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Cornelia Druţu (University of Oxford) Infinite Groups
Part C course MT 2024, Oxford 1 /

13



Polycyclic groups are finitely generated

Proposition

A polycyclic group has the bounded generation property. More precisely,
let G be a group with a cyclic series of length n and let ti be such that
tiNi+1 is a generator of Ni/Ni+1. Then every g ∈ G can be written as
g = tk1

1 · · · tknn , with k1, . . . , kn in Z.

Proof by induction on the length of the series. �

Corollary

A polycyclic torsion group is finite.
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Properties of polycyclic groups

Remark

1 It is not true that, for G polycyclic, Tor(G ) is either a subgroup or a
finite set.

Example: D∞.

2 However, every polycyclic group is virtually torsion-free (proof to
follow).

Definition

A group is said to have property * virtually if some finite-index subgroup
of it has the property *.
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Properties of polycyclic groups 3

Proposition

1 Any subgroup H of a polycyclic group G is polycyclic (hence, finitely
generated).

2 If N C G , then G/N is polycyclic.

3 If N C G and both N and G/N are polycyclic then G is polycyclic.

4 Properties (1) and (3) hold with ‘polycyclic’ replaced by ‘poly-C∞’,
but not (2): Zk is a quotient of Z.
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Cornelia Druţu (University of Oxford) Infinite Groups
Part C course MT 2024, Oxford 4 /

13



Properties of polycyclic groups 3

Proposition

1 Any subgroup H of a polycyclic group G is polycyclic (hence, finitely
generated).

2 If N C G , then G/N is polycyclic.

3 If N C G and both N and G/N are polycyclic then G is polycyclic.

4 Properties (1) and (3) hold with ‘polycyclic’ replaced by ‘poly-C∞’,
but not (2): Zk is a quotient of Z.
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Properties of polycyclic groups 2

Proof. (1) and (2): See Section A in Ex. Sheet 3.
(3). Consider the cyclic series

G/N = Q0 > Q1 > · · · > Qn = {1}

and
N = N0 > N1 > · · · > Nk = {1} .

Given π : G → G/N and Hi := π−1(Qi ), a cyclic series for G is:

G > H1 > . . . > Hn = N = N0 > N1 > . . . > Nk = {1} .
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Cornelia Druţu (University of Oxford) Infinite Groups
Part C course MT 2024, Oxford 5 /

13



Two key examples of polycyclic groups

Proposition

Every finitely generated nilpotent group is polycyclic.

Proof Consider the lower central series, with terms C kG .

For every k > 1, C kG/C k+1G is finitely generated abelian, hence
there exists a finite subnormal descending series

C kG = A0 > A1 > · · · > An > An+1 = C k+1G

such that every quotient Ai/Ai+1 is cyclic.

By inserting all these finite descending series into the lower central
series, we obtain a finite subnormal cyclic series for G . �

Proposition

Given any homomorphism ϕ : Zn → Aut (Zm), the semidirect product
Zm oϕ Zn is poly-C∞.
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Two key properties of polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Finite presentation is proved using a general property:

Proposition

Let N C G . If both N and G/N are finitely presented then G is finitely
presented.

Proof. Let N = 〈X | r1, . . . , rk〉, and G/N = 〈Y | ρ1, . . . , ρm〉 be finite
presentations, where Y is a finite subset of G s. t. Y = {yN | y ∈ Y }.
G is generated by S = X ∪ Y . S satisfies the following relations:

ri (X ) = 1 , 1 6 i 6 k , ρj(Y ) = uj(X ) , 1 6 j 6 m , (1)

xy = vxy (X ) , xy
−1

= wxy (X ) . (2)

We denote the above finite set of relations by T .
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Cornelia Druţu (University of Oxford) Infinite Groups
Part C course MT 2024, Oxford 7 /

13



Two key properties of polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Finite presentation is proved using a general property:

Proposition

Let N C G . If both N and G/N are finitely presented then G is finitely
presented.

Proof. Let N = 〈X | r1, . . . , rk〉, and G/N = 〈Y | ρ1, . . . , ρm〉 be finite
presentations, where Y is a finite subset of G s. t. Y = {yN | y ∈ Y }.
G is generated by S = X ∪ Y .

S satisfies the following relations:

ri (X ) = 1 , 1 6 i 6 k , ρj(Y ) = uj(X ) , 1 6 j 6 m , (1)

xy = vxy (X ) , xy
−1

= wxy (X ) . (2)

We denote the above finite set of relations by T .
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Cornelia Druţu (University of Oxford) Infinite Groups
Part C course MT 2024, Oxford 7 /

13



Two key properties of polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Finite presentation is proved using a general property:

Proposition

Let N C G . If both N and G/N are finitely presented then G is finitely
presented.

Proof. Let N = 〈X | r1, . . . , rk〉, and G/N = 〈Y | ρ1, . . . , ρm〉 be finite
presentations, where Y is a finite subset of G s. t. Y = {yN | y ∈ Y }.
G is generated by S = X ∪ Y . S satisfies the following relations:

ri (X ) = 1 , 1 6 i 6 k , ρj(Y ) = uj(X ) , 1 6 j 6 m , (1)

xy = vxy (X ) , xy
−1

= wxy (X ) . (2)

We denote the above finite set of relations by T .
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Proof continued.

We claim that G = 〈S | T 〉. Let K = 〈〈T 〉〉 in F (S).
The epimorphism πS : F (S)→ G defines an epimorphism
ϕ : F (S)/K → G . Goal: to prove ϕ is an isomorphism.
Let wK be an element in ker(ϕ), w word in S .
Relations (2) imply that there exist a word w1(X ) in X and a word w2(Y )
in Y , such that wK = w1(X )w2(Y )K .
Applying the projection π : G → G/N, we see that π(ϕ(wK )) = 1, i.e.
π(ϕ(w2(Y )K )) = 1.
Therefore w2(Y ) is a product of finitely many conjugates of ρi (Y ), hence
w2(Y )K is a product of finitely many conjugates of uj(X )K , by (1).
This and the relations (2) imply that w1(X )w2(Y )K = v(X )K for some
word v(X ) in X .
Then the image ϕ(wK ) = ϕ(v(X )K ) is in N; therefore,
ϕ(v(X )K ) = 1⇔ v(X ) is a product of finitely many conjugates of ri (X ).
This implies that v(X )K = K . �
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Cornelia Druţu (University of Oxford) Infinite Groups
Part C course MT 2024, Oxford 8 /

13



Proof continued.

We claim that G = 〈S | T 〉. Let K = 〈〈T 〉〉 in F (S).
The epimorphism πS : F (S)→ G defines an epimorphism
ϕ : F (S)/K → G . Goal: to prove ϕ is an isomorphism.
Let wK be an element in ker(ϕ), w word in S .

Relations (2) imply that there exist a word w1(X ) in X and a word w2(Y )
in Y , such that wK = w1(X )w2(Y )K .
Applying the projection π : G → G/N, we see that π(ϕ(wK )) = 1, i.e.
π(ϕ(w2(Y )K )) = 1.
Therefore w2(Y ) is a product of finitely many conjugates of ρi (Y ), hence
w2(Y )K is a product of finitely many conjugates of uj(X )K , by (1).
This and the relations (2) imply that w1(X )w2(Y )K = v(X )K for some
word v(X ) in X .
Then the image ϕ(wK ) = ϕ(v(X )K ) is in N; therefore,
ϕ(v(X )K ) = 1⇔ v(X ) is a product of finitely many conjugates of ri (X ).
This implies that v(X )K = K . �
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Graham Higman

Remark

G finitely presented does not imply H 6 G finitely presented or G/N
finitely presented, for N C G .

Theorem

Every finitely generated recursively presented group can be embedded as a
subgroup of some finitely presented group.
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Finite presentation continued

Proposition

Let G be a group, and H ≤ G such that |G : H| is finite. Then G is FP if
and only if H is FP.

Proof. See Section A in Ex. Sheet 4.
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Brief incursion into residual finiteness

The idea: approximate an infinite group by its finite quotients.
So one needs to have enough finite quotients.

Proposition

Let G be a group. The following are equivalent:

1 ⋂
i∈I

Hi = {1},

where {Hi : i ∈ I} is the set of all finite-index subgroups in G ;

2 for every g ∈ G \ {1}, there exists a finite group Φ and a
homomorphism ϕ : G → Φ, such that ϕ(g) 6= 1.

Proof. See Section A in Ex. Sheet 4.

Definition

A group satisfying the above is called residually finite.
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Cornelia Druţu (University of Oxford) Infinite Groups
Part C course MT 2024, Oxford 11 /

13



Brief incursion into residual finiteness

The idea: approximate an infinite group by its finite quotients.
So one needs to have enough finite quotients.

Proposition

Let G be a group. The following are equivalent:

1 ⋂
i∈I

Hi = {1},

where {Hi : i ∈ I} is the set of all finite-index subgroups in G ;

2 for every g ∈ G \ {1}, there exists a finite group Φ and a
homomorphism ϕ : G → Φ, such that ϕ(g) 6= 1.

Proof. See Section A in Ex. Sheet 4.

Definition

A group satisfying the above is called residually finite.
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where {Hi : i ∈ I} is the set of all finite-index subgroups in G ;

2 for every g ∈ G \ {1}, there exists a finite group Φ and a
homomorphism ϕ : G → Φ, such that ϕ(g) 6= 1.

Proof. See Section A in Ex. Sheet 4.

Definition

A group satisfying the above is called residually finite.
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Examples of RF groups

Example

The group Γ = GL(n,Z) is residually finite.

Indeed, we take subgroups Γ(p) 6 Γ, Γ(p) = ker(ϕp), where
ϕp : Γ→ GL(n,Zp) is the reduction modulo p.

Assume g ∈ Γ is a non-trivial element.

If g has a non-zero off-diagonal entry gij 6= 0, then gij 6= 0 mod p,
whenever p > |gij |. Thus, ϕp(g) 6= 1.

If g ∈ Γ has only zero entries off-diagonal then it is a diagonal matrix with
only ±1 on the diagonal, and at least one entry −1. Then ϕ3(g) has at
least one 2 on the diagonal, hence ϕ3(g) 6= 1.

Thus Γ is residually finite.
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A Theorem of Mal’cev. A Lemma of Selberg

Theorem (A. I. Mal’cev)

Let Γ be a finitely generated subgroup of GL(n,R), where R is a
commutative ring with unity. Then Γ is residually finite.

Mal’cev’s theorem is complemented by the following result:

Theorem (Selberg’s Lemma)

Let Γ be a finitely generated subgroup of GL(n,F ), where F is a field of
characteristic zero. Then Γ contains a torsion-free subgroup of finite index.
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Cornelia Druţu (University of Oxford) Infinite Groups
Part C course MT 2024, Oxford 13 /

13



A Theorem of Mal’cev. A Lemma of Selberg

Theorem (A. I. Mal’cev)

Let Γ be a finitely generated subgroup of GL(n,R), where R is a
commutative ring with unity. Then Γ is residually finite.

Mal’cev’s theorem is complemented by the following result:

Theorem (Selberg’s Lemma)

Let Γ be a finitely generated subgroup of GL(n,F ), where F is a field of
characteristic zero. Then Γ contains a torsion-free subgroup of finite index.
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Cornelia Druţu (University of Oxford) Infinite Groups
Part C course MT 2024, Oxford 13 /

13


