C5.7 Topics in Fluid Mechanics Michaelmas Term 2024
Problem Sheet 2: Solutions

1. From the vertical component of the momentum equation (after applying the lubrication ap-
proximation) we have that
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so that the pressure distribution within the drop is hydrostatic, i.e.

p=po+pglh(rt) — 2] (1)

where we have neglected the pressure jump due to surface tension and pg is the constant
atmospheric pressure.
The horizontal component of the momentum equation is, in the lubrication approximation,
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Integrating twice subject to u(z = 0) = 0 (no-slip) and u,(z = h) = 0 (no stress) we find that
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u = 2 z2(z —2h)— o
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i = pg h2
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At this point is acceptable to quote the general result that

oh
E+V~q—0

where q = hue, is the fluid flux, though it would be reasonable to ask for this to be derived:
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Thus we have
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as desired.

We are told that the volume of the drop is a given constant V' and so we must have

a(t)
V = / 2mrh dr.
0

In scaling terms we may write volume conservation as V ~ R?H where R is a typical radial
scale and H a typical vertical scale at time 7. In scaling terms the governing pde (2) reads
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T n R?

from which we have
T~ LR (H ~ ROVY) .
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Hence the typical radial scale R at time 7" must scale according to

3 1/8
R~ (ng T)
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so that the radius a(t) of the droplet must scale in the same way.

To progress further we non-dimensionalize lengths using V'/3 and time using p / pgV1/3 so that

we wish to solve
1 0 oh
hy = —— [ rh®=—
YT 3ror (r 87’) ’ (3)

subject to the volume constraint

/ b= 1)@, (@)

Based on the scalings discussed above it is natural to seek a similarity solution of the form
h(r,t) = t='/10(n) where n = rt~'/% and we expect the drop to occupy the region 0 < 7 < 1,
where 7, = a(t)/t'/8 is the position of the edge of the drop; i.e. h(a(t),t) = 0.

[Note that it is better to use the above similarity ansatz than the alternative t/r® since we take

more spatial derivatives than time derivatives. However, this alternative approach does work if
one is sufficiently careful.]



Substituting this similarity form into (3) we have
1 1d
——(20 +nQ) = —— (n©°*Q@’) .
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This may be integrated once to give
§ 2 _ 3/
— 87] 6 =166

where the constant of integration must vanish to ensure that the solution is well-behaved as
1n — 0. A further integration gives
3\ 2/3
0= (—) (n2 =)'
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where we have applied the boundary condition that ©(n,) = 0.

To determine the value of 7, we return to the similarity form of (4), which reads

1 T+ 3 2/3 Mx 9 21/3
2—2/ n@dn=<;l) /n(m—n) dn
™ 0 0
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from which we immediately have 7, = (2!°/3°7%)1/8 and the result for a(t) follows.
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subject to h ~ #2/4/2 as 2 — —o0.

Following the lecture notes, we let h = iLOg(C ), Z = z.( so that (6) becomes

o
g+ u(t)zggg geeo = 1.

We choose z, = ho/u(t)'/? so that we obtain the Landau-Levich equation
9+ 39°9ccc =1

with boundary conditions ¢ — 1 as ( — oo and

as ( — —oo.

From the notes, we recall that the numerical solution of the Landau—Levich equation has g ~
0.67¢? as ¢ — —oo and so we have

ho

and so ho ~ 0.95u(t)*3, as required.




3 We are given that
3

3Ca
Letting h(z,t) = ho + 0hi(x,t) with hy constant we find that

ohy [hg + 36h2h,

he + [ (haws — Bo hx)] — 0.
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o1 3Ca (OMawe =0 Bo hl,x)} +0(5").
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Examining the O(d) terms we immediately see that

_Ohy R
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ot T 3Ca 3Ca (Fn, 0 Mar)
as required.
Letting iy = R[e” %] we have
he o N2 he (o4 2
o = ——— [(ik)* — Bo(ik)*] = (k*+ Bo k?),

3Ca " 3Ca

as required. Clearly o < 0 for all k& # 0; disturbances therefore decays with time and the film
is stable to perturbations of any wavelength.

For £ = 0, 0 = 0 and so a uniform perturbation is neutrally stable — it neither grows nor
decays.

When the film is beneath (rather than above) the plate, gravity acts in the opposite direction,

Bo — —Bo and so we have s
hg
=—— (k' —=Bo k’
g 3Ca ( © ) ’

A sketch is shown below:
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We see that the surface tension term (—k?) is stabilising since it makes o more negative, while
gravity (+Bo k?) is destabilising since it acts to increase o.
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The situation is unstable whenever o > 0, i.e. for

0 < k < Bo'/2.

The maximally unstable mode is that for which ¢ is maximised. We have

oo
"(k) = ——2 (4k* — 2B
o' (k) = =5 (4h o k)

and so the maximally unstable wavelength is A = 27 /k, where k, = (Bo/2)'/2.
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5. We have the usual lubrication equation for the horizontal velocity, u, i.e.

P Op
- - _ZF 7
while at leading order the vertical component gives
9 _ _
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Integrating the latter and taking the pressure in the atmosphere to be 0, we have

0?h

=pg|h(z,t) — 2] —v=. 8
p=pglh(e,t) =2 =157 (8)
Integrating (7) we have that
1 dp ,
= —— Az+ B
U o axz + Az +
where A and B are constants to be determined from the boundary conditions roblem:

e The condition of zero shear stress at the free surface gives

Ou =0 = A= —l@h.
0z|,_, W ox

o The slip condition u = A\u, at z = 0 gives

B =)A= —é@
1 O0x
and hence L9
P12
= ——— |z h— A\h
e [32° =2 ]
Now

and so o oh
(% - eg%) (312 + AB)



where (2 = v/pg, as usual.

The associated thin film equation is eqn (2.27) from the notes and so we have

oh ~ 0 [(h _,0h
K%—e ax) (§h3+>\h2)}

[It is worth emphasizing again that the general statement of conservation of mass (having
used the kinematic boundary condition) is of the form

oh
E-i-v q—O

since this comes up frequently in such problems. |
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Dominant balance for thinnest possible film,A below as small as possible while there is still a balance

lo £ 4 =A(Z2-%) A< |
ppand, Sy
r 4‘ u

§ = a\uwama[ﬂ‘(w szk)x
ng ;g ne 0=" VRN

A=, daminant balanes 5 3h 4y (£ 13k
ot N

-E A/ Oqs-{&(t‘)‘z/g \g\e_a k(ﬁco £)

ASY>0 , =0.4S(t)) 3



Nahni u(f) :;e
e 3k oh =0
ot 4 2617
- h(eg) =0 as <
\

t=s, 4=0, h/s\=o.as'e'zs’3

Choa chnSRES
+
i%:::e o_lg = | 9.\.\:‘. =0
e ohp
-‘ZS/Z
‘E(“P"-:O\ = S ‘ %(P:O) =0 L\(P.—_ﬂ:o.%e
-28
- p=[eta | y=° L= g.ase %R
P=—é.'t-\-é's
2/
- 3
es _ | e—'ZSIg _ <P+e b)

P+e't =(3-\—€'t)2/3



4
al= A~

lj—?% "'O mA\'CJﬂ ﬂ/MSVLW\

= o) 0) 2o

Qs E > od
Consrionnt en 2

"1 : ‘t%?
st s

<, B

J
J
L'\M( _H n 3 CMC ]—M'Sh‘c ( =< ) corresponds to s=0 above

Yo e y=pA-€F wh
d'_t_ ’ J =0
n= \__e_—-b rohon,
E=o0




