Infinite Groups

Cornelia Druţu

University of Oxford

Part C course MT 2024, Oxford

An example of ping-pong

Example

For any real number $r \geqslant 2$ the matrices

$$g_1=\left(egin{array}{cc} 1 & r \ 0 & 1 \end{array}
ight) \ ext{and} \ g_2=\left(egin{array}{cc} 1 & 0 \ r & 1 \end{array}
ight)$$

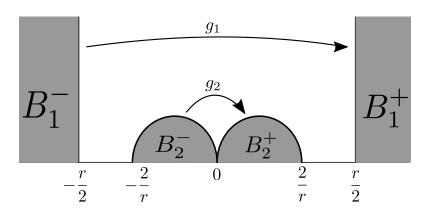
generate a free subgroup of $SL(2,\mathbb{R})$.

The group $SL(2,\mathbb{R})$ acts on the upper half plane $\mathbb{H}^2=\{z\in\mathbb{C}\mid \Im(z)>0\}$ by linear fractional transformations

$$z\mapsto \frac{az+b}{cz+d}$$
.

$$g_1(z) = z + r$$
, $g_2(z) = \frac{z}{rz+1}$.

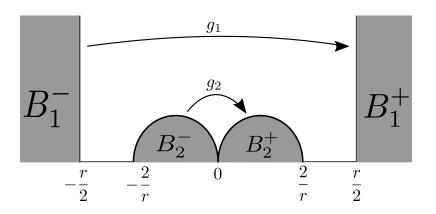
Example of ping-pong.



$$g_1(\mathbb{H}^2\setminus B_1^-)\subset B_1^+,\,g_1^{-1}(\mathbb{H}^2\setminus B_1^+)\subset B_1^-.$$

$$g_2(\mathbb{H}^2 \setminus B_2^-) \subset B_2^+, g_2^{-1}(\mathbb{H}^2 \setminus B_2^+) \subset B_2^-.$$

Example of ping-pong.



Take a reduced word in $\{g_1^{\pm 1}, g_2^{\pm 1}\}$, say $g_1g_2^{-1}g_1g_2$.

$$B_2^+ \sqcup B_1^- \sqcup B_1^+ \xrightarrow{g_2} B_2^+ \xrightarrow{g_1} B_1^+ \xrightarrow{g_2^{-1}} B_2^- \xrightarrow{g_1} B_1^+$$

General Ping-pong Lemma

Let $g_1, g_2 \in Bij(X)$ ("ping-pong partners") and $B_i^{\pm} \subset X$, i = 1, 2.

Given $i \in \{1, 2\}$, let j be such that $\{i, j\} = \{1, 2\}$.

Define

$$C_i^+ := B_i^+ \cup B_j^- \cup B_j^+, C_i^- := B_i^- \cup B_j^- \cup B_j^+.$$

Assume that:

$$C_i^{\pm} \not\subset B_j^{\pm}$$
 and $C_i^{\pm} \not\subset B_j^{\mp}$ for all choices of i, j and $+, -$.

Theorem (Ping-pong, or table-tennis, lemma)

Ιf

$$g_i^{\pm 1}(C_i^{\pm}) \subset B_i^{\pm}, \quad i = 1, 2,$$

then the bijections g_1, g_2 generate a free subgroup of Bij(X).

Proof of General Ping-pong Lemma

Let w be a non-empty reduced word in $\{g_1, g_1^{-1}, g_2, g_2^{-1}\}$, of length at least 2.

w has the form

$$w=g_i^{\pm 1}ug_j^{\pm 1}.$$

We prove by induction on the length of w that

$$w(C_j^{\pm}) \subset B_i^{\pm}$$
, hence $w \neq id$.

Length 2.
$$w = g_i^{\pm 1} g_j^{\pm 1}$$
.

$$C_j^{\pm} \xrightarrow{g_j^{\pm 1}} B_j^{\pm} \xrightarrow{g_i^{\pm 1}} B_i^{\pm}$$

The last transformation is true because the word is reduced, hence $B_i^{\pm} \neq B_i^{\mp}$, hence B_i^{\pm} is contained in C_i^{\pm} .

Proof of General Ping-pong Lemma 2

Suppose it is true for all words w' of length n, we prove it for words w of length n+1.

Such a w has the form

$$w = g_i^{\pm 1} w'$$
, length $(w') = n$.

In its turn w' can be written as

$$w' = g_j^{\pm 1} u g_k^{\pm 1}, \quad g_j^{\pm 1} \neq g_i^{\mp 1}.$$

By the induction hypothesis

$$w'(C_k^{\pm}) \subset B_j^{\pm}$$
.

Since $g_j^{\pm 1} \neq g_i^{\mp 1}$, we have that $B_j^{\pm} \neq B_i^{\mp}$,therefore $B_j^{\pm} \subset C_i^{\pm}$ and

$$w(C_k^{\pm})) = g_i^{\pm 1} w'(C_k^{\pm}) \subset g_i^{\pm 1}(C_i^{\pm}) \subset B_i^{\pm}.$$

Cayley graphs

Goal: to endow a group with a geometry, so first of all a metric.

Let $G = \langle S \rangle$, with $1 \notin S$ and $s^{-1} \in S$ for every $s \in S$.

We write the latter condition as $S^{-1} = S$.

The Cayley graph of G with respect to S is the directed/oriented graph Cayley_{dir}(G, S) with

- set of vertices *G*:
- set of oriented edges (g, gs), with $s \in S$.

We label the oriented edge (g, gs) by s.

The underlying non-oriented graph Cayley(G, S) of $Cayley_{dir}(G, S)$ is the graph with

- set of vertices G:
- set of edges $\{g,h\}$ such that h=gs, with $s \in S$.

It is also called the Cayley graph of G with respect to S.

Occasionally, we will use the notation \overline{gh} and [g,h] for the edge $\{g,h\}$.

Part C course MT 2024, Oxford

Cayley graphs 2

- The definition of the graph makes sense for every $S \subset G$.
- $1 \notin S$ prevents edges from composing loops (monogons).
- $S^{-1} = S$ ensures that every edge in Cayley(G, S) appears in $Cayley_{dir}(G, S)$ with both orientations.
- By definition Cayley(G, S) is a simplicial graph if $1 \notin S$ (i.e. no monogons, no two edges with same endpoints).
- The valency of every vertex g in $\operatorname{Cayley}(G, S)$ (i.e. number of edges having g as an endpoint) is $k = \operatorname{card}(S)$. Thus $\operatorname{Cayley}(G, S)$ is k-regular (all vertices of same valency k).

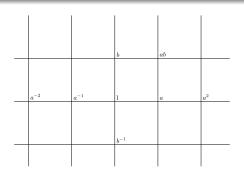
Lemma

Cayley(G, S) is connected (i.e. every two vertices can be joined by an edge path) if and only if S generates G.

Cayley graphs of \mathbb{Z}^2

Example

Consider
$$\mathbb{Z}^2$$
 and $S = \{a = (1,0), b = (0,1), a^{-1}, b^{-1}\}.$

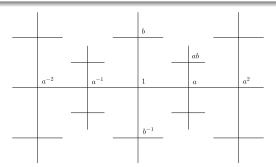


The Cayley graph of \mathbb{Z}^2 with respect to $\{\pm(1,0),\pm(1,1)\}$ has the same set of vertices as the above, but the vertical lines are replaced by diagonal lines.

Cayley graph of a free non-abelian group

Example

Let G be the free group on two generators a, b. Take $X = \{a, b\}$, G = F(X) and $S = X \sqcup X^{-1}$. The Cayley graph $\operatorname{Cayley}(G, S)$ is the 4-valent tree.



A tree is a simplicial connected graph with no circuits. A k-valent tree is a k-regular tree.

Word metric

Convention

When talking about Cayley graphs, the group G is always assumed to be finitely generated, and S is always assumed to be finite.

We endow Cayley(G, S) with a distance such that edges have length 1.

 $\operatorname{dist}_S(x,y) = \text{length of the shortest path joining } x,y.$

The restriction of dist_S to $G \times G$ is called word metric.

Exercise

Prove that for every $g, h \in G$, $\operatorname{dist}_S(g, h)$ is the length k of the shortest word $w = s_1 \dots s_k$, where $s_i \in S, \forall i$, such that g = hw.

Word metric 2

Notation

- We denote by $|g|_S$ the distance $\operatorname{dist}_S(1,g)$, that is the shortest word in S representing g.
- We denote by $B_S(x,r)$ the closed ball centred in $x \in \text{Cayley}(G,S)$ and of radius r > 0 with respect to dist_S .

Proposition

The action of G on itself by multiplications to the left is an action by isometries, that is for every $g \in G$

$$\operatorname{dist}(gx, gy) = \operatorname{dist}_{S}(x, y), \forall x, y \in G.$$

It extends to an action by isometries on Cayley(G, S)

Word metric 3

Exercise

• Prove that if S and \bar{S} are two finite generating sets of G, then the word metrics dist_S and $\operatorname{dist}_{\bar{S}}$ on G are bi-Lipschitz equivalent, i.e. there exists L>0 such that

$$\frac{1}{L} \mathrm{dist}_{S}(g, g') \leqslant \mathrm{dist}_{\bar{S}}(g, g') \leqslant L \mathrm{dist}_{S}(g, g'), \forall g, g' \in G. \quad (1)$$

Prove that an isomorphism between two finitely generated groups is a bi-Lipschitz map when the two groups are endowed with word metrics.

Proposition

A finite index subgroup of a finitely generated group is finitely generated.