cocycle in 𝑍𝑛(𝑇 ) if and only if 𝜑̃ can be seen as a chain map
𝑃∙ → 𝑄∙[−𝑛].

Proof. As discussed above, the latter is equivalent to 𝜑̃ commuting with the differentials, i.e., for all 𝑖,

𝜑̃𝑖 ∘ 𝑑(𝑃)
𝑖+1 = 𝑑(𝑄)

𝑖+1−𝑛 ∘ 𝜑̃𝑖+1. (1)

Using the definition of 𝜑̃, Equation 1 can reduced to

𝜑𝑖 ∘ 𝑑(𝑃)
𝑖+1 = (−1)𝑖+1−𝑛𝑑(𝑄)

𝑖+1−𝑛 ∘ 𝜑𝑖+1. (2)

On the other hand, 𝜑 ∈ 𝑇 𝑛 is a cocycle, i.e., 𝑑(𝑇 )
𝑛 (𝜑) = 0, if and only if for all 𝑖,

𝑑ℎ(𝜑𝑖) + 𝑑𝑣(𝜑𝑖+1) = 0. (3)

Using the definition of 𝑑ℎ and 𝑑𝑣, we see that Equation 3 is equivalent to Equation 2. ∎
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Proposition 9.1.3.  𝜑 ∈ 𝑍𝑛(𝑇 ) is a coboundary in 𝐵𝑛(𝑇 ) if and only if the chain map 𝜑̃ : 𝑃∙ →
𝑄∙[−𝑛] is null homotopic.

Proof. “⇒”. Suppose 𝜑 is a coboundary. Then 𝜑 = 𝑑(𝜓) for some 𝜓 = ∏ 𝜓𝑖 ∈ 𝑇 𝑛−1, where 𝜓𝑖 : 𝑃𝑖 →
𝑄𝑖−𝑛+1. We also write 𝜓𝑖 = 𝜀𝑖−𝑛+1𝜓𝑖.

↑(−1)𝑖−𝑛□ ∘ 𝑑(𝑃)
𝑖

↑

𝑑(𝑄)
𝑖−𝑛+1 ∘ □

Hom(𝑃𝑖, 𝑄𝑖−𝑛+1)

Hom(𝑃𝑖, 𝑄𝑖−𝑛)Hom(𝑃𝑖−1, 𝑄𝑖−𝑛)

Considering each 𝜑𝑖, we see that

𝜑𝑖 = 𝑑ℎ(𝜓𝑖−1) + 𝑑𝑣(𝜓𝑖) = (−1)𝑖−𝑛𝜓𝑖−1 ∘ 𝑑(𝑃)
𝑖 + 𝑑(𝑄)

𝑖−𝑛+1 ∘ 𝜓𝑖.

Using Lemma 9.1.1, we can reduce this to

𝜑̃𝑖 = (−1)𝑖−𝑛𝜓𝑖−1 ∘ 𝑑(𝑃)
𝑖 + (−1)𝑖−𝑛+1𝑑(𝑄)

𝑖−𝑛+1 ∘ 𝜓𝑖.

Then we see that (−1)𝑖−𝑛+1𝜓𝑖 : 𝑃𝑖 → 𝑄𝑖−𝑛+1 is a chain homotopy between 𝜑̃ and 0.

“⇐”. Suppose that ℎ𝑖 : 𝑃𝑖 → 𝑄𝑖−𝑛+1 is a chain homotopy between 𝜑̃ and 0 for each 𝑖, so that

𝜑̃𝑖 = ℎ𝑖−1 ∘ 𝑑(𝑃)
𝑖 + 𝑑(𝑄)

𝑖−𝑛+1 ∘ ℎ𝑖.

Then we can define for each 𝑖,

𝜓𝑖 = (−1)𝑖−𝑛+1ℎ𝑖, 𝜓𝑖 = 𝜀𝑖−𝑛+1𝜓𝑖,

which gives 𝜓 = ∏ 𝜓𝑖 ∈ 𝑇 𝑛−1. Again with Lemma  9.1.1, we can reveal that 𝑑(𝜓) = 𝜑, so 𝜑 is a
coboundary. ∎

Corollary 9.1.4.  Ext𝑛
𝑅(𝐴, 𝐵) is isomorphic to the chain homotopy classes of chain maps 𝑃∙ →

𝑄∙[−𝑛].

Proof. Ext𝑛
𝑅(𝐴, 𝐵) ≅ 𝐻𝑛(𝑇 ) = 𝑍𝑛(𝑇 )/𝐵𝑛(𝑇 ), but now 𝑍𝑛(𝑇 ) is isomorphic to the group of chain

maps 𝑃∙ → 𝑄∙[−𝑛] and 𝐵𝑛(𝑇 ) is isomorphic to the subgroup of null homotopic chain maps. ∎

9.2. Yoneda Product

Proposition 9.2.1.  Given left 𝑅-modules 𝐴, 𝐵, 𝐶 , for any 𝑖, 𝑗, there is a well-defined map, called
the Yoneda product,

⌣: Ext𝑖
𝑅(𝐴, 𝐵) × Ext𝑗

𝑅(𝐵, 𝐶) → Ext𝑖+𝑗
𝑅 (𝐴, 𝐶),
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which is associative and biadditive.

Proof. Write projective resolutions 𝑃∙ → 𝐴, 𝑄∙ → 𝐵, 𝑇∙ → 𝐶 . Take 𝑥 ∈ Ext𝑖
𝑅(𝐴, 𝐵) and 𝑦 ∈

Ext𝑗
𝑅(𝐵, 𝐶). By Corollary 9.1.4, we see that 𝑥 (resp. 𝑦) corresponds to some [𝜑] (resp. [𝜓]) which is a

chain homotopy class (of chain maps) 𝑃∙ → 𝑄∙[−𝑖] (resp. 𝑄∙ → 𝑇∙[−𝑗]). Note that

Hom(𝑄∙, 𝑇∙[−𝑗]) ≅ Hom(𝑄∙[−𝑖], 𝑇∙[−𝑖 − 𝑗])

because the translation functor is an isomorphism on Ch(𝑅-𝐌𝐨𝐝) and preserves chain homotopy.
Hence [𝜓] can be also viewed as a chain homotopy class 𝑄∙[−𝑖] → 𝑇∙[−𝑖 − 𝑗]. Since chain homotopy
commutes with composition, we can obtain [𝜓 ∘ 𝜑] = [𝜓] ∘ [𝜑], which is a chain homotopy class 𝑃∙ →
𝑇∙[−𝑖 − 𝑗]. Then we define 𝑥 ⌣ 𝑦 ∈ Ext𝑖+𝑗

𝑅 (𝐴, 𝐶) to be the corresponding element of [𝜓 ∘ 𝜑]. We can
see that ⌣ is associative and biadditive because the composition of chain maps is associative and bi-
additive. ∎

Corollary 9.2.2. For any 𝐴, 𝐵 ∈ 𝑅-𝐌𝐨𝐝,

Ext∗
𝑅(𝐴, 𝐴) = ⨁

𝑖
Ext𝑖

𝑅(𝐴, 𝐴)

is a graded ring, and

Ext∗
𝑅(𝐴, 𝐵) = ⨁

𝑖
Ext𝑖(𝐴, 𝐵)

is a graded module over Ext∗
𝑅(𝐴, 𝐴).

Example 9.2.3.  Let 𝑘 be a field and 𝑅 = 𝑘[𝑥]/(𝑥2). View 𝑘 as the 𝑅-module 𝑅/𝑥𝑅. We now
calculate the graded ring structure of Ext∗

𝑅(𝑘, 𝑘).

First, observe that we have a projective resolution of 𝑘:

… →
𝑥

𝑅 →
𝑥

𝑅 →
𝑥

𝑅 → 𝑘 → 0,

which we denote as 𝑃∙ → 𝑘 → 0. If we apply Hom𝑅(−, 𝑘) to 𝑃∙, then Hom𝑅(𝑅, 𝑘) ≅ 𝑘 and all
differentials vanish, so we can quickly use the balancing of Ext to reveal that Ext𝑛

𝑅(𝑘, 𝑘) ≅ 𝑘
for all 𝑛 ≥ 0. We however need to find the generator explicitly for the ring structure.

Now by Corollary 9.1.4, Ext𝑛
𝑅(𝑘, 𝑘) is isomorphic to the chain homotopy classes of chain maps

𝑃∙ → 𝑃∙[−𝑛]. A chain map 𝑃∙ → 𝑃∙[−𝑛] is a collection of 𝑅-homomorphisms 𝑓𝑖 : 𝑅 → 𝑅 for
𝑖 ≥ 𝑛 such that the following diagram commutes:

↑𝑓𝑛↑𝑓𝑛+1↑𝑓𝑛+2

↑𝑥 ↑𝑥 ↑𝑥 ↑

↑↑𝑥↑𝑥

↑𝑥

↑𝑥

𝑅 𝑅 𝑅 𝑅 ……

𝑅𝑅𝑅 0…
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Note that each 𝑓𝑖 is uniquely determined by 𝑓𝑖(1) ∈ 𝑅. We write 𝑓𝑖(1) = 𝑎𝑖 + 𝑏𝑖𝑥 for 𝑎𝑖, 𝑏𝑖 ∈
𝑘 and then we only need to look at 𝑎𝑖, 𝑏𝑖 for each 𝑖. The commutativity of the above diagram
indicates that 𝑥(𝑎𝑖 + 𝑏𝑖𝑥) = 𝑥(𝑎𝑖+1 + 𝑏𝑖+1𝑥) for each 𝑖, i.e. 𝑎𝑖 = 𝑎𝑖+1, so all the 𝑎𝑖’s are equal.

We now consider when the chain map 𝑓∗ is null homotopic. By definition, that is when there is
a collection of 𝑅-homomorphisms ℎ𝑖 : 𝑅 → 𝑅 for 𝑖 ≥ 𝑛 − 1 such that 𝑓𝑖 = ℎ𝑖−1 ∘ 𝑥 + 𝑥 ∘ ℎ𝑖.

↑

𝑓𝑛↑

𝑓𝑛+1↑

𝑓𝑛+2

↑𝑥 ↑𝑥 ↑𝑥 ↑

↑↑𝑥↑𝑥

↑𝑥

↑𝑥 ↑ ℎ𝑛+1 ↑ ℎ𝑛 ↑ ℎ𝑛−1

𝑅 𝑅 𝑅 𝑅 ……

𝑅𝑅𝑅 0…

In particular, this indicates that 𝑎𝑖 + 𝑏𝑖𝑥 = 𝑓𝑖(1) = ℎ𝑖−1(𝑥) + 𝑥ℎ𝑖(1) = 𝑥(ℎ𝑖−1(1) + ℎ𝑖(1)),
and thus 𝑎𝑖 = 0 for all 𝑖.

We claim that 𝑎𝑖 = 0 for all 𝑖 is a sufficient condition for 𝑓∗ to be null homotopic. In this case,
𝑓𝑖(1) = 𝑏𝑖𝑥 for each 𝑖 ≥ 𝑛. We construct ℎ𝑖 : 𝑅 → 𝑅 for 𝑖 ≥ 𝑛 − 1 as follows: ℎ𝑛−1 = 0 and
ℎ𝑖(1) = 𝑏𝑖 − ℎ𝑖−1(1) for all 𝑖 ≥ 𝑛. Then 𝑓∗ is null homotopic via ℎ.

Therefore 𝑓∗ is null homotopic if and only if 𝑓𝑖(1) ≡ 0 (mod 𝑥) for all 𝑖. So “chain maps mod-
ulo homotopy” is the same as “chain maps modulo 𝑥”. In other words, two chain maps 𝑓∗, 𝑔∗ :
𝑃∙ → 𝑃∙[−𝑛] are chain homotopic if and only if 𝑓𝑖(1) ≡ 𝑔𝑖(1) (mod 𝑥) for all 𝑖. But we have
established that 𝑓𝑖(1)’s are all equal modulo 𝑥. So Ext𝑛

𝑅(𝑘, 𝑘) ≅ 𝑘 ⋅ 𝑓 (𝑛)
∗ , where 𝑓 (𝑛)

∗  is the chain
map 𝑃∙ → 𝑃∙[−𝑛] with 𝑓 (𝑛)

𝑖 (1) = 1 for all 𝑖 ≥ 𝑛.

It is clear that 𝑓 (𝑚)
∗ ∘ 𝑓 (𝑛)

∗ = 𝑓 (𝑚+𝑛)
∗ , so the Yoneda product gives 𝑓 (𝑚)

∗ ⌣ 𝑓 (𝑛)
∗ = 𝑓 (𝑚+𝑛)

∗ . Set
𝑦 = 𝑓 (1)

∗ , then for each 𝑛, 𝑓 (𝑛)
∗ = 𝑦𝑛 (using Yoneda product) and thus Ext𝑛

𝑅(𝑘, 𝑘) ≅ 𝑘 ⋅ 𝑦𝑛. So as
a graded ring, Ext∗

𝑅(𝑘, 𝑘) ≅ 𝑘[𝑦] where 𝑦 has degree 1.
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10. Tor and Flatness
10.1. Flat Modules

Definition 10.1.1.  A left 𝑅-module 𝐵 is flat if (− ⊗𝑅 𝐵) is exact. A right 𝑅-module 𝐴 is flat
if (𝐴 ⊗𝑅 −) is exact.

Proposition 10.1.2.  Let 𝐵 a left 𝑅-module. The followings are equivalent:
(1) 𝐵 is flat;
(2) Tor𝑅

𝑛 (𝐴, 𝐵) = 0 for all 𝑛 > 0 and all 𝐴;
(3) Tor𝑅

1 (𝐴, 𝐵) = 0 for all 𝐴.

Similarly, let 𝐴 be a right 𝑅-module. The followings are equivalent:
(1) 𝐴 is flat;
(2) Tor𝑅

𝑛 (𝐴, 𝐵) = 0 for all 𝑛 > 0 and all 𝐵;
(3) Tor𝑅

1 (𝐴, 𝐵) = 0 for all 𝐵.

Proof. (Monnet and Kremnitzer 2021, Lemma 6.26). We prove the left 𝑅-module case.

(1) ⇒ (2). Suppose that 𝐵 is flat. Let 𝐹∙ → 𝐴 be a free resolution of 𝐴. Since (− ⊗𝑅 𝐵) is exact, the
sequence

… → 𝐹2 ⊗𝑅 𝐵 → 𝐹1 ⊗𝑅 𝐵 → 𝐹0 ⊗𝑅 𝐵 → 𝐴 ⊗𝑅 𝐵 → 0

is exact, so the homology of

… → 𝐹2 ⊗𝑅 𝐵 → 𝐹1 ⊗𝑅 𝐵 → 𝐹0 ⊗𝑅 𝐵 → 0

vanishes in positive degree.

(2) ⇒ (3). Trivial.

(3) ⇒ (1). For any short exact sequence 0 → 𝑋 → 𝑌 → 𝐴 → 0 in 𝐌𝐨𝐝-𝑅, we have the long exact
sequence of Tor by Proposition 8.1.7,

0 = Tor𝑅
1 (𝐴, 𝐵) → 𝑋 ⊗𝑅 𝐵 → 𝑌 ⊗𝑅 𝐵 → 𝐴 ⊗𝑅 𝐵 → 0,

which shows that (− ⊗𝑅 𝐵) is exact.

Note that right 𝑅-module case relies on the balancing of Tor, but the proof is very similar. ∎

Corollary 10.1.3. Every projective module is flat. In particular, every free module is flat.⁹

⁹We have already proven this claim in Lemma 8.4.3, because we needed it for the balancing of Tor (Theorem 8.4.4).
This second proof actually relies on the balancing of Tor so we could not use it previously, but it is presented here
regardless.

Proof. If a left 𝑅-module 𝑃  is projective, by Theorem  8.4.4 and Corollary  7.2.5, Tor𝑅
𝑛 (𝐴, 𝑃 ) ≅

𝐿𝑛(𝐴 ⊗𝑅 −)(𝑃) = 0 for all 𝐴 and all 𝑛 ≥ 1. Then applying Proposition 10.1.2 gives the result. The
case where 𝑃  is a projective right 𝑅-module is similar. ∎
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Definition 10.1.4.  A category 𝐼  is called filtered if
(1) 𝐼  is non-empty;
(2) For any 𝑖, 𝑗 ∈ 𝐼 , there exists 𝑘 ∈ 𝐼  with morphisms 𝑓 : 𝑖 → 𝑘 and 𝑔 : 𝑗 → 𝑘;
(3) For any 𝑖, 𝑗 ∈ 𝐼  with a pair of morphisms 𝑢, 𝑣 : 𝑖 → 𝑗, there exists 𝑘 ∈ 𝐼  with morphism 𝑤 :

𝑗 → 𝑘 such that 𝑤 ∘ 𝑢 = 𝑤 ∘ 𝑣.

Example 10.1.5.  A non-empty partially ordered set (poset) 𝐼 , viewed as a small category, is
filtered if for any 𝑖, 𝑗 ∈ 𝐼 , there exists 𝑘 such that 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘. This is because condition (3)
above is automatically satisifed, as there is at most one morphism 𝑖 → 𝑗 for any 𝑖, 𝑗 ∈ 𝐼 .

Proposition 10.1.6.  Let 𝐼  be a filtered category. Then the functor

colim𝐼 : Fun(𝐼, 𝑅-𝐌𝐨𝐝) → 𝑅-𝐌𝐨𝐝

is exact.

Proof. (Weibel 1994, Theorem 2.6.15, p.57). ∎

Remark 10.1.7.  colim𝐼  is not a exact functor in general if 𝐼  is not filtered.

Notation 10.1.8.  Let 𝐼  be a small category and 𝐴 : 𝐼 → 𝑅-𝐌𝐨𝐝 be a diagram. We denote 𝐴𝑖 =
𝐴(𝑖) for each 𝑖 ∈ 𝐼  and we would write colim𝐼 𝐴𝑖 to mean colim𝐼 𝐴.

Corollary 10.1.9.  Let 𝐼  be a filtered category and 𝐴 : 𝐼 → 𝐌𝐨𝐝-𝑅 be a diagram. Let 𝐵 ∈
𝑅-𝐌𝐨𝐝. Then Tor𝑅

𝑛 (colim𝐼 𝐴𝑖, 𝐵) ≅ colim𝐼 Tor𝑅
𝑛 (𝐴𝑖, 𝐵). In other words, filtered colimits

commute with Tor.

Proof. Let 𝑃∙ → 𝐵 be a projective resolution. Then

Tor𝑅
𝑛 (colim𝐼 𝐴𝑖, 𝐵) = 𝐻𝑛((colim𝐼 𝐴𝑖) ⊗𝑅 𝑃)

≅ 𝐻𝑛(colim𝐼(𝐴𝑖 ⊗𝑅 𝑃))
≅ colim𝐼 𝐻𝑛(𝐴𝑖 ⊗𝑅 𝑃)

= colim𝐼 Tor𝑅
𝑛 (𝐴𝑖, 𝐵),

where at each step we respectively use the definition of Tor, that colimits commute with tensor prod-
ucts, that colim𝐼  is exact and thus commutes with homology, and the definition of Tor again. ∎

Corollary 10.1.10.  Let 𝐼  be a filtered category and 𝐴 : 𝐼 → 𝐌𝐨𝐝-𝑅 be a diagram. Suppose 𝐴𝑖
is flat for all 𝑖 ∈ 𝐼 . Then colim𝐼 𝐴𝑖 is also flat. In other words, a filtered colimit of flat 𝑅-modules
is flat.
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Proof. Take any 𝐵 ∈ 𝑅-𝐌𝐨𝐝. Since each 𝐴𝑖 is flat, we know that Tor1(𝐴𝑖, 𝐵) = 0 by
Proposition 10.1.2. Then

Tor1(colim𝐼 𝐴𝑖, 𝐵) = colim𝐼 Tor1(𝐴𝑖, 𝐵) = 0

by Corollary 10.1.9, so colim𝐼 𝐴𝑖 is also flat by Proposition 10.1.2 again. ∎

Example 10.1.11.  Let 𝑠 ∈ 𝑅 be a central element of ring 𝑅, then the localisation 𝑅[𝑠−1] is a
flat 𝑅-module. To generalise, for a central multiplicatively closed set 𝑆 ⊂ 𝑍(𝑅), we can form
𝑅[𝑆−1], which is a flat 𝑅-module as well.

Proof. (Weibel 1994, Theorem 3.2.2, p.69). ∎

We now take a look at the case in 𝐀𝐛 and we shall show that a module in 𝐀𝐛 is flat if and only if it
is torsion-free.

Lemma 10.1.12.  Let 𝐵 ∈ 𝐀𝐛 and 𝑝 ∈ ℤ. Then Torℤ
0 (ℤ/𝑝ℤ, 𝐵) = 𝐵/𝑝𝐵 and

Torℤ
1 (ℤ/𝑝ℤ, 𝐵) = {𝑏 ∈ 𝐵 : 𝑝𝑏 = 0}.

Proof. Use the definition of Tor, the projective resolution 0 → ℤ →
𝑝

ℤ → ℤ/𝑝ℤ → 0, and 𝐵 ⊗ℤ ℤ ≅
𝐵. ∎

Lemma 10.1.13.  An abelian group is a filtered colimit of its finitely generated subgroups.

Proof. 𝐴 = ∪ 𝐴𝑖 = colim𝐼 𝐴𝑖 where 𝐼  is a filtered poset representing the inclusion relations of the
finitely generated subgroups of 𝐴. ∎

Lemma 10.1.14.  Let 𝐴, 𝐵 ∈ 𝐀𝐛. Then Torℤ
1 (𝐴, 𝐵) is a torsion abelian group.

Remark 10.1.15.  This is likely why Tor is called Tor.

Proof. By writing 𝐴 = colim𝐼 𝐴𝑖 for finitely genreated subgroups 𝐴𝑖 of 𝐴, we see that it suffices to
show that each Torℤ

1 (𝐴𝑖, 𝐵) is torsion. We can write 𝐴𝑖 as a direct sum of its torsion part and free part
using the classification theorem for finitely generated abelian groups, i.e. 𝐴𝑖 = ℤ/𝑝1ℤ ⊕ ℤ/𝑝2ℤ ⊕
… ⊕ ℤ/𝑝𝑚ℤ ⊕ ℤ𝑟. Notice that Tor commutes with direct sums and the free part ℤ𝑟 vanishes with
Tor, so

Torℤ
1 (𝐴𝑖, 𝐵) ≅ ⨁

𝑚

𝑘=1
Torℤ

1 (ℤ/𝑝𝑘ℤ, 𝐵) ≅ ⨁
𝑚

𝑘=1
𝐵/𝑝𝑘𝐵,

which is clearly a torsion abelian group. ∎
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Lemma 10.1.16.  Let 𝐵 ∈ 𝐀𝐛. Then Torℤ
1 (ℚ/ℤ, 𝐵) is the torsion subgroup of 𝐵, i.e. {𝑏 ∈ 𝐵 :

there exists 𝑛 ∈ ℤ such that 𝑛𝑏 = 0}.

Proof. ℚ/ℤ can be written as the filtered colimit ℚ/ℤ ≅ colim𝐼 ℤ/𝑝ℤ, where 𝐼  is the poset represent-
ing the divisibility of natural numbers. Then

Torℤ
1 (ℚ/ℤ, 𝐵) ≅ Torℤ

1 (colim𝐼 ℤ/𝑝ℤ, 𝐵) ≅ colim𝐼 Torℤ
1 (ℤ/𝑝ℤ, 𝐵) ≅ colim𝐼{𝑏 ∈ 𝐵 : 𝑝𝑏 = 0},

which is the torsion subgroup of 𝐵. ∎

Proposition 10.1.17.  A ℤ-module is flat if and only if it is torsion-free.

Proof. Let 𝐴 be a torsion-free abelian group, then 𝐴 = ∪ 𝐴𝑖 where 𝐴𝑖 are finitely generated subgroups
of 𝐴. Then each 𝐴𝑖 is free and hence flat. By Corollary 10.1.10, 𝐴 is also flat.

On the other hand, if 𝐴 is flat, then Torℤ
1 (−, 𝐴) = 0; in particular, Torℤ

1 (ℚ/ℤ, 𝐴) = 0, so the torsion
subgroup of 𝐴 is trivial. ∎

10.2. Flat Resolutions

Definition 10.2.1.  A resolution 𝐹∙ → 𝐴 is a flat resolution of 𝐴 if 𝐹𝑛 is a flat module for
each 𝑛.

Lemma 10.2.2 (Flat Resolution Lemma).  Let 𝐹∙ → 𝐴 be a flat resolution of 𝐴. Then

Tor𝑅
∗ (𝐴, 𝐵) ≅ 𝐻∗(𝐹∙ ⊗𝑅 𝐵)

Similarly, if 𝐹 ′
∙ → 𝐵 is a flat resolution, then

Tor𝑅
∗ (𝐴, 𝐵) ≅ 𝐻∗(𝐴 ⊗𝑅 𝐹 ′

∙ )

Proof. By induction. When 𝑛 = 0, we need to show that 𝐴 ⊗𝑅 𝐵 ≅ 𝐻0(𝐹∙ ⊗𝑅 𝐵). We see that

𝐻0(𝐹∙ ⊗𝑅 𝐵) =
𝐹0 ⊗𝑅 𝐵

Im(𝐹1 ⊗𝑅 𝐵)
= Coker(𝐹1 ⊗𝑅 𝐵 → 𝐹0 ⊗𝑅 𝐵)

On the other hand, 𝐴 = Coker(𝐹1 → 𝐹0), and since (− ⊗𝑅 𝐵) is right exact and preserves cokernels,
we get the result.

When 𝑛 ≥ 1, we have the short exact sequence

0 → 𝐾 →
ker(𝜀)

𝐹0 →
𝜀

𝐴 → 0

If we write 𝐸∙ = (… → 𝐹2 → 𝐹1 → 0), then 𝐸∙ →
𝑑1

𝐾 is a flat resolution of 𝐾 , where 𝑑1 : 𝐹1 → 𝐹0
has Im(𝑑1) = Ker(𝜀) = 𝐾 by the exactness at 𝐹0 of the resolution 𝐹∙ → 𝐴. Now we can write the
long exact sequence induced by Tor:
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… → Tor𝑛(𝐹0, 𝐵) → Tor𝑛(𝐴, 𝐵) → Tor𝑛−1(𝐾, 𝐵) → Tor𝑛−1(𝐹0, 𝐵) → …

But Tor𝑛(𝐹0, 𝐵) = 0 for 𝑛 ≥ 1 by Proposition 10.1.2. Thus,

Tor𝑛(𝐴, 𝐵) ≅ {
Ker(𝐾 ⊗ 𝐵 → 𝐹0 ⊗ 𝐵) 𝑛 = 1
Tor𝑛−1(𝐾, 𝐵) 𝑛 ≥ 2

For 𝑛 = 1, notice that 𝐾 ⊗𝑅 𝐵 ≅ 𝐻0(𝐸∙ ⊗𝑅 𝐵) = (𝐹1 ⊗𝑅 𝐵)/ Im(𝐹2 ⊗𝑅 𝐵) by applying the case
𝑛 = 0 to 𝐸∙ → 𝐾 , and hence we have

Tor1(𝐴, 𝐵) ≅ Ker(𝐾 ⊗ 𝐵 → 𝐹0 ⊗ 𝐵) = Ker(
𝐹1 ⊗ 𝐵

Im(𝐹2 ⊗ 𝐵)
→ 𝐹0 ⊗ 𝐵) = 𝐻1(𝐹∙ ⊗ 𝐵)

For 𝑛 ≥ 2,

Tor𝑛(𝐴, 𝐵) ≅ Tor𝑛−1(𝐾, 𝐵) ≅ 𝐻𝑛−1(𝐸∙ ⊗ 𝐵) = 𝐻𝑛(𝐹∙ ⊗ 𝐵)

by applying the induction hypothesis to 𝐸∙ → 𝐾 . ∎

Remark 10.2.3.  Why have we not defined Tor with flat resolutions in the first place? The problem
is that we have to show it is well defined regardless of the choice of flat resolutions. This may
not be as convenient as using projective resolutions. Nevertheless, now we are free to use flat
resolutions, a larger class than projective resolutions, for calculations.

A generalisation to flat modules is the following.

Definition 10.2.4.  If 𝐹  is a right exact functor, an object 𝑄 is 𝐹 -acyclic if 𝐿𝑖𝐹(𝑄) = 0 for all
𝑖 ≠ 0.

Proposition 10.2.5.  If 𝑄∙ → 𝐴 is a resolution where 𝑄𝑛 is 𝐹 -acyclic for all 𝑛, then 𝐿𝑖𝐹(𝐴) =
𝐻𝑖(𝐹(𝑄∙)).

Proof. The proof is exactly the same as above. ∎

10.3. Universal Coefficient Theorem
Let 𝑃∙ be a chain complex of right 𝑅-modules and let 𝑀  be a left 𝑅-module. In this section, we investi-
gate how the homology of 𝑃∙ is related to the homology of 𝑃∙ ⊗ 𝑀 , under certain flatness assumptions
about 𝑃∙. We first need an auxiliary result.

Lemma 10.3.1.  Let 0 → 𝑋 → 𝑌 → 𝑍 → 0 be a short exact sequence in 𝐌𝐨𝐝-𝑅 such that 𝑌
and 𝑍 are flat, then 𝑋 is also flat.

Proof. Let 𝐵 ∈ 𝑅-𝐌𝐨𝐝. Write the long exact sequence induced by Tor:

… → Tor𝑅
𝑛+1(𝑍, 𝐵) → Tor𝑅

𝑛 (𝑋, 𝐵) → Tor𝑅
𝑛 (𝑌 , 𝐵) → …

Since 𝑌  and 𝑍 are flat, Tor𝑅
𝑛 (𝑌 , 𝐵) = Tor𝑅

𝑛 (𝑍, 𝐵) = 0 when 𝑛 ≥ 1 by Proposition  10.1.2. So
Tor𝑅

𝑛 (𝑋, 𝐵) = 0 for any 𝑛 ≥ 1 and 𝑋 is also flat. ∎
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The main result is the following.

Theorem 10.3.2 (Künneth Formula).  Let 𝑃∙ be a chain complex of flat right 𝑅-modules such
that each submodule 𝑑(𝑃𝑛) of 𝑃𝑛−1 is also flat. Then for every 𝑛 and every left 𝑅-module 𝑀 ,
there is a short exact sequence

0 → 𝐻𝑛(𝑃 ) ⊗𝑅 𝑀 → 𝐻𝑛(𝑃∙ ⊗𝑅 𝑀) → Tor𝑅
1 (𝐻𝑛−1(𝑃 ), 𝑀) → 0.

Proof. (Rotman 2009, Theorem 7.55), (Weibel 1994, Theorem 3.6.1). Let 𝑍𝑛 = Ker(𝑃𝑛 →
𝑑

𝑃𝑛−1), then

we have a short exact sequence

0 → 𝑍𝑛 → 𝑃𝑛 → 𝑑(𝑃𝑛) → 0. (4)

Since 𝑃𝑛 and 𝑑(𝑃𝑛) are both flat, Lemma  10.3.1 shows that 𝑍𝑛 is also flat. Also, since 𝑑(𝑃𝑛) is
flat, Tor𝑅

1 (𝑑(𝑃𝑛), 𝑀) = 0 by Proposition 10.1.2, so a long exact sequence induced by Short Exact Se-
quence 4 gives

0 → 𝑍𝑛 ⊗ 𝑀 → 𝑃𝑛 ⊗ 𝑀 → 𝑑(𝑃𝑛) ⊗ 𝑀 → 0,

from which we yield a short exact sequence of chain complexes

0 → 𝑍∙ ⊗ 𝑀 → 𝑃∙ ⊗ 𝑀 → 𝑑(𝑃)∙ ⊗ 𝑀 → 0.

We now look at the long exact sequence induced by homology:

… → 𝐻𝑛+1(𝑑(𝑃)∙ ⊗ 𝑀) →
𝜕

𝐻𝑛(𝑍∙ ⊗ 𝑀)

→ 𝐻𝑛(𝑃∙ ⊗ 𝑀) → 𝐻𝑛(𝑑(𝑃)∙ ⊗ 𝑀) →
𝜕

𝐻𝑛−1(𝑍∙ ⊗ 𝑀) → …
(5)

Note that the differentials on the chain complexes 𝑍∙ and 𝑑(𝑃)∙ are all zero, and hence the differentials
on 𝑍∙ ⊗ 𝑀  and 𝑑(𝑃)∙ ⊗ 𝑀  are also all zero, which gives

𝐻𝑛(𝑑(𝑃)∙ ⊗ 𝑀) = 𝑑(𝑃𝑛) ⊗ 𝑀 and 𝐻𝑛(𝑍∙ ⊗ 𝑀) = 𝑍𝑛 ⊗ 𝑀.

Hence Long Exact Sequence 5 now becomes

… → 𝑑(𝑃𝑛+1) ⊗ 𝑀 →
𝜕𝑛+1

𝑍𝑛 ⊗ 𝑀 → 𝐻𝑛(𝑃∙ ⊗ 𝑀) → 𝑑(𝑃𝑛) ⊗ 𝑀 →
𝜕𝑛

𝑍𝑛−1 ⊗ 𝑀 → …

Apply Theorem 6.3.2 and we can find the connecting homomorphism 𝜕𝑛+1 = 𝑖𝑛 ⊗ id𝑀 , where 𝑖𝑛 :
𝑑(𝑃𝑛+1) → 𝑍𝑛 is the inclusion map. By Proposition 3.5.8, we have a short exact sequence

0 → Coker(𝑖𝑛 ⊗ id𝑀) → 𝐻𝑛(𝑃∙ ⊗ 𝑀) → Ker(𝑖𝑛−1 ⊗ id𝑀) → 0. (6)

Now it remains to calculate the two flanking terms of Short Exact Sequence 6. Note that we have a flat
resolution for 𝐻𝑛(𝑃∙):

0 → 𝑑(𝑃𝑛+1) →
𝑖𝑛

𝑍𝑛 → 𝐻𝑛(𝑃∙) → 0.

By Lemma 10.2.2, Tor𝑅
∗ (𝐻𝑛(𝑃∙), 𝑀) is the homology of the following chain complex:

𝐷∙ = (… → 0 → 𝑑(𝑃𝑛+1) ⊗ 𝑀 →
𝑖𝑛⊗ id𝑀

𝑍𝑛 ⊗ 𝑀 → 0)
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Hence

𝐻𝑛(𝑃∙) ⊗ 𝑀 = Tor0(𝐻𝑛(𝑃∙), 𝑀) = 𝐻0(𝐷) = Coker(𝑖𝑛 ⊗ id𝑀)

and

Tor𝑅
1 (𝐻𝑛(𝑃∙), 𝑀) = 𝐻1(𝐷) = Ker(𝑖𝑛 ⊗ id𝑀).

Combining the last two equations with Short Exact Sequence 6 gives the result. ∎

Remark 10.3.3.  These are the games you play with the machine.

In particular, we can consider the case of 𝐀𝐛, where we have the following:

Theorem 10.3.4 (Universal Coefficient Theorem).  Let 𝑃∙ be a chain complex of free abelian
groups, then for every 𝑛 and every 𝑀 , the Künneth short exact sequence splits, so

𝐻𝑛(𝑃∙ ⊗ 𝑀) = (𝐻𝑛(𝑃 ) ⊗ 𝑀) ⊕ Torℤ
1 (𝐻𝑛−1(𝑃 ), 𝑀)

The split is not canonical.

Proof. (Rotman 2009, Corollary 7.56, p. 450), (Weibel 1994, Theorem 3.6.2, p. 87). Since each 𝑃𝑛 is a free
abelian group, its subgroup 𝑑(𝑃𝑛) is also free abelian by Proposition 1.10. Therefore 𝑑(𝑃𝑛) is projec-
tive, so the short exact sequence

0 → 𝑍𝑛 →
𝑖𝑛

𝑃𝑛 → 𝑑(𝑃𝑛) → 0

splits by Proposition 3.6.2. Applying (− ⊗ 𝑀) (which commutes with direct sums), we see that the
short exact sequence

0 → 𝑍𝑛 ⊗ 𝑀 →
𝑖𝑛⊗ id𝑀

𝑃𝑛 ⊗ 𝑀 → 𝑑(𝑃𝑛) ⊗ 𝑀 → 0

also splits, so 𝑍𝑛 ⊗ 𝑀  is a direct summand of 𝑃𝑛 ⊗ 𝑀 . Now notice we have the inclusions

Im(𝑑𝑛+1 ⊗ id𝑀) ⊆ Im(𝑖𝑛 ⊗ id𝑀) ⊆ Ker(𝑑𝑛 ⊗ id𝑀) ⊆ 𝑃𝑛 ⊗ 𝑀

By Corollary 3.5.11, 𝑍𝑛 ⊗ 𝑀  is a direct summand of Ker(𝑑𝑛 ⊗ id𝑀). Modding out by Im(𝑑𝑛+1 ⊗
id𝑀) on both of them, again by Corollary 3.5.11, we see that

𝐻𝑛(𝑃 ) ⊗ 𝑀 =
𝑍𝑛 ⊗ 𝑀

Im(𝑑𝑛+1 ⊗ id𝑀) (7)

is a direct summand of

𝐻𝑛(𝑃∙ ⊗ 𝑀) =
Ker(𝑑𝑛 ⊗ id𝑀)
Im(𝑑𝑛+1 ⊗ id𝑀)

.

To see why Equation  7 holds, let 𝑗𝑛 : 𝑑(𝑃𝑛+1) → 𝑍𝑛 be the inclusion map, and by the proof of
Theorem 10.3.2,

𝐻𝑛(𝑃 ) ⊗ 𝑀 = Coker(𝑗𝑛 ⊗ id𝑀 : 𝑑(𝑃𝑛+1) ⊗ 𝑀 → 𝑍𝑛 ⊗ 𝑀)

=
𝑍𝑛 ⊗ 𝑀

Im(𝑗𝑛 ⊗ id𝑀)
=

𝑍𝑛 ⊗ 𝑀
Im(𝑑𝑛+1 ⊗ id𝑀)

.
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Since each 𝑃𝑛 and 𝑑(𝑃𝑛) are projective and thus flat, by Theorem 10.3.2 we have a short exact sequence

0 → 𝐻𝑛(𝑃 ) ⊗ 𝑀 → 𝐻𝑛(𝑃∙ ⊗ 𝑀) → Torℤ
1 (𝐻𝑛−1(𝑃 ), 𝑀) → 0,

which is therefore split. ∎

We also demonstrate a more general result, known as the Full Künneth Formula. Now it can be helpful
to recall Definition 8.4.1, the tensor product double complex, as well as Notation 8.3.5.

Theorem 10.3.5 (Full Künneth Formula).  Let 𝑃∙ and 𝑄∙ be right and left 𝑅-modules, respec-
tively. If 𝑃𝑛 and 𝑑(𝑃𝑛) are flat for each 𝑛, then there is a short exact sequence

0 → ⨁
𝑖+𝑗=𝑛

𝐻𝑖(𝑃 ) ⊗ 𝐻𝑗(𝑄) → 𝐻𝑛(𝑃 ⊗𝑅 𝑄) → ⨁
𝑖+𝑗=𝑛−1

Tor𝑅
1 (𝐻𝑖(𝑃 ), 𝐻𝑗(𝑄)) → 0

Proof. (Weibel 1994, Theorem 3.6.3). Modify the proof of Theorem 10.3.2. ∎

It is worth mentioning that there is also a version of the Universal Coefficient Theorem for cohomology
that involves Ext and Hom:

Theorem 10.3.6 (Universal Coefficient Theorem for Cohomology).  Let 𝑃∙ be a chain complex
of projective 𝑅-modules such that each 𝑑(𝑃𝑛) is also projective. Then for any 𝑛 and every 𝑅-
module 𝑀 , there is a non-canonically split exact sequence

0 → Ext1
𝑅(𝐻𝑛−1(𝑃 ), 𝑀) → 𝐻𝑛(Hom𝑅(𝑃 , 𝑀)) → Hom𝑅(𝐻𝑛(𝑃 ), 𝑀) → 0.

Proof. (Weibel 1994, Theorem 3.6.5). ∎

These results yield important consequences in algebraic topology, as briefly discussed below. More can
be seen in the Algebraic Topology course.

Example 10.3.7.  (Weibel 1994, Application 3.6.4). Let 𝑋 be a topological space. Let 𝐶∙(𝑋) be
the singular chain complex of 𝑋, then each 𝐶𝑛(𝑋) is a free abelian group. Let 𝑀  be an abelian
group, then we define the 𝑛-th (singular) homology of 𝑋 with coefficients in 𝑀  as

𝐻𝑛(𝑋; 𝑀) ≔ 𝐻𝑛(𝐶∙(𝑋) ⊗ 𝑀).

In particular, 𝐻𝑛(𝑋) = 𝐻𝑛(𝑋; ℤ). Then the Universal Coefficient Theorem gives

𝐻𝑛(𝑋; 𝑀) ≅ (𝐻𝑛(𝑋) ⊗ 𝑀) ⊕ Torℤ
1 (𝐻𝑛−1(𝑋), 𝑀).

For cohomology, we could make a similar definition, i.e.

𝐻𝑛(𝑋; 𝑀) ≔ 𝐻𝑛(Homℤ(𝐶∙(𝑋), 𝑀))

with 𝐻𝑛(𝑋) = 𝐻𝑛(𝑋; ℤ), and the Universal Coefficient Theorem would indicate that

𝐻𝑛(𝑋; 𝑀) ≅ Homℤ(𝐻𝑛(𝑋), 𝑀) ⊕ Ext1
ℤ(𝐻𝑛−1(𝑋), 𝑀).

95



(If we further assume that 𝑀 = ℤ and that each 𝐻𝑛(𝑋) is finitely generated such that 𝐻𝑛(𝑋) ≅
𝐹𝑛 ⊕ 𝑇𝑛 with free part 𝐹𝑛 and torsion part 𝑇𝑛, then we can show that 𝐻𝑛(𝑋) ≅ 𝐹𝑛 ⊕ 𝑇𝑛−1.)

Let 𝑌  be another topological space with singular chain complex 𝐶∙(𝑌 ). By Eilenberg–Zilber
theorem, 𝐻𝑛(𝑋 × 𝑌 ) ≅ 𝐻𝑛(𝐶∙(𝑋) ⊗ 𝐶∙(𝑌 )). Then the Full Künneth Formula indicates that

𝐻𝑛(𝑋 × 𝑌 ) ≅ (⨁
𝑛

𝑝=1
𝐻𝑝(𝑋) ⊗ 𝐻𝑛−𝑝(𝑌 )) ⊕ (⨁

𝑛

𝑝=1
Torℤ

1(𝐻𝑝−1(𝑋), 𝐻𝑛−𝑝(𝑌 ))).
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11. Koszul Complexes and (Co)homology
We generally follow (Weibel 1994, Section 4.5). In this section, by an 𝑅-module we mean either a left
or a right 𝑅-module.

11.1. Koszul Complexes

Definition 11.1.1.  Let 𝑅 be a ring and let 𝑥 ∈ 𝑍(𝑅) be a central element. Then we define the
Koszul complex 𝐾∙(𝑥) of 𝑥 to be the chain complex

0 → 𝑅 ⋅ 𝑒𝑥 →
𝑥

𝑅 → 0

concentrated in degrees 1 and 0, where 𝑒𝑥 is a symbol to denote the generator of 𝐾1(𝑥), and the
differential 𝑅 ⋅ 𝑒𝑥 →

𝑥
𝑅 is multiplication by 𝑥, i.e. 𝑑(𝑒𝑥) = 𝑥.

Definition 11.1.2.  If 𝒙 = (𝑥1, …, 𝑥𝑛) is a finite sequence of central elements of 𝑅, then by
above, we have Koszul complexes 𝐾(𝑥1), …, 𝐾(𝑥𝑛), where we write 𝑒𝑖 = 𝑒𝑥𝑖

. Then the chain
complex 𝐾(𝒙) is defined as follows. The symbols

𝑒𝑖1
∧ ⋯ ∧ 𝑒𝑖𝑝

= 1 ⊗ ⋯ ⊗ 1 ⊗ 𝑒𝑖1
⊗ ⋯ ⊗ 𝑒𝑖𝑝

⊗ ⋯ ⊗ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 terms

(1 ≤ 𝑖1 < ⋯ < 𝑖𝑝 ≤ 𝑛).

generate the free 𝑅-module 𝐾𝑝(𝒙), and the differential 𝐾𝑝(𝒙) → 𝐾𝑝−1(𝒙) sends 𝑒𝑖1
∧ ⋯ ∧ 𝑒𝑖𝑝

to

∑
𝑝

𝑘=1
(−1)𝑘+1𝑥𝑖𝑘

𝑒𝑖1
∧ ⋯ ∧ 𝑒𝑖𝑘

∧ ⋯ ∧ 𝑒𝑖𝑝
.

Remark 11.1.3.  Alternatively, we could define 𝐾(𝒙) as the total tensor product complex

Tot⊕(𝐾(𝑥1) ⊗𝑅 𝐾(𝑥2) ⊗𝑅 … ⊗𝑅 𝐾(𝑥𝑛))

by which we mean an inductive relation

𝐾(𝒙) = Tot⊕(𝐾(𝑥1, 𝑥2, …, 𝑥𝑛−1), 𝐾(𝑥𝑛)).

We omit the proof that this is an equivalent definition. One may also understand the alternative
definition by regarding 𝐶 ≔ 𝐾(𝑥1) ⊗𝑅 … ⊗𝑅 𝐾(𝑥𝑛) as an “𝑛-dimensional complex”, a gener-
alisation of a double complex. In particular, 𝐶 has in total 2𝑛 terms, and a typical term in 𝐶 is
indexed by an 𝑛-tuple of 0 and 1, whose total degree is the sum of this 𝑛-tuple. For example, if
𝑛 = 4, 𝐶 has a term

𝐶0,1,1,0 = 𝑅 ⊗𝑅 (𝑅 ⋅ 𝑒2) ⊗𝑅 (𝑅 ⋅ 𝑒3) ⊗𝑅 𝑅,

which has total degree 2 and is generated by 𝑒2 ∧ 𝑒3. Then 𝐾(𝒙) is the total complex of 𝐶 , where
𝐾𝑝(𝒙) is the direct sum of all terms in 𝐶 which has total degree 𝑝. For example, when 𝑛 =
4, 𝐾2(𝒙) is a free module generated by 𝑒1 ∧ 𝑒2, 𝑒1 ∧ 𝑒3, 𝑒1 ∧ 𝑒4, 𝑒2 ∧ 𝑒3, 𝑒2 ∧ 𝑒4, 𝑒3 ∧ 𝑒4 with
rank 6. Further, 𝐾𝑝(𝒙) is in fact isomorphic to the 𝑝-th exterior product Λ𝑝𝑅𝑛 of 𝑅𝑛, so 𝐾(𝒙)
is often called the exterior algebra complex.
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Proposition 11.1.4.  𝐾(𝒙) is indeed a chain complex and 𝐾𝑝(𝒙) is a free 𝑅-module with rank
(𝑛

𝑝).

Example 11.1.5.  As an example, when 𝑛 = 2 and 𝒙 = (𝑥1, 𝑥2), 𝐾(𝒙) is the total complex

0 → 𝑅 ⋅ (𝑒1 ∧ 𝑒2) →
𝑑2

𝑅 ⋅ 𝑒1 ⊕ 𝑅 ⋅ 𝑒2 →
𝑑1

𝑅 → 0,

where 𝑑2 = ( 𝑥2
−𝑥1

) and 𝑑1 = (𝑥1, 𝑥2). Note that indeed 𝑑1 ∘ 𝑑2 = 0.

11.2. Koszul (Co)homology

Definition 11.2.1.  For an 𝑅-module 𝐴, we define the Koszul homology and Koszul coho-
mology to be

𝐻𝑞(𝒙, 𝐴) = 𝐻𝑞(𝐾(𝒙) ⊗𝑅 𝐴),

𝐻𝑞(𝒙, 𝐴) = 𝐻𝑞(Hom𝑅(𝐾(𝒙), 𝐴)).

Proposition 11.2.2.  {𝐻𝑞(𝒙, −)} is a homological 𝛿-functor and {𝐻𝑞(𝒙, −)} is a cohomologi-
cal 𝛿-functor with

𝐻0(𝒙, 𝐴) = 𝐴/𝒙𝐴, 𝐻0(𝒙, 𝐴) = Hom𝑅(𝑅/𝒙𝑅, 𝐴) = {𝑎 ∈ 𝐴 : 𝑥𝑖𝑎 = 0  for all 𝑖}.

Proof. Each 𝐾𝑝(𝒙) is free and hence flat and projective, so (𝐾𝑝(𝒙) ⊗𝑅 −) and Hom𝑅(𝐾𝑝(𝒙), −) are
both exact functors. For any short exact sequence 0 → 𝐴 → 𝐵 → 𝐶 → 0, we thus have a short exact
sequence of chain complexes,

0 → 𝐾(𝒙) ⊗𝑅 𝐴 → 𝐾(𝒙) ⊗𝑅 𝐵 → 𝐾(𝒙) ⊗𝑅 𝐶 → 0

and a short exact sequence of cochain complexes

0 → Hom𝑅(𝐾𝑝(𝒙), 𝐴) → Hom𝑅(𝐾𝑝(𝒙), 𝐵) → Hom𝑅(𝐾𝑝(𝒙), 𝐶) → 0

By Theorem 6.3.2, applying homology and cohomology to them respectively induces two long exact se-
quences. Notice 𝐾1(𝒙) ≅ 𝑅𝑛 with generators {𝑒𝑖}1≤𝑖≤𝑛 and 𝐾0(𝒙) = 𝑅. The differential 𝐾1(𝒙) →
𝐾0(𝒙) sends each 𝑒𝑖 to 𝑥𝑖. The rest should follow easily. ∎

Proposition 11.2.3.  There are isomorphisms 𝐻𝑝(𝒙, 𝐴) ≅ 𝐻𝑛−𝑝(𝒙, 𝐴) for all 𝑝.
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Lemma 11.2.4 (Künneth Formula for Koszul Complexes).  If 𝐶∙ is a chain complex of 𝑅-modules
and 𝑥 ∈ 𝑅, there are exact sequences

0 → 𝐻0(𝑥, 𝐻𝑞(𝐶)) → 𝐻𝑞(𝐾(𝑥) ⊗𝑅 𝐶) → 𝐻1(𝑥, 𝐻𝑞−1(𝐶)) → 0

Proof. Again recall Notation 8.3.5, so the middle term means 𝐻𝑞(Tot⊕(𝐾(𝑥) ⊗𝑅 𝐶)). By definition,

[Tot⊕(𝐾(𝑥) ⊗𝑅 𝐶)]𝑛 = (𝐾0(𝑥) ⊗𝑅 𝐶𝑛) ⊕ (𝐾1(𝑥) ⊗𝑅 𝐶𝑛−1) ≅ 𝐶𝑛 ⊕ 𝐶𝑛−1,

where the differential is given by (𝑐𝑛, 𝑐𝑛−1) ↦ (𝑑(𝑐𝑛) + 𝑥𝑐𝑛−1, −𝑑(𝑐𝑛−1)). Thus we can write a short
exact sequence of chain complexes:

0 → 𝐶 → Tot⊕(𝐾(𝑥) ⊗𝑅 𝐶) → 𝐶[−1] → 0,

which is associated to the long exact sequence:

𝐻𝑞+1(𝐶[−1]) →
𝜕

𝐻𝑞(𝐶) → 𝐻𝑞(𝐾(𝑥) ⊗ 𝐶) → 𝐻𝑞(𝐶[−1]) →
𝜕

𝐻𝑞(𝐶),

where 𝐻𝑞+1(𝐶[−1]) = 𝐻𝑞(𝐶) and 𝐻𝑞(𝐶[−1]) = 𝐻𝑞−1(𝐶). By Theorem 6.3.2, we can find that the
connecting homomorphism 𝜕 is multiplication by 𝑥. Now we have

𝐻𝑞(𝐶) →
𝑥

𝐻𝑞(𝐶) → 𝐻𝑞(𝐾(𝑥) ⊗ 𝐶) → 𝐻𝑞−1(𝐶) →
𝑥

𝐻𝑞−1(𝐶),

which, by Proposition 3.5.8, leads to the short exact sequence

0 → Coker(𝐻𝑞(𝐶) →
𝑥

𝐻𝑞(𝐶)) → 𝐻𝑞(𝐾(𝑥) ⊗ 𝐶) → Ker(𝐻𝑞−1(𝐶) →
𝑥

𝐻𝑞−1(𝐶)) → 0.

Now since

𝐻𝑞(𝐶) →
𝑥

𝐻𝑞(𝐶) = (𝑅 →
𝑥

𝑅) ⊗𝑅 𝐻𝑞(𝐶),

we find

Coker(𝐻𝑞(𝐶) →
𝑥

𝐻𝑞(𝐶)) = 𝐻0(𝑥, 𝐻𝑞(𝐶)) and  Ker(𝐻𝑞(𝐶) →
𝑥

𝐻𝑞(𝐶)) = 𝐻1(𝑥, 𝐻𝑞(𝐶)),

and the result follows. ∎

Now recall that if 𝐴 is an 𝑅-module and 𝑟 ∈ 𝑅, then 𝑟 is a zero-divisor on 𝐴 if there exists non-
zero 𝑎 ∈ 𝐴 such that 𝑟𝑎 = 0. Therefore, 𝑟 is a non-zero-divisor on 𝐴 if and only if the multiplication
𝐴 →

𝑟
𝐴 is injective.

Definition 11.2.5.  If 𝐴 is an 𝑅-module, a regular sequence on 𝐴 is a sequence of elements
(𝑥1, …, 𝑥𝑛) where each 𝑥𝑖 ∈ 𝑅 such that 𝑥1 is a non-zero-divisor on 𝐴 and each 𝑥𝑖 is a non-
zero-divisor on 𝐴/(𝑥1, …, 𝑥𝑖−1)𝐴.

Lemma 11.2.6.  Let 𝐴 be an 𝑅-module. If 𝑥 is a non-zero-divisor on 𝐴, then 𝐻1(𝑥, 𝐴) = 0.
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Proof. 𝐾(𝑥) ⊗𝑅 𝐴 is the chain complex 0 → 𝐴 →
𝑥

𝐴 → 0. If 𝑥 is a non-zero-divisor on 𝐴, then
𝐻1(𝑥, 𝐴) = Ker 𝑥 = 0. ∎

Corollary 11.2.7.  If 𝒙 = (𝑥1, …, 𝑥𝑛) is a regular sequence on an 𝑅-module 𝐴, then 𝐻𝑞(𝒙, 𝐴) =
0 for 𝑞 > 0.

Proof. By induction on 𝑛. The base case for 𝑛 = 1 is given in Lemma 11.2.6. Let 𝑥 = 𝑥𝑛 and 𝒚 =
(𝑥1, …, 𝑥𝑛−1), then 𝐾(𝒙) = Tot⊕(𝐾(𝑥) ⊗𝑅 𝐾(𝒚)). By Lemma 11.2.4 (letting 𝐶 = 𝐾(𝒚) ⊗𝑅 𝐴), we
have a short exact sequence

0 → 𝐻0(𝑥, 𝐻𝑞(𝒚, 𝐴)) → 𝐻𝑞(𝒙, 𝐴) → 𝐻1(𝑥, 𝐻𝑞−1(𝒚, 𝐴)) → 0. (8)

For 𝑞 ≥ 2, the flanking terms of Short Exact Sequence 8 are both 0 by induction and hence 𝐻𝑞(𝒙, 𝐴) =
0. For 𝑞 = 1, by induction the left term of Short Exact Sequence 8 is 0, so we get

𝐻1(𝒙, 𝐴) ≅ 𝐻1(𝑥, 𝐻0(𝒚, 𝐴)) = 𝐻1(𝑥, 𝐴/(𝑥1, …, 𝑥𝑛−1)𝐴) = 0

by Proposition 11.2.2 and Lemma 11.2.6, since 𝑥 is a non-zero-divisor on 𝐴/(𝑥1, …, 𝑥𝑛−1)𝐴. ∎

Corollary 11.2.8 (Koszul resolution).  If 𝒙 = (𝑥1, …, 𝑥𝑛) is a regular sequence on 𝑅 (viewed as
an 𝑅-module), then 𝐾(𝒙) is a free resolution of 𝑅/𝐼 , where 𝐼 = (𝑥1, …, 𝑥𝑛)𝑅.

Proof. Notice that 𝐻𝑞(𝒙, 𝑅) = 𝐻𝑞(𝐾(𝒙) ⊗𝑅 𝑅) ≅ 𝐻𝑞(𝐾(𝒙)). When 𝑞 ≥ 1, by Corollary  11.2.7,
𝐻𝑞(𝐾(𝒙)) = 0. When 𝑞 = 0, 𝐻0(𝐾(𝒙)) = 𝑅/𝒙𝑅 = 𝑅/𝐼  by Proposition 11.2.2. This indicates that

… → 𝐾2(𝒙) → 𝐾1(𝒙) → 𝐾0(𝒙) → 𝑅/𝐼 → 0

is exact everywhere. Thus 𝐾(𝒙) is a free resolution of 𝑅/𝐼 . ∎

Corollary 11.2.9.  If 𝒙 = (𝑥1, …, 𝑥𝑛) is a regular sequence on 𝑅, 𝐼 = (𝑥1, …, 𝑥𝑛)𝑅 and 𝐵 is an
𝑅-module, then

𝐻𝑝(𝒙, 𝐵) = Tor𝑅
𝑝 (𝑅/𝐼, 𝐵),

𝐻𝑝(𝒙, 𝐵) = Ext𝑅
𝑝 (𝑅/𝐼, 𝐵).

Proof. This follows from the Koszul resolution of 𝑅/𝐼  and the definition (or the balancing) of Ext and
Tor. ∎

Example 11.2.10.  Let 𝑘 be a field, 𝑅 = 𝑘[𝑥, 𝑦] and 𝐼 = (𝑥, 𝑦)𝑅. Then 𝑘 ≅ 𝑅/𝐼  and has Koszul
resolution

0 → 𝑅 →
(

𝑦
−𝑥

)
𝑅2 →

(𝑥,𝑦)
𝑅 → 𝑘 → 0.
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To calculate Tor𝑅
∗ (𝑘, 𝑘), we could simply use the definition of Tor: delete 𝑘 from the sequence,

apply (𝑘 ⊗𝑅 −), and we get

0 → 𝑘 →
0

𝑘2 →
0

𝑘 → 0,

where the differentials vanish since 𝑥 and 𝑦 are modded out in 𝑘. Take the homology of the above
sequence and we see

Tor𝑅
∗ (𝑘, 𝑘) ≅

⎩{
⎨
{⎧𝑘, ∗ = 0, 2,

𝑘2, ∗ = 1,
0, otherwise.
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12. Ext and Extensions
12.1. Extensions

Definition 12.1.1.  Let 𝐴 and 𝐵 be 𝑅-modules. An extension of 𝐴 by 𝐵 is a short exact se-
quence

0 → 𝐵 → 𝑋 → 𝐴 → 0.

Two extensions are equivalent if there is a commutative diagram

↑ ↑ ↑ ↑

↑

=

↑

≅

↑

=

↑ ↑ ↑ ↑

0 𝐵 𝑋 𝐴 0

0 𝐵 𝑋′ 𝐴 0

This is an equivalence relation. We denote 𝑒(𝐴, 𝐵) as the equivalence classes of extensions of 𝐴
by 𝐵.

An extension is split if it is equivalent to

0 → 𝐵 → 𝐴 ⊕ 𝐵 → 𝐴 → 0.

Lemma 12.1.2.  If Ext1(𝐴, 𝐵) = 0, then every extension of 𝐴 by 𝐵 is split.

Proof. We look at the long exact sequence of Ext∗(𝐴, −):

Hom(𝐴, 𝑋) → Hom(𝐴, 𝐴) →
𝜕

Ext1(𝐴, 𝐵) = 0.

The first arrow is a surjection, so id𝐴 ∈ Hom(𝐴, 𝐴) can always lift to a splitting 𝜎 : 𝐴 → 𝑋. (It is
helpful to recall the proof of Proposition 3.6.2.) ∎

From the above proof, we also see that 𝜕(id𝐴) ∈ Ext1(𝐴, 𝐵) is the obstruction to the extension of 𝐴
by 𝐵 being split: the extension is split if and only if id𝐴 lifts to some element in Hom(𝐴, 𝑋), if and
only if 0 = 𝜕(id𝐴).

Lemma 12.1.3.  Let 0 → 𝐵 → 𝑋 → 𝐴 → 0 be an extension of 𝐴 by 𝐵, and let 𝑘 : 𝐶 → 𝐴. Then
there exists an extension 0 → 𝐵 → 𝑌 → 𝐶 → 0 of 𝐶 by 𝐵, unique up to extension equivalence,
such that the following diagram commutes:
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↑

𝑘

↑

id𝐵

↑ ↑ ↑ ↑

↑

↑ ↑↑ ↑

𝐵 𝑋 𝐴0 0

𝐵 𝐶𝑌0 0

Proof. (Rotman 2009, Lemma 7.29). ∎

Theorem 12.1.4.  Given 𝑅-modules 𝐴 and 𝐵, the map

Θ : 𝑒(𝐴, 𝐵) → Ext1
𝑅(𝐴, 𝐵)

[0 → 𝐵 → 𝑋 → 𝐴 → 0] ↦ 𝜕(id𝐴)

is a bijection, and split extensions correspond to 0 ∈ Ext1
𝑅(𝐴, 𝐵).

Proof sketch. We first show that Θ is surjective. Let 𝑥 ∈ Ext1
𝑅(𝐴, 𝐵), and we want to construct some

extension 𝜉 = (0 → 𝐵 → 𝑋 → 𝐴 → 0) such that Θ(𝜉) = 𝑥. Since 𝑅-𝐌𝐨𝐝 has enough injectives, we
can find a short exact sequence

0 → 𝐵 →
𝑗

𝐼 →
𝜋

𝑁 → 0,

where 𝐼  is injective and 𝜋 = coker(𝑗). Since 𝐼  is injective, we have Ext1
𝑅(𝐴, 𝐼) = 0 by

Proposition 8.1.3, so the long exact sequence of Ext gives an exact sequence

0 → Hom𝑅(𝐴, 𝐵) → Hom𝑅(𝐴, 𝐼) → Hom𝑅(𝐴, 𝑁) →
𝛿′

Ext1
𝑅(𝐴, 𝐵) → 0.

Now 𝛿′ is surjective, so 𝑥 ∈ Ext1
𝑅(𝐴, 𝐵) can be lifted to some 𝛽 ∈ Hom𝑅(𝐴, 𝑁) such that 𝛿′(𝛽) = 𝑥.

Now we have the following:

↑

𝛽

↑

id𝐵

↑ ↑𝑗 ↑𝜋 ↑𝐵 𝐼 𝑁0 0

𝐵 𝐴

We now apply Lemma 12.1.3 to find a commutative diagram with exact rows that completes the above
diagram:
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↑

𝛽

↑

id𝐵

↑ ↑𝑗 ↑𝜋 ↑

↑

↑ ↑↑ ↑

𝐵 𝐼 𝑁0 0

𝐵 𝐴𝑋0 0

where the top row is the extension 𝜉 we claim to have Θ(𝜉) = 𝑥. To prove that it is indeed the case,
notice by naturality of the long exact sequence of Ext, there is a commutative diagram

↑

id

↑𝛿

↑

𝛽 ∘ −

↑𝛿′

Hom𝑅(𝐴, 𝐴) Ext1
𝑅(𝐴, 𝐵)

Hom𝑅(𝐴, 𝑁) Ext1
𝑅(𝐴, 𝐵)

from which we see

Θ(𝜉) = 𝛿(id𝐴) = 𝛿′((𝛽 ∘ −)(id𝐴)) = 𝛿′(𝛽) = 𝑥.

Thus we have shown Θ is surjective.

Now again by Lemma 12.1.3, the extension 𝜉 we have constructed is unique up to equivalence, so we
have effectively constructed a well-defined map

Φ : Ext1
𝑅(𝐴, 𝐵) → 𝑒(𝐴, 𝐵)

with Θ(Φ(𝑥)) = 𝑥 (if we can show that Φ is independent of the choices of 𝐼  and 𝛽).

The rest of the proof is to show that Φ(Θ([𝜉])) = [𝜉] for any extension class [𝜉] ∈ 𝑒(𝐴, 𝐵). ∎

12.2. Baer Sum
When a set 𝑋 has a bijection with the underlying map of a group 𝐺, then in general 𝑋 can be also
equipped with a group structure. We are therefore interested in characterising the group structure on
𝑒(𝐴, 𝐵), in view of its bijection with the group Ext1(𝐴, 𝐵). The natural addition operation on 𝑒(𝐴, 𝐵)
was first explicitly ascertained by R. Baer.

Definition 12.2.1.  Let

𝜉1 : 0 → 𝐵 →
𝑖1

𝑋1 →
𝜋1

𝐴 → 0, 𝜉2 : 0 → 𝐵 →
𝑖2

𝑋2 →
𝜋2

𝐴 → 0

be extensions of 𝐴 by 𝐵. Let

𝑋′′ = 𝑋1 ×𝐴 𝑋2 = {(𝑥1, 𝑥2) ∈ 𝑋1 × 𝑋2 : 𝜋1(𝑥1) = 𝜋2(𝑥2)}

and let

𝑌 =
𝑋′′

{(𝑖1(𝑏), −𝑖2(𝑏)) : 𝑏 ∈ 𝐵}
.
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Then the sequence

0 → 𝐵 →
𝑖

𝑌 →
𝜋

𝐴 → 0

is called the Baer sum of 𝜉 and 𝜉′, where we have maps

𝑖 : 𝐵 → 𝑌
𝑏 ↦ (𝑖1(𝑏), 0)

and

𝜋 : 𝑌 → 𝐴
(𝑥1, 𝑥2) ↦ 𝜋1(𝑥1) + 𝜋2(𝑥2).

Lemma 12.2.2.  The Baer sum is a well-defined extension of 𝐴 by 𝐵.

Lemma 12.2.3.  The set of equivalence classes of extensions of 𝐴 by 𝐵 is an abelian group under
the Baer sum, and the map Θ is an isomorphism of abelian groups.

12.3. Yoneda Ext Groups
Using extensions of 𝐴 by 𝐵, we can define Ext𝑛(𝐴, 𝐵) in any abelian category, not necessarily with
enough projectives or injectives. We call this the Yoneda Ext group.

Definition 12.3.1.  We define the Yoneda Ext𝑛(𝐴, 𝐵) to be the equivalence classes of exact
sequences

𝜉 : 0 → 𝐵 → 𝑋𝑛 → … → 𝑋1 → 𝐴 → 0

under the equivalence relation generated by 𝜉 ∼ 𝜉′ if there is a diagram

↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑

↑

=

↑ ↑ ↑

=

0 𝐵 𝑋𝑛 … 𝑋1 𝐴 0

0 𝐵 𝑋′
𝑛 … 𝑋′

1 𝐴 0

Note that the arrows 𝑋𝑖 → 𝑋′
𝑖  do not have to be isomorphisms. At first glance, this seems different to

our previous definition of equivalence for extensions of 𝐴 by 𝐵. However, by the Five Lemma, when
𝑛 = 1, the morphism 𝑋1 → 𝑋′

1 is necessarily an isomorphism.
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Definition 12.3.2.  We again define a notion of a Baer sum. Let 𝜉 and 𝜉′ be representatives of
elements of Ext𝑛(𝐴, 𝐵). Let 𝑋′′

1  be the pullback of

↑

↑

𝑋1

𝐴𝑋′
1

and let 𝑋′′
𝑛  be the pushout of

↑

↑

𝐵 𝑋𝑛

𝑋′
𝑛

Let 𝑌𝑛 be the quotient of 𝑋′′
𝑛  by the antidiagonal. Then the Baer sum is

0 → 𝐵 → 𝑌𝑛 → 𝑋𝑛−1 ⊕ 𝑋′
𝑛−1 → … → 𝑋2 ⊕ 𝑋′

2 → 𝑋′′
1 → 𝐴 → 0.

Suppose that 𝒜 has enough projectives and 𝑃• → 𝐴 is a projective resolution. Consider the diagram

↑ ↑ ↑ ↑ ↑ ↑ ↑

↑=

↑↑↑↑ ↑ ↑

𝐴

𝐴

0

0𝑋0…𝑋𝑛𝐵

𝑃0…𝑃𝑛−1𝑃𝑛𝑃𝑛+1…

0

By Theorem 6.4.4, there is a chain map from the top row to the bottom row lifting id : 𝐴 → 𝐴. Setting
𝑀 = Ker 𝑑(𝑃)

𝑛  gives a diagram

↑ ↑ ↑ ↑ ↑ ↑

↑=

↑↑↑↑ ↑ ↑

↑𝛽 ↑ ↑

𝐴

𝐴

0

0𝑋0…𝑋𝑛𝐵

𝑃0…𝑃𝑛−1𝑀0

0

with exact rows.

Proposition 12.3.3. There is a natural isomorphism between Yoneda Ext𝑛 and the standard
Ext𝑛.
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13. Group (Co)homology
13.1. Definitions

Definition 13.1.1.  Let 𝐺 be a group. A (left) 𝐺-module is an abelian group 𝐴 together with a
left group action 𝜌 : 𝐺 × 𝐴 → 𝐴, with 𝜌(𝑔, 𝑎) denoted as 𝑔 ⋅ 𝑎, such that

𝑔 ⋅ (𝑎1 + 𝑎2) = 𝑔 ⋅ 𝑎1 + 𝑔 ⋅ 𝑎2

for all 𝑔 ∈ 𝐺 and 𝑎1, 𝑎2 ∈ 𝐴.

A morphism 𝐴 → 𝐵 of 𝐺-modules (or a 𝐺-map) is an abelian group homomorphism (i.e., ℤ-
linear map) 𝜑 : 𝐴 → 𝐵 such that

𝜑(𝑔 ⋅ 𝑎) = 𝑔 ⋅ 𝜑(𝑎)

for all 𝑔 ∈ 𝐺 and 𝑎 ∈ 𝐴.

The category of 𝐺-modules is denoted as 𝐺-𝐌𝐨𝐝, where we write Hom𝐺-𝐌𝐨𝐝 as Hom𝐺.

Note 13.1.2.  Recall that for any group 𝐺, the integral group ring ℤ𝐺 consists of formal sums
of elements of 𝐺 with integer coefficients:

∑
𝑔∈𝐺

𝑓𝑔𝑔,

where 𝑓𝑔 ∈ ℤ is non-zero for only fintely many 𝑔 ∈ 𝐺. ℤ𝐺 is a ring because the product of two
elements of ℤ𝐺 is well-defined.

Lemma 13.1.3.  There is an equivalence of categories 𝐺-𝐌𝐨𝐝 ≅ ℤ𝐺-𝐌𝐨𝐝.

This implies that 𝐺-modules can be seen as a special case of 𝑅-modules, so all the homological algebra
we have developed applies.

Definition 13.1.4.  A 𝐺-module is trivial if 𝑔 ⋅ 𝑎 = 𝑎 for all 𝑔 ∈ 𝐺 and 𝑎 ∈ 𝐴. We define a func-
tor triv : 𝐀𝐛 → 𝐺-𝐌𝐨𝐝 by sending an abelian group 𝐴 to a trivial 𝐺-module 𝐴.

Definition 13.1.5.  Let 𝐴 ∈ 𝐺-𝐌𝐨𝐝. Then the submodule of invariants of 𝐴 is

𝐴𝐺 = {𝑎 ∈ 𝐴 : 𝑔 ⋅ 𝑎 = 𝑎 for all 𝑔 ∈ 𝐺}

and the module of coinvariants of 𝐴 is

𝐴𝐺 = 𝐴/⟨𝑔 ⋅ 𝑎 − 𝑎 : 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴⟩.
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Lemma 13.1.6.  −𝐺 and −𝐺 are functors 𝐺-𝐌𝐨𝐝 → 𝐀𝐛.

Lemma 13.1.7.  We have adjunctions

−𝐺 ⊣ triv ⊣ −𝐺.

Proof. We first show

Hom𝐺(triv(𝐴), 𝐵) ≅ Hom𝐀𝐛(𝐴, 𝐵𝐺)

Take any 𝑓 : triv(𝐴) → 𝐵, then 𝑓  is a group homomorphism 𝐴 → 𝐵 such that 𝑓(𝑔 ⋅ 𝑎) = 𝑔 ⋅ 𝑓(𝑎) for
all 𝑔 ∈ 𝐺 and 𝑎 ∈ 𝐴. But 𝑔 ⋅ 𝑎 = 𝑎 due to triviality and hence 𝑓(𝑎) = 𝑔 ⋅ 𝑓(𝑎), i.e. 𝑓(𝑎) ∈ 𝐵𝐺 for all
𝑎. Then 𝑓  is equivalent to a group homomorphism 𝐴 → 𝐵𝐺.

Now we prove

Hom𝐀𝐛(𝐴𝐺, 𝐵) ≅ Hom𝐺(𝐴, triv(𝐵))

Take any ℎ : 𝐴 → triv(𝐵), then ℎ is a group homomorphism 𝐴 → 𝐵 such that for all 𝑔 ∈ 𝐺 and 𝑎 ∈
𝐴,

ℎ(𝑔 ⋅ 𝑎) = 𝑔 ⋅ ℎ(𝑎) = ℎ(𝑎) ⇔ ℎ(𝑔 ⋅ 𝑎 − 𝑎) = 0 ⇔ 𝑔 ⋅ 𝑎 − 𝑎 ∈ Ker(ℎ)

which means ℎ is equivalent to a group homomorphism 𝐴𝐺 → 𝐵. ∎

Corollary 13.1.8.  The functor −𝐺 : 𝐺-𝐌𝐨𝐝 → 𝐀𝐛 is right exact and the functor −𝐺 :
𝐺-𝐌𝐨𝐝 → 𝐀𝐛 is left exact.

Lemma 13.1.9.  Let 𝐴 be any 𝐺-module and let ℤ be the trivial 𝐺-module. Then

𝐴𝐺 ≅ ℤ ⊗ℤ𝐺 𝐴

and

𝐴𝐺 ≅ Homℤ𝐺(ℤ, 𝐴).

Remark 13.1.10.  In other words, (−𝐺) = (ℤ ⊗ℤ𝐺 −) = (− ⊗ℤ𝐺 ℤ) (because the ring ℤ𝐺 is com-
mutative) and (−𝐺) = Homℤ𝐺(ℤ, −).

Proof. We observe that the trivial module functor triv : ℤ-𝐌𝐨𝐝 → ℤ𝐺-𝐌𝐨𝐝 can be seen as the func-
tor Homℤ(ℤ, −), where we consider ℤ as a ℤ-ℤ𝐺 bimodule. By Theorem 4.5.5, (ℤ ⊗ℤ𝐺 −) is its left
adjoint, which must agree with its other left adjoint −𝐺. (See an alternative proof in (Monnet and
Kremnitzer 2021, Lemma 13.9).)

For the second claim: 𝐴𝐺 ≅ Hom𝐀𝐛(ℤ, 𝐴𝐺) ≅ Hom𝐺(ℤ, 𝐴). ∎
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Definition 13.1.11.  Let 𝐴 be a 𝐺-module. We define the homology groups of 𝐺 with coef-
ficients in 𝐴 as the left derived functors of (−𝐺):

𝐻∗(𝐺, 𝐴) = 𝐿∗(−𝐺)(𝐴) ≅ Torℤ𝐺
∗ (ℤ, 𝐴).

By definition, 𝐻0(𝐺, 𝐴) = 𝐴𝐺.

Similarly, we define the cohomology groups of 𝐺 with coefficients in 𝐴 as the right derived
functors of (−𝐺):

𝐻∗(𝐺, 𝐴) = 𝑅∗(−𝐺)(𝐴) ≅ Ext∗
ℤ𝐺(ℤ, 𝐴).

By definition, 𝐻0(𝐺, 𝐴) = 𝐴𝐺.

Notation 13.1.12.  (Weibel 1994) uses the notations 𝐻∗(𝐺; 𝐴) and 𝐻∗(𝐺; 𝐴) (with a semicolon
instead of a comma).

13.2. First Homology
Note 13.2.1.  Recall the commutator subgroup of a group 𝐺 is defined as

[𝐺, 𝐺] ≔ ⟨𝑔−1ℎ−1𝑔ℎ : 𝑔, ℎ ∈ 𝐺⟩

and the abelianisation of 𝐺 is 𝐺/[𝐺, 𝐺].

The aim is of this section is to show that 𝐻1(𝐺, ℤ) ≅ 𝐺/[𝐺, 𝐺] for any group 𝐺.

Definition 13.2.2.  The augmentation ideal 𝔍 of ℤ𝐺 is defined as the kernel of the ring map

𝜀 : ℤ𝐺 → ℤ
∑
𝑔∈𝐺

𝑓𝑔𝑔 ↦ ∑
𝑔∈𝐺

𝑓𝑔.

Remark 13.2.3.  𝜀 is obviously a surjection, so ℤ ≅ ℤ𝐺/𝔍. Moreover, 𝜀 can be considered as the
start of a resolution of ℤ.

Lemma 13.2.4.  𝔍 is a free ℤ-module with basis {𝑔 − 1 : 𝑔 ∈ 𝐺 ∖ {1}} (where 1 is the group
identity of 𝐺).

Proof. Simply notice that ℤ𝐺 as a free ℤ-module has a basis {1} ∪ {𝑔 − 1 : 𝑔 ∈ 𝐺 ∖ {1}} and that
𝜀(𝑔 − 1) = 0 for any 𝑔 ∈ 𝐺. ∎

Lemma 13.2.5.  For any 𝐺-module 𝐴, 𝐻0(𝐺, 𝐴) = 𝐴𝐺 ≅ 𝐴/𝔍𝐴.

Proof. 𝐴𝐺 ≅ ℤ ⊗ℤ𝐺 𝐴 ≅ (ℤ𝐺/𝔍) ⊗ℤ𝐺 𝐴 ≅ 𝐴/𝔍𝐴, where we use the definition of 𝔍 and
Example 4.6.2. ∎
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Example 13.2.6.  Regarding ℤ, ℤ𝐺 and 𝔍 as 𝐺-modules, we have 𝐻0(𝐺, ℤ) = ℤ/𝔍ℤ = ℤ,
𝐻0(𝐺, ℤ𝐺) = ℤ𝐺/𝔍 ≅ ℤ, and 𝐻0(𝐺, 𝔍) = 𝔍/𝔍2.

Lemma 13.2.7.  𝔍/𝔍2 ≅ 𝐺/[𝐺, 𝐺].

Note 13.2.8.  𝔍2 is the free ℤ-module with basis {(𝑔 − 1)(ℎ − 1) : 𝑔, ℎ ∈ 𝐺 ∖ {1}}.

Proof. Define map

𝜃 : 𝐺 → 𝔍/𝔍2

𝑔 ↦ 𝑔 − 1 + 𝔍2.

Take any 𝑎, 𝑏 ∈ 𝐺, then we have

𝜃(𝑎𝑏) = 𝑎𝑏 − 1 + 𝔍2 = 𝑎𝑏 − 1 − (𝑎 − 1)(𝑏 − 1) + 𝔍2 = (𝑎 − 1) + (𝑏 − 1) + 𝔍2 = 𝜃(𝑎) + 𝜃(𝑏),

so 𝜃 is a group homomorphism. Since 𝔍/𝔍2 is abelian, we have

𝜃(𝑎𝑏𝑎−1𝑏−1) = 𝜃(𝑎) + 𝜃(𝑏) − 𝜃(𝑎) − 𝜃(𝑏) = 0,

so [𝐺, 𝐺] ⊆ Ker 𝜃, and 𝜃 descends to a homomorphism ̄𝜃 : 𝐺/[𝐺, 𝐺] → 𝔍/𝔍2.

Define group homomorphism 𝜎 : 𝔍 → 𝐺/[𝐺, 𝐺] linearly expanded by

𝑛(𝑔 − 1) ↦ 𝑔𝑛[𝐺, 𝐺].

Then for 𝑎, 𝑏 ∈ 𝐺, we have

𝜎((𝑎 − 1)(𝑏 − 1)) = 𝜎(𝑎𝑏 − 1 − (𝑎 − 1) − (𝑏 − 1)) = 𝑎𝑏𝑎−1𝑏−1[𝐺, 𝐺] = [𝐺, 𝐺].

So 𝜎 descends to a homomorphism 𝜎̄ : 𝔍/𝔍2 → 𝐺/[𝐺, 𝐺]. The result thus follows from the obvious
fact that 𝜎̄ and ̄𝜃 are mutual inverses. ∎

Theorem 13.2.9. 𝐻1(𝐺, ℤ) ≅ 𝐺/[𝐺, 𝐺].

Proof. We have a short exact sequence

0 → 𝔍 → ℤ𝐺 →
𝜀

ℤ → 0

of 𝐺-modules, where ℤ is viewed as a trivial 𝐺-module. The long exact sequence of Torℤ𝐺
∗  gives

𝐻1(𝐺, ℤ𝐺) → 𝐻1(𝐺, ℤ) → 𝔍𝐺 → (ℤ𝐺)𝐺 →
𝜀∗

ℤ𝐺 → 0.

Since ℤ𝐺 is a projective and thus flat ℤ𝐺-module, we have 𝐻1(𝐺, ℤ𝐺) = 0 by Proposition 10.1.2.
Notice that ℤ𝐺 = ℤ and (ℤ𝐺)𝐺 ≅ ℤ by Example 13.2.6. Since 𝜀∗ is a surjection, we see 𝜀∗ must be an
isomorphism ℤ → ℤ. So we have 𝐻1(𝐺, ℤ) ≅ 𝔍𝐺 = 𝔍/𝔍2 ≅ 𝐺/[𝐺, 𝐺]. ∎

13.3. Norm Element
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Definition 13.3.1.  Let 𝐺 be a finite group. The norm element of ℤ𝐺 is

𝑁 = ∑
𝑔∈𝐺

𝑔 ∈ ℤ𝐺.

Notation 13.3.2.  Somehow the convention here is to use a capital letter 𝑁  for a group element,
not a group.

Lemma 13.3.3. 𝑁  is a central element of ℤ𝐺 and 𝑁 ∈ (ℤ𝐺)𝐺.

Proof. For every ℎ ∈ 𝐺, we have ℎ𝑁 = ∑𝑔 ℎ𝑔, but left multiplication by ℎ is nothing but a permuta-
tion of 𝐺 (recall Cayley’s Theorem), so ℎ𝑁 = ∑𝑔′ 𝑔′ = 𝑁  by reindexing. Similarly, 𝑁ℎ = 𝑁 . ∎

Lemma 13.3.4.  The subgroup 𝐻0(𝐺, ℤ𝐺) = (ℤ𝐺)𝐺 is the two-sided ideal ℤ ⋅ 𝑁  of ℤ𝐺 gener-
ated by 𝑁 , and is thus isomorphic to ℤ.

Proof. Take 𝑎 = ∑𝑔∈𝐺 𝑛𝑔𝑔 ∈ (ℤ𝐺)𝐺. Then for any ℎ ∈ 𝐺, 𝑎 = ℎ𝑎 = ∑𝑔∈𝐺 𝑛𝑔(ℎ𝑔). The coefficient
for 𝑔 in ℎ𝑎 is 𝑛ℎ−1𝑔. Thus, for any 𝑔, ℎ ∈ 𝐺, we have 𝑛𝑔 = 𝑛ℎ−1𝑔, which shows that all 𝑛𝑔 are the same.
Hence 𝑎 = 𝑛𝑁  for some 𝑛 ∈ ℤ. ∎

Lemma 13.3.5.  When group 𝐺 is finite,

𝔍 = Ker(ℤ𝐺 →
𝑁

ℤ𝐺) = {𝑎 ∈ ℤ𝐺 : 𝑁𝑎 = 0}

ℤ ⋅ 𝑁 = Im(ℤ𝐺 →
𝑁

ℤ𝐺).

Proof. Take 𝑎 = ∑𝑔∈𝐺 𝑛𝑔𝑔 ∈ ℤ𝐺 and write 𝑁 = ∑ℎ∈𝐺 ℎ. We have

𝑁𝑎 = (∑
ℎ∈𝐺

ℎ)(∑
𝑔∈𝐺

𝑛𝑔𝑔) = ∑
ℎ∈𝐺

∑
𝑔∈𝐺

𝑛𝑔(ℎ𝑔) = ∑
𝑔′∈𝐺

∑
𝑔∈𝐺

𝑛𝑔𝑔′

= ∑
𝑔′∈𝐺

(∑
𝑔∈𝐺

𝑛𝑔)𝑔′ = (∑
𝑔∈𝐺

𝑛𝑔)(∑
𝑔′∈𝐺

𝑔′) = (∑
𝑔∈𝐺

𝑛𝑔)𝑁

Therefore 𝑁𝑎 = 0 if and only if ∑𝑔∈𝐺 𝑛𝑔 = 0, if and only if 𝑎 ∈ 𝔍. The image of ℤ𝐺 →
𝑁

ℤ𝐺 is also
clear from above, since (∑𝑔∈𝐺 𝑛𝑔) can take all values in ℤ. ∎

Corollary 13.3.6.  For every finite group 𝐺, there is a short exact sequence

0 → 𝔍 → ℤ𝐺 →
𝑁

ℤ ⋅ 𝑁 → 0.
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13.4. Finite Cyclic Groups
Let 𝐶𝑚 = ⟨𝜎 : 𝜎𝑚 = 1⟩ be the cyclic group of order 𝑚 generated by 𝜎. Then the norm element of
𝐶𝑚 is

𝑁 = ∑
𝑚−1

𝑖=0
𝜎𝑖 = 1 + 𝜎 + … + 𝜎𝑚−1

We observe

0 = 𝜎𝑚 − 1 = (𝜎 − 1)𝑁

Remark 13.4.1.  The group ring of 𝐶𝑚 can be also viewed as ℤ[𝜎]/(𝜎𝑚 − 1).

Lemma 13.4.2.  There is a short exact sequence

0 → ℤ ⋅ 𝑁 → ℤ𝐶𝑚 →
𝜎−1

𝔍 → 0.

Proof. We calculate the image and kernel of the map ℤ𝐶𝑚 →
𝜎−1

ℤ𝐶𝑚. Take 𝑎 = ∑𝑚−1
𝑗=0 𝑛𝑗𝜎𝑗 ∈ ℤ𝐶𝑚.

Then setting 𝑛−1 = 𝑛𝑚−1, we have

(𝜎 − 1)𝑎 = ∑
𝑚−1

𝑗=0
𝑛𝑗𝜎𝑗+1 − ∑

𝑚−1

𝑗=0
𝑛𝑗𝜎𝑗 = ∑

𝑚−1

𝑗=0
(𝑛𝑗−1 − 𝑛𝑗)𝜎𝑗.

Since

𝜀((𝜎 − 1)𝑎) = ∑
𝑚−1

𝑗=0
(𝑛𝑗−1 − 𝑛𝑗) = 0,

we see that (𝜎 − 1)𝑎 ∈ 𝔍. On the other hand, for any 𝑏 = ∑𝑚−1
𝑘=0 𝑓𝑘𝜎𝑘 ∈ 𝔍 such that ∑𝑚−1

𝑘=0 𝑓𝑘 = 0,
we can find 𝑎 such that 𝑛𝑗 = − ∑𝑗

𝑘=0 𝑓𝑘 for 𝑗 = 0, …, 𝑚 − 1 (notice that 𝑛𝑚−1 = 𝑛−1 = 0) so that
𝑛𝑗−1 − 𝑛𝑗 = 𝑓𝑗, or (𝜎 − 1)𝑎 = 𝑏. This shows that Im(ℤ𝐶𝑚 →

𝜎−1
ℤ𝐶𝑚) = 𝔍.

For the kernel, (𝜎 − 1)𝑎 = 0 if and only if 𝑛𝑗−1 = 𝑛𝑗 for all 𝑗, if and only if all 𝑛𝑗 are equal, if and only
if 𝑎 ∈ ℤ ⋅ 𝑁 . ∎

Lemma 13.4.3.  The chain complex

… → ℤ𝐶𝑚 →
𝜎−1

ℤ𝐶𝑚 →
𝑁

ℤ𝐶𝑚 →
𝜎−1

ℤ𝐶𝑚 →
𝜀

ℤ → 0

is a projective resolution for ℤ as a ℤ𝐶𝑚-module.

Proof. This is obtained by splicing the sequences from Corollary 13.3.6 and Lemma 13.4.2 together. ∎

Theorem 13.4.4.  Let 𝐴 be a 𝐺-module, where 𝐺 = 𝐶𝑚. Then
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𝐻𝑛(𝐶𝑚, 𝐴) =

⎩{
{⎨
{{
⎧𝐴/(𝜎 − 1)𝐴 if 𝑛 = 0,

𝐴𝐺/𝑁𝐴 if 𝑛 = 1, 3, 5, …,
{𝑎 ∈ 𝐴 : 𝑁𝑎 = 0}/(𝜎 − 1)𝐴 if 𝑛 = 2, 4, 6, …

𝐻𝑛(𝐶𝑚, 𝐴) =

⎩
{
⎨
{
⎧𝐴𝐺 if 𝑛 = 0,

{𝑎 ∈ 𝐴 : 𝑁𝑎 = 0}/(𝜎 − 1)𝐴 if 𝑛 = 1, 3, 5, …,
𝐴𝐺/𝑁𝐴 if 𝑛 = 2, 4, 6, …

Corollary 13.4.5.  We have

𝐻𝑛(𝐶𝑚, ℤ) =
⎩{
⎨
{⎧ℤ if 𝑛 = 0

ℤ/𝑚 if 𝑛 ≥ 1 is odd,
0 else.

𝐻𝑛(𝐶𝑚, ℤ) =
⎩{
⎨
{⎧ℤ if 𝑛 = 0

ℤ/𝑚 if 𝑛 ≥ 2 is even,
0 else.

13.5. Free Groups
(Weibel 1994, p. 169).

Proposition 13.5.1.  Let 𝐺 be the free group on the set 𝑋, and consider the augmentation ideal
𝔍 of ℤ𝐺. Then 𝔍 is a free ℤ𝐺-module with basis the set 𝑋 − 1 = {𝑥 − 1 : 𝑥 ∈ 𝑋}.

Proof. Every 𝑔 ∈ 𝐺 may be written uniquely as a reduced word in the symbols {𝑥, 𝑥−1 : 𝑥 ∈ 𝑋}; write
𝐺(𝑥) (resp. 𝐺(𝑥−1) ) for the subset of all 𝑔 ∈ 𝐺 ending in the symbol 𝑥 (resp. in 𝑥−1 ) so that

𝐺 − {1} = {𝐺(𝑥)}𝑥∈𝑋 ⊔ {𝐺(𝑥−1)}
𝑥∈𝑋

.

By Lemma 13.2.4, 𝔍 is a free abelian group with ℤ-basis {𝑔 − 1 : 𝑔 ∈ 𝐺, 𝑔 ≠ 1}. Now we claim that the
ℤ-basis {𝑔 − 1 : 𝑔 ∈ 𝐺, 𝑔 ≠ 1} can be uniquely rewritten in terms of the set {𝑔(𝑥 − 1) : 𝑔 ∈ 𝐺, 𝑥 ∈
𝑋}. We prove this by induction on word length of 𝑔. When the word length is 1, either 𝑔 = 𝑥 or 𝑔 =
𝑥−1 for some 𝑥 ∈ 𝑋, so the claim is trivial. When the word length is 𝑛, then we can write either 𝑔 =
𝑔′𝑥 (if 𝑔 ∈ 𝐺(𝑥)) or 𝑔 = 𝑔′𝑥−1 (if 𝑔 ∈ 𝐺(𝑥−1)), where the word length of 𝑔′ is (𝑛 − 1). In the first case,

𝑔 − 1 = 𝑔′𝑥 − 1 = 𝑔′(𝑥 − 1) + (𝑔′ − 1),

and in the second case,

𝑔 − 1 = 𝑔′𝑥−1 − 1 = −(𝑔′𝑥−1)(𝑥 − 1) + (𝑔′ − 1).

Hence in both cases, the claim follows from the induction hypothesis. We can similarly prove that we
can uniquely rewrite {𝑔(𝑥 − 1)} in terms of {𝑔 − 1 : 𝑔 ≠ 1}. Therefore {𝑔(𝑥 − 1) : 𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋} is
another ℤ-basis of 𝔍, and 𝑋 − 1 = {𝑥 − 1 : 𝑥 ∈ 𝑋} is a ℤ𝐺-basis. ∎
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Corollary 13.5.2.  If 𝐺 is a free group on 𝑋, then ℤ has the free resolution

0 → 𝔍 → ℤ𝐺 → ℤ → 0.

Consequently, 𝐻𝑛(𝐺, 𝐴) = 𝐻𝑛(𝐺, 𝐴) = 0 for 𝑛 ≠ 0, 1.

Moreover, when 𝐴 = ℤ,

𝐻0(𝐺, ℤ) ≅ 𝐻0(𝐺, ℤ) ≅ ℤ

𝐻1(𝐺, ℤ) ≅ ⨁
𝑥∈𝑋

ℤ

𝐻1(𝐺, ℤ) ≅ ∏
𝑥∈𝑋

ℤ

Proof. 𝐻∗(𝐺, 𝐴) is the homology of 0 → 𝔍 ⊗ℤ𝐺 𝐴 → 𝐴 → 0, and 𝐻∗(𝐺, 𝐴) is the cohomology of
0 → 𝐴 → Hom𝐺(𝔍, 𝐴) → 0. For 𝐴 = ℤ, 𝐻0(𝐺, ℤ) and 𝐻0(𝐺, ℤ) come from Example  13.2.6 and
Lemma  13.3.4, respectively. 𝐻1(𝐺, ℤ) ≅ 𝐺/[𝐺, 𝐺] by Theorem  13.2.9, where 𝐺/[𝐺, 𝐺] is the free
abelian group over 𝑋. We finally see that the differential ℤ → Hom𝐺(𝔍, ℤ) must be zero, hence
𝐻1(𝐺, ℤ) = Hom𝐺(𝔍, ℤ) ≅ ∏𝑥∈𝑋 ℤ. ∎

13.6. Derivations

Definition 13.6.1.  Let 𝐺 be a group and 𝐴 be a left 𝐺-module. A derivation of 𝐺 in 𝐴 is a set
map 𝐷 : 𝐺 → 𝐴 with

𝐷(𝑔ℎ) = 𝑔𝐷(ℎ) + 𝐷(𝑔)

for all 𝑔, ℎ ∈ 𝐺. Write Der(𝐺, 𝐴) for the set of derivations of 𝐺 in 𝐴.

Remark 13.6.2.  In general, if 𝑅 is a ring and 𝐴 is an 𝑅-𝑅-bimodule, a derivation of 𝑅 in 𝐴 is an
abelian group homomorphism 𝐷 : 𝑅 → 𝐴 such that

𝐷(𝑟𝑠) = 𝑟𝐷(𝑠) + 𝐷(𝑟)𝑠.

Here for 𝑅 = ℤ𝐺, we have 𝐷(𝑔)ℎ = 𝐷(𝑔) because we are viewing 𝐴 as a ℤ𝐺-ℤ𝐺-bimodule
with trivial 𝐺-action on the right.

Lemma 13.6.3.  Der(𝐺, 𝐴) is an abelian group under pointwise addition.

Definition 13.6.4.  For 𝑎 ∈ 𝐴, let 𝐷𝑎 : 𝐺 → 𝐴 be the map 𝐷𝑎(𝑔) = 𝑔𝑎 − 𝑎. A derivation of the
form 𝐷𝑎 is a principal derivation. Write PDer(𝐺, 𝐴) for the set of principal derivations of 𝐺
in 𝐴.
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Lemma 13.6.5.  𝐷𝑎 + 𝐷𝑏 = 𝐷𝑎+𝑏 and PDer(𝐺, 𝐴) is a subgroup of Der(𝐺, 𝐴).

Lemma 13.6.6.  PDer(𝐺, 𝐴) ≅ 𝐴/𝐴𝐺.

Definition 13.6.7.  Let 𝜑 : 𝔍 → 𝐴 be a 𝐺-map. Define 𝐷𝜑 : 𝐺 → 𝐴 by 𝐷𝜑(𝑔) = 𝜑(𝑔 − 1).

Lemma 13.6.8.  The map 𝜑 ↦ 𝐷𝜑 : Hom𝐺(𝔍, 𝐴) → Der(𝐺, 𝐴) is a natural isomorphism of
abelian groups.

Proof. (Weibel 1994, Lemma 6.4.4). First we show that 𝐷𝜑 : 𝐺 → 𝐴 is indeed a derivation:

𝐷𝜑(𝑔ℎ) = 𝜑(𝑔ℎ − 1) = 𝜑(𝑔ℎ − 𝑔) + 𝜑(𝑔 − 1) = 𝑔𝐷𝜑(ℎ) + 𝐷𝜑(𝑔)

The map 𝜑 ↦ 𝐷𝜑 is obviously a natural group homomorphism, so it remains to verify that it is an
isomorphism.

Suppose 𝐷𝜑 = 0, i.e., 𝐷𝜑(𝑔) = 𝜑(𝑔 − 1) = 0 for all 𝑔 ∈ 𝐺. Since {𝑔 − 1 : 𝑔 ≠ 1} forms a basis for 𝔍,
we see that 𝜑 = 0. Hence the map 𝜑 ↦ 𝐷𝜑 is an injection.

Take any 𝐷 ∈ Der(𝐺, 𝐴). Define 𝜑 : 𝔍 → 𝐴 by 𝜑(𝑔 − 1) = 𝐷(𝑔) for all 𝑔 ≠ 1. This extends to an
abelian group homomorphism since {𝑔 − 1 : 𝑔 ≠ 1} forms a basis of 𝔍. It is easy to show that 𝜑 is a
𝐺-map and 𝐷𝜑 = 𝐷, so the map 𝜑 ↦ 𝐷𝜑 is also a surjection. ∎

Theorem 13.6.9.  𝐻1(𝐺, 𝐴) ≅ Der(𝐺, 𝐴)/ PDer(𝐺, 𝐴).

Proof. (Weibel 1994, Theorem 6.4.5). The short exact sequence

0 → 𝔍 → ℤ𝐺 → ℤ → 0

of ℤ𝐺-modules gives a long exact sequence beginning with

0 → Hom𝐺(ℤ, 𝐴) → Hom𝐺(ℤ𝐺, 𝐴) → Hom𝐺(𝔍, 𝐴) → Ext1
ℤ𝐺(ℤ, 𝐴) → Ext1

ℤ𝐺(ℤ𝐺, 𝐴)

which reduces to

0 → 𝐴𝐺 → 𝐴 → Der(𝐺, 𝐴) → 𝐻1(𝐺, 𝐴) → 0

The result then follows from Lemma 13.6.6. ∎

Corollary 13.6.10.  Let 𝐴 be a trivial 𝐺-module. Then

𝐻1(𝐺, 𝐴) ≅ Der(𝐺, 𝐴) ≅ Hom𝐆𝐫𝐩(𝐺, 𝐴).
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13.7. Bar Complexes
Throughout this section, ℤ is a trivial 𝐺-module.

Definition 13.7.1.  The unnormalised bar complex is the chain complex

… → 𝐵𝑢
2 → 𝐵𝑢

1 → 𝐵𝑢
0 →

𝜀
ℤ → 0

with 𝐵𝑢
0 = ℤ𝐺 and 𝐵𝑢

𝑛 is the free ℤ𝐺-module on the set of all symbols [𝑔1 ⊗ … ⊗ 𝑔𝑛] with 𝑔𝑖 ∈
𝐺 for 𝑛 ≥ 1. The differential 𝑑 : 𝐵𝑢

𝑛 → 𝐵𝑢
𝑛−1 is given by

𝑑 = ∑
𝑛

𝑖=0
(−1)𝑖𝑑𝑖,

where

𝑑0([𝑔1 ⊗ … ⊗ 𝑔𝑛]) = 𝑔1[𝑔2 ⊗ … ⊗ 𝑔𝑛]

𝑑𝑖([𝑔1 ⊗ … ⊗ 𝑔𝑛]) = [𝑔1 ⊗ … ⊗ 𝑔𝑖𝑔𝑖+1 ⊗ … ⊗ 𝑔𝑛]  for 1 ≤ 𝑖 ≤ 𝑛 − 1
𝑑𝑛([𝑔1 ⊗ … ⊗ 𝑔𝑛]) = [𝑔1 ⊗ … ⊗ 𝑔𝑛−1].

Definition 13.7.2.  The normalised bar complex is

… → 𝐵2 → 𝐵1 → 𝐵0 →
𝜖

ℤ → 0,

where 𝐵0 = ℤ𝐺, and for 𝑛 ≥ 1, the group 𝐵𝑛 is the free ℤ𝐺-module on the set of all symbols
[𝑔1|…|𝑔𝑛] with 𝑔𝑖 ∈ 𝐺 ∖ {1}. The differential 𝑑 : 𝐵𝑛 → 𝐵𝑛−1 is 𝑑 = ∑𝑛

𝑖=0 (−1)𝑖𝑑𝑖, where

𝑑0([𝑔1|…|𝑔𝑛]) = 𝑔1[𝑔2|…|𝑔𝑛]

𝑑𝑖([𝑔1|…|𝑔𝑛]) = [𝑔1|…|𝑔𝑖𝑔𝑖+1|…|𝑔𝑛]  for 1 ≤ 𝑖 ≤ 𝑛 − 1
𝑑𝑛([𝑔1|…|𝑔𝑛]) = [𝑔1|…|𝑔𝑛−1]

We write [] for 1 ∈ 𝐵0 = ℤ𝐺. If any of the 𝑔𝑖 is 1 , we write […|𝑔𝑖|…] for 0 ∈ 𝐵𝑛.

Example 13.7.3.  We have

𝑑([𝑔|ℎ]) = 𝑔[ℎ] − [𝑔ℎ] + [𝑔],
𝑑([𝑓|𝑔|ℎ]) = 𝑓[𝑔|ℎ] − [𝑓𝑔|ℎ] + [𝑓|𝑔ℎ] − [𝑓|𝑔].

Theorem 13.7.4.  The normalised and unnormalised bar complexes are free resolutions of ℤ as
a ℤ𝐺-module.

Proof. (Weibel 1994, Theorem 6.5.3). We only give the proof for the normalised bar complexes, as the
unnormalised case is the same. By Corollary 6.2.5, we only need to show that there exist abelian group
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homomorphisms 𝑠−1 : ℤ → 𝐵0 and 𝑠𝑛 : 𝐵𝑛 → 𝐵𝑛+1 for 𝑛 ≥ 0 such that 𝑑𝑠 + 𝑠𝑑 = 1. The desired
construction is given as 𝑠−1(1) = [] and

𝑠𝑛(𝑔0[𝑔1|…|𝑔𝑛]) = [𝑔0|𝑔1|…|𝑔𝑛]

for 𝑛 ≥ 0. ∎

Corollary 13.7.5.  𝐻∗(𝐺, 𝐴) is the cohomology of either the chain complex Hom𝐺(𝐵𝑢
∗ , 𝐴) or

Hom𝐺(𝐵∗, 𝐴).

This allows us to give an explicit description of group cohomology.

Definition 13.7.6.  Define an 𝑛-cochain as a function 𝑓 : 𝐺𝑛 → 𝐴. An 𝑛-cochain 𝜑 is nor-
malised if 𝜑(𝑔1, …, 𝑔𝑛) = 0 whenever there exists some 𝑔𝑖 = 1. Define the differential 𝑑 of an
𝑛-cochain 𝜑 as an (𝑛 + 1)-cochain 𝑑𝜑 given by

(𝑑𝜑)(𝑔1, …, 𝑔𝑛+1) = 𝑔1𝜑(𝑔2, …, 𝑔𝑛+1) + ∑
𝑛

𝑖=1
(−1)𝑖𝜑(…, 𝑔𝑖𝑔𝑖+1, …) + (−1)𝑛+1𝜑(𝑔1, …, 𝑔𝑛).

If 𝜑 is an 𝑛-cochain such that 𝑑𝜑 = 0, then 𝜑 is an 𝑛-cocycle. If 𝜑′ is an (𝑛 − 1)-cochain, then
the 𝑛-cochain 𝑑𝜑′ is an 𝑛-coboundary. Write 𝑍𝑛(𝐺, 𝐴) and 𝐵𝑛(𝐺, 𝐴) for the abelian groups
of 𝑛-cocycles and 𝑛-coboundaries respectively.

From the definition, we see that Hom𝐺(𝐵𝑢
𝑛, 𝐴) consists of all 𝑛-cochains, while Hom𝐺(𝐵𝑛, 𝐴) con-

sists of all normalised 𝑛-cochains.

Corollary 13.7.7.  𝐻𝑛(𝐺, 𝐴) = 𝑍𝑛(𝐺, 𝐴)/𝐵𝑛(𝐺, 𝐴).

Example 13.7.8.  𝐻1(𝐺, 𝐴) = Der(𝐺, 𝐴)/ PDer(𝐺, 𝐴).

Proof. (Weibel 1994, Example 6.5.6). This is a direct proof of Theorem 13.6.9 using bar resolutions. A
0-cochain is a map 1 → 𝐴, that is, an element of 𝐴. If 𝑎 ∈ 𝐴, then 𝑑𝑎 is the map 𝐺 → 𝐴 sending 𝑔
to 𝑔𝑎 − 𝑎, which is a principal derivation by definition. Therefore, 𝜑 ∈ 𝐵1(𝐺, 𝐴) if and only if there
exists 𝑎 ∈ 𝐴 such that 𝜑 = 𝑑𝑎, if and only if 𝜑 ∈ PDer(𝐺, 𝐴). So 𝐵1(𝐺, 𝐴) = PDer(𝐺, 𝐴).

On the other hand, 𝜑 ∈ 𝑍1(𝐺, 𝐴) if and only if 𝑑𝜑 = 0, if and only if for all 𝑔, ℎ ∈ 𝐺,

0 = (𝑑𝜑)(𝑔, ℎ) = 𝑔𝜑(ℎ) − 𝜑(𝑔ℎ) + 𝜑(𝑔)

if and only if 𝜑 ∈ Der(𝐺, 𝐴). Thus 𝑍1(𝐺, 𝐴) = Der(𝐺, 𝐴). ∎

13.8. Group Extensions
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Definition 13.8.1.  Let 𝐴 be an abelian group and let 𝐺 be a group. An extension of 𝐺 by 𝐴 is
a short exact sequence

0 → 𝐴 → 𝐸 →
𝜋

𝐺 → 1.

The extension splits if 𝜋 has a section, i.e., if there is a group homomorphism 𝑠 : 𝐺 → 𝐸 such
that 𝜋 ∘ 𝑠 = id𝐺. Extensions

0 → 𝐴 → 𝐸𝑖 →
𝜋

𝐺 → 1,

for 𝑖 = 1, 2 are equivalent if there is a group isomorphism 𝐸1 → 𝐸2 such that the obvious di-
agram commutes.

Theorem 13.8.2.  There is a natural bijection between 𝐻2(𝐺, 𝐴) and the equivalence classes of
extensions of 𝐺 by 𝐴.

Proof. (Weibel 1994, Classification Theorem 6.6.3). ∎
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14. Example: 𝑅 = ℤ
Let 𝐴 ∈ 𝐀𝐛. Recall that we have the following:
• 𝐴 is projective if and only if 𝐴 is free;
• 𝐴 is injective if and only if 𝐴 is divisible, if and only if 𝐴 is a direct sum of copies of ℚ and ℤ[1

𝑝]/ℤ,
where each 𝑝 is prime;

• 𝐴 is flat if and only if 𝐴 is torsionfree.

We now demonstrate some calculations in the category 𝐀𝐛 using tools developed throughout the
course. These may serve as exercises or reference materials.

14.1. Resolutions

Type Object Resolution

projective ℤ/𝑚 0 → ℤ →
𝑚

ℤ → ℤ/𝑚 → 0

injective ℤ/𝑚 0 → ℤ/𝑚 → ℚ/ℤ →
𝑚

ℚ/ℤ → 0

injective ℤ 0 → ℤ → ℚ → ℚ/ℤ → 0

14.2. Tensor products

⊗ℤ ℤ ℚ ℤ/𝑚 ℚ/ℤ

ℤ ℤ ℚ ℤ/𝑚 ℚ/ℤ

ℚ ℚ ℚ 0 0

ℤ/𝑛 ℤ/𝑛 0 ℤ/gcd(𝑚, 𝑛) 0

ℚ/ℤ ℚ/ℤ 0 0 0

• 𝐴 ⊗ℤ 𝐵 ≅ 𝐵 ⊗ℤ 𝐴;
• ℤ ⊗ℤ 𝐴 ≅ 𝐴;
• ℚ ⊗ℤ 𝑇 ≅ 0 if 𝑇  is torsion;
• ℚ/ℤ ⊗ℤ 𝑇 ≅ 0 if 𝑇  is torsion;
• ℤ/𝑚 ⊗ℤ 𝐴 ≅ 𝐴/𝑚𝐴 (recall that 𝑅/𝐼 ⊗𝑅 𝑀 ≅ 𝑀/𝐼𝑀 );
• ℚ ⊗ℤ ℚ ≅ ℚ.

14.3. Tor groups

Torℤ
1 ℤ ℚ ℤ/𝑚 ℚ/ℤ

ℤ 0 0 0 0

ℚ 0 0 0 0

ℤ/𝑛 0 0 ℤ/gcd(𝑚, 𝑛) ℤ/𝑛

ℚ/ℤ 0 0 ℤ/𝑚 ℚ/ℤ

• Torℤ
𝑛(𝐴, 𝐵) ≅ Torℤ

𝑛(𝐵, 𝐴);
• ℤ is free and thus flat, so Torℤ

1 (ℤ, −) = 0;
• ℚ is torsionfree and thus flat, so Torℤ

1 (ℚ, −) = 0;
• Torℤ

1 (ℤ/𝑚, 𝐴) ≅ {𝑎 ∈ 𝐴 | 𝑚𝑎 = 0};

119



• Torℤ
1 (ℚ/ℤ, ℚ/ℤ) is obtained from the long exact sequence induced by applying (− ⊗ℤ ℚ/ℤ) to

0 → ℤ → ℚ → ℚ/ℤ → 0.

14.4. Hom-sets

Homℤ ℤ ℚ ℤ/𝑚 ℚ/ℤ

ℤ ℤ ℚ ℤ/𝑚 ℚ/ℤ

ℚ 0 ℚ 0 ?

ℤ/𝑛 0 0 ℤ/gcd(𝑚, 𝑛) ℤ/𝑛

ℚ/ℤ 0 0 0 ℤ̂

Each row represents the first argument in Hom and each column the second. A question mark indi-
cates that the result is beyond the scope of the course.

• Homℤ(ℤ, 𝐴) ≅ 𝐴 (in general, Hom𝑅(𝑅, 𝑀) ≅ 𝑀 );
• Homℤ(ℚ, ℚ) ≅ ℚ by establishing a (fairly easy) bijection;
• Homℤ(ℚ, ℤ) ≅ 0 because no integer is arbitrarily divisible, e.g. 𝑓(1) = 𝑛𝑓( 1

𝑛) where 𝑓(1), 𝑓( 1
𝑛) ∈

ℤ, so 𝑓(1) is divisible by any 𝑛 which is impossible unless 𝑓(1) = 0. Similarly Homℤ(ℚ, ℤ/𝑚) ≅ 0;
• Homℤ(ℤ/𝑛, 𝐴) ≅ {𝑎 ∈ 𝐴 | 𝑛𝑎 = 0} (incidentally, this is isomorphic to Torℤ

1 (ℤ/𝑛, 𝐴));
• Homℤ(𝐴, ℚ/ℤ) is the Pontryagin duality of 𝐴.

14.5. Ext groups

Extℤ
1 ℤ ℚ ℤ/𝑚 ℚ/ℤ

ℤ 0 0 0 0

ℚ ? 0 ? 0

ℤ/𝑛 ℤ/𝑛 0 ℤ/gcd(𝑚, 𝑛) 0

ℚ/ℤ ? 0 ? 0

Each row represents the first argument in Ext and each column the second.

• Extℤ
1 (ℤ, −) = 0 as ℤ is projective;

• Extℤ
1 (−, ℚ) = 0 as ℚ is injective;

• Extℤ
1 (−, ℚ/ℤ) = 0 as ℚ/ℤ is injective;

• Extℤ
1 (ℤ/𝑛, 𝐴) ≅ 𝐴/𝑛𝐴 using the projective resolution of ℤ/𝑛.
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