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Polycyclic groups are finitely generated

Proposition

A polycyclic group has the bounded generation property. More precisely,
let G be a group with a cyclic series of length n and let t; be such that
tiN;;1 is a generator of Nj/N;;1. Then every g € G can be written as
g=t" - th with ki, ..., kninZ.
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Polycyclic groups are finitely generated

Proposition

A polycyclic group has the bounded generation property. More precisely,
let G be a group with a cyclic series of length n and let t; be such that
tiN;;1 is a generator of Nj/N;;1. Then every g € G can be written as

g=t" - th with ki, ..., kninZ.

Proof by induction on the length of the series. O
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Polycyclic groups are finitely generated

Proposition

A polycyclic group has the bounded generation property. More precisely,
let G be a group with a cyclic series of length n and let t; be such that
tiN;;1 is a generator of Nj/N;;1. Then every g € G can be written as
g=t" - th with ki, ..., kninZ.

n

Proof by induction on the length of the series. O

Corollary
A polycyclic torsion group is finite. J
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Properties of polycyclic groups

Remark
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Properties of polycyclic groups

Remark

@ It is not true that, for G polycyclic, Tor(G) is either a subgroup or a
finite set.

Part C course MT 2024, Oxford lg /

Cornelia Drutu (University of Oxford) Infinite Groups



Properties of polycyclic groups

Remark

@ It is not true that, for G polycyclic, Tor(G) is either a subgroup or a
finite set.

Part C course MT 2024, Oxford lg /

Cornelia Drutu (University of Oxford) Infinite Groups



Properties of polycyclic groups

Remark

@ It is not true that, for G polycyclic, Tor(G) is either a subgroup or a
finite set. Example: Dy.
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Properties of polycyclic groups

Remark
@ It is not true that, for G polycyclic, Tor(G) is either a subgroup or a
finite set. Example: Dy.

@ However, every polycyclic group is virtually torsion-free (proof to
follow).
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Properties of polycyclic groups

Remark
@ It is not true that, for G polycyclic, Tor(G) is either a subgroup or a
finite set. Example: Dy.
@ However, every polycyclic group is virtually torsion-free (proof to

follow).
Definition
A group is said to have property * virtually if some finite-index subgroup
of it has the property *.
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@ Any subgroup H of a polycyclic group G is polycyclic (hence, finitely
generated).
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Properties of polycyclic groups 3

Proposition

@ Any subgroup H of a polycyclic group G is polycyclic (hence, finitely
generated).

@ IfN < G, then G/N is polycyclic.
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Properties of polycyclic groups 3

Proposition

@ Any subgroup H of a polycyclic group G is polycyclic (hence, finitely
generated).

@ IfN < G, then G/N is polycyclic.

@ /f N < G and both N and G/N are polycyclic then G is polycyclic.
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Properties of polycyclic groups 3

Proposition

@ Any subgroup H of a polycyclic group G is polycyclic (hence, finitely
generated).

@ IfN < G, then G/N is polycyclic.
@ /f N < G and both N and G/N are polycyclic then G is polycyclic.

Q Properties (1) and (3) hold with ‘polycyclic’ replaced by ‘poly-Cx’,
but not (2): Zy is a quotient of Z.
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Properties of polycyclic groups 2

Proof. (1) and (2): See Section A in Ex. Sheet 3.
(3). Consider the cyclic series

G/IN=Q>@>->Q,={1}
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Properties of polycyclic groups 2

Proof. (1) and (2): See Section A in Ex. Sheet 3.
(3). Consider the cyclic series

G/IN=Q =@ > > Q,={1}
and

N=No>N > >N ={1}.
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Properties of polycyclic groups 2

Proof. (1) and (2): See Section A in Ex. Sheet 3.
(3). Consider the cyclic series

G/IN=Q>@>->Q,={1}

and
N=No>Ny > >N ={1}.

Givenm: G — G/N
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Properties of polycyclic groups 2

Proof. (1) and (2): See Section A in Ex. Sheet 3.
(3). Consider the cyclic series

G/IN=Q>@>->Q,={1}

and
N=No>Ny > >N ={1}.

Given 7: G — G/N and H; := 7 1(Q)),
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Properties of polycyclic groups 2

Proof. (1) and (2): See Section A in Ex. Sheet 3.
(3). Consider the cyclic series

GIN=Q>@>--->Q,={1}
and
N=No>Ny > >N ={1}.

Given 7: G — G/N and H; := 7 }(Q;), a cyclic series for G is:

G>Hy>...>Hy=N=No>N >...>N={1}.

Cornelia Drutu (University of Oxford)

Part C course MT 2024, Oxford 5/
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Two key examples of polycyclic groups

Proposition
Every finitely generated nilpotent group is polycyclic. J
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Two key examples of polycyclic groups

Proposition
Every finitely generated nilpotent group is polycyclic. J

Proof
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Two key examples of polycyclic groups

Proposition
Every finitely generated nilpotent group is polycyclic. J

Proof Consider the lower central series, with terms CXG.
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Two key examples of polycyclic groups

Proposition

Every finitely generated nilpotent group is polycyclic.

Proof Consider the lower central series, with terms CXG.
@ For every k > 1, CKG/CK*1G is finitely generated abelian,
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Two key examples of polycyclic groups

Proposition

Every finitely generated nilpotent group is polycyclic.

Proof Consider the lower central series, with terms CXG.

@ For every k > 1, CKG/CKT1G is finitely generated abelian, hence
there exists a finite subnormal descending series

CkG=Ay > A1 > 2 A, > Appr = CFHIG

such that every quotient A;/A11 is cyclic.
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Two key examples of polycyclic groups

Proposition
Every finitely generated nilpotent group is polycyclic. J

Proof Consider the lower central series, with terms CXG.
@ For every k > 1, CKG/CKT1G is finitely generated abelian, hence
there exists a finite subnormal descending series
CkG=A =2 A1 > >A, > Ay = CHG

such that every quotient A;/A11 is cyclic.
@ By inserting all these finite descending series into the lower central
series, we obtain a finite subnormal cyclic series for G. U
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Two key examples of polycyclic groups

Proposition
Every finitely generated nilpotent group is polycyclic. J

Proof Consider the lower central series, with terms CXG.

@ For every k > 1, CKG/CKT1G is finitely generated abelian, hence
there exists a finite subnormal descending series

CKG=Ay= A > > A, > Apy = CFHG

such that every quotient A;/A11 is cyclic.
@ By inserting all these finite descending series into the lower central

series, we obtain a finite subnormal cyclic series for G. U

Proposition
Given any homomorphism ¢ : Z" — Aut (Z™), the semidirect product

Z™ ¥, 2" is poly-Cos.
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Polycyclic groups are finitely presented and residually finite. J
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Two key properties of polycyclic groups

Proposition
Polycyclic groups are finitely presented and residually finite. J

Finite presentation is proved using a general property:
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Two key properties of polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Finite presentation is proved using a general property:

Proposition

Let N < G. If both N and G/N are finitely presented then G is finitely
presented.
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Two key properties of polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Finite presentation is proved using a general property:

Proposition

Let N < G. If both N and G/N are finitely presented then G is finitely
presented.

Proof. Let N = (X | r,...,rc), and G/N = (Y | p1,...,pm) be finite
presentations, where Y is a finite subset of Gs. t. Y ={yN |y € Y}.
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Two key properties of polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Finite presentation is proved using a general property:

Proposition

Let N < G. If both N and G/N are finitely presented then G is finitely
presented.

Proof. Let N = (X | r,...,rc), and G/N = (Y | p1,...,pm) be finite
presentations, where Y is a finite subset of Gs. t. Y ={yN |y € Y}.
G is generated by S = X U Y.
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Two key properties of polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Finite presentation is proved using a general property:

Proposition

Let N < G. If both N and G/N are finitely presented then G is finitely
presented.

Proof. Let N = (X | r,...,rc), and G/N = (Y | p1,...,pm) be finite
presentations, where Y is a finite subset of Gs. t. Y ={yN |y € Y}.
G is generated by S = X U Y. S satisfies the following relations:

(X)=1,1<i<k, pi(Y)=u(X),1<j<m, (1)
X = v (X)), X = ey (X) . (2)
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Two key properties of polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Finite presentation is proved using a general property:

Proposition

Let N < G. If both N and G/N are finitely presented then G is finitely
presented.

Proof. Let N = (X | r,...,rc), and G/N = (Y | p1,...,pm) be finite
presentations, where Y is a finite subset of Gs. t. Y ={yN |y € Y}.
G is generated by S = X U Y. S satisfies the following relations:

(X)=1,1<i<k, pi(Y)=u(X),1<j<m, (1)
X = v (X)), X = ey (X) . (2)

We denote the above finite set of relations by T.
Infinite Groups
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Proof continued.
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Proof continued.

We claim that G = (S| T).
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Proof continued.

We claim that G = (S| T). Let K = ((T)) in F(S).
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Proof continued.

We claim that G = (S| T). Let K = ((T)) in F(S).
The epimorphism 7s : F(S) — G defines an epimorphism
v:F(S)/K — G.

Cornelia Drutu (University of Oxford)
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Proof continued.

We claim that G = (S| T). Let K = ((T)) in F(S).
The epimorphism 7s : F(S) — G defines an epimorphism
¢ : F(S)/K — G. Goal: to prove ¢ is an isomorphism.
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¢ : F(S)/K — G. Goal: to prove ¢ is an isomorphism.
Let wK be an element in ker(y), w word in S.
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We claim that G = (S| T). Let K = ((T)) in F(S).
The epimorphism 7s : F(S) — G defines an epimorphism
¢ : F(S)/K — G. Goal: to prove ¢ is an isomorphism.
Let wK be an element in ker(y), w word in S.

Relations (2) imply that there exist a word wy(X) in X and a word wy(Y)
in Y, such that wK = w1 (X)wo(Y)K.
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Proof continued.

We claim that G = (S| T). Let K = ((T)) in F(S).

The epimorphism 7s : F(S) — G defines an epimorphism

¢ : F(S)/K — G. Goal: to prove ¢ is an isomorphism.

Let wK be an element in ker(y), w word in S.

Relations (2) imply that there exist a word wy(X) in X and a word wy(Y)
in Y, such that wK = w1 (X)wo(Y)K.

Applying the projection 7 : G — G/N, we see that m(p(wK)) =1, i.e.
w(p(wa(Y)K)) = 1.
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Proof continued.

We claim that G = (S| T). Let K = ((T)) in F(S).

The epimorphism 7s : F(S) — G defines an epimorphism

¢ : F(S)/K — G. Goal: to prove ¢ is an isomorphism.

Let wK be an element in ker(y), w word in S.

Relations (2) imply that there exist a word wy(X) in X and a word wy(Y)
in Y, such that wK = w1 (X)wo(Y)K.

Applying the projection 7 : G — G/N, we see that m(p(wK)) =1, i.e.
w(p(wa(Y)K)) = 1

Therefore wy(Y) is a product of finitely many conjugates of p;(Y), hence
wa(Y)K is a product of finitely many conjugates of u;(X)K, by (1).
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Proof continued.

We claim that G = (S| T). Let K = ((T)) in F(S).

The epimorphism 7s : F(S) — G defines an epimorphism

¢ : F(S)/K — G. Goal: to prove ¢ is an isomorphism.

Let wK be an element in ker(y), w word in S.

Relations (2) imply that there exist a word wy(X) in X and a word wy(Y)
in Y, such that wK = w1 (X)wo(Y)K.

Applying the projection 7 : G — G/N, we see that m(p(wK)) =1, i.e.
w(p(wa(Y)K)) = 1

Therefore wy(Y) is a product of finitely many conjugates of p;(Y), hence
wa(Y)K is a product of finitely many conjugates of u;(X)K, by (1).

This and the relations (2) imply that wi(X)wa(Y)K = v(X)K for some
word v(X) in X.
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Proof continued.

We claim that G = (S| T). Let K = ((T)) in F(S).

The epimorphism 7s : F(S) — G defines an epimorphism

¢ : F(S)/K — G. Goal: to prove ¢ is an isomorphism.

Let wK be an element in ker(y), w word in S.

Relations (2) imply that there exist a word wy(X) in X and a word wy(Y)
in Y, such that wK = w1 (X)wo(Y)K.

Applying the projection 7 : G — G/N, we see that m(p(wK)) =1, i.e.
w(p(wa(Y)K)) = 1

Therefore wy(Y) is a product of finitely many conjugates of p;(Y), hence
wa(Y)K is a product of finitely many conjugates of u;(X)K, by (1).

This and the relations (2) imply that wi(X)wa(Y)K = v(X)K for some
word v(X) in X.

Then the image p(wK) = p(v(X)K) isin N;
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Proof continued.

We claim that G = (S| T). Let K = ((T)) in F(S).

The epimorphism 7s : F(S) — G defines an epimorphism

¢ : F(S)/K — G. Goal: to prove ¢ is an isomorphism.

Let wK be an element in ker(y), w word in S.

Relations (2) imply that there exist a word wy(X) in X and a word wy(Y)
in Y, such that wK = w1 (X)wo(Y)K.

Applying the projection 7 : G — G/N, we see that m(p(wK)) =1, i.e.
w(p(wa(Y)K)) = 1

Therefore wy(Y) is a product of finitely many conjugates of p;(Y), hence
wa(Y)K is a product of finitely many conjugates of u;(X)K, by (1).

This and the relations (2) imply that wi(X)wa(Y)K = v(X)K for some
word v(X) in X.

Then the image p(wK) = ¢(v(X)K) is in N; therefore,

e(v(X)K) =1 < v(X) is a product of finitely many conjugates of r;(X).
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Proof continued.

We claim that G = (S| T). Let K = ((T)) in F(S).

The epimorphism 7s : F(S) — G defines an epimorphism

¢ : F(S)/K — G. Goal: to prove ¢ is an isomorphism.

Let wK be an element in ker(y), w word in S.

Relations (2) imply that there exist a word wy(X) in X and a word wy(Y)
in Y, such that wK = w1 (X)wo(Y)K.

Applying the projection 7 : G — G/N, we see that m(p(wK)) =1, i.e.
w(p(wa(Y)K)) = 1

Therefore wy(Y) is a product of finitely many conjugates of p;(Y), hence
wa(Y)K is a product of finitely many conjugates of u;(X)K, by (1).

This and the relations (2) imply that wi(X)wa(Y)K = v(X)K for some
word v(X) in X.

Then the image p(wK) = ¢(v(X)K) is in N; therefore,

e(v(X)K) =1 < v(X) is a product of finitely many conjugates of r;(X).
This implies that v(X)K = K. 0
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Graham Higman

Remark

G finitely presented does not imply H < G finitely presented or G/N
finitely presented, for N < G.
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Graham Higman

Remark

G finitely presented does not imply H < G finitely presented or G/N
finitely presented, for N < G.

Theorem

Every finitely generated recursively presented group can be embedded as a
subgroup of some finitely presented group.

Cornelia Drutu (University of Oxford) Infinite Groups
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Finite presentation continued
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Finite presentation continued

Proposition

Let G be a group, and H < G such that |G : H| is finite. Then G is FP if
and only if H is FP.
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Finite presentation continued

Proposition

Let G be a group, and H < G such that |G : H| is finite. Then G is FP if
and only if H is FP.

Proof. See Section A in Ex. Sheet 4.
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Brief incursion into residual finiteness

The idea: approximate an infinite group by its finite quotients.
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Let G be a group. The following are equivalent:
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The idea: approximate an infinite group by its finite quotients.
So one needs to have enough finite quotients.

Proposition
Let G be a group. The following are equivalent:
o
(Hi = {1},
iel

where {H; : i € I} is the set of all finite-index subgroups in G;
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Brief incursion into residual finiteness

The idea: approximate an infinite group by its finite quotients.
So one needs to have enough finite quotients.

Proposition
Let G be a group. The following are equivalent:
o
(Hi = {1},
icl
where {H; : i € I} is the set of all finite-index subgroups in G;

@ for every g € G\ {1}, there exists a finite group ¢ and a
homomorphism ¢ : G — ®, such that p(g) # 1.
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The idea: approximate an infinite group by its finite quotients.
So one needs to have enough finite quotients.

Proposition
Let G be a group. The following are equivalent:
o
(Hi = {1},
icl
where {H; : i € I} is the set of all finite-index subgroups in G;

@ for every g € G\ {1}, there exists a finite group ¢ and a
homomorphism ¢ : G — ®, such that p(g) # 1.

Proof. See Section A in Ex. Sheet 4.
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Brief incursion into residual finiteness

The idea: approximate an infinite group by its finite quotients.
So one needs to have enough finite quotients.

Proposition
Let G be a group. The following are equivalent:
o
(Hi = {1},
icl
where {H; : i € I} is the set of all finite-index subgroups in G;

@ for every g € G\ {1}, there exists a finite group ¢ and a
homomorphism ¢ : G — ®, such that p(g) # 1.

Proof. See Section A in Ex. Sheet 4.
Definition

A group satisfying the above is called residually finite.
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Example
The group T = GL(n,Z) is residually finite. J
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Examples of RF groups

Example

The group T = GL(n,Z) is residually finite.

Indeed, we take subgroups I'(p) < T, ['(p) = ker(yp), where
¢p : [ — GL(n,Zp) is the reduction modulo p.
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Examples of RF groups

Example

The group T = GL(n,Z) is residually finite.

Indeed, we take subgroups I'(p) < T, ['(p) = ker(yp), where
¢p : [ — GL(n,Zp) is the reduction modulo p.

Assume g € [ is a non-trivial element.
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Examples of RF groups

Example

The group T = GL(n,Z) is residually finite.

Indeed, we take subgroups I'(p) < T, ['(p) = ker(yp), where
¢p : [ — GL(n,Zp) is the reduction modulo p.

Assume g € [ is a non-trivial element.

If g has a non-zero off-diagonal entry g;; # 0, then gj; # 0 mod p,
whenever p > |g;il.
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The group T = GL(n,Z) is residually finite.

Indeed, we take subgroups I'(p) < T, ['(p) = ker(yp), where
¢p : [ — GL(n,Zp) is the reduction modulo p.

Assume g € [ is a non-trivial element.

If g has a non-zero off-diagonal entry g;; # 0, then gj; # 0 mod p,
whenever p > |g;i|. Thus, pp(g) # 1.
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Examples of RF groups

Example

The group T = GL(n,Z) is residually finite.

Indeed, we take subgroups I'(p) < T, ['(p) = ker(yp), where
¢p : [ — GL(n,Zp) is the reduction modulo p.

Assume g € [ is a non-trivial element.

If g has a non-zero off-diagonal entry g;; # 0, then gj; # 0 mod p,
whenever p > |g;i|. Thus, pp(g) # 1.

If g € I has only zero entries off-diagonal then it is a diagonal matrix with
only 1 on the diagonal, and at least one entry —1.
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Examples of RF groups

Example

The group T = GL(n,Z) is residually finite.

Indeed, we take subgroups I'(p) < T, ['(p) = ker(yp), where
¢p : [ — GL(n,Zp) is the reduction modulo p.

Assume g € [ is a non-trivial element.

If g has a non-zero off-diagonal entry g;; # 0, then gj; # 0 mod p,
whenever p > |g;i|. Thus, pp(g) # 1.

If g € I has only zero entries off-diagonal then it is a diagonal matrix with
only +£1 on the diagonal, and at least one entry —1. Then ¢3(g) has at
least one 2 on the diagonal, hence p3(g) # 1.
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Examples of RF groups

Example

The group T = GL(n,Z) is residually finite.

Indeed, we take subgroups I'(p) < T, ['(p) = ker(yp), where
¢p : [ — GL(n,Zp) is the reduction modulo p.

Assume g € [ is a non-trivial element.

If g has a non-zero off-diagonal entry g;; # 0, then gj; # 0 mod p,
whenever p > |g;i|. Thus, pp(g) # 1.

If g € I has only zero entries off-diagonal then it is a diagonal matrix with
only +£1 on the diagonal, and at least one entry —1. Then ¢3(g) has at
least one 2 on the diagonal, hence p3(g) # 1.

Thus T is residually finite.
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A Theorem of Mal'cev. A Lemma of Selberg

Theorem (A. . Mal'cev)

Let I be a finitely generated subgroup of GL(n, R), where R is a
commutative ring with unity. Then T is residually finite.
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A Theorem of Mal'cev. A Lemma of Selberg

Theorem (A. . Mal'cev)

Let I be a finitely generated subgroup of GL(n, R), where R is a
commutative ring with unity. Then T is residually finite.

Mal'cev's theorem is complemented by the following result:
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A Theorem of Mal'cev. A Lemma of Selberg

Theorem (A. . Mal'cev)

Let I be a finitely generated subgroup of GL(n, R), where R is a
commutative ring with unity. Then T is residually finite.

Mal'cev's theorem is complemented by the following result:

Theorem (Selberg's Lemma)

Let T be a finitely generated subgroup of GL(n, F), where F is a field of
characteristic zero. Then [ contains a torsion-free subgroup of finite index.
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