Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2024, Oxford

Cornelia Druțu (University of Oxford)

Part C course MT 2024, Oxford

 $\frac{1}{11}$

Nilpotent Groups

We generalize $[C^{i}G, G] = C^{i+1}G$ to: the lower central series is graded, that is

Proposition

For every $i, j \ge 1$

 $\left[C^{i}G,C^{j}G\right]\leqslant C^{i+j}G.$

(1)

2 /

First, recall that $[a, b]^{-1} = [b, a]$, whence [A, B] = [B, A].

Lemma

If A, B, C normal subgroups in G, then $[A, B, C] \lhd G$ and it is generated by [a, b, c] with $a \in A, b \in B, c \in C$.

Proof. $[A, B, C] \lhd G$ follows from $[x, y]^g = [x^g, y^g]$.

[A, B, C] generated by [k, c], $c \in C$, k product of n commutators [a, b] or inverses.

We prove, by induction on n, that [k, c] is a product of finitely many [a, b, c] and inverses.

n = 1: consider the case $[t^{-1}, c]$, where t = [a, b].

$$[t^{-1}, c] = [c, t]^{t^{-1}} = [c^{t^{-1}}, t] = [c', t] = [t, c']^{-1} = [a, b, c']^{-1}.$$

Generation of [A, B, C] 2

Assume the statement is true for *n*, let $k = k_1 t$, where *t* is [a, b] or $[a, b]^{-1} = [b, a]$, and k_1 product of *n* commutators.

$$[k_1t,c] = [t,c]^{k_1}[k_1,c].$$

Both $[t, c]^{k_1}$ and $[k_1, c]$ are products of commutators [a, b, c] and inverses, by the induction assumption and the fact that A, B, C are normal subgps.

Exercise

Prove the same result for $[H_1, \ldots, H_n]$, where all H_i are normal subgroups of G.

Second Key Lemma

Lemma

Assume that A, B, C are normal subgroups in G. Then

$$[A, B, C] \leq [B, C, A][C, A, B].$$
⁽²⁾

Proof Uses the previous Lemma and the Hall identity:

$$\left[x^{-1}, y, z\right]^{x} \left[z^{-1}, x, y\right]^{z} \left[y^{-1}, z, x\right]^{y} = 1.$$
(3)

The latter identity implies

$$[a,b,c]^{a^{-1}} \leqslant [B,C,A][C,A,B].$$

11 '

Proof of Proposition

We prove by induction on $i \ge 1$ that for every $j \ge 1$,

 $\left[C^{i}G, C^{j}G\right] \leqslant C^{i+j}G.$ (4)

For i = 1: definition of $C^{j+1}G$.

Assume true for i and prove for i + 1.

Consider $j \ge 1$ arbitrary.

 $[C^{i+1}G, C^{j}G] = [C^{i}G, G, C^{j}G] \leq [G, C^{j}G, C^{i}G][C^{j}G, C^{i}G, G] \leq$

 $[C^{j+1}G, C^{i}G][C^{j+i}G, G] = [C^{i}G, C^{j+1}G]C^{j+i+1}G \leqslant C^{j+i+1}G,$

since $[C^{i}G, C^{j+1}G] \leq C^{j+i+1}G$ by the inductive assumption.

Back to a more global picture

We study the following classes of groups:

Nilpotent finitely generated \subset Polycyclic \subset Solvable finitely generated

Definition

Given a class \mathcal{X} of groups, a group G is said to be poly- \mathcal{X} if it admits a subnormal descending series:

$$G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_k \triangleright G_{k+1} = \{1\},\$$

such that each G_i/G_{i+1} belongs to the class \mathcal{X} .

Polycyclic if $\mathcal{X} =$ all cyclic groups.

Poly- \mathcal{C}_{∞} if $\mathcal{X} = \{\mathbb{Z}\}.$

Solvable if $\mathcal{X} =$ all abelian groups.

Differences and similarities

Nilpotent finitely generated groups= the only groups with polynomial growth.

Polycyclic (hence also nilpotent f.g.) groups = finitely presented, linear (therefore residually finite) while solvable groups are not necessarily finitely presented, linear or residually finite.

A different behaviour of the torsion:

$$\operatorname{Tor} G = \{ g \in G \mid \exists n \geq 1 \text{ s.t. } g^n = 1 \}.$$

When G nilpotent, Tor G is a characteristic subgroup of G.

When G nilpotent and moreover f.g., Tor G is a finite characteristic subgroup of G.

When G polycyclic, Tor G not necessarily a subgroup of G, nor a finite subset of G. Examples in Ex. Sheet 2.

Torsion for nilpotent groups

Theorem

When G is nilpotent (not necessarily finitely generated), TorG is a characteristic subgroup.

Proof by induction on the nilpotency class.

A key result for this induction:

Lemma

Let G be nilpotent of class k. For every $x \in G$ the subgroup H generated by x and C^2G is a normal subgroup, nilpotent of class $\leq k - 1$.

Proof that $H = \langle x, C^2 G \rangle$ of class $\leq k - 1$.

Since $C^2G \triangleleft G$,

$$H = \{x^m c \mid m \in \mathbb{Z}, c \in C^2 G\}.$$

H normal: $\forall g \in G$, and $h \in H$, $h = x^m c$, $ghg^{-1} = x^m[x^{-m}, g]gcg^{-1}$. The last two factors are in $C^2G \Rightarrow$ the product is in *H*. We prove $C^2H \leq C^3G$ (implying *H* is of class $\leq k - 1$). Let $h = x^m c_1$, $h' = x^n c_2$ with $c_i \in C^2G$.

$$[h, h'] = [h, x^n c_2] = [h, x^n] [x^n, [h, c_2]] [h, c_2].$$

The last term is in C^3G , hence the middle term is in C^4G . The first term can be rewritten as

$$[h, x^n] = [x^m c_1, x^n] = [x^m, [c_1, x^n]][c_1, x^n].$$

The last term is in C^3G and the first in C^4G .

 $\frac{10}{11}$

Torsion for nilpotent groups

Theorem

When G is nilpotent (not necessarily finitely generated), TorG is a characteristic subgroup.

Proof by induction on the nilpotency class, using:

Lemma

Let G be nilpotent of class k. For every $x \in G$, the subgroup H generated by x and C^2G is a normal subgroup, nilpotent of class $\leq k - 1$.

For k = 1, G is abelian, statement immediate.