Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2024, Oxford

Cornelia Druțu (University of Oxford)

Part C course MT 2024, Oxford

 $\frac{1}{16}$

How should a student in Mathematics be

Godfrey Harold Hardy: "A person's first duty, a young person's at any rate, is to be ambitious, and the noblest ambition is that of leaving behind something of permanent value." David Hilbert, talking about an ex-student: "You know, for a mathematician, he did not have enough imagination. But he has become a poet and now he is fine."

Goal: Given *n*, to build "the largest group" generated by *n* elements. Let $X \neq \emptyset$ of cardinality *n*. Its elements = letters/symbols.

Take inverse letters/symbols $X^{-1} = \{a^{-1} \mid a \in X\}.$

We call $X \sqcup X^{-1}$ an alphabet.

A word w in $X \cup X^{-1} = a$ finite (possibly empty) string of letters in $X \cup X^{-1}$

$$a_{i_1}^{\epsilon_1}a_{i_2}^{\epsilon_2}\cdots a_{i_k}^{\epsilon_k},$$

where $a_i \in X$, $\epsilon_i = \pm 1$.

The length of w is k.

We will use the notation 1 for the empty word. We say the empty word has length 0.

A word w is reduced if it contains no pair of consecutive letters of the form aa^{-1} or $a^{-1}a$.

The reduction of a word w = the deletion of all pairs aa^{-1} or $a^{-1}a$.

An insertion = insert one or several pairs aa^{-1} or $a^{-1}a$.

 X^* = the set of words in the alphabet $X \cup X^{-1}$, empty word included.

F(X) = the set of reduced words in $X \cup X^{-1}$, empty word included.

We define an equivalence relation on X^* : $w \sim w'$ if w can be obtained from w' by a finite sequence of reductions and insertions.

Proposition

Any word $w \in X^*$ is equivalent to a unique reduced word.

Proof. Existence: By induction on the length of *w*.

- For words of length 0 and 1, clearly true.
- Assume true for words of length n and consider a word of length n+1, $w = a_1 \cdots a_n a_{n+1}$, where $a_i \in X \cup X^{-1}$.
- By the induction assumption, there exists a reduced word $u = b_1 \cdots b_k$ with $b_j \in X \cup X^{-1}$ such that $a_2 \cdots a_{n+1} \sim u$.
- If $a_1 \neq b_1^{-1}$ then a_1u is reduced. If $a_1 = b_1^{-1}$ then $a_1u \sim b_2 \cdots b_k$ and the latter word is reduced.

Uniqueness: using maps $F(X) \rightarrow F(X)$.

• For every letter $a \in X \cup X^{-1}$ we define a map $L_a : F(X) \to F(X)$ by

$$L_a(b_1\cdots b_k) = \begin{cases} ab_1\cdots b_k & \text{if } a \neq b_1^{-1}, \\ b_2\cdots b_k & \text{if } a = b_1^{-1}. \end{cases}$$

- For every word w = a₁ ··· a_n ∈ X* we define L_w = L_{a₁} o ··· o L_{a_n}. For the empty word 1 define L₁ = id.
- $L_a \circ L_{a^{-1}} = \text{id}$ for every $a \in X \cup X^{-1}$. Hence $v \sim w$ implies $L_v = L_w$.
- If w is reduced then $w = L_w(1)$ (induction on the length of w).
- If $v \sim w$ and w reduced then $w = L_v(1)$.
- This proves uniqueness.

Definition

The free group over X is the set F(X) endowed with the product * defined by: w * w' is the unique reduced word equivalent to the word ww'. The unit is the empty word 1.

The group F(X) is generated by X.

Exercise

F(X) is non-abelian if and only if $card(X) \ge 2$.

Terminology: We call free non-abelian group a group F(X) with $card(X) \ge 2$.

Universal property of free groups

Proposition (Universal property of free groups)

A map $\varphi : X \to G$ from a set X to a group G can be extended to a homomorphism $\Phi : F(X) \to G$ and this extension is unique.

Proof. Existence.

- φ can be extended to a map on $X \cup X^{-1}$ by $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- For every reduced word $w = a_1 \cdots a_n$ in F = F(X) define

$$\Phi(a_1\cdots a_n)=\varphi(a_1)\cdots\varphi(a_n).$$

• Set $\Phi(1_F) := 1_G$, the identity element of G.

• Exercise: check that Φ is a homomorphism.

Universal property of free groups

Uniqueness. Let $\Psi : F(X) \to G$ be a homomorphism such that $\Psi(x) = \varphi(x)$ for every $x \in X$.

Then $\Psi(x) = \varphi(x)$ for every $x \in X \cup X^{-1}$.

Hence for every reduced word $w = a_1 \cdots a_n$ in F(X),

$$\Psi(w) = \Psi(a_1) \cdots \Psi(a_n) = \varphi(a_1) \cdots \varphi(a_n) = \Phi(w).$$

This finishes the proof.

Terminology: If $\varphi(X) = Y$ is such that Φ is an injective homomorphism, $\Phi(F(X)) = H$, we say that $Y \subset G$ generates a free subgroup of G or that Y freely generates H.

Universal property of free groups

Corollary

An onto map $\varphi : X \to Y$, where Y is a generating set of a group G has a unique extension $\Phi : F(X) \to G$ that is an onto group homomorphism.

Corollary

Every group is a quotient of a free group.

Proof. Let $G = \langle X \rangle$. There exists $\Phi : F(X) \to G$ onto homomorphism.

Always split

Proposition

Every short exact sequence as below splits

$$\{1\} \longrightarrow N \xrightarrow{\varphi} G \xrightarrow{\psi} F(X) \longrightarrow \{1\}.$$
 (1)

Proof. Ex. Sheet 1.

Corollary

Every short exact sequence as below splits

$$\{1\} \longrightarrow N \stackrel{\varphi}{\longrightarrow} G \stackrel{\psi}{\longrightarrow} \mathbb{Z} \longrightarrow \{1\}.$$

$$(2)$$

A main source of free groups: ping-pong

The ping-pong lemma is a simple, yet powerful, tool for constructing free groups acting on sets.

Before formulating it, we illustrate how it works on an example.

Example

For any real number $r \ge 2$ the matrices

$$g_1=\left(egin{array}{cc} 1 & r \\ 0 & 1 \end{array}
ight)$$
 and $g_2=\left(egin{array}{cc} 1 & 0 \\ r & 1 \end{array}
ight)$

generate a free subgroup of $SL(2, \mathbb{R})$.

An example of ping-pong

Example

For any real number $r \ge 2$ the matrices

$$g_1=\left(egin{array}{cc} 1 & r \ 0 & 1 \end{array}
ight)$$
 and $g_2=\left(egin{array}{cc} 1 & 0 \ r & 1 \end{array}
ight)$

generate a free subgroup of $SL(2, \mathbb{R})$.

Note that for
$$I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, we can write $g_2 = I \circ g_1^{-1} \circ I^{-1}$.

Why is $\langle g_1, g_2 \rangle$ free.

The group $SL(2, \mathbb{R})$ acts on the upper half plane $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \Im(z) > 0\}$ by linear fractional transformations

$$z\mapsto rac{az+b}{cz+d}$$
.

 $g_1(z) = z + r, \ g_2(z) = \frac{z}{rz+1}.$ Define quarter-planes

$$B_1^+ = \{z \in \mathbb{H}^2 : \Re(z) \geqslant r/2\}, \quad B_1^- = \{z \in \mathbb{H}^2 : \Re(z) \leqslant -r/2\}$$

and half-disks $B_2^+ := \left\{ z \in \mathbb{H}^2 : |z - \frac{1}{r}| \leqslant \frac{1}{r} \right\} = I(B_1^-)$ and

$$B_2^-:=\left\{z\in\mathbb{H}^2:|z+\frac{1}{r}|\leqslant\frac{1}{r}\right\}=I(B_1^+).$$

Example of ping-pong.

 $\begin{array}{l} g_1(\mathbb{H}^2 \setminus B_1^-) \subset B_1^+, \ g_1^{-1}(\mathbb{H}^2 \setminus B_1^+) \subset B_1^-. \\ g_2 = I \circ g_1^{-1} \circ I^{-1}. \ I(B_1^+) = B_2^- \ \text{and} \ I(B_1^-) = B_2^+. \ \text{Therefore} \\ g_2(\mathbb{H}^2 \setminus B_2^-) \subset B_2^+, \ g_2^{-1}(\mathbb{H}^2 \setminus B_2^+) \subset B_2^-. \end{array}$

Cornelia Druțu (University of Oxford)

Example of ping-pong.

Take a reduced word in $\{g_1^{\pm 1}, g_2^{\pm 1}\}$, say $g_1g_2^{-1}g_1g_2$. $B_2^+ \sqcup B_1^- \sqcup B_1^+ \xrightarrow{g_2} B_2^+ \xrightarrow{g_1} B_1^+ \xrightarrow{g_2^{-1}} B_2^- \xrightarrow{g_1} B_1^+$