Almost everywhere convergence vs. convergence in measure

LUC NGUYEN

Suppose $E \subset \mathbb{R}^n$ be a measurable subset. f, f_1, f_2, \ldots are measurable functions E which are either real-valued or complex-valued.

LEMMA 1. Suppose (f_i) converges to f a.e. in E and $|E| < \infty$. Then (f_i) converges to f in measure.

The condition $|E| < \infty$ cannot be dropped. A counter-example is: $E = \mathbb{R}$, $f_i = \chi_{[-i,i]}, f = 1$.

Proof. Fix $\varepsilon, \delta > 0$. For $i \ge 1$, let

$$Z_i = \{x : \exists j \ge i \text{ such that } |f_j(x) - f(x)| > \delta\} = \bigcup_{j \ge i} \{|f_j - f| > \delta\},$$
$$Z = \bigcup_{i \ge 1} Z_i \subset \{x : \limsup_{j \to \infty} |f_j(x) - f(x)| \ge \delta\}.$$

Then $Z_1 \supseteq Z_2 \supseteq \cdots$, and, since $f_j \to f$ a.e., |Z| = 0. Since $|E| < \infty$, $|Z_i| \to |Z| = 0$. In particular, there exists N such that

$$|Z_N| < \varepsilon,$$

which implies (by the definition of Z_N) that

$$|\{|f_j - f| > \delta\}| \le |Z_N| < \varepsilon \quad \forall \ j \ge N.$$

Since $\varepsilon, \delta > 0$ are arbitrary, this means (f_n) converges to f in measure.

LEMMA 2. Suppose (f_i) converges to f in measure in E. Then there is a subsequence (f_{i_j}) which converges a.e. to f.

Proof. By convergence in measure, we can inductively construct $i_j \nearrow \infty$ such that

$$|\{|f_k - f| > 1/j\}| < 2^{-j}$$
 for all $k \ge i_j$.

Let

$$Z_j = \{|f_{i_j} - f| > 1/j\},\$$

$$\bar{Z}_j = \bigcup_{\ell \ge j} Z_j,\$$

$$Z = \bigcap_{j \ge 1} \bar{Z}_j.$$

Then

$$|\bar{Z}_j| \le \sum_{\ell \ge j} |Z_j| \le 2^{-(j-1)},$$

and so

|Z| = 0.

Since $|f - f_{i_{\ell}}| \leq 1/\ell$ in $Z_{\ell}^c \supseteq \overline{Z}_j^c$ for $\ell \geq j$, this implies that $|f - f_{i_{\ell}}| \leq 1/\ell$ in \overline{Z}_j^c for all $\ell \geq j$.

In particular,

$$\lim_{\ell \to \infty} |f - f_{i_{\ell}}| = 0 \text{ in } \bar{Z}_j^c.$$

Hence

$$\lim_{\ell \to \infty} |f - f_{i_\ell}| = 0 \text{ in } \bigcup_{j \ge 1} \overline{Z}_j^c = Z^c.$$

We are done as |Z| = 0.

LEMMA 3. Suppose (f_i) is Cauchy in measure. Then there is a subsequence (f_{i_j}) which converges a.e.

Proof. By Cauchy-ness in measure, we can inductively construct $i_j \nearrow \infty$ such that

 $|\{|f_k - f_\ell| > 2^{-j}\}| < 2^{-j} \text{ for all } k, \ell \ge i_j.$

Let

$$Z_j = \{ |f_{i_{j+1}} - f_{i_j}| > 2^{-j} \},$$

$$\bar{Z}_j = \bigcup_{\ell \ge j} Z_j,$$

$$Z = \bigcap_{j \ge 1} \bar{Z}_j.$$

As in the previous lemma, we have $|\bar{Z}_j| \leq 2^{-(j-1)}$ and |Z| = 0. Also, we have

$$|f_{i_{\ell+1}} - f_{i_{\ell}}| \le 2^{-\ell}$$
 in $Z_{\ell}^c \supseteq \overline{Z}_j^c$ for all $\ell \ge j$.

Hence, by telescoping,

$$|f_{i_{\ell}} - f_{i_m}| \le \sum_{q=m}^{\ell-1} 2^{-q} \le 2^{-(j-1)} \text{ in } \bar{Z}_j^c \text{ for all } \ell > m \ge j.$$

Thus the sequence $(f_{i_{\ell}})_{\ell \geq j}$ converges uniformly on \bar{Z}_{j}^{c} . It follows that $(f_{i_{\ell}})$ converges on $\cup_{j} \bar{Z}_{j}^{c} = Z^{c}$. As |Z| = 0, we are done.

LEMMA 4. If (f_i) is Cauchy in measure, then (f_i) converges in measure.

Proof. Arguing as in the previous proof, we obtain a sequence (f_{ij}) which converges a.e. to some measurable function f.

Fix $\varepsilon, \delta > 0$. We have

$$\{|f_i - f| > \delta\} \subset \{|f_i - f_{i_j}| \ge \delta/2\} \cup \{|f_{i_j} - f| > \delta/2\} \quad \forall i_j.$$

By Cauchy-ness in measure, we can find N such that

$$\{|f_i - f_m| \ge \delta/2\} < \varepsilon/2 \quad \forall i, m \ge N.$$

By a.e. convergence of (f_{i_j}) to f, we can find J such that $i_J \ge N$ and

$$|\{|f_{i_J} - f| > \delta/2\}| < \varepsilon/2.$$

It then follows that

$$|\{|f_i - f| > \delta\}|| < \varepsilon/2 + \varepsilon/2 = \varepsilon \quad \forall \ i \ge N.$$

This gives the convergence in measure of (f_i) to f.