C5.7 Topics in Fluid Mechanics Michaelmas Term 2024

Problem Sheet 1: Solutions

1. Taking the suggested dot product and using the summation convention we have that

k; /C(f At); ds = /C/cz(f At); ds = — /C(f Nk)t; [Scalar triple product]
=— /Sm [VAEAK)], [Stokes’” Theorem)]
= — /Snieijkaj [ekim fikm] dS
= — /Snikm(éuéjm — 0im0j1)0;fi S [Using the hint and k constant]
= - /S”i(kjajfi — ki0;f;) dS
= ki[gniﬁjfj ds — kl-/snj&»fj ds [letting i <> j].

Since k is an arbitrary vector we must, in fact, have the desired result.

Now, letting f = yn we have
—|:’7/I/d8:| = {/v(n/\t)ds} = {/f/\tdS]
C i c i C i

= / [V - (yn) — n;0;(yn;)] dS [Using the earlier result]
S

= / {ni [y0;n; + (n;0;v = 0)] [Since 7y is constant normal to S]
S

— nj(nj(()m + v&nj)} ds

— [ 10( ) = 81y 204, /2)] a5

= / niy(V -n) —0;y] dS [Since njn; =n-n =1]
S

= /s ny(V-n) — Vy|, dS,

as required.



2. We are given that
2 hxx o

“(1+h2)%?

which we multiply by h, and integrate once to obtain
2 2 2\—1/2 _ 132

for some constant of integration A.

Now, as x — +o00, h = 0, h, — 0 so that A =1 and
R =021—-1+h2)?]. (1)
At £ =0, h, = —cot 6 so that

Ihg =21 — (1+cot®0) %] = £2(1 — sin6),
ie.
ho = +0,[2(1 — sin 6)]*/?,
as desired. Based on simple geometry, we expect to take the positive square root if < /2
and the negative root if § > 7/2, though of course this depends on the chosen sign convention

for h!
The area of displaced liquid is given by

00 0 2
l
A= / h dz = / m d(hy) [Using the Laplace—Young equation]
0 —cot 6 T
—7/2 -1 i 2
= éz/ an; du [Letting h, = cot u]
o 1/|sinul
= (2 cos 0.

The weight of liquid displaced is pgA = ~y cos . The vertical force provided by surface tension
acting at the contact line is also ycosf. This result is thus a special case of the generalized
Archimedes’ principle discussed in lectures.



3. A schematic sketch is shown below.
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We have the general, coordinate independent, form of the Laplace—Young equation

pgh = vk = —yV - n.
The equation of the free surface is 0 = z — h(r, ¢) and so the unit normal vector is
(=hy, —hg/r, 1)
(14 2+ h2/r2) %

For small deflections (linearising) we have n ~ (—h,, —h,/r, 1) so that

10 1 0%h
Von=—rg ) - e

and we immediately have that the Laplace—Young equation takes the form

h = (2V?h

= -V

where £, = (7/pg)/? is the capillary length, as usual.
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To obtain the correct contact angle condition we take a cross-section through the interface, at
constant r, say and look along the —i direction (back towards the origin). We see immediately
from the figure above that
1 Oh
- — =+ cot 6.
r 0P| sy,

3



In our derivation, we have assumed that the the meniscus slope is small, in particular, |VA|*> <
1. Given the above boundary condition and this requirement, we also need to ensure that
cot & < 1 and hence [0 — 7| < 1, as required.

Uniqueness We will first show that, if we can find a solution, it must be unique.

As usual, we proceed by contradiction assuming that there are two distinct solutions of the
problem, h; # hy both satisfying the Laplace-Young equation and the relevant boundary
conditions (at § = +a or at § = £7/4 — it doesn’t matter which). Letting w = hy — Iy
it is obvious that

Viw = w/l? (2)
and
1 ow
-z =0 3
r 09|, (3)

and, finally, that w — 0 far from the walls (i.e. as r — oo with ¢ # +a).

Letting S be the projection of the interface onto the (z,y) plane, which is bounded by the curve
C, we consider the integral

/wVQw ds = /w2/€z >0 [Using (2)]
s s

_ /S V- (wVw) — (Vw)?] dS

= / (n-Vw =0) ds — /(Vw)2 dS  [Using the boundary condition (3)]
c S

- /S(vw)2 ds <o, (4)

which is the contradiction we sought. Hence the solution must be unique.

Finding a solution To find a solution, it is enough to check that the solution given satisfies
the Laplace—Young equation and the boundary conditions.

Another approach is to introduce rotated coordinates (X,Y") so that the 90° wedge coincides
with the X and Y axes, i.e. we let

X_:v—y Tty
V2’ V2

Then the Laplace—Young equation for the interface shape H(X,Y") becomes

Hxyx + Hyy = H/Ei
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with boundary conditions
Hx(X =0)=—cotf, Hy(Y =0)=—coté. (5)

and decay conditions far away from the wall.

Searching for separable solutions of the form H(X,Y) = {(X)n(Y) we find that

5// ,'7// 9
24 =1/0
§ /

which gives solutions of the form
H = Aexp(—aX/L,) exp(~BY/L,)

where 1 = o? + 8%. Applying the boundary conditions (5) we find that we must combine two
solutions of this form: one with a = 1,8 = 0 and the other with o = 0,8 = 1. We therefore
have

H="/.cot0 {e_X/gc + e_Y/EC} .

Noting that X = (z — y)/v/2 = rsin(r/4 — ¢) and that Y = (z + y)/V2 = rsin(¢ + 7/4) we
therefore have that

h(?", ¢) — Ec cot 6 {e—rsin(ﬂ/4—¢)/€c + 6—7"sin(d)—l—7r/4)/€c}7

as required.
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5 The scenario is as shown in the figure below.
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Since the liquid is static, the pressure within it is hydrostatic, i.e.

P = DPo — pgz

where the z coordinate is measured vertically upwards and p is some reference pressure (pg #
patm)-

Because of surface tension, there is a pressure jump across the interface:
(P+ = P)|ocpy = V6 = Vhaa
= po — pgh(x) — Patm [Using hydrostatic pressure in the liquid]

from which we immediately have

h+ (2h,, = 2" Pan (6)
Pg

with ¢2 = ~/pg as usual. Note that (6) is slightly different from the usual Laplace—Young
equation in that it has a source term on the RHS and the solutions of the homogeneous problems
are oscillatory rather than the usual exponential decay.

Differentiating (6) with respect to 2 we obtain the required third order ODE; solving either this
ODE or (6) we have solutions of the form

h(x) = A+ Bsinz/l. + Ccosz/l..

The coefficients A, B, C' are to be determined from the boundary conditions

hy(£x9) = - tanf ~ +6 [Since 6 < 1]

From the first boundary condition, we have

A — Bsinxy/l,. + Ccosxy/l, = A+ Bsinzg/l. + Ccoszy/l. =0
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from which either B = 0 or xy/{, = nr.

From the second boundary condition, we have
+0.0 = Bcosxg/l. F Csinzy /L,

from which either B =0 or z/l. = (n + 1/2)7.

For consistency between the two sets of boundary conditions, we must have B = 0 (i.e. the
drop is symmetric) and we immediately find that

h(z) = 01, [cot 2o /ls — M}

sin zg /£,

For this solution, |h,| = @|sinz/¢.|/sinxzg/l. < 0/ sinxy/l. so the small slope approximation is
valid provided that 6 < sinxq//..

The area of the drop is

zo
A:/ —h dx = 20/ [1 - %Cotfﬂo/fc} )

—x0

As xo/l. — m, A — oo. This suggests that infinitely large droplets can be supported beneath
a horizontal plate. Intuitively, we expect that droplets should fall off the plate if they become
too large. The problem with our linearised analysis is that as xo/¢. — 7 there are no values
of # for which our linearised analysis is self-consistent — the small-slope approximation breaks
down in this limit.



