Infinite Groups

Cornelia Druţu

University of Oxford

Part C course MT 2024, Oxford

Nilpotent Groups: first definition

Notation

$$[x, y] = xyx^{-1}y^{-1} =$$
the commutator of the elements x, y in a group G .

For subsets
$$A$$
, B in G , $[A, B] = \langle \{[a, b]; a \in A, b \in B\} \rangle$.

$$[x_1,\ldots,x_n]=[[[x_1,x_2],\ldots,x_{n-1}],x_n]$$
 is called an n-fold left commutator.

For subsets $A_1, \ldots A_n$ in a group G,

$$[A_1,\ldots,A_n]=\langle\{[a_1,\ldots,a_n];a_i\in A_i\}\rangle.$$

First definition of nilpotent groups: from the group downwards.

The lower central series of a group G, $C^1G \supseteq C^2G \supseteq ... \supseteq C^nG \supseteq ...$, is defined inductively by: $C^1G = G$, $C^{n+1}G = [C^nG, G]$.

G is *k*-step nilpotent if $C^{k+1}G = \{1\}$. The minimal k =the nilpotency class of *G*.

Basic properties

Lemma

If $G = \langle S \rangle$ (S not necessarily finite, G not necessarily nilpotent), then $\forall k$ the subgroup C^kG is generated by the k-fold left commutators in S, together with $C^{k+1}G$.

Corollary

If $G = \langle S \rangle$ is nilpotent, then C^nG is generated by all the k-fold left commutators in S, where $k \geqslant n$. In particular, if G is finitely generated, each subgroup C^nG is finitely generated.

Second definition: from $\{1\}$ upwards.

The center Z(H) of a group H is composed of all $z \in H$ s.t. $zh = hz, \forall h \in H$.

Given a group G, define inductively an increasing sequence of normal subgroups $Z_i(G) \triangleleft G$ by:

- $Z_0(G) = \{1\}.$
- If $Z_i(G) \triangleleft G$ is defined and $\pi_i : G \rightarrow G/Z_i(G)$ is the quotient map, then

$$Z_{i+1}(G) = \pi_i^{-1} (Z(G/Z_i(G))).$$

Note that $Z_{i+1}(G)$ is normal in G, as the inverse image of a normal subgroup of a quotient of G. In particular,

$$Z_{i+1}(G)/Z_i(G) \cong Z(G/Z_i(G)).$$

Proposition

G is k-step nilpotent if and only if $Z_k(G) = G$.

Proof Assume that G is nilpotent of class k.

We prove by induction on $i \ge 0$ that $C^{k+1-i}G \le Z_i(G)$.

For i = 0 we have equality.

Assume that

$$C^{k+1-i}G \leqslant Z_i(G)$$
.

For every $g \in C^{k-i}G$ and every $x \in G$, $[g,x] \in C^{k+1-i}G \leqslant Z_i(G)$, whence $gZ_i(G)$ is in the center of $G/Z_i(G)$, i.e. $g \in Z_{i+1}(G)$.

For i = k the inclusion becomes $C^1G = G \leqslant Z_k(G)$, hence $Z_k(G) = G$.

Conversely, assume $Z_k(G) = G$.

We prove by induction on $j \ge 1$ that $C^j G \le Z_{k+1-j}(G)$.

For j = 1 the two are equal.

Assume the inclusion true for j.

 $C^{j+1}G$ generated by [c,g] with $c \in C^jG$ and $g \in G$.

Since $c \in C^j G \leq Z_{k+1-j}(G)$, by the definition of $Z_{k+1-j}(G)$, the element c commutes with g modulo $Z_{k-j}(G)$, equivalently $[c,g] \in Z_{k-j}(G)$.

This implies that $[c,g] \in Z_{k-j}(G)$. It follows that $C^{j+1}G \leqslant Z_{k-j}(G)$.

For j = k + 1 this gives $C^{k+1}G \leq Z_0(G) = \{1\}$, hence G is k-step nilpotent.

Definition

The ascending series

$$Z_0(G) = \{1\} \triangleleft Z_1(G) \triangleleft \ldots \triangleleft Z_i(G) \triangleleft Z_{i+1}(G) \triangleleft \ldots$$

of normal subgroups of G is called the upper central series of G.

A group G is nilpotent if and only if there exists i such that $Z_i(G) = G$, and its nilpotency class is the minimal k such that $Z_k(G) = G$.

The following example shows that the difference between lower and upper central series of groups can be quite substantial:

Example

We start with the integer Heisenberg group H; it is 2-step nilpotent, $C^2H = H' = Z(H) \cong \mathbb{Z}$.

Take
$$G = H \times \mathbb{Z}$$
, 2-step nilpotent. $C^2G = C^2H \cong \mathbb{Z}$, while $Z(G) \cong \mathbb{Z}^2$.

Nilpotent Groups: properties

Lemma

- Every subgroup of a nilpotent group is nilpotent.
- ② If G is nilpotent and $N \triangleleft G$ then G/N is nilpotent.
- 1 The direct product of a family of nilpotent groups is again nilpotent.

NB (3) not true for semidirect products. Not even for $\mathbb{Z}^n \rtimes \mathbb{Z}$.

Nilpotent Groups: a key property

Theorem

Every subgroup H of a finitely generated nilpotent group G is finitely generated.

Proof by induction on the class of nilpotency k of G.

For k = 1, G is abelian finitely generated. Assume the assertion true for k. Let G be nilpotent of class k + 1, let $H \leq G$.

By the inductive assumption, $H_1 = H \cap C^2G$ is finitely generated.

 $H_2 = H/(H \cap C^2 G)$ is finitely generated because subgroup of $G/C^2 G$, abelian finitely generated.

Thus, H fits into the short exact sequence

$$1 \rightarrow \textit{H}_1 \rightarrow \textit{H} \xrightarrow{\pi} \textit{H}_2 \rightarrow 1,$$

where H_1, H_2 are finitely generated.

Therefore H is also finitely generated.

Nilpotent Groups

We generalize $[C^iG, G] = C^{i+1}G$ to: the lower central series is graded, that is

Proposition

For every $i, j \geqslant 1$

$$\left[C^{i}G,C^{j}G\right]\leqslant C^{i+j}G.\tag{1}$$

First, recall that $[a, b]^{-1} = [b, a]$, whence [A, B] = [B, A].

Lemma

If A, B, C normal subgroups in G, then $[A, B, C] \triangleleft G$ and it is generated by [a, b, c] with $a \in A, b \in B, c \in C$.

Generation of [A, B, C]

Proof. $[A, B, C] \triangleleft G$ follows from $[x, y]^g = [x^g, y^g]$.

[A, B, C] generated by [k, c], $c \in C$, k product of n commutators [a, b] or inverses.

We prove, by induction on n, that [k, c] is a product of finitely many [a, b, c] and inverses.