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1. Introduction

Commutative algebra is the study of commutative rings, with focus
on the class of finitely generated algebras over fields, i.e., quotients of
polynomial rings K[x1, . . . , xk], where K is a field, and more generally
the class of finitely generated algebras over noetherian rings. This
latter class is the prime object of study of these notes.

Commutative algebra is intimately connected to algebraic geome-
try, but it is also the cornerstone of homological algebra and non-
commutative ring theory; it also plays a prominent role in algebraic
number theory.

Some history. Up to the end of the nineteenth century, one mainly
studied finitely generated algebras over fields given by explicit equa-
tions (i.e., by polynomials generating an ideal I, when the algebra has
the presentation K[x1, . . . , xk]/I). The study of commutative rings in
abstracto only started in the 1930s and it gathered a lot of momen-
tum in the 1960s, when many geometric techniques became available
through the theory of schemes.

2. Preamble

All rings in these lectures are associative commutative uni-
tary rings. A ring will be short for an associative commutative uni-
tary ring. Ring homomorphisms will be unitary, i.e, they send the
identity to the identity. The zero ring {0} is allowed.

We assume that the reader is familiar with the content of the part A
course Rings and Modules. In particular, we assume that the following
notions/terminology is known: ring, product of rings, subring, integral
domain (or domain for short), field, homomorphism of rings, module
over a ring, finitely generated module over a ring, ideal, ideal generated
by a set, product of two ideals, intersection of a family of ideals, sum
of a family of ideals, coprime ideals, submodule, intersection of family
of submodules, sum of a family of submodules, submodule generated
by a set, quotient module, direct sum of modules over a ring, homo-
morphisms of modules over a ring, prime ideal, maximal ideal, ring of
polynomials over a ring, zero-divisor, unit, Chinese remainder theorem,
Euclidean division, fraction field of a domain.

Many relevant ideas are reviewed in Sheet 0, which the reader is
warmly encouraged to work through. Its content is examinable!

The basic reference for this course is the book Introduction to Com-
mutative Algebra by M. F. Atiyah and I. G MacDonald. Perseus Books.
We shall refer to this book as [AM]. Note however that certain parts
of Section 8 and Section 10 are not covered by this book.

If in doubt, all the terms (and the associated symbols, which are
standard) in the list above are defined in the first chapter of [AM]. For
(a lot) more material and more explanations on the material presented
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here, see the book Commutative Algebra with a View Toward Algebraic
Geometry by D. Eisenbud. Springer, Graduate Texts in Mathematics
150.

Let R be a ring. If I ⊆ R is an ideal in R, we shall say that I is
proper if I ̸= R. The ideal I is principal if it can be generated by one
element as an R-module.

An element r ∈ R is said to be nilpotent if there exists an integer
n ⩾ 1 such that rn = 0, where we recursively define r0 = 1 and
rn+1 = rn · r for n ∈ N.

The ring R is local if it has a single maximal ideal m. Note that in
this case, every element of R∖m is a unit (because otherwise, any such
element would be contained in a non trivial maximal ideal of R, which
would not coincide with m – see Lemma 2.4 below).

The prime ring of a ring R is the image of the unique ring homo-
morphism Z → R (that sends n ∈ Z to the corresponding multiple of
1 ∈ R).

If R is a ring, a zero-divisor of R is an element r ∈ R such that there
exists an element r′ ∈ R∖ {0} with r · r′ = 0. If R is not the zero ring,
0 is always a zero-divisor of R.

A domain is a ring R with the property that the set of zero-divisors of
R consists only of 0. (This definition applies also to non-commutative
rings; commutative domains are called integral domains. Since in these
notes all rings are commutative, we will not make a distinction between
these two properties.)

A Unique Factorisation Domain (UFD) or factorial ring is a domain
R, which has the following property: for every r ∈ R ∖ {0}, there is a
sequence r1, . . . , rk ∈ R (for some k ⩾ 0), such that

(1) the elements ri are irreducible;
(2) (r) = (r1 · · · rk) (with the standard convention that the empty

product is equal to 1 ∈ R);
(3) if r′1, . . . , r′k′ is another sequence with properties (1) and (2), then

k = k′ and there is a permutation σ ∈ Sk such that (ri) = (r′σ(i)) for
all i ∈ {1, . . . , k}.

If R and T are rings, then T is said to be an R-algebra if there is
a homomorphism of rings R → T . Note that this homomorphism is
part of the structure of an R-algebra, and so, strictly speaking, it is
not T which should be called an R-algebra, but the homomorphism
R → T . Note also that an R-algebra T naturally carries a structure
of an R-module. If ϕ1 : R → T1 and ϕ2 : R → T2 are two R-algebras, a
homomorphism of R-algebras is a homomorphism of rings λ : T1 → T2
such that λ ◦ ϕ1 = ϕ2.

An R-algebra ϕ : R → T is said to be finitely generated if there
exists an integer k ⩾ 0 and a surjective homomorphism of R-algebras
R[x1, . . . , xk] → T (where R[x1, . . . , xk] = R if k = 0). Note the
following elementary fact: if R → T (resp. T → W ) is a finitely
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generated R-algebra (resp. a finitely generated T -algebra), then the
composed map R → W makes W into a finitely generated R-algebra
(why?).

If M is an R-module and S ⊆M is a subset of M , we write

AnnM(S) = {r ∈ R | rm = 0 for all m ∈ S}.
The set AnnM(S) is an ideal of R (check), called the annihilator of S.

If I, J ⊆ R are ideals in R, we shall write

(I : J) = {r ∈ R | rJ ⊆ I}.
From the definitions, we see that (I : J) is also an ideal and that
((0) : J) = Ann(J). If x, y ∈ R, we shall often write (I : x) for
(I : (x)), (x : I) for ((x), I) and (x : y) for ((x) : (y)). Note that if M
is another ideal of R, we have (I :M)∩ (J :M) = (I ∩ J :M) (why?).

Let
· · · →Mi

di→Mi−1
di−1→ · · ·

be a sequence of R-modules such that di+1 ◦ di = 0 for all i ∈ Z. Such
a sequence is called a chain complex of R-modules. We shall say that
the complex is exact if ker(di+1) = im(di) for all i ∈ Z.

For the record, we recall the following two basic results:

Theorem 2.1 (Chinese remainder theorem). Let R be a ring and let
I1, . . . , Ik be ideals of R. Let

ϕ : R →
k∏
i=1

R/Ii

be the ring homomorphism such that ϕ(r) =
∏k

i=1(r+ Ii) for all r ∈ R.
Then ker(ϕ) = ∩ki=1Ii. Furthermore the map ϕ is surjective if and only
if Ii + Ij = R for every i, j ∈ {1, . . . , k} with i ̸= j, and in that case,
we have ∩ki=1Ii =

∏k
i=1 Ii.

For the proof, see Prop. 10 in [AM].
For a non-zero polynomial P (x) =

∑n
i=0 aix

i with an ̸= 0, we refer
to an as the leading term.

Proposition 2.2 (Euclidean division). Let R be a ring. Let P (x), T (x) ∈
R[x]. If T (x) is not the zero polynomial and its leading coefficient is a
unit of R, then there exist unique polynomials Q(x), J(x) ∈ R[x] such
that

P (x) = Q(x)T (x) + J(x)

and deg(J(x)) < deg(T (x)) (here we set the degree of the zero polyno-
mial to be −∞).

A partial order on a set S is a relation ⩽ on S such that
• (reflexivity) s ⩽ s for all s ∈ S;
• (transitivity) if s ⩽ t and t ⩽ r for s, t, r ∈ S then s ⩽ r;



COMMUTATIVE ALGEBRA 5

• (antisymmetry) if s ⩽ t and t ⩽ s for t, s ∈ S then s = t.
If we also have

• (connexity) for all s, t ∈ S, either s ⩽ t or t ⩽ s,
then the relation ⩽ is said to be a total order on S.

Let T ⊆ S be a subset and let b ∈ S. We say that b is an upper
bound for T if t ⩽ b for all t ∈ T .

An element s ∈ S is said to be a maximal element of S if for all
t ∈ S, we have s ⩽ t if and only if s = t. An element s ∈ S is said to
be a minimal element of S if for all t ∈ S, we have t ⩽ s if and only if
s = t.

Note that if S is partially ordered by the relation ⩽ and T ⊆ S is a
subset, then the relation ⩽ restricts to a partial order on T .

Proposition 2.3 (Zorn’s lemma). Let ⩽ be a partial order on a non-
empty set S. If for every subset T ⊆ S that is totally ordered (with the
restriction of the relation ⩽ to T ) there is an upper bound for T in S,
then there exists a maximal element in S.

Proof. Omitted. See any first course on set theory. Zorn’s lemma is
equivalent to the axiom of choice. □

A classical application of Zorn’s lemma is the following.

Lemma 2.4. Let R be a ring. If I ⊆ R is a proper ideal then at least
one of the maximal ideals of R contains I.

Proof. Let S be the set of all proper ideals containing I. Endow S
with the relation given by inclusion. If T ⊆ S is a totally ordered
subset, then T has the upper bound ∪J∈T J (verify that this is an ideal
containing I; it is proper because otherwise we would have 1 ∈ J for
some J ∈ T ). Hence, by Zorn’s lemma, there is a maximal element m
in S. By definition, the ideal m has the property that whenever J is a
proper ideal containing I and m ⊆ J , then m = J . If J is an ideal of R
that does not contain I, then we cannot have m ⊆ J (since m contains
I). We conclude that for any non trivial ideal J of R, we have m = J
if m ⊆ J . In other words, m is a maximal ideal of R, and it contains
I. □

END OF LECTURE 1

3. The nilradical and the Jacobson radical

Definition 3.1. Let R be a ring. The nilradical of R is the set of
nilpotent elements of R.

A ring R is called reduced if its nilradical is {0}.
The nilradical captures the “infinitesimal part” of a ring. In the clas-

sical algebraic geometry of varieties, the coordinate rings were always
assumed to be reduced, and nilradicals did not play a role. Part of the
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strength of scheme theory is that it allows the presence of infinitesimal
phenomena.

Proposition 3.2. Let R be a ring. The nilradical of R is the intersec-
tion of all the prime ideals of R.

Proof. Suppose that f ∈ R is a nilpotent element. Let p ⊆ R be
a prime ideal. Some power of f is 0, which is an element of p. In
particular, f + p ∈ A/p is a zero-divisor. Since p is a prime ideal, the
ring A/p is a domain and so f + p = p. In other words, f ∈ p. We
conclude that f is in the intersection of all the prime ideals of R.

Conversely, suppose that f ∈ R is not nilpotent. Let Σ be the set of
proper ideals I of R, such that for all n ⩾ 1 we have fn ̸∈ I. The set
Σ is non-empty, since (0) ∈ Σ. If we endow this set with the relation
of inclusion, we may conclude from Zorn’s lemma that Σ contains a
maximal element M (verify that the assumptions of Zorn’s lemma are
verified). We claim that M is a prime ideal.

To prove this, suppose that x, y ∈ R and that x, y ̸∈ M . Note that
the ideal (x)+M strictly contains M and hence cannot belong to Σ (by
the maximality property of M). Similarly, the ideal (y) +M strictly
contains M and hence cannot belong to Σ. Hence there are integers
nx, ny ⩾ 1 such that fnx ∈ (x)+M and fny ∈ (y)+M . In other words,
fnx = a1x+m1, where a1 ∈ R and m1 ∈M and fny = a2y+m2, where
a2 ∈ R and m2 ∈M . Thus

fnx+ny = a1a2xy +m3

where m3 ∈ M . We thus see that xy ̸∈ M , for otherwise we would
have fnx+ny ∈ M , which is not possible since M ∈ Σ. Since x, y ∈ R
were arbitrary, we conclude that M is a prime ideal.

Since M ∈ Σ, for all n ⩾ 1 we have fn ̸∈ M . In particular we have
f ̸∈ M . In other words, we have exhibited a prime ideal in R, which
does not contain f . In particular, f does not lies in the intersection of
all the prime ideals of R. □

Corollary 3.3. Let R be a ring. The nilradical of R is an ideal.

Note that this corollary can also easily be proven directly (without
using Proposition 3.2) (exercise).

Here are two explicit examples: the nilradical of a domain is the zero
ideal; the nilradical of C[x]/(xn) is (x).

Let I ⊆ R be an ideal. Let q : R → R/I be the quotient map
and let N be the nilradical of R/I. The radical r(I) of I is defined
to be q−1(N ). From the definitions, we see that the nilradical of R
coincides with the radical r((0)) of the 0 ideal. Abusing language,
we will sometimes write r(R) for the nilradical of R. Again from the
definitions and from Proposition 3.2, we see that the radical of I has
the two equivalent descriptions:
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• it is the set of elements f ∈ R such that there exists an integer
n ⩾ 1 such that fn ∈ I;

• it is the intersection of the prime ideals of R, which contain I.
The operator r(·) has the following elementary properties: let I, J

be ideals of R. Then we have r(r(I)) = r(I) and we have r(I ∩ J) =
r(I) ∩ r(J) (why?).

An ideal that coincides with its own radical is called a radical ideal.

Definition 3.4. Let R be a ring. The Jacobson radical of R is the
intersection of all the maximal ideals of R.

(Recall from Sheet 0 that all maximal ideals are prime.) By defini-
tion, the Jacobson radical of R contains the nilradical of R.

Let I ⊆ R be a non trivial ideal. Let q : R → R/I be the quotient
map and let J be the Jacobson radical of R/I. The Jacobson radical
of I is defined to be q−1(J ). By definition, this coincides with the
intersection of all the maximal ideals containing I. Again by definition,
the Jacobson radical of I contains the radical of I.

Proposition 3.5 (Nakayama’s lemma). Let R be a ring. Let M be a
finitely generated R-module. Let I be an ideal of R, which is contained
in the Jacobson radical of R. Suppose that IM =M (i.e., every m ∈M
is a finite sum of elements of the form a · n, where a ∈ I and n ∈M).
Then M ≃ 0.

Proof. Suppose that M ̸≃ 0. Let x1, . . . , xs be a set of generators of
M and suppose that s is minimal (i.e., every set of generators for M
has at least s elements); note that s ⩾ 1. By assumption, there are
elements a1, . . . , as ∈ I such that

xs = a1x1 + · · ·+ asxs.

Rewriting yeilds

(1− as)xs = a1x1 + · · ·+ as−1xs−1.

Now the element 1−as is a unit. Indeed, if 1−as were not a unit then
it would be contained in a maximal ideal m of R (apply Lemma 2.4)
and by assumption as ∈ m so that we would have 1 ∈ m, which is a
contradiction. Hence

xs = ((1− as)
−1a1)x1 + · · ·+ ((1− as)

−1as−1)xs−1

contradicting the minimality of s. Hence M ≃ 0. □

Recall that a ring is local if it admits only one maximal ideal. In this
case, the Jacobson radical of the ring and the maximal ideal coincide.

Corollary 3.6. Let R be a local ring with maximal ideal m. Let M
be a finitely generated R-module. Let x1, . . . , xs ∈ M be elements of
M and suppose that x1 + mM, . . . , xs + mM ∈ M/mM generate the
R/m-module M/mM . Then the elements x1, . . . , xs generate M .
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Proof. Let M ′ ⊆ M be the submodule generated by x1, . . . , xs. By
assumption, we have M ′ + mM = M , and so m(M/M ′) = M/M ′. By
Nakayama’s lemma, we thus have M/M ′ ≃ (0), i.e., M =M ′. □

Corollary 3.7. Let R be a local ring with maximal ideal m. Let M,N
be finitely generated R-modules and let ϕ : M → N be a homomorphism
of R-modules. Suppose that the induced homomorphism

M/mM → N/mN

is surjective. Then ϕ is surjective.

Proof. Let x1, . . . , xs be generators of M . By assumption, the ele-
ments ϕ(x1) + m, . . . , ϕ(xs) + m generate N/m. Hence the elements
ϕ(x1), . . . , ϕ(xs) generate N by Corollary 3.6. In particular, ϕ is sur-
jective. □

Definition 3.8. A ring R is called a Jacobson ring if for all the proper
ideals I of R, the Jacobson radical of I coincides with the radical of I.

From the definition, we see that any quotient of a Jacobson ring is
also Jacobson.

We will study Jacobson rings in Section 10 below. It is easy to see
that the ring Z is Jacobson, and that any field is Jacobson. So is K[x],
if K is a field, and in fact so is any finitely generated algebra over a
Jacobson ring (see Theorem 10.5 below). On the other hand, a local
domain is never Jacobson unless it is a field (why?). So for instance the
ring of p-adic integers Zp (where p is a prime number) is not Jacobson.

END OF LECTURE 2

4. The spectrum of a ring

Let R be a ring. We shall write Spec(R) (the spectrum of R) for the
set of prime ideals of R. For an ideal I of R, we define

V (I) = {p ∈ Spec(R) | I ⊆ p}.

Lemma 4.1. The function V (·) has the following properties:
• V (I) ∪ V (J) = V (I · J);
•
⋂
I∈I V (J) = V (

∑
I∈I I);

• V (R) = ∅; V ((0)) = Spec(R).

Proof. Straightforward. Left to the reader. □

An immediate consequence of Lemma 4.1 is that the sets V (I) (where
I is an ideal of R) form the closed sets of a topology on Spec(R). This
topology is called the Zariski topology. The closed points in Spec(R)
are precisely the maximal ideals of R.

From the definitions, we see that if R is a Jacobson ring, then the
closed points are dense in any closed set of Spec(R). This is not true
for a general ring.
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If ϕ : R → T is a homomorphism of rings, there is a map

Spec(ϕ) : Spec(T ) → Spec(R), p 7→ ϕ−1(p)

(check that this is well defined). If I is an ideal in R and J is the
ideal generated in T by ϕ(I), we clearly have Spec(ϕ)−1(V (I)) = V (J),
and hence Spec(ϕ) is a continuous map for the Zariski topologies on
source and target. Notice also that if ψ : T → P is another ring homo-
morphism, then we have from the definition that Spec(ϕ) ◦ Spec(ψ) =
Spec(ψ ◦ ϕ).

Lemma 4.2. Let ϕ : R → T be a surjective homomorphism of rings.
Then Spec(ϕ) is injective and the image of Spec(ϕ) is V (ker(ϕ)).

Proof. To see that Spec(ϕ) is injective, note that if p ∈ Spec(T ), then
p = ϕ(ϕ−1(p)), since ϕ is surjective, so distinct elements of Spec(T )
have distinct images in Spec(R).

For the second statement, note first that the image of Spec(ϕ) is
clearly contained in V (ker(ϕ)). On the other hand if p is a prime ideal
containing ker(ϕ) (i.e., p ∈ V (ker(ϕ))), then ϕ(p) is a prime ideal of T
and ϕ−1(ϕ(p)) = p. Indeed ϕ(p) is an ideal of T since ϕ is surjective.
Furthermore, we clearly have ϕ−1(ϕ(p)) ⊇ p and if r ∈ ϕ−1(ϕ(p)) then
there exists r′ ∈ p such that ϕ(r) = ϕ(r′), so that ϕ(r − r′) = 0. Since
p contains the kernel of ϕ, we thus see that r ∈ p. In other words
ϕ−1(ϕ(p)) = p. Finally, ϕ(p) is a prime ideal of T . Indeed, suppose
that x, y ∈ T and xy ∈ ϕ(p). Let x′, y′ ∈ R such that ϕ(x′) = x and
ϕ(y′) = y. Then x′y′ ∈ ϕ−1(ϕ(p)) = p and so either x′ ∈ p or y′ ∈ p,
since p is prime. Hence either x ∈ ϕ(p) or y′ ∈ ϕ(p). All in all, we have
shown that Spec(ϕ)(ϕ(p)) = p for every p ∈ V (ker(ϕ)), as required. □

We shall see after Corollary 8.11 below that Spec(ϕ) is actually a
homeomorphism onto its image (exercise: prove this directly).

Lemma 4.3. Let f ∈ R. The set

Df (R) = {p ∈ Spec(R) | f ̸∈ p}
is open in Spec(R). The open sets of Spec(R) of the form Df (R) form
a basis for the Zariski topology of Spec(R). Furthermore, the topology
of Spec(R) is compact.

The open sets of the form Df (R) are often called basic open sets (in
Spec(R)). Recall that a set B of open sets of a topological space X is
said to be a basis for the topology of X if every open set of X can be
written as a union of open sets in B. A topological space X is compact
if for every set U of open sets in X such that

⋃
U∈U U = X there exists

a finite subset U0 of U such that
⋃
U∈U0

U = X. In other words, every
open cover admits a finite subcover. �

Some authors follow Bourbaki and refer to the property above as
being quasi-compact, and reserve the term “compact” for what we would
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call “compact and Hausdorff”. We will stick to the notation in which
compact spaces need not be Hausdorff.

Proof of Lemma 4.3. Set Df = Df (R). Directly from the definitions,
we see that

Spec(R)∖Df (R) = V ((f)),

and hence Df is open for every f .
By definition, all closed sets of Spec(R) are of the form V (I) for

some ideal I. But then clearly⋃
f∈I

Df = {p ∈ Spec(R) : I ̸⊆ p} = Spec(R)∖ V (I),

and so every open subset of Spec(R) is expressible as a union of the
sets of the form Df , as claimed.

Finally, we show that Spec(R) is compact. In view of the fact that
the sets of the form Df form a basis for the Zariski topology of Spec(R),
we only need to show that if

Spec(R) =
⋃
f∈F

Df

for some F ⊆ R, then there is a finite subset F0 ⊆ F such that
Spec(R) =

⋃
f∈F0

Df .
For every subset S ⊆ R we have

Spec(R)∖
⋃
f∈S

Df =
⋂
f∈S

(Spec(R)∖Df )

=
⋂
f∈S

V ((f))

= V (
∑
f∈S

(f)),

with the last equality following from Lemma 4.1.
Taking S = F , and using the fact that Spec(R) =

⋃
f∈F Df , we

conclude that V (
∑

f∈F(f)) = ∅. This is equivalent to saying that∑
f∈F(f) is not contained in any prime ideal. But every proper ideal

is, since maximal ideals are prime, and therefore
∑

f∈F(f) = R. Hence
we have

1 =
∑
f∈F0

rff

for some rf ∈ R and a finite subset F0 of F , whence it follows that∑
f∈F0

(f) = R.
We now use the previous computation for S = F0 and conclude that

Spec(R)∖
⋃
f∈F0

Df = V (R) = ∅,

which is what we claimed. □
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Lemma 4.4. Let I and J be ideals in R. Then V (I) = V (J) if and
only if r(I) = r(J).

Proof. “⇒”: Suppose that for every prime ideal p of R, we have I ⊆ p
if and only if J ⊆ p. Then we have r(I) = r(J) by Proposition 3.2 (see
before Definition 3.4).

“⇐”: This is again a consequence of Proposition 3.2. □

In particular, there is a one-to-one correspondence between radical
ideals in R and closed subsets of Spec(R). The closed subsets corre-
sponding to prime ideals are called irreducible. If I and J are radical
ideals then I ⊆ J if and only if V (I) ⊇ V (J).

correspond to the closed (but not necessarily irreducible) subvarieties
of W .

We conclude from Lemmata 4.1, 4.2, and 4.4 that if q : R → R/r((0))
is the quotient map, then Spec(q) is a bijection (and thus a homeomor-
phism – see after Lemma 4.2). So the Zariski topology “does not see
the nilradical”.

Remark 4.5. Let R be a commutative ring and let I and J be two ideals
in R. Then we have

(I ∩ J) · (I ∩ J) ⊆ I · J ⊆ I ∩ J
and thus r(I · J) = r(I ∩ J). In particular, we have

V (I · J) = V (I ∩ J).
Note that if I and J are radical ideals then I ∩J is also a radical ideal,
whereas I · J might not be.

END OF LECTURE 3

5. Localisation

Let R be a ring. A subset S ⊆ R is said to be a multiplicative set if
1 ∈ S and if xy ∈ S whenever x, y ∈ S. (Using fancy language, S is a
submonoid of the multiplicative monoid (R,×)). A basic example of a
multiplicative set is the set {1, f, f 2, f 3, . . . }, where f ∈ R.

Let S ⊆ R be a multiplicative subset. Consider the set R × S
(cartesian product). We define a relation ∼ on R × S as follows. If
(a, s), (b, t) ∈ R×S then (a, s) ∼ (b, t) if and only if there exists u ∈ S
such that u(ta − sb) = 0. The relation ∼ is an equivalence relation
(verify) and we define the localisation of R at S, denoted RS or RS−1,
to be (R× S)/ ∼, i.e., RS−1 is the set of equivalence classes of R× S
under ∼. If a ∈ R and s ∈ S, we write a/s for the image of (a, s) in
RS−1. We define addition as

+: RS−1 ×RS−1 → RS−1, (a/s, b/t) 7→ (at+ bs)/(st).

This is well defined (verify). We also define multiplication

· : RS−1 ×RS−1 → RS−1, (a/s, b/t) 7→ (ab)/(ts).
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Again, this is well defined. One checks that these two maps provide
RS−1 with the structure of a ring with identity element is 1/1. The
0 element in RS−1 is then the element 0/1. There is a natural ring
homomorphism from R to RS, given by the formula r 7→ r/1. By
construction, if r ∈ S, the element r/1 is invertible in R, with inverse
1/r.

We shall see in Lemma 5.1 below that RS−1 is the “minimal exten-
sion” of R making every element of S invertible.

Note that if R is a domain, the fraction field of R is the ring RR∖0.
Note also that if R is a domain, then RS−1 is a domain. Indeed suppose
that R is domain, that 0 ̸∈ S, and that (a/s)(b/t) = 0, where a, b ∈ R
and s, t ∈ S. Then by definition we have u(ab) = 0 for some u ∈ S,
which implies that ab = 0 so that either a = 0 or b = 0, in particular
either a/s = 0/1 or b/t = 0/1. If 0 ∈ S, then RS−1 is the zero ring
(i.e., 1 = 0 in RS−1), which is a domain (check this!). This simply
follows from the fact that if 0 ∈ S then ∼ admits only one equivalence
class.

If M is an R-module, we may carry out a similar construction. We
define a relation ∼ on M × S as follows. If (a, s), (b, t) ∈ M × S then
(a, s) ∼ (b, t) if and only if there exists u ∈ S such that u(ta − sb) =
0. The relation ∼ is again an equivalence relation and we define the
localised module MS−1 (or MS) to be (M × S)/ ∼, i.e., MS−1 is the
set of equivalence classes of M × S under ∼. If a ∈ M and s ∈ S, we
again write a/s for the image of (a, s) in MS−1. We define addition

+: MS−1 ×MS−1 →MS−1, (a/s, b/t) 7→ (at+ bs)/(st)

and scalar multiplication
· : RS−1 ×MS−1 →MS−1(a/s, b/t) 7→ (ab)/(ts).

Again, both are well defined and furnish MS−1 with the structure of an
RS−1-module. The 0 element in MS−1 is then the element 0/1. The
RS−1-module MS−1 carries a natural structure of an R-module via
the natural map R → RS−1 and there is a natural map of R-modules
M →MS−1 given by the formula m 7→ m/1.

Lemma 5.1. Let ϕ : R → R′ be a ring homomorphism. Let S ⊆ R
be a multiplicative subset. Suppose that ϕ(S) consists of units of R′.
Then there is a unique ring homomorphism ϕS : RS → R′ such that
ϕS(r/1) = ϕ(r) for all r ∈ R.

Proof. Define the map ϕS : RS → R′ by the formula ϕS(a/s) = ϕ(a)(ϕ(s))−1

for all a ∈ R and s ∈ S. We show that ϕS is well defined. Suppose
that (a, s) ∼ (b, t). Then

ϕS(b/t) = ϕ(b)(ϕ(t))−1

and we have u(ta− sb) = 0 for some u ∈ S. Thus

ϕ(u)
(
ϕ(t)ϕ(a)− ϕ(s)ϕ(b)

)
= 0
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and since ϕ(u) is a unit in R′, we have ϕ(t)ϕ(a)− ϕ(s)ϕ(b) = 0. Thus
ϕ(t)ϕ(a) = ϕ(s)ϕ(b) and therefore

ϕS(a/s) = ϕ(a)(ϕ(s))−1 = ϕ(b)(ϕ(t))−1 = ϕS(b/t).

Thus ϕS is well defined. We skip the straightforward verification that
ϕS is a ring homomorphism. We have thus proved that there is a ring
homomorphism ϕS : RS → R′ such that ϕS(r/1) = ϕ(r) for all r ∈ R.

We now prove unicity. Suppose that ϕ′
S : RS → R′ is another ring

homomorphism such that ϕ′
S(r/1) = ϕ(r) for all r ∈ R. Then for

everyr ∈ R and t ∈ S, we have

ϕ′
S(r/t) = ϕ′

S((r/1)(t/1)
−1)

= ϕ′
S(r/1)ϕ

′
S(t/1)

−1

= ϕS(r)ϕS(t)
−1

= ϕS(r/t)

and thus ϕ′
S coincides with ϕS. □

There is a similar result for modules – the proof is analogous, and
left as an exercise.

Lemma 5.2. Let R be a ring and let S ⊆ R be a multiplicative subset.
Let M be an R-module and suppose that for every s ∈ S the map

[s]M : M →M, m 7→ sm

is an isomorphism. Then there is a unique structure of an RS-module
on M such that (r/1)m = rm for all m ∈M and r ∈ R.

Keeping the notation of the lemma, if r/s ∈ RS then we necessarily
have (r/s)(m) = [s]−1

M (rm).
We also record the following important fact.

Lemma 5.3. Let R be a ring and let f ∈ R. Let S = {1, f, f 2, . . . }.
Then the ring RS is finitely generated as an R-algebra.

Proof. Consider the R-algebra T = R[x]/(fx − 1). Note that T is
generated as an R-algebra by 1 + (fx − 1) and x + (fx − 1). Let
ϕ : R[x] → RS by the homomorphism of R-algebras such that ϕ(x) =
1/f . Note that ϕ(fx − 1) = 0 and hence ϕ induces a homomorphism
of R-algebras ψ : T → RS.

Now, since the image of f in T is invertible by construction, there
is by Lemma 5.1 a unique homomorphism of R-algebras λ : RS → T
extending the map

R → T, 1 7→ 1 + (fx− 1).

The homomorphism ψ ◦ λ : RS → RS restricted to R is the identity,
and hence ψ ◦ λ = idRS

by unicity and hence λ is injective. On the
other hand λ is surjective, since the image of λ contains the generators
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of T listed above. Thus λ is bijective, and hence an isomorphism of
R-algebras. □

In view of Lemma 5.2, if R is a ring and ϕ : N → M is a homomor-
phism of R-modules, there is a unique homomorphism of RS-modules
ϕS : NS → MS such that ϕS(n/1) = ϕ(n)/1 for all n ∈ N . We easily
verify that if ψ : M → T is another homomorphism of R-modules then
we have (ψ ◦ ϕ)S = ψS ◦ ϕS.

Lemma 5.4. Let R be a ring and let S ⊆ R be a multiplicative subset.
Let

· · · →Mi
di→Mi−1

di−1→ · · ·
be an exact chain complex of R-modules. Then the sequence

· · · →Mi,S

di,S→ Mi−1,S

di−1,S→ · · ·
is also exact.

Proof. Let m/s ∈ Mi,S (with m ∈ Mi and s ∈ S) and suppose that
di,S(m/s) = 0. Then di,S(m/1) = di(m)/1 = 0, so u · di(m) = 0 for
some u ∈ S. But then di(um) = 0, forcing

um ∈ im di+1

by exactness of the first sequence. Hence there is an element p ∈Mi+1

such that di+1(p) = um, and hence we have di+1,S(p/(us)) = m/s. This
concludes the proof. □

The above is a very important result, summarised by the slogan
“localisation is flat”. It has a non-commutative analogue, and is of
great significance in homological algebra.

Lemma 5.5. Let ϕ : R → T be a ring homomorphism. Let S ⊆ R be a
multiplicative subset. By Lemma 5.1, there is a unique homomorphism
of rings ϕ′ : RS → Tϕ(S) such that ϕ′(r/1) = ϕ(r)/1. We may thus view
Tϕ(S) as an RS-module and T as an R-module. There is then a unique
isomorphism of RS-modules µ : TS ≃ Tϕ(S) such that µ(a/1) = a/1 for
all a ∈ T and we have µ ◦ ϕS = ϕ′.

Proof. Define µ(a/s) = a/ϕ(s) for every a ∈ T and s ∈ S. This is well
defined. Indeed, suppose that a/s = b/t. Then there is u ∈ S such
that

u · (a · t− b · s) = 0.

The action of r ∈ R on T coincides with multiplication by ϕ(r), and so
ϕ(u)(ϕ(a)t− ϕ(b)s) = 0, yielding a/ϕ(s) = b/ϕ(t), which shows that µ
is well defined.

From the definitions, we see that µ is a map of RS-modules. We also
see from the definition that µ is surjective. To see that µ is injective,
suppose that µ(a/s) = 0/1 for some a ∈ T and s ∈ S. Then there is
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an element u ∈ S such that ϕ(u)a = 0. Hence u · a = 0 in T , and so
a/1 = 0 in TS, implying a/s = 0. Thus µ is bijective.

The identity µ ◦ ϕS = ϕ′ follows from the fact that µ, ϕS and ϕ′ are
homomorphisms of RS-modules and from the fact that µ ◦ ϕS(1/1) =
ϕ′(1/1). □

Let R be a ring and let p be a prime ideal in R. Then the set R∖ p
is a multiplicative subset. Indeed, 1 ̸∈ p as otherwise p would be equal
to R, and if x, y ̸∈ p then xy ̸∈ p, since p is prime. We shall use
the shorthand Rp for RR∖p and if M is an R-module, we shall use the
shorthand Mp for MR∖p. This notation is unambiguous, since p is never
a multiplicative subset, as it does not contain 1.

If ϕ : M → N is a homomorphism of R-modules, we shall write ϕp

for ϕR∖p :Mp → Np.
If ϕ : U → R is a homomorphism of rings and p is a prime ideal of

R, then ϕ naturally induces a homomorphism of rings Uϕ−1(p) → Rp,
since ϕ(U ∖ ϕ−1(p)) ⊆ R ∖ p. This homomorphism is sometimes also
denoted ϕp.

Lemma 5.6. Let R be a ring and let S ⊆ R be a multiplicative subset.
Let λ : R → RS be the natural ring homomorphism. Then the prime
ideals of RS are in one-to-one correspondence with the prime ideals
p of R such that p ∩ S = ∅. If q is a prime ideal of RS then the
corresponding ideal of R is λ−1(q). If p is a prime ideal of R such that
p ∩ S = ∅ then the corresponding prime ideal of RS is ιp,S(pS) ⊆ RS,
where ιp : p → R is the inclusion map (which is a homomorphism of
R-modules). Furthermore, ιp,S(pS) is then the ideal generated by λ(p)
in RS.

Note that in view of Lemma 5.5, if we localise R at S when R is
viewed as an R-module or as a ring, we get the same RS-module.

Proof. We first prove that if I is any ideal of R, then ιI,S(IS) is the
ideal generated by λ(I) inRS. For this, notice that by definition ιI,S(IS)
consists of all the element a/s ∈ RS, where a ∈ I and s ∈ S. Hence
ιI,S(IS) is an ideal of RS, which contains λ(I). Furthermore, since
a/s = (a/1)(1/s), any element a/s as above is contained in the ideal
generated by λ(I) in RS. Hence ιI,S(IS) is the ideal generated by λ(I)
in RS.

To prove the lemma, we thus only have to show the following:
(1) If J is a proper ideal of RS then λ−1(J) ∩ S = ∅.
(2) If J is an ideal of RS, the ideal generated by λ(λ−1(J)) in RS

is J .
(3) If p is a prime ideal ofR such that p∩S = ∅, then λ−1(ιp,S(pS)) =

p.
(4) If p is a prime ideal of R such that p ∩ S = ∅ then ιp,S(pS) is a

prime ideal of RS.
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(5) If q is a prime ideal of RS then λ−1(q) is a prime ideal.
A more general form of (5) was left to the reader after Lemma 4.1, so
we skip its proof.

We prove (1). If λ−1(J) ∩ S ̸= ∅ then (by definition) there exists
s ∈ λ−1(J) such that s ∈ S. But then λ(s) = s/1 ∈ J and s/1 is a
unit, hence J = RS.

To prove (2), notice first that λ(λ−1(J)) ⊆ J . Furthermore, if
a/s ∈ J then as before a/1 = (a/s)(s/1) also lies in J and hence
a ∈ λ(λ−1(J)). Since a/s = (a/1)(1/s) we thus see that a/s lies in the
ideal generated by λ(λ−1(J)). Since a/s was arbitrary, J is thus the
ideal generated by λ(λ−1(J)).

To prove (3) note that since ιp,S(pS) is the ideal generated by λ(p)
in RS, we clearly have λ−1(ιp,S(pS)) ⊇ p. Now suppose that a ∈
λ−1(ιp,S(pS)). Then by definition a/1 = b/s for some b ∈ p and some
s ∈ S. Again by definition, this means that for some t ∈ S, we have
t(sa − b) = 0, i.e., tsa = tb. Since tb ∈ p and ts ̸∈ p (by assumption),
we deduce from the fact that p is prime that a ∈ p, as required.

To prove (4), consider the exact sequence of R-modules

0 → p → R
q→ R/p → 0

where q is the quotient map. Applying Lemma 5.4, we see that the
sequence of RS-modules

0 → pS → RS
qS→ (R/p)S → 0

is also exact. Furthermore, by Lemma 5.5, we see that (R/p)S is iso-
morphic as an RS-module with the ring (R/p)q(S) and that we have an
isomorphism of rings RS/pS ≃ (R/p)q(S). Now since S ∩ p = ∅, we see
that 0 ̸∈ q(S). Since R/p is a domain by assumption, we deduce that
(R/p)q(S) is also a domain (see beginning of this section). We conclude
that pS is a prime ideal. □

Note the following rewording of part of Lemma 5.6: Spec(λ)(Spec(RS))
consists of the prime ideals in Spec(R) that do not meet S. In partic-
ular, in the notation of Lemma 4.3,

Spec(λ)(Spec(RS)) = Df (R)

if S = {1, f, f 2, f 3, . . . }.
Still keeping the notation of Lemma 5.6, we also note the following.

If q ∈ Spec(RS) then λ induces a natural homomorphism of rings
Rλ−1(q) → (RS)q (see before Lemma 5.6). This homomorphism is an
isomorphism. We leave the proof of this statement as an exercise.

Second proof of Proposition 3.2 using localisations. LetR be a ring. Let
r ∈ R be an element, which is not nilpotent. To prove Proposition 3.2,
we need to show that there is a prime ideal p of R such that r ̸∈ p. Let
S = {1, r, r2, . . . } be the multiplicative set generated by r. The ring RS

is not the zero ring because r/1 ̸= 0/1 (because r is not nilpotent). Let
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q be a prime ideal of RS (this exists by Lemma 2.4). By Lemma 5.6,
the ideal q corresponds to a prime ideal p of R such that r ̸∈ p so it
has the required properties. □

Lemma 5.7. Let R be a ring and let p ⊆ R be a prime ideal. Then the
ring Rp is a local ring. If m is the maximal ideal of Rp and λ : R → Rp

is the natural homomorphism of rings, then λ−1(m) = p.

Proof. By Lemma 5.6, the prime ideals of Rp correspond to the prime
ideals of R which do not meet R ∖ p, i.e., to the prime ideals of R
which are contained in p. This correspondence preserves the inclusion
relation, so every prime ideal of Rp is contained in the prime ideal
corresponding to p. Now let I be a maximal ideal of Rp. Since I is
contained in the prime ideal corresponding to p, it must coincide with
this ideal by maximality. So the prime ideal m corresponding to p is
maximal and it is the only maximal ideal of Rp. By Lemma 5.6, we
have λ−1(m) = p. □

Lemma 5.8. Let R be a ring. The chan complex of R-modules

· · · →Mi
di→Mi−1

di−1→ · · ·

is exact if and only if the complex

· · · →Mi,m
di,m→ Mi+1,m

di+1,m→ · · ·

is exact for all the maximal ideals m of R.

Proof. “⇒”: By Lemma 5.4.
“⇐”: We will prove the contrapositive. Suppose that the first chain

complex is not exact. Then

ker(di)/im(di+1) ̸= 0

for some i ∈ Z. Take a ∈ ker(di)/ im di+1 ∖ 0, and let m be a max-
imal ideal containing Ann(a) (which exists as 1 ̸∈ Ann(a)). Then
(ker(di+1)/im(di))m ̸= 0 for otherwise there would be an element u ∈
R∖m ⊆ R∖ Ann(a) such that

u · a = 0,

which is a contradiction.
By Lemma 5.4, there is a natural isomorphism

ker(di)m/im(di+1)m ≃
(
ker(di)/im(di+1)

)
m
̸≃ 0 □

END OF LECTURE 4
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6. Primary decomposition

In this section, we study a generalisation of the decomposition of
integers into products of prime numbers. In a geometric context (i.e.,
for affine varieties over algebraically closed fields) this generalisation
also provides the classical decomposition of a subvariety into a disjoint
union of irreducible subvarieties. Applied to the ring of polynomials
in one variable over a field, it yields the decomposition of a monic
polynomial into a product of irreducible monic polynomials.

The main result is Theorem 6.8 below.
Let R be a ring.

Proposition 6.1. (1) Let p1, . . . , pk be prime ideals of R. Let I
be an ideal of R. Suppose that I ⊆ ∪ki=1pi. Then there is
i0 ∈ {1, . . . , k} such that I ⊆ pi0.

(2) Let I1, . . . , Ik be ideals of R and let p be a prime ideal of R.
Suppose that p ⊇ ∩ki=1Ii. Then there is i0 ∈ {1, . . . , k} such
that

p ⊇ Ii0 .

If p = ∩ki=1Ii, then there is an i0 ∈ {1, . . . , k} such that p = Ii0.

Proof. We prove both items in turn.
(1) By induction on k. The case k = 1 holds tautologically. For

general k, if for some j we have I ̸⊆ ∪i ̸=jpi then we are done
by the inductive hypothesis. Otherwise, there are elements
x1, . . . , xk ∈ I such that for each i ∈ {1, . . . , k} we have xi ∈ pi
and xi ̸∈ pj if j ̸= i. Now consider the element

y =
k∑
i=j

x1x2 · · ·xj−1xj+1 · · · xk

where we set x0 = xk+1 = 1. Note that for each j ∈ {1, . . . , k}
we have x1x2 · · ·xj−1xj+1 · · ·xk ∈ pi for all i ̸= j. Now let
i ∈ {1, . . . , k} be such that y ∈ pi. Then

y −
∑
j ̸=i

x1x2 · · ·xj−1xj+1 · · ·xk ∈ pi

and thus
x1x2 · · ·xi−1xi+1 · · ·xk ∈ pi.

Since pi is prime, one of x1, x2, . . . , xi−1, xi+1, . . . , xk must lie in
pi, which is a contradiction.

(2) We prove the first statement. Suppose that the conclusion does
not hold. Then for each i ∈ {1, . . . , k}, there is an element
xi ∈ Ii such that xi ̸∈ p. But x1x2 · · ·xk ∈ ∩ki=1Ii ⊆ p and since
p is prime, one of the xi must lie in p, which is a contradiction.

The second statement follows from the first, since ∩ki=1Ii ⊆
Ii0 . □
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Remark 6.2. The proof of Proposition 6.1 shows that in (1), the con-
dition that the ideals pi are prime is superfluous if k ⩽ 2.
Definition 6.3. An ideal I of R is primary if it is proper and all the
zero-divisors of R/I are nilpotent.

In other words, I is primary if the following holds: if xy ∈ I and
x, y ̸∈ I then xl ∈ I and yn ∈ I for some l, n > 1 (in other words,
x, y ∈ r(I)). From the definition, we see that every prime ideal is
primary.

The ideals (pn) of Z are primary if p is prime and n > 0.
Lemma 6.4. Suppose that I is a primary ideal of R. Then r(I) is a
prime ideal.
Proof. Let x, y ∈ R and suppose that xy ∈ r(I). Then there is n > 0
such that xnyn ∈ I and thus xn ∈ I, or yn ∈ I, or xln ∈ I and ynk ∈ I
for some l, k > 1. Hence x or y lies in r(I). □

The previous lemma justifies the following terminology.
If p is a prime ideal and I is a primary ideal, we say that I is p-

primary if r(I) = p.
Note that if the radical of an ideal is prime, it does not imply that

this ideal is primary. For counterexamples, see [AM], beginning of
Chapter 4.

We have however the following result:
Lemma 6.5. Let J be an ideal of R. Suppose that r(J) is a maximal
ideal. Then J is primary.
Proof. (suggested by Hanming Liu; see also Q3 of Sheet 1). From the
assumptions, we see that the nilradical r(R/J) of R/J is maximal.
Hence R/J is a local ring, because any maximal ideal of R/J contains
r(R/J) by Proposition 3.2 and hence must coincide with it. Hence any
element of R/J is either a unit or is nilpotent. In particular, all the
zero divisors of R/J are nilpotent, in particular J is primary.

Here is another proof, which does not use Proposition 3.2. Let x, y ∈
R and suppose that xy ∈ J and that x, y ̸∈ J . Since xy ∈ r(J) and
since r(J) is prime, we have either x ∈ r(J) or y ∈ r(J). Suppose
without restriction of generality that y ∈ r(J). Then yn ∈ J for some
n > 1. Suppose for contradiction that x ̸∈ r(J). Then there exists
x′ ∈ R such that xx′ − 1 ∈ r(J) by the maximality of r(J). In other
words, there is l > 0 such that

(xx′ − 1)l = (−1)l +
l∑

i=1

(
l

i

)
(−1)l−i(xx′)i ∈ J.

Then we have

y(−1)l +
l∑

i=1

(
l

i

)
(−1)l−i(yx)xi−1(x′)i ∈ J
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and since
∑l

i=1

(
l
i

)
(−1)l−i(yx)xi−1(x′)i ∈ J we conclude that y ∈ J , a

contradiction. So we must have x ∈ r(J). All in all, we have x, y ∈ r(J),
which is what we wanted to prove. □

From the previous lemma, we see that powers of maximal ideals are
primary ideals.

Lemma 6.6. Let p be a prime ideal and let I be a p-primary ideal. Let
x ∈ R.

(i) If x ∈ I then (I : x) = R.
(ii) If x ̸∈ I then r(I : x) = p.
(iii) If x ̸∈ p then (I : x) = I.

Proof. (i) and (iii) follow directly from the definitions. We prove (ii).
Suppose that y ∈ r(I : x). By definition, this means that for some
n > 0, we have xyn ∈ I. As x ̸∈ I, we see that yln ∈ I for some l > 0
so that y ∈ r(I) = p. Hence r(I : x) ⊆ p. Now consider that we have
I ⊆ r(I : x) ⊆ p. Applying the operator r(•), we see that we have
r(I) = p ⊆ r(r(I : x)) = r(I : x) ⊆ r(p) = p so that r(I : x) = p. □

Lemma 6.7. Let p be a prime ideal and let J1 . . . , Jk be p-primary
ideals. Then J = ∩ki=1Ji is also p-primary.

Proof. We compute
r(J) = ∩ki=1r(Ji) = p.

In particular, J is p-primary if it is primary. We verify that J is
primary. Suppose that xy ∈ J and that x, y ̸∈ J . Then then there are
i, j ∈ {1 . . . , k} such that x ̸∈ Ji and y ̸∈ Jj. Hence there are l, t > 0
such that yl ∈ Ji and xt ∈ Jj. In other words,

x ∈ r(Jj) = r(J) = r(Ji) ∋ y,

and so J is primary. □

We shall say that an ideal I of R is decomposable if there exists a
finite collection J1 . . . , Jk of primary ideals in R such that I = ∩ki=1Ji.
Such a sequence is called a primary decomposition of I. A primary
decomposition as above is called minimal if

(a) all the radicals r(Ji) are distinct;
(b) for all i ∈ {1, . . . , k} we have Ji ̸⊇ ∩j ̸=iJj.

Note that any primary decomposition can be reduced to a minimal
primary decomposition in the following way:

• first use Lemma 6.7 to replace the sets of primary ideals with
the same radical by their intersection; then (a) is achieved;

• then successively throw away any primary ideal violating (b).
In general, not all ideals are decomposable. We shall see in Section 7

below that all ideals are decomposable if R is noetherian.
END OF LECTURE 5



COMMUTATIVE ALGEBRA 21

The following theorem examines what part of primary decomposi-
tions are unique.

Theorem 6.8. Let I be a decomposable ideal. Let J1 . . . , Jk be primary
ideals and let I = ∩ki=1Ji be a minimal primary decomposition of I. Let
pi = r(Ji) (so that pi is a prime ideal). Then the following two sets of
prime ideals coincide:

• the set {pi}i∈{1,...,k};
• the set of prime ideals among those of type r(I : x) with x ∈ R.

Proof. Let x ∈ R. Note that (I : x) = ∩ki=1(Ji : x) and r(I : x) =
∩ki=1r(Ji : x). Hence by Lemma 6.6, we have r(I : x) = ∩i,x ̸∈Jipi.

Now suppose that r(I : x) is a prime ideal. Then r(I : x) = pi0 for
some i0 ∈ {1, . . . , k} by Proposition 6.1.

Conversely, note that for any i0 ∈ {1, . . . , k}, there exists an x ∈ R,
such that x ̸∈ Ji0 and such that x ∈ Ji for all i ̸= i0. This follows
from the minimality of the decomposition. For such an x, we have
r(I : x) = pi0 by the above. □

As a consequence of Theorem 6.8, we can associate with any decom-
posable ideal I in R a uniquely defined set of prime ideals. These prime
ideals are said to be associated with I. Note that the intersection of
these prime ideals is the ideal r(I). Another consequence is that any
radical decomposable ideal has a minimal primary decomposition by
prime ideals (so that in this case, the associated primes are the ele-
ments of the minimal primary decomposition itself). Furthermore, any
two minimal primary decompositions by prime ideals of a radical ideal
coincide.

Remark 6.9. One can show that any minimal primary decomposition
of a radical ideal consists only of prime ideals (without requiring a
priori that the primary decomposition consist of prime ideals, as in the
previous paragraph). This follows from the ’2nd uniqueness theorem’.
See [AM], p. 54, Cor. 4.11. In particular, a decomposable radical ideal
has a unique primary decomposition. We do not prove this in these
notes however.

Example 6.10. If n = ±pn1
1 · · · pnk

k ∈ Z, where the pi are distinct
prime numbers, a primary decomposition of (n) is given by

(n) = ∩ki=1(p
ni)

(apply the Chinese Remainder Theorem). The set of prime ideals as-
sociated to this decomposition is of course {(p1), . . . , (pk)}.

A more complex example is the ideal (x2, xy) ⊆ C[x, y]. Here

(x2, xy) = (x) ∩ (x, y)2

is a primary decomposition and the associated set of prime ideals is
{(x), (x, y)}. To see that we indeed have (x2, xy) = (x) ∩ (x, y)2 note



22 DAMIAN RÖSSLER (EDITED BY DAWID KIELAK)

that by construction, the ideal (x, y)2 consists of the polynomials of
the form x2P (x, y) + xyQ(x, y) + y2T (x, y). Thus (x)∩ (x, y)2 consists
of the polynomials x2P (x, y) + xyQ(x, y) + y2T (x, y) such that T (x, y)
is divisible by x. Hence (x) ∩ (x, y)2 ⊆ (x2, xy) and clearly we also
have (x2, xy) ⊆ (x) ∩ (x, y)2 so that (x2, xy) = (x) ∩ (x, y)2. To see
that the decomposition is primary, note that C[x, y]/(x) ≃ C[y] and
C[x, y]/(x, y) ≃ C. Thus (x) is prime and (hence primary) and (x, y)
is maximal, so that (x, y)2 is primary by Lemma 6.5.

Lemma 6.11. Let I be a decomposable ideal. Let S be the set of prime
ideals associated with some (and hence any) minimal primary decompo-
sition of I. Let I be the set of all the prime ideals of R, which contain
I. View S (resp. I) as partially ordered by the inclusion relation. Then
the minimal elements of S coincide with the minimal elements of I.

Proof. Clearly the minimal elements of I are also minimal elements
of S. We only have to show that the minimal elements of S are also
minimal in I. Let Smin ⊆ S (resp. Imin ⊆ I) be the set of minimal
elements of S (resp. I). Note first that by Theorem 6.8, we have
r(I) = ∩p∈Sp and thus we also have r(I) = ∩p∈Smin

p. Now let p0 ∈ Smin.
Suppose for contradiction that p0 ̸∈ Imin. Then there exists an element
p′0 ∈ I such that p′0 ⊂ p0. On the other hand, we have p′0 ⊇ I, so that
p′0 ⊇ p for some p ∈ Smin by Proposition 6.1. We conclude that p0 ⊂ p,
which contradicts the minimality of p0. Thus Smin = Imin. □

The elements of Smin are called the isolated or minimal prime ideals
associated with I whereas the elements of S ∖ Smin are called the em-
bedded prime ideals associated with I. This terminology is justified by
algebraic geometry. According to the last lemma, the isolated prime
ideals associated with I are precisely the prime ideals, which are min-
imal among all the prime ideals containing I.

In the second example given before Lemma 6.11, the set Smin consists
only of (x).

Note also the following important facts:
- if I is a decomposable radical ideal, then all the associated primes

of I (which coincide with the elements of the unique minimal primary
decomposition - see above) are isolated. This simply follows from the
fact that I has a minimal primary decomposition by prime ideals.

- if I is a decomposable ideal, there are only finitely many prime
ideals, which contain I and are minimal among all the prime ideals
containing I. These prime ideals are also the isolated ideals associated
with I.

We also record the following lemma, which makes no assumption of
decomposability.

Lemma 6.12. Let R be a ring. Let I ⊆ R be an ideal. Then there are
prime ideals, which are minimal among all the prime ideals containing
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I. Furthermore, if p ⊇ I is a prime ideal, then p contains such a prime
ideal.

Proof. Exercise. Use (and generalise) Q7 of sheet 1. □

END OF LECTURE 6

7. Noetherian rings

Let R be a ring. We say that R is noetherian if every ideal of R is
finitely generated. In other words, if I ⊆ R is an ideal of R, then there
are elements r1, . . . , rk such that I = (r1, . . . , rk).

Fields and PIDs are noetherian (why?). In particular, Z and C are
noetherian, and so is K[x], for any field K.

We shall see that many of the rings that we usually work with one
encounters are noetherian. In fact any finitely generated algebra over
a noetherian ring is noetherian (see below).

We begin with some generalities.

Lemma 7.1. The ring R is noetherian if and only if whenever I1 ⊆
I2 ⊆ . . . is an ascending sequence of ideals, there exists a k ⩾ 1 such
that Ik = Ik+i = ∪∞

t=1It for all i ⩾ 0.

Proof. “⇒”. Suppose first that R is noetherian. Let I1 ⊆ I2 ⊆ . . .
be an ascending sequence of ideals. The set ∪∞

t=1It is clearly an ideal
(verify) and it is finitely generated by assumption. A given finite set of
generators for ∪∞

t=1It lies in Ik for some k ⩾ 1. The conclusion follows.
“⇐”. Conversely, suppose that whenever I1 ⊆ I2 ⊆ . . . is an ascend-

ing sequence of ideals, there exists a k ⩾ 1 such that Ik = Ik+i = ∪∞
t=1It

for all i ⩾ 0. Let J ⊆ R be an ideal. We need to show that J is finitely
generated. For contradiction, suppose that J is not finitely generated.
Define a sequence r1, r2 · · · ∈ J by the following inductive procedure.
Let r1 ∈ J be arbitrary. Suppose that r1, . . . , ri ∈ J is given and
let ri+1 ∈ J\(r1, . . . , ri). Note that J\(r1, . . . , ri) ̸= ∅ for otherwise J
would be finitely generated. We then have an ascending sequence

(r1) ⊂ (r1, r2) ⊂ (r1, r2, r3) ⊂ . . .

which contradicts our assumptions. So J is finitely generated. □

Lemma 7.2. Let R be a noetherian ring and I ⊆ R an ideal. Then
the quotient ring R/I is noetherian.

Proof. Let q : R → R/I be the quotient map. Let J be an ideal of R/I.
The ideal q−1(J) is finitely generated by assumption and the image by
q of any set of generators of q−1(J) is a set of generators for J . □

Lemma 7.3. Let R be a noetherian ring and let S ⊆ R be a multi-
plicative subset. Then the ring RS is noetherian.
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Proof. Let λ : R → RS be the natural ring homomorphism. In the
proof of Lemma 5.6, we showed that for any ideal I of RS, the ideal
generated by λ(λ−1(I)) is I (see (ii) in the proof). The image of any
finite set of generators of λ−1(I) under λ is thus a finite set of generators
for I. □

Lemma 7.4. Let R be a noetherian ring. Let M be a finitely generated
R-module. Then any submodule of M is also finitely generated.

Proof. By assumption there is a surjective map of R-modules q : Rn →
M for some n ⩾ 0. To prove that a submodule N ⊆ M is finitely
generated, it is sufficient to prove that q−1(N) is finitely generated.
Hence we may assume that M = Rn. We now prove the statement
by induction on n. The case n = 1 is verified by assumption. Let
ϕ : Rn → R be the projection on the first factor. Let N ⊆ Rn be a
submodule. We then have an exact sequence

0 → N ∩Rn−1 → N → ϕ(N) → 0

whereRn−1 is viewed as a submodule ofRn via the map (r1, . . . , rn−1) 7→
(r1, . . . , rn−1, 0). Now ϕ(N) is finitely generated since ϕ(N) is an ideal
in R and N ∩ Rn−1 is finitely generated by the inductive hypothe-
sis. Let a1, . . . , ak ∈ N ∩ Rn−1 be generators of N ∩ Rn−1 and let
b1, . . . , bl ∈ ϕ(N) be generators of ϕ(N). Let b′1, . . . , b′l ∈ Rn be such
that ϕ(b′i) = bi for all i ∈ {1, . . . , l}. Then the set {a1, . . . , ak, b′1, . . . , b′l}
generates N (verify). □

Lemma 7.5. Let R be a noetherian ring. If I ⊆ R is an ideal, then
there is an integer t ⩾ 1 such that r(I)t ⊆ I. In particular, some power
of the nilradical of R is the 0 ideal.

Proof. By assumption, we have r(I) = (a1 . . . , ak) for some a1, . . . , ak ∈
R. By assumption again, there is an integer n ⩾ 1 such that ani ∈ I
for all i ∈ {1, . . . , k}. Let t = k(n− 1)+ 1. Then r(I)t ⊆ (an1 . . . , a

n
k) ⊆

I. □

The following theorem is one of the main justifications for the intro-
duction of the noetherian condition.

Theorem 7.6 (Hilbert basis theorem). Suppose that R is noetherian.
Then the polynomial ring R[x] is also noetherian.

Proof. Let I ⊆ R[x] be an ideal. The leading coefficients of the non-zero
polynomials in I form an ideal J of R (check). Since R is noetherian,
J has a finite set of generators, say a1, . . . , ak. For each i ∈ {1, . . . , k},
choose fi ∈ I such that fi(x) − aix

ni has degree lower than ni. Let
n = maxi ni. Let I ′ = (f1(x), . . . , fk(x)) ⊆ I be the ideal generated
by the polynomials fi(x). Let M consists of the polynomials in I of
degree less than n.
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Now let f(x) ba a polynomial in I ∖ (I ′ +M) of smallest possible
degree m, and take a ∈ R such that f − axm has degree lower than m.
By construction, we have a = r1a1+ · · ·+ rkak for some r1, . . . , rk ∈ R.

Suppose that m ⩾ n. The polynomial

f(x)− r1f1(x)x
m−n1 − · · · − rkfk(x)x

m−nk

is then of degree less than m (the leading terms cancel) and it also lies
in I. By minimality of m, this polynomial also lies in I ′, and hence
f(x) ∈ I ′. This is a contradiction, and we conclude that m < n, and so
f(x) ∈ M . This is another contradiction. The final conclusion is that
I =M + I ′.

Now M is an R-submodule of the R-module consisting of all poly-
nomials of degree less than n, and is thus finitely generated (as an
R-module) by Lemma 7.4. If we let g1(x), . . . , gt(x) ∈ M be a set of
generators, then the set g1(x), . . . , gt(x), f1(x), . . . , fk(x) is clearly a set
of generators of I (as an ideal). □

Some history. The German mathematician Paul Gordan, who was
active at the beginning of the 20th century, was the first to ask explicitly
(to my knowledge) whether Theorem 7.6 is true and considered this to
be a central question of a then very popular subject, called Invariant
Theory (which we do not have the time to describe here). As the name
of the theorem suggests, David Hilbert found the above simple proof.
Paul Gordan had presumably tried to tackle the problem directly, by
devising an algorithm that would provide a finite set of generators
for an ideal given by an infinite set of generators and did not think of
applying the abstract methods, which are used in Hilbert’s proof (which
is the above proof). The proof of Hilbert’s basis theorem is one of the
starting points of modern commutative algebra. Paul Gordan is said to
have quipped on seeing Hilbert’s proof that “Das is nicht Mathematik,
das ist Theologie!” (This is not mathematics, this is theology!). There
are nowadays more “effective” proofs of Hilbert’s basis theorem, using
so-called Groebner bases.

From Theorem 7.6, we deduce that R[x1, . . . , xk] is noetherian for
any k ⩾ 0. From this and Lemma 7.2, we deduce that every finitely
generated algebra over a noetherian ring is noetherian.

The following simple but remarkable result will be used later to give
a simple proof of the so-called weak Nullstellensatz. It also has several
other applications (see exercises).

Theorem 7.7 (Artin–Tate). Let T be a ring and let R, S ⊆ T be
subrings. Suppose that R ⊆ S and that R is noetherian. Suppose that
T is finitely generated as an R-algebra and that T is finitely generated
as a S-module. Then S is finitely generated as an R-algebra.

Proof. Let r1, . . . , rk be generators of T as an R-algebra. Let t1, . . . , tl
be generators of T as an S-module. By assumption, for any a ∈
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{1, . . . , k}, we can write

ra =
l∑

j=1

sjatj

where sj ∈ S. Similarly, for any b, d ∈ {1, . . . , k}, we can write

tbtd =
l∑

j=1

sjbdtj

where sjbd ∈ S. Let S0 be the R-subalgebra of S generated by all
the elements sja and sjbd. Since every element of T can be written as
an R-linear combination of products of some ra (with a ∈ {1, . . . , k}),
we see using the two formulae above that T is finitely generated as
a S0-module, with generators t1, . . . , tl. Furthermore, S0 is a finitely
generated R-algebra by construction. The R-algebra S is naturally an
S0-algebra, in particular a S0-module, and it is a S0-submodule of T .
Since R is noetherian, S0 is also noetherian (see after Theorem 7.6)
and since S is a submodule of a finitely generated S0-module, S is also
finitely generated as a S0-module by Lemma 7.4. In particular S is a
finitely generated S0-algebra, and since S0 is finitely generated over R,
so is S. □

Finally, we consider primary decompositions in noetherian rings.

Proposition 7.8 (Lasker–Noether). Let R be a noetherian ring. Then
every ideal of R is decomposable.

Proof. If I is an ideal of R, we shall say that I is irreducible if whenever
I1, I2 are ideals of R and I = I1 ∩ I2, we have either I = I1 or I = I2.

Claim. Let J ⊆ R be an ideal. Then there are irreducible ideals
J1, . . . , Jk such that J = ∩ki=1Jk.

We prove the claim. Let us say that an ideal is decomposable by
irreducible ideals (short: dic) if it is a finite intersection of irreducible
ideals. Suppose that J is not dic (otherwise we are done). In particular,
J is not irreducible and thus there are ideals M and N such that
M ∩ N = J and such that J ⊂ M and J ⊂ N . Since J is not dic,
we see that either N or M are not dic. Suppose without restriction of
generality that M is not dic. Repeating the same reasoning for M and
continuing we obtain a sequence of non dic ideals

J ⊂M ⊂M1 ⊂M2 ⊂ . . .

This contradicts Lemma 7.1. Thus J is dic.
Claim. An irreducible ideal is primary.
We prove the claim. Let J be an irreducible ideal and suppose that

J is not primary. Then there is an element x ∈ R/J , which is a zero
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divisor and is not nilpotent. Let q : R → R/J be the quotient map.
Consider the ascending sequence

Ann(x) ⊆ Ann(x2) ⊆ Ann(x3) ⊆ . . .

This sequence must stop by Lemma 7.1 and Lemma 7.2. So let us
suppose that

Ann(xk) = Ann(xk+1) = Ann(xk+2) = . . .

for some k ⩾ 1. Now consider the ideal (xk) ∩ Ann(xk). If λxk ∈
(xk) ∩Ann(xk) for some λ ∈ R/J then we have by definition λx2k = 0
and hence λ ∈ Ann(x2k). Since Ann(x2k) = Ann(xk) we then have
λxk = 0. Thus (xk) ∩ Ann(xk) = (0). On the other hand, note that
(xk) ̸= (0) and Ann(xk) ̸= 0 by construction. Thus we have J =
q−1((xk)) ∩ q−1(Ann(xk)) and q−1((xk)) ̸= J , q−1(Ann(xk))) ̸= J , a
contradiction. Thus J is primary.

The conjunction of both claims obviously proves the statement. □

Remark 7.9. A primary ideal is not necessarily irreducible. See exer-
cises.

Let R be a noetherian ring and let I ⊆ R be a radical ideal. As
explained after Theorem 6.8, a consequence of Proposition 7.8 is that
there is a unique set {q1 . . . , qk} of distinct prime ideals in R such that

• I = ∩ki=1qi;
• for all i ∈ {1, . . . , k} we have qi ̸⊇ ∩j ̸=iqj.

Furthermore, the set {q1, . . . , qk} is precisely the set of prime ideals
that are minimal among the prime ideals containing I.

In terms of the spectrum of R, V (I) is the union of the closed sets
V (qi). If R is the coordinate ring of an affine variety over an alge-
braically closed field, this decomposition is the classical decomposition
of a closed subvariety into its irreducible components.

In particular, if p1, . . . , pl is the set of minimal prime ideal of R, then
there is a natural injective homomorphism of rings

R/r((0)) ↪→
l∏

i=1

R/pi.

END OF LECTURE 7

8. Integral extensions

The notion of integral extension of rings is a generalisation of the
notion of algebraic extension of fields. We shall see below that an
extension of fields is integral if and only if it is algebraic.

Let B be a ring and let A ⊆ B be a subring. Let b ∈ B. We shall
say that b is integral over A if there is a monic polynomial P (x) =
xn + an−1x

n−1 + · · ·+ a0 ∈ A[x] such that

P (b) = bn + an−1b
n−1 + · · ·+ a0 = 0.
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We shall say that b is algebraic over A if there is a polynomial Q(x) ∈
A[x] (not necessarily monic) such that Q(b) = 0. Note that if A is a
field, b is algebraic over A if and only if it is integral over A (why?)
but this is not true in general.

If S ⊆ B is a subset, we write A[S] for the intersection of all the
subrings of B which contain A and S. Note that A[S] is naturally an
A-algebra.

Abusing notation slightly, we shall write A[b] for A[{b}] and more
generally A[b1, . . . , bk] for A[{b1, . . . , bk}]. Note that we have the ex-
plicit description

A[b1, . . . , bk] = {Q(b1, . . . , bk) | Q(x1, . . . , xk) ∈ A[x1, . . . , xk]}
and that we have

A[b1, . . . , bk] = A[b1][b2] . . . [bk]

(why?).

Proposition 8.1. Let R be a ring and let M be a finitely generated
R-module. Let ϕ : M → M be a homomorphism of R-modules. Then
there exists a monic polynomial Q(x) ∈ R[x] such that Q(ϕ) = 0.

Proof. By assumption, there is a surjective homomorphism ofR-modules
λ : Rn →M for some n ⩾ 0. Let b1, . . . , bn be the natural basis of Rn.
For each bi, choose an element vi ∈ Rn such that λ(vi) = ϕ(λ(bi)).
Define a homomorphism of R-modules ϕ̃ : Rn → Rn by the formula
ϕ̃(bi) = vi. By construction, we have λ ◦ ϕ̃ = ϕ ◦ λ and thus we have
λ ◦ ϕ̃n = ϕn ◦ λ for all n ⩾ 0. Hence it is sufficient to find a monic
polynomial Q(x) ∈ R[x] such that Q(ϕ̃) = 0. Hence we might assume
that M = Rn.

The homomorphism ϕ is now described by an n × n-matrix C ∈
Matn×n(R). We need to find a monic polynomial Q(x) ∈ R[x] such
that Q(C) = 0.

Let
h : Z[x11, x21, . . . , x21, x22, . . . , xnn] → R

be a ring homomorphism sending xij to cij. Let

D ∈ Matn×n(Z[x11, x21, . . . , x21, x22, . . . , xnn])
be a matrix, whose image under h is C. If we can exhibit a monic poly-
nomial T (x) ∈ (Z[x11, x21, . . . , x21, x22, . . . , xnn])[x] such that T (D) = 0
then the monic polynomial Q(x), whose coefficients are the images of
the coefficients of T (x) under h, will have the property that Q(C) = 0.
So we may assume that R = Z[x11, x21, . . . , x21, x22, . . . , xnn].

Let K be the fraction field of R. The natural homomorphism of rings
R → K is then injective, since R = Z[x11, x21, . . . , x21, x22, . . . , xnn] is
a domain. Hence we may view R as a subring of K. By the Cayley-
Hamilton theorem, the polynomial Q(x) = det(x · idn×n−C) ∈ K[x] is
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monic and it has the property that Q(C) = 0, when C is viewed as an
element of Matn×n(K). Since Q(x) is a polynomial in the coefficients
of C, it has coefficients in R. It thus has the required properties. □

Proposition 8.2. Let A be a subring of the ring B. Let b ∈ B and let
C be a subring of B containing A and b.

(1) If the element b ∈ B is integral over A then the A-algebra A[b]
is finitely generated as a A-module.

(2) If C is finitely generated as an A-module then b is integral.

Proof. We prove both statements in turn.
(1) if b is integral over A, we have

bn = −an−1b
n−1 − · · · − a1b− a0

for some ai ∈ A (where i ∈ {0, . . . , n − 1}). Hence bn+k is
in the A-submodule of B generated by 1, b, b2, . . . , bn−1 for all
k ⩾ 0. In particular A[b] is generated by 1, b, b2, . . . , bn−1 as an
A-module.

(2) Let [b] : C → C be the homomorphism of A-modules such that
[b](v) = b · v for all v ∈ C. By Proposition 8.1, there a polyno-
mialQ(x) = xn+an−1x

n−1+· · ·+a0 ∈ A[x] such thatQ([b]) = 0.
Hence Q([b])(1) = bn + an−1b

n−1 + · · · + a0 = 0. In particular,
b is integral over A. □

The following lemma and its proof is a generalisation of the tower
law (see the part B course on Galois Theory or the part A course on
Rings and Modules).

Lemma 8.3. Let ϕ : R → T be a homomorphism of rings and let N be
a T -module. If T is finitely generated as an R-module and N is finitely
generated as a T -module, then N is finitely generated as an R-module.

Proof. Let t1, . . . , tk ∈ T be generators of T as an R-module and let
l1, . . . ls be generators of N as a T -module. Then the elements tilj are
generators of N as an R-module. □

Corollary 8.4 (of Proposition 8.2). Let A be a subring of B. Let
b1, . . . , bk ∈ B be integral over A. Then the subring A[b1, . . . , bk] is
finitely generated as an A-module.

Proof. By Proposition 8.2 (i), A[b1] is finitely generated as anA-module,
A[b1, b2] = A[b1][b2] is finitely generated as aA[b1]-module, A[b1, b2, b3] =
A[b1][b2][b3] is finitely generated as a A[b1, b2]-module etc. Hence by
Lemma 8.3, A[b1, . . . , bk] is finitely generated as a A-module. □

Corollary 8.5 (of Corollary 8.4 and Proposition 8.2). Let A be a sub-
ring of the ring B. The subset of elements of B, which are integral
over A, is a subring of B.
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Proof. Let b, c ∈ B. Then b + c, bc ∈ A[b, c] and A[b, c] is a finitely
generated A-module by Corollary 8.4. Hence b + c and bc are integral
over A by Proposition 8.2 (ii). □

Let ϕ : A → B be a ring homomorphism (in other words B is an
A-algebra). We shall say that B is integral over A (or an integral A-
algebra) if all the elements of B are integral over the ring ϕ(A). We
shall say that B is finite over A (or a finite A-algebra) if B is a finitely
generated ϕ(A)-module. Proposition 8.2 and Corollary 8.4 show that
B is a finite A-algebra if and only if B is a finitely generated integral
A-algebra.

If A is a subring of a ring B, the set of elements of B, which are
integral over A, is called the integral closure of A in B. This set is a
subring of B by Corollary 8.5. If A is a domain and K is the fraction
field of K, we say that A is integrally closed if the integral closure of
A in K is A.

Example. Z and K[x] are integrally closed, if K is a field. Fields
are obviously integrally closed. The integral closure of Z in Q(i) is the
ring of Gaussian integers Z[i] (see exercises).

Lemma 8.6. Let A ⊆ B ⊆ C, where A is a subring of B and B is a
subring of C. If B is integral over A and C is integral over B, then C
is integral over A.

Proof. Let c ∈ C. By assumption, we have

cn + bn−1c
n−1 + · · ·+ b0 = 0

for some bi ∈ B. Let B′ = A[b0, . . . , bn−1]. Then c is integral over B′

and so B′[c] is finitely generated as a B′-module by Proposition 8.2 (i).
Hence B′[c] is finitely generated as an A-module by Corollary 8.4 and
Lemma 8.3. Hence c is integral over A by Proposition 8.2 (ii). □

Let A ⊆ B ⊆ C, where A is a subring of B and B is a subring of C.
A consequence of the previous lemma is that the integral closure in C
of the integral closure of A in B is the integral closure of A in C.

Lemma 8.7. Let A be a subring of B. Let S be a multiplicative subset
of A. Suppose that B is integral (resp. finite) over A. Then the natural
ring homomorphism AS → BS makes BS into an integral (resp. finite)
AS-algebra.

We first prove the integrality statement. Suppose that B is integral
over A. The ring homomorphism AS → BS arises from Lemma 5.1.
It is injective by Lemma 5.4 and Lemma 5.5 (injectivity can also be
established directly).

Proof. Let b/s ∈ BS, where b ∈ B and s ∈ S. By assumption we have

bn + an−1b
n−1 + · · ·+ a0 = 0
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for some ai ∈ A. Thus

(b/s)n + (an−1/s)(b/s)
n−1 + (an−2/s

2)(b/s)n−2 + · · ·+ a0/s
n

= (1/sn)(bn + an−1b
n−1 + · · ·+ a0) = 0/1.

In particular, b/s is integral over AS.
We now prove the finiteness statement. Suppose that a1, . . . , ak are

generators for B as an A-module. Then a1/1, . . . , ak/1 ∈ BS are gen-
erators of BS as an AS-module so BS is also finite over AS. □

END OF LECTURE 8

Theorem 8.8 (Going-Up Theorem). Let A be a subring of a ring B
and let ϕ : A → B be the inclusion map. Suppose that B is integral
over A. Then Spec(ϕ) : Spec(B) → Spec(A) is surjective.

This is only part of what is known as the Going-Up Theorem in the
literature.

To prove Theorem 8.8, we shall need the following lemma.

Lemma 8.9. Suppose that C is a subring of a ring D. Suppose that
D (and hence C) is a domain and that D is integral over C. Then D
is a field if and only if C is a field.

Proof. If either of the rings is zero, then so is the other, and the con-
clusion clearly holds. From now on we assume that C abs D are not
the zero ring.

“⇐”: Suppose that C is a field. Let d ∈ D ∖ {0}. We need to show
that d has an inverse in D. Let ϕ : C[t] → D be the C-algebra map
sending t on d. The kernel of this map is a prime ideal, since D is a
domain. Since non-zero prime ideals in C[t] are maximal (because C
is a field), we conclude that the image of ϕ contains an inverse of d.

“⇒”: Suppose that D is a field. Let c ∈ C ∖ {0}. We only have to
show that the inverse c−1 ∈ D lies in C. By assumption, D is integral
over C so there is a polynomial P (t) = tn + an−1t

n−1 + · · ·+ a0 ∈ C[t]
such that P (c−1) = 0. Thus we have cn−1 · P (c−1) = 0, i.e.,

c−1 + an−1 + · · ·+ a0c
n−1 = 0

which implies that c−1 ∈ C. □

We record the following consequence of Lemma 8.9:

Corollary 8.10 (of Lemma 8.9). Let A be a subring of a ring B and
let ϕ : A→ B be the inclusion map. Suppose that B is integral over A.
Let q be a prime ideal of B. Then q∩A is a maximal ideal of A if and
only if q is a maximal ideal of B.

Proof. The induced map A/(q∩A) → B/q is injective and makes B/q
into an integral A/(q∩A)-algebra. Since both A/(q∩A) and B/q are
domains, the conclusion follows from Lemma 8.9. □
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Proof. (of Theorem 8.8) Write Bp for the localisation Bϕ(A\p) of the
ring B at the multiplicative set ϕ(A\p). Note that by Lemma 5.5, Bp

is isomorphic to the localisation of B at p, when B is viewed as an A-
module. By Lemma 5.1, we thus obtain a unique ring homomorphism
ϕp : Ap → Bp such that ϕp(a/1) = ϕ(a)/1. Write λA : A → Ap

and λB : B → Bp for the natural ring homomorphisms. We have
λB ◦ ϕ = ϕp ◦ λA (check) and thus we obtain a commutative diagram

Spec(Bp)
Spec(λB)

//

Spec(ϕp)

��

Spec(B)

Spec(ϕ)

��

Spec(Ap)
Spec(λA)

// Spec(A)

By Lemma 5.7, p is the image of the maximal ideal m of Ap under the
map Spec(λA). Thus it is sufficient to show that there is a prime ideal
q in Bp such that ϕ−1

p (q) = Spec(ϕp)(q) = m. Let q be any maximal
ideal of Bp (this exists by Lemma 2.4). Note that the ring Bp is integral
over Ap by Lemma 8.7. Thus Corollary 8.10 implies that ϕ−1

p (q) is a
maximal ideal of Ap. Since Ap is a local ring, we have m = ϕ−1

p (q). □

Corollary 8.11. Let ϕ : A→ B be a homomorphism of rings. Suppose
that B is integral over A. Then the map Spec(ϕ) : Spec(B) → Spec(A)
is closed (i.e., it sends closed sets to closed sets).

Proof. Let a be an ideal of B. We have to show that Spec(ϕ)(V (a))
is closed in Spec(A). Let qa : B → B/a be the quotient map and let
µ = qa ◦ϕ : A→ B/a. Let qµ : A→ A/ker(µ) be the quotient map and
let ψ : A/ker(µ) → B be the ring homomorphism induced by µ. We
have the following commutative diagram:

A
ϕ

//

µ

%%

qµ
��

B

qa
��

A/ker(µ)
ψ

// B/a

Since B is integral over A, B/a is also integral over A/ker(µ). Fur-
thermore, the map ψ is injective by construction. By Theorem 8.8,
we thus have Spec(ψ)(Spec(B/a)) = Spec(A/ker(µ)). Furthermore, by
Lemma 4.2, we have

Spec(qa)(Spec(B/a)) = V (a)

and
Spec(qµ)(Spec(A/ker(µ)) = V (ker(µ)).

Thus Spec(ϕ)(V (a)) = V (ker(µ)), which is closed. □

Note that the previous corollary shows in particular (although this
is easier to prove) that if ϕ : A → B is surjective, then Spec(ϕ) is a
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closed map. In particular, since Spec(ϕ) is injective and continuous in
that case (by Lemma 4.2), it is a homeomorphism onto its image.

Proposition 8.12. Let ϕ : A → B be a ring homomorphism and sup-
pose that B is finite over A. Then the map Spec(ϕ) has finite fibres
(i.e., for any p ∈ Spec(A), the set Spec(ϕ)−1({p}) is finite).

Proof. Let q : A → A/ker(ϕ) be the quotient map. The map Spec(q)
has finite fibres by Lemma 4.2 (since it is injective), so we may replace
A by A/ker(ϕ) and suppose that A is a subring of B. Let p be a prime
ideal of A. We have to show that there are finitely many prime ideals
q in B such that q ∩ A = p.

Let p̄ be the ideal of B generated by p. Let q : A → A/p (resp.
q̄ : B → B/p̄) be the quotient map. Let ψ : A/p → B/p̄ be the ring
homomorphism induced by ϕ.

By construction, we have a commutative diagram

Spec(B/p̄)

Spec(ψ)

��

Spec(q̄)
// Spec(B)

Spec(ϕ)

��

Spec(A/p)
Spec(q)

// Spec(A)

Since any prime ideal q ∈ Spec(B) such that q ∩ A = p has the
property that q ⊇ p̄, we see (using Lemma 4.2) that any such prime
ideal lies in the image of Spec(q̄). The corresponding prime ideals of
Spec(B/p̄) are the prime ideals I such that ψ−1(I) = (0). We thus
have to show that Spec(ψ)−1((0)) is a finite set.

Now let S = (A/p)∖{0}. This is a multiplicative set. Let λA/p : A/p →
(A/p)S and let λB/p̄ : B/p̄ → (B/p̄)ψ(S) be the natural ring homomor-
phisms. There is also a natural ring homomorphism ψS : (A/p)S →
(B/p̄)ψ(S), which is compatible with λA/p and λB/p̄ (see Lemma 5.5).
We thus obtain a diagram

Spec((B/p̄)ψ(S))

Spec(ψS)

��

Spec(λB/p̄)
// Spec(B/p̄)

Spec(ψ)

��

Spec((A/p)S)
Spec(λA/p)

// Spec(A/p)

Now notice that if q ∈ Spec(B/p̄) then ψ−1(q) = (0) if and only
if q ∩ ψ(S) = ∅. In particular, any such ideal lies in the image of
Spec(λB/p̄).

It is thus sufficient to prove that the map Spec(ψS) has finite fibres.
Notice now that A/p is a domain (since p is a prime ideal) and that

(A/p)S is none other than the fraction field of A/p.
Note further that we may assume that p̄ ∩ A = p, or in other words

that ψ is injective. Indeed, if there is a prime ideal q ∈ Spec(B) such
that q ∩ A = p, then p̄ ∩ A ⊆ q ∩ A = p. Since we of course have
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p̄∩A ⊇ p we then have p̄∩A = p. So either we have p̄∩A = p or there
are no prime ideals q ∈ Spec(B) such that q ∩ A = p (in which case,
there is nothing to prove – and this is contradicted by Theorem 8.8
anyway).

Now, since B is finite over A, B/p̄ is also finite over A/p and fur-
ther, applying Lemma 8.7, we see that (B/p̄)ψ(S) is finite over (A/p)S.
In other words, (B/p̄)ψ(S) is a finite-dimensional (A/p)S-vector space.
Write K = (A/p)S. If q is a prime ideal in (B/p̄)ψ(S), then (B/p̄)ψ(S)/q
is a domain, which is finite over the field K and it is thus a field by
Lemma 8.9. Thus q is maximal. So we only have to show that (B/p̄)ψ(S)
has finitely many maximal ideals. Let q1, . . . , qk be any distinct max-
imal ideals of (B/p̄)ψ(S). By the Chinese remainder theorem, we have
a surjective homomorphism of K-algebras

(B/p̄)ψ(S) →
k∏
i=1

(B/p̄)ψ(S)/qi

and each (B/p̄)ψ(S)/qi is a K-algebra, which has dimension > 0 as K-
vector space. Hence (B/p̄)ψ(S) has dimension at least k as a K-vector
space. Hence there are at most dimK((B/p̄)ψ(S)) prime (and therefore
maximal) ideals in (B/p̄)ψ(S). □

END OF LECTURE 9

9. The Noether normalisation lemma and Hilbert’s
Nullstellensatz

Noether’s normalisation lemma shows that any finitely generated
algebra over a field can be “approximated” by a polynomial ring, up
to a finite injective homomorphism (see below for the definition). In
terms of affine varieties, in says that for any affine variety, there is a
finite surjective map from the variety to some affine space.

Theorem 9.1 (Noether’s normalisation lemma). Let K be a field and
let R be a non zero finitely generated K-algebra. Then there exists an
injective homomorphism of K-algebras

K[y1, . . . , yt] → R

for some t ⩾ 0 (where we set K[y1, . . . , yt] = K if t = 0), such that R
is finite as a K[y1, . . . , yt]-module.

The idea of the proof is as follows. It is easy to see that there is
an injective homomorphism of algebras K[y1, . . . , yt] → R so that R is
algebraic over K[y1, . . . , yt]. The proof of the normalisation lemma ba-
sically considers such a homomorphism and tweaks it, using properties
of polynomials, so that R becomes integral over K[y1, . . . , yt].
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Proof. We will only prove this result in the situation where K is infi-
nite. For a proof in the situation where K is finite, see H. Matsumura,
Commutative Algebra, 2nd ed., Benjamin 1980 (14.G).

Let r1, . . . , rn ∈ R be a set of generators of minimal size (i.e., n is
minimal) for R as a K-algebra. We proceed by induction on n. If
n = 1 then either R ≃ K[x] or R ≃ K[x]/I for some proper ideal I
in K[x]. In the first case, we may set t = 1 in the theorem and in the
second case we may set t = 0 (the K-dimension of K[x]/I is bounded
above by the degree of any non-zero polynomial in I). So the theorem
is proved when n = 1. So suppose that n > 1 and that the theorem
holds for n− 1.

Up to renumbering the generators, we may assume that there is a
k ∈ {1, . . . , n} such that for all i ∈ {1, . . . , k}, ri is not algebraic over
K[r1, . . . , ri−1] (where we set K[r1, . . . , ri−1] = K if i = 1) and such
that rk+i is algebraic over K[r1, . . . , rk] for all i ∈ {1, . . . , n−k} (where
we set {1, . . . , n− k} = ∅ if k = n).

Indeed, we may assume that not all the elements of {r1, . . . , rn} are
algebraic overK, for then they would all be integral overK (sinceK is a
field) and we could then set t = 0 in the theorem by Corollary 8.4. To
find a suitable renumbering, choose one generator ri1 ∈ {r1, . . . , rk},
which is not algebraic over K and then look for a second generator
ri2 ∈ {r1, . . . , rk}, which is not algebraic over K[ri1 ]. If this does not
exist then renumber the remaining generators in an arbitrary way. Oth-
erwise, let ri2 ∈ {r1, . . . , rk} be such a generator and look for a gener-
ator ri3 , which is not algebraic over K[ri1 , ri2 ]. Keep going in this way
until all the remaining generators are algebraic over the K-algebra gen-
erated by the previous ones, and renumber the remaining generators in
an arbitrary way.

Now we may assume that k < n, for otherwise we may set t = k = n
in the theorem. The generator rn is thus algebraic over K[r1, . . . , rn−1].
Let P1(x) ∈ K[r1, . . . , rn−1][x] be a non zero polynomial (not necessar-
ily monic) such that P1(rn) = 0. Since K[r1, . . . , rn−1] is the image
of the polynomial ring K[x1, . . . , xn−1] by the homomorphism of K-
algebras sending xi to ri, there is a non zero polynomial

P (x1, . . . , xn) ∈ K[x1, . . . , xn−1][xn] = K[x1, . . . , xn]

such that P (r1, . . . , rn) = 0. Let F (x1, . . . , xn) be the sum of the mono-
mials of degree d = deg(P ) which appear in P (so that in particular
deg(P − F ) < d). Choose λ1, . . . , λn−1 ∈ K such that

F (λ1, . . . , λn−1, 1) ̸= 0.

To see why the λi exist, note that since F is a homogenous poly-
nomial, the polynomial F (x1, . . . , xn−1, 1) is a sum of homogenous
polynomials of distinct degrees and thus is not the zero polynomial.
Hence F (x1, . . . , xn−1, 1) must be non-zero for some specific values of
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x1, . . . , xn−1, because a non-zero polynomial with coefficients in an in-
finite field cannot evaluate to 0 for all the values of its variables (why?
– exercise).

Now let ui = ri − λirn for all i ∈ {1, . . . , n− 1}. We compute

0 = P (r1, . . . , rn)

= P (u1 + λ1rn, u2 + λ2rn, . . . , un−1 + λn−1rn, rn)

= F (λ1, . . . , λn−1, 1)r
d
n + F1(u1, . . . , un−1)r

d−1
n + · · ·+ Fd(u1, . . . , un−1)

for some polynomials F1, . . . , Fd in the variable ui, obtained by grouping
together the terms by powers of rn.

Thus, setting µ = (F (λ1, . . . , λn−1, 1))
−1 ∈ K we obtain

rdn + µF1(u1, . . . , un−1)r
d−1
n + · · ·+ µFd(u1, . . . , un−1) = 0

and we see that rn is integral over K[u1, . . . , un−1]. Now, by the induc-
tive hypothesis, there exists an injective homomorphism of K-algebras

K[y1, . . . , yt] → K[u1, . . . , un−1]

for some t ⩾ 0, such that K[u1, . . . , un−1] is integral over K[y1, . . . , yt].
Hence

R = K[r1, . . . , rn] = K[u1, . . . , un−1][rn]

is integral over K[y1, . . . , yt] by Lemma 8.6. □

Noether’s normalisation lemma has the following fundamental corol-
lary.

Corollary 9.2 (weak Nullstellensatz). Let K be a field and let R be
a finitely generated K-algebra. Suppose that R is a field. Then R is
finite over K (i.e., R is a finite-dimensional K-vector space).

Proof. Let
K[y1, . . . , yt] → R

be as in Noether’s normalisation lemma. Recall that by Theorem 8.8,
the map Spec(R) → Spec(K[y1, . . . , yt]) is surjective. Now Spec(R) has
only one element, since R is a field. Hence Spec(K[y1, . . . , yt]) has only
one element. Thus t = 0, because for any t ⩾ 1, Spec(K[y1, . . . , yt])
has more than one element.

To see this, suppose t ⩾ 1 and note first that the ring K[y1, . . . , yt]
has the prime ideal (0) since it is a domain. Also, the element y1 is not
a unit and it is thus contained in a maximal ideal (use Lemma 2.4),
which is not equal to (0), since y1 ̸= 0. Hence K[y1, . . . , yt] has at least
two prime ideals (in fact it has infinitely many but we do not need this
here).

We conclude that R is integral over K. Since R is also finitely
generated over K, it must be finite over K (see after Corollary 8.5). □

END OF LECTURE 10
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The weak Nullstellensatz has the following corollaries, which are of
fundamental importance in algebraic geometry.

Corollary 9.3. Let K be an algebraically closed field. Let t ⩾ 1.
Then an ideal I of K[x1, . . . , xt] is maximal if and only if it has the
form (x1 − a1, . . . , xt − at) for some a1, . . . , at ∈ K. A polynomial
Q(x1, . . . , xt) ∈ K[x1, . . . , xt] lies in (x1 − a1, . . . , xt− at) if and only if
Q(a1, . . . , at) = 0.

Proof. We first prove the first statement.
“⇐” The ideal (x1 − a1, . . . , xt − at) is the kernel of the evaluation

map
K[x1, . . . , xn] → K, p(x1, . . . , xn) 7→ p(a1, . . . , an);

the map is a ring epimorphism onto a field, and hence its kernel is a
maximal ideal.

“⇒”: Suppose that I is maximal. Note that K[x1, . . . , xt]/I is a field,
which is also a finitely generated K-algebra. Hence, by Corollary 9.2,
K[x1, . . . , xt]/I is finite, and it particular algebraic over K. Since K
is algebraically closed, this implies that K[x1, . . . , xt]/I is isomorphic
to K as a K-algebra. Let ϕ : K[x1, . . . , xt] → K be the induced homo-
morphism of K-algebras (obtained by composing the isomorphism with
the quotient map K[x1, . . . , xt] → K[x1, . . . , xt]/I). By construction,
the ideal I contains the ideal

(x1 − ϕ(x1), . . . , xt − ϕ(xt)).

Since the ideal (x1 − ϕ(x1), . . . , xt− ϕ(xt)) is also maximal by the first
part, we must have

I = (x1 − ϕ(x1), . . . , xt − ϕ(xt)).

For the second statement, note that the homomorphism ofK-algebras
ψ : K[x1, . . . , xt] → K, such that ψ(P (x1, . . . , xt)) = P (a1, . . . , at), is
surjective and ker(ψ) ⊇ (x1 − a1, . . . , xt − at). In particular, ker(ψ)
is maximal, and we must have ker(ψ) = (x1 − a1, . . . , xt − at), since
(x1 − a1, . . . , xt − at) is maximal by the first part. □

Corollary 9.4. Let K be a field. Let R be a finitely generated K-
algebra. Then R is a Jacobson ring.

Proof. Let I ⊆ R be an ideal. We need to show that the Jacobson
radical of I of R coincides with the radical of I. In other words, we
need to show that the nilradical of R/I coincides with the Jacobson
radical of the zero ideal in R/I. Since R/I is also finitely generated
over K, we may thus replace R by R/I and suppose that I = 0.

Let f ∈ R and suppose that f is not nilpotent. We need to show
that there exists a maximal ideal m in R, such that f ̸∈ m. Let S =
{1, f, f 2, . . . }. Since f is not nilpotent, we have fk · f ̸= 0 for all k ⩾ 0
(setting f 0 = 1) and thus the localisation RS is not the zero ring. Let
q be a maximal ideal of RS (this exists by Lemma 2.4). Since RS is
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a finitely generated K-algebra (see Lemma 5.3), the quotient RS/q is
also finitely generated over K. Thus, by Corollary 9.2, the canonical
homomorphism of rings K → RS/q (giving the K-algebra structure)
makes RS/q into a finite field extension of K. Let ϕ : R → RS/q be
the homomorphism of K-algebras obtained by composing the natural
homomorphism R → RS with the homomorphism RS → RS/q. The
image im(ϕ) of ϕ is a domain (since RS/q is a domain, being a field),
which is integral over K (since RS/q is integral over K, being finite over
K - see after Corollary 8.5) and thus im(ϕ) is a field by Lemma 8.9.
Thus ker(ϕ) is a maximal ideal of R. On the other hand, ker(ϕ) is
by construction the inverse image of q by the natural homomorphism
R → RS. Since f/1 is a unit in RS, we have f/1 ̸∈ q and thus
f ̸∈ ker(ϕ). Thus we may set m = ker(ϕ). □

The following corollary also contains a definition.

Corollary 9.5 (strong Nullstellensatz). Let K be an algebraically closed
field. Let t ⩾ 1 and let I ⊆ K[x1, . . . , xt] be an ideal. Let

Z(I) = {(c1, . . . , ct) ∈ Kn | P (c1, . . . , cn) = 0 for all P ∈ I}
Let Q(x1, . . . , xt) ∈ K[x1, . . . , xt]. Then Q ∈ r(I) if and only if

Q(c1, . . . , ct) = 0

for all (c1, . . . , ct) ∈ Z(I).

The strong Nullstellensatz implies that the set of simultaneous roots
of a set of polynomials determines the radical of the ideal generated by
the set of polynomials.

Proof. Let R = K[x1, . . . , xt]. The implication “⇒” is straightforward.
We prove the implication “⇐”. Let Q(x1, . . . , xt) ∈ K[x1, . . . , xt] and

suppose that Q(c1, . . . , ct) = 0 for all (c1, . . . , ct) ∈ Z(I). Suppose for
contradiction that Q ̸∈ r(I). Since R is a Jacobson ring (by Corol-
lary 9.4), there exists a maximal ideal m in R, such that m ⊇ I and
Q ̸∈ m. By Corollary 9.3, we have m = (x1−a1, . . . , xt−at) for some ai
(where i ∈ {1, . . . , t}). By construction, we have P (a1, . . . , at) = 0 for
all P ∈ m and hence for all P ∈ I. In other words, (a1, . . . , at) ∈ Z(I).
By the second statement in Corollary 9.3, we see thatQ(a1, . . . , at) ̸= 0.
This is a contradiction, so Q ∈ r(I). □

10. Jacobson rings

In this section, we collect more consequences of the weak Nullstel-
lensatz and we show that the property of being a Jacobson ring is a
very stable property. See Theorem 10.5 below. We also give an al-
ternative proof of the weak Nullstellensatz, based of the Artin–Tate
Theorem (Theorem 7.7), which does not depend on Noether’s normali-
sation lemma. This shows in particular that the proof of Theorem 10.5
below can be made independent of Noether’s normalisation lemma. In
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the situation where the ring is noetherian, it can even be made inde-
pendent of the more difficult results of the theory of integral extensions
(like Theorem 8.8).

New proof of the weak Nullstellensatz (Corollary 9.2). For this, we shall
need the following lemma.

Lemma 10.1. Let K be a field. Let t ⩾ 1 and let P (x1, . . . , xt) ∈
K[x1, . . . , xt] be a non-zero polynomial. Then there exists a non zero
prime ideal in K[x1, . . . , xt], which does not contain P (x1, . . . , xt).

Proof. Let L = K(x1, . . . , xt−1) be the quotient field of K[x1, . . . , xt−1]
(where we set L = K if t = 1). Let

ι : K[x1, . . . , xt] = K[x1, . . . , xt−1][xt] → L[xt]

be the natural injective map. If we can find a prime ideal p in L[xt]
such that ι(P ) ̸∈ p, then the prime ideal ι−1(p) will not contain P , so
we may assume that t = 1.

Let us write xt = x1 = x so that K[x1, . . . , xt] = K[x]. We may
assume without restriction of generality that P (x) is monic (why?). We
may also assume that P (x) is not constant (otherwise, any maximal
ideal of K[x] will do).

Let Q be an irreducible factor of 1 + P . Then the ideal (Q) does
not contain P because otherwise 1 = 1 + P − P ∈ (Q), and hence Q
is not prime, as it is not proper. Since Q is irreducible, the ideal (Q)
is prime and therefore the ideal (Q) satisfies the requirements of the
lemma. □

Now to the proof of the weak Nullstellensatz. Let K be a field and
let R be a finitely generated K-algebra. Suppose that R is a field.
We want to show that R is finite over K. Let r1, . . . , rk be generators
of R over K. Suppose that the ri are numbered in such a way that
the elements r1, . . . , rl are algebraically independent over K for some
l ∈ {0, . . . k} (in particular, the set r1, . . . , rl might be empty) and so
that rk+i is algebraic over K(r1, . . . , rl) for all i ∈ {1, . . . k − l}. Recall
that to say that the generators r1, . . . , rl are algebraically independent
means that the homomorphism of K-algebras from K[x1, . . . , xl] to R,
which sends xi to ri for all i ∈ {1, . . . , l}, is injective. This renum-
bering can be carried out as in the proof of Noether’s normalisation
lemma. We may assume that l ⩾ 1, for otherwise R is a finite field
extension of K (since R would be then an integral and finitely gen-
erated K-algebra) and there is nothing to prove. Since R is a field,
the quotient field L ≃ K(x1, . . . , xl) of K[x1, . . . , xl] ≃ K[r1, . . . , rl]
can be viewed as a subfield of R (ie, the subfield K(r1, . . . , rl)). Now
note that R is generated by rl+1, . . . , rk as an L-algebra and that the
rl+i (i ∈ {1, . . . , k − l}) are algebraic over L, since they are algebraic
over K(r1, . . . , rl). Since L is a field, the rl+i are actually integral
over L and hence R is a finite field extension of L. We deduce from
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the Theorem of Artin–Tate (Theorem 7.7) that L is finitely gener-
ated over K. In particular, K(x1, . . . , xl) ≃ L is finitely generated as a
K[x1, . . . , xl]-algebra. Let P1(x)/Q1(x), . . . , Pa(x)/Qa(x) be generators
of K(x1, . . . , xl) as a K[x1, . . . , xl]-algebra. Let Q(x) =

∏a
i=1Qi(x) and

let S = {1, Q(x), Q2(x), . . . }. Since K[x1, . . . , xl] is a domain, the lo-
calised ring K[x1, . . . , xl]S can be viewed as a subring of K(x1, . . . , xl).
Furthermore, since every element of K(x1, . . . , xl) can now be written
as a quotient R(x)/Qb(x) for some b ⩾ 0, we see that K[x1, . . . , xl]S =
K(x1, . . . , xl). Since K(x1, . . . , xl) has only one prime ideal, namely
the zero ideal, we conclude from Lemma 5.6 that every non zero prime
ideal of K[x1, . . . , xl] contains Q(x). This contradicts Lemma 10.1. We
conclude that l = 0, so that R is finite over K. □

The Jacobson property enters the proof of Theorem 10.5 via the
following lemma.

Lemma 10.2. Let R be a Jacobson ring. Suppose that R is a domain.
Let b ∈ R and let S = {1, b, b2, . . . }. Suppose that RS is a field. Then
R is a field.

Proof. We know from Lemma 5.6 that the prime ideals of R, which do
not meet b are in one to one correspondence with the prime ideals of
RS. Since RS is a field, there is only one such ideal in R, namely the
0 ideal. Hence every non zero prime ideal of R meets b. Now suppose
for a moment that (0) is not a maximal ideal of R. Since (0) is its own
radical (since R is a domain) and since R is Jacobson, the ideal (0) is
the intersection of all the non zero maximal ideals of R. However, we
just saw that this intersection contains b, which is a contradiction. So
(0) must be a maximal ideal of R. Hence R is a field (why?). □

Corollary 10.3. Let T be a field and let R ⊆ T be a subring. Suppose
that R is a Jacobson ring. Suppose that T is finitely generated over R.
Then R is a field. In particular, T is finite over R.

Proof. LetK ⊆ T be the fraction field of R. Note that by Corollary 9.2,
T is a finite extension of K. Let t1, . . . , tk ∈ T be generators of T as
an R-algebra. Let

Pi(x) = xdi + (ai,di−1/bi,di−1)x
di−1 + · · ·+ ai,0/bi,0 ∈ K[x]

be a monic polynomial with coefficients in K, which annihilates ti (this
exists since T is integral over K). Let b =

∏k
i=1

∏di
j=1 bi,di−j. Let

S = {1, b, b2, . . . }. Then there is a natural injective homomorphism
of R-algebras from RS into K, because R is a domain (check) and we
view RS as a sub-R-algebra of K. By construction, T is generated by
the ti as an RS-algebra and the elements ti are integral over RS. Hence
T is finite over RS. Lemma 8.9 now implies that RS is a field. Finally,
Lemma 10.2 implies that R is a field. □
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Second proof of Corollary 10.3 in the noetherian situation. We will sup-
pose that R is noetherian. Let K ⊆ T be the fraction field of R. By
Corollary 9.2, T is a finite extension of K. Then K is finitely gen-
erated over R by Theorem 7.7. But then K has the form RS′ for a
multiplicative set S ′ generated by an element of R (which can be taken
to be the product of the denominators of a finite set of generators of
K over R – we leave the details to the reader). Hence R is a field by
Lemma 10.2. □

Corollary 10.4. Let ψ : R → T be a homomorphism of rings. Suppose
that R is Jacobson and that T is a finitely generated R-algebra. Let m
be a maximal ideal of T . Then ψ−1(m) is a maximal ideal of R and the
induced map R/ψ−1(m) → T/m makes T/m into a finite field extension
of R/ψ−1(m).

Proof. Note that T/m is a field which is finitely generated overR/ψ−1(m).
Also, R/ψ−1(m) is a Jacobson ring, since it is the quotient of a Jacobson
ring. Thus Corollary 10.3 implies the result. □

Theorem 10.5. A finitely generated algebra over a Jacobson ring is
Jacobson.

Proof. The beginning of the proof is similar to the proof of Corol-
lary 9.4.

Let R be a Jacobson ring and let T be a finitely generated R-algebra.
Let I ⊆ T be an ideal. We need to show that the Jacobson radical

of I of T coincides with the radical of I. In other words, we need to
show that the nilradical of T/I coincides with the Jacobson radical of
the zero ideal in T/I. Since T/I is also finitely generated over R, we
may thus replace T by T/I and suppose that I = 0.

Let f ∈ T and suppose that f is not nilpotent. We need to show
that there exists a maximal ideal m in T , such that f ̸∈ m. Let S =
{1, f, f 2, . . . }. Since f is not nilpotent, we have fk · f ̸= 0 for all
k ⩾ 0 (setting f 0 = 1) and thus the localisation TS is not the zero ring.
Let q be a maximal ideal of TS (this exists by Lemma 2.4). Since TS
is a finitely generated R-algebra (see Lemma 5.3), the quotient TS/q
is also finitely generated over R. Let ϕ : R → TS/q be the canonical
ring homomorphism. From Corollary 10.4, we deduce that ker(ϕ) is a
maximal ideal and that TS/q is a finite field extension of R/ker(ϕ).

Now consider the map Φ : T → TS/q which is the composition of the
natural map T → TS with the quotient map. The image im(Φ) of ϕ is
an R-subalgebra, and hence R/ker(ϕ)-subalgebra, of TS/q. Since TS/q
is integral over R/ker(ϕ), we see that im(Φ) is integral over R/ker(ϕ)
and hence im(Φ) is a field by Lemma 8.9. In other words, ker(Φ) is a
maximal ideal of T . Finally, note that ker(Φ) is by construction the
inverse image of q by the natural homomorphism T → TS and that
f/1 ̸∈ q, since f/1 is a unit in TS. Thus we have f ̸∈ ker(Φ). We
conclude that we may set m = ker(Φ). □
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The ring Z is Jacobson (prove this). Hence any finitely generated
algebra over Z is a Jacobson ring.

END OF LECTURE 11

11. Dimension

The dimension of a ring R is an invariant of a ring, whose definition
is inspired by algebraic geometry. If R is the coordinate ring of an
affine algebraic variety over an algebraically closed field, the dimension
of R is the ordinary dimension of the variety.

Here is the formal definition.

Definition 11.1. Let R be a ring. The dimension of R is

dim(R) = sup{n | p0 ⊃ p1 ⊃ · · · ⊃ pn, p0, . . . , pn ∈ Spec(R)}.

Let p be a prime ideal of R. The codimension (also called height) of p
is

ht(p) = sup{n | p ⊃ p1 ⊃ · · · ⊃ pn, p1, . . . , pn ∈ Spec(R)}.

Note that the dimension of R as well as the codimension of p might
be infinite. From the definitions, we see that if q is a prime ideal and
q ⊂ p then we have ht(p) > ht(q), provided ht(p) <∞.

Let R be a ring. If N is the nilradical of R, then N is contained in
every prime ideal of R and thus

dim(R) = dim(R/N)

and
ht(p (modN)) = ht(p)

for any prime ideal p of R (where p (modN) is the image of p in R/N).
Note finally that from the definitions, we have

dim(R) = sup{ht(p) | p ∈ Spec(R)}.

More generally, for any ideal I ⊆ R, we clearly have dim(R) ⩾ dim(R/I).

Lemma 11.2. Let R be a ring and let p ∈ Spec(R). Then ht(p) =
dim(Rp). Also, we have

dim(R) = sup{ht(p) | p a maximal ideal of R}.

Proof. Recall that the prime ideals of Rp are in one to one correspon-
dence with the prime ideals contained in p by Lemma 5.6. Furthermore
this correspondence preserves inclusion. The first equality follows di-
rectly from this. For the second one, note that by definition, we have

dim(R) ⩾ sup{ht(p) | p a maximal ideal of R}
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so we only have to establish the reverse inequality. To establish this,
let p be a prime ideal, which is not maximal. Consider a chain of prime
ideals

p ⊃ p1 ⊃ · · · ⊃ pn,

and let m be a maximal ideal containing p. We then have a chain

m ⊃ p ⊃ p1 ⊃ · · · ⊃ pn.

Hence ht(m) > ht(p) and thus we clearly have

sup{ht(p) | p ∈ Spec(R) maximal} ⩾ sup{ht(p) | p ∈ Spec(R)}
= dim(R). □

Note that Lemma 11.2 has in particular the following consequence.
Let R be a ring and let S be a multiplicative subset of R. Let p
be a prime ideal of RS and let λ : R → RS be the natural ring ho-
momorphism. Then ht(p) = ht(λ−1(p)) (use the second remark after
Lemma 5.6).

If R is a ring and I ⊆ R is an ideal, we define the codimension or
height ht(I) of I as follows:

ht(I) = min{ht(p) | p ∈ Spec(R), p ⊇ I}.
(this generalises the definition of the height of a prime ideal given
above).

From the definition, we see that if J is another ideal and J ⊆ I, then
ht(J) ⩽ ht(I).

If ht(I) <∞, there is a prime ideal p, which is minimal among all the
prime ideals containing I, and such that ht(p) = ht(I). This follows
directly from the definitions.

The next two subsections contain some preliminary results (which
are also of independent interest) that we shall need before we resume
the study of dimension in Section 11.3 below.

11.1. Transcendence bases. Let k be a field and let K be a field
containing k. If S ⊆ K is a finite subset of K, we shall write k(S)
for the smallest subfield of K containing k and S. By construction,
k(S) is isomorphic to the field of fractions of the k-algebra k[S] ⊆ K
(recall that k[S] is the smallest k-subalgebra of K containing k and
S). If S = {α1, . . . , αh} then we shall as usual use the shorthand
k(α1, . . . , αh) for k({α1, . . . , αh}).

If S1, S2 ⊂ K are two finite subsets, we have k(S1 ∪ S2) = k(S1)(S2)
(this follows from the definitions).

Also, recall that if the elements of S are all algebraic (equivalently,
integral) over k, then we actually have k(S) = k[S]. To see this, note
that we only have to verify this in the situation where S = {s} in view
of the compatibility mentioned in the previous paragraph. Now notice
that we have a homomorphism of k-algebras k[t] → K that sends t
to s. Since the image of this homomorphism is a domain and s is
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algebraic, the kernel of this homomorphism is a non-zero prime ideal
of k[t], which is thus maximal (why?). Hence k[s] is actually a field (all
this should be familiar from Rings and Modules or the Galois Theory
course). Finally note that if all the elements of S are algebraic over
k then k(S) is a finite extension of k. This follows from Corollary 8.4
and Proposition 8.2.

If there is a finite subset S of K such that K = k(S) we say that
K is finitely generated over k as a field. This is a weaker condition
than finitely generated as a k-algebra but by the previous paragraph it
coincides with it if all the elements of S are algebraic over k.

We say that the set S ⊆ K is a finite transcendence basis of K over
k if

• S is finite;
• the elements of S are algebraically independent over k;
• K is algebraic (equivalently, integral) over the field k(S).

It is easy to see that if K is finitely generated over k as a field,
then K has a transcendence basis over k. To obtain such a basis, start
with a finite set S such that K = k(S). Take a subset S ′ ⊆ S, which
is algebraically independent and has maximal cardinality among such
subsets (note that S ′ might be empty). Then each of the elements of
S ∖ S ′ is by construction algebraic over k(S ′) and thus K is algebraic
over k(S ′). This subset will be a transcendence basis of K over k.

Proposition 11.3. Let K be a field and k ⊆ K a subfield. Suppose
that K is finitely generated over k as a field. Let S and T be two finite
transcendence bases of K over k. Then |S| = |T |.

Proof. For convenience, write S = {γ1, . . . , γn} and T = {ρ1, . . . , ρm},
where n = |S| and m = |T |.

We shall prove that m = n by induction on min(m,n). The state-
ment is true if min(m,n) = 0 (so that either S or T is empty), for in
that case K is algebraic over k and then both S and T must be empty.

We may assume without restriction of generality that S ∩T = ∅. To
see this, suppose that S ∩ T = U and that U ̸= ∅. Then S ∖ U and
T ∖ U are transcendence bases for K over k(U). We have

min(|S ∖ U |, |T ∖ U |) = min(m,n)− |U |
and thus by induction, we have |S ∖ U | = |T ∖ U | so that |S| = n =
|T | = m.

We also contend that m or n is minimal among the cardinalities of
all possible transcendence bases of K over k. To see this, suppose that
m ⩽ n (say) so that m = min(m,n). Suppose that m = |T | is not
minimal. Choose a transcendence basis T ′ of K over k such that |T ′| <
m and such that |T ′| is minimal. We have min(|T |, |T ′|) < min(m,n)
and so by induction we have |T ′| = |T | = m, which a contradiction.
Hence m is minimal.
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We now start the proof. Suppose without restriction of generality
that m is minimal among the cardinalities of all possible transcendence
bases of K over k (swap S and T if necessary).

By assumption, there is a non-zero polynomial

P (x0, . . . , xm) ∈ k[x0, . . . , xm],

such that
P (γ1, ρ1, . . . , ρm) = 0

(to obtain this polynomial, start with a non zero polynomial with co-
efficients in k(ρ1, . . . , ρm) ≃ Frac(k[x1, . . . , xm]), which annihilates γ1,
and clear denominators). We suppose that P (x0, . . . , xm) has minimal
degree among all non zero polynomials with this property.

By assumption, P (x0, . . . , xm) contains monomials with positive pow-
ers of xk for some k ⩾ 1 (otherwise γ1 is algebraic over k). Renumber-
ing, we may suppose that this variable is x1.

We may thus write

P (x0, . . . , xm) =
∑
j

Pj(x0, x2, . . . , xm)x
j
1

where Pj(x0, x2, . . . , xm) ∈ k[x0, x2, . . . , xm]. Since P (x0, . . . , xm) is a
non constant polynomial in the variable x1, we know that

Pj0(x0, x2, . . . , xm) ̸= 0

for some j0 > 0; take maximal such j0. Also, we cannot have

Pj0(γ1, ρ2, . . . , ρm) = 0,

because that would violate the minimality of the degree of P (x0, . . . , xm).
Thus, since P (γ1, ρ1, . . . , ρm) =

∑
j Pj(γ1, ρ2, . . . , ρm)ρ

j
1 = 0, we see

that ρ1 is algebraic over

k(γ1, ρ2, . . . , ρm).

Hence k(γ1, ρ1, ρ2, . . . , ρm) is algebraic over k(γ1, ρ2, . . . , ρm) and thus
K is algebraic over k(γ1, ρ2, . . . , ρm) (again use Corollary 8.4 and Propo-
sition 8.2). Since m is minimal, we conclude that {γ1, ρ2, . . . , ρm} is a
transcendence basis of K. In particular {γ2, . . . , γn} and {ρ2, . . . , ρm}
are transcendence bases of K over k(γ1). By induction, we thus have
m− 1 = n− 1, i.e., m = n and the proof is complete. □

Let k be a subfield of a field K and suppose that K is finitely gen-
erated over k as a field. In view of the last proposition, we may define
the transcendence degree tr(K|k) of k over K as the cardinality of
any transcendence basis of K over k. As a basic example, we have
tr(k(x1, . . . , xn)|k) = n for any field k.

END OF LECTURE 12
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11.2. The Artin–Rees Lemma and Krull’s theorem. Let R be a
ring. A ring grading on R is the datum of a sequence R0, R1, . . . of
additive subgroups of R, such that R = ⊕i⩾0Ri (where ⊕ refers to an
internal direct sum of additive subgroups) and such that Ri ·Rj ⊆ Ri+j

for every i, j ⩾ 0 (i.e., if r ∈ Ri and t ∈ Rj then rt ∈ Ri+j). One
can see from the definition that R0 is then a subring of R and that
⊕i⩾i0Ri is an ideal of R for any i0 ⩾ 0. Each Ri naturally carries a
structure of R0-module. Finally, the natural map R0 → R/(⊕i⩾1Ri)
is an isomorphism of rings and we have natural isomorphism of R0-
modules Ri0 ≃ (⊕i⩾i0Ri)/(⊕i⩾i0+1Ri) for any i0 ⩾ 0 (why?).

If r ∈ R, we shall often write [r]i for the projection of r to Ri and
we call it the i-th graded component of r.

For example, if k is a field, the ring k[x] has a natural grading given
by (k[x])i = {a · xi | a ∈ k}. Any ring carries a trivial grading, such
that R0 = R and Ri = 0 for all i ⩾ 0.

Suppose that R is a graded ring. Let M be an R-module. A grad-
ing on M (relative to the grading on R) is the datum of a sequence
M0,M1, . . . of additive subgroups of M , such that M = ⊕i⩾0Mi (where
⊕ refers to an internal direct sum) and such that Ri ·Mj ⊆Mi+j for any
i, j ⩾ 0 (i.e., if r ∈ Ri and t ∈ Mj then rt ∈ Mi+j). In this situation,
we say that M is a graded R-module (this is a slight abuse of language
because the reference to the grading of R is only implicit).

There is an obvious notion of homomorphism of graded R-modules.

Lemma 11.4. Let R be a graded ring with grading Ri (i ⩾ 0). The
following are equivalent:

(1) The ring R is noetherian.
(2) The ring R0 is noetherian and R is finitely generated as an

R0-algebra.

Proof. The implication (2)⇒(1) is a consequence of Hilbert’s basis the-
orem and Lemma 7.2.

We prove the implication (1)⇒(2). The ring R0 is noetherian since
it is a quotient of a noetherian ring (by Lemma 7.2).

To show that R is finitely generated as an R0-module, let a1, . . . , ak
be generators of ⊕i>0Ri viewed as an ideal of R (this exists, since R
is noetherian). We claim that the graded components of a1, . . . , ak
generate R as an R0-algebra (more concretely: the elements

[a1]1, [a1]2 . . . , [a2]1, [a2]2, . . .

generate R as an R0-algebra). This will prove the lemma, since each
ai only has finitely many graded components.

We shall prove by induction on i ⩾ 0 that Ri lies inside the sub-
R0-algebra generated by the graded components of a1, . . . , ak. Since R
is generated by all the Ri, this will prove the claim. For i = 0, there
is nothing to prove. So suppose that i > 0 and that the subgroups
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R0, . . . , Ri−1 lie inside the sub-R0-algebra generated by the graded com-
ponents of a1, . . . , ak.

Let r ∈ Ri. By assumption, there are elements t1, . . . , tk ∈ R such
that r = t1a1 + · · ·+ tkak. We deduce that

r = [r]i =
k∑
j=1

i∑
u=1

[tj]i−u[aj]u

Now, in this sum, we have [tj]i−u ∈ R0 ⊕ R1 ⊕ · · · ⊕ Ri−1 and thus
[tj]i−u lies in the sub-R0-algebra generated by the graded components
of a1, . . . , ak by the inductive hypothesis. Thus r lies in this sub-R0-
algebra also, which proves the claim and the lemma. □

Let R be a ring and let M be an R-module. A (descending) filtration
M• of M is a sequence of R-submodules

M =M0 ⊇M1 ⊇M2 ⊇ . . .

of M . If I is an ideal of R, then M• is said to be an I-filtration if
IMi ⊆ Mi+1 for all i ⩾ 0. An I-filtration M• is said to be stable if
IMi =Mi+1 for all i larger than some fixed natural number.

Now suppose given a ring R, an ideal I ⊆ R, an R-module M and
an I-filtration M• on M .

Note that the direct sum of R-modules R# = ⊕i⩾0I
i (where I0 = R)

carries a natural structure of graded ring, with the grading given as
follows: if α ∈ I i and β ∈ Ij, then the product of α and β in R# is
given by the product of α and β in R, viewed as an element of I i+j.
The ring R# is often called the blow-up algebra associated with R and
I (this terminology comes from algebraic geometry). The direct sum
M# = ⊕i⩾0Mi of R-modules then carries a natural structure of graded
R#-module (if α ∈ I i and β ∈ Mj, then the multiplication of β by
α in M# is given by the multiplication of β by α in M , viewed as
an element of Mi+j, in which it lies since M• is an I-filtration). Note
that R# is naturally an R-algebra, since there is an natural injective
homomorphism of rings R → R#, sending r ∈ R to the corresponding
element of degree 0. The corresponding R-module structure on M# is
then simply M# = ⊕i⩾0Mi viewed as a direct sum of R-modules.

Lemma 11.5. Let R be a ring and let I ⊆ R be an ideal. Suppose
that R is noetherian. Then the ring R# associated with R and I is also
noetherian.

Proof. Let r1, . . . , rk ∈ I be generators of I (this exists because R is
noetherian). There is a homomorphism of rings ϕ : R[x1, . . . , xk] → R#,
given by the formula P (x1, . . . , xk) 7→ P (r1, . . . , rk). Here r1, . . . , rk are
viewed as elements of degree 1 inR# and the coefficients of P (x1, . . . , xk)
are viewed as elements of degree 0 (so that ϕ is a homomorphism of
R-algebras). By construction, ϕ is surjective and hence R# is also
noetherian by the Hilbert basis theorem and Lemma 7.2. □
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Note that in this context there is a slight inaccuracy in [AM], p. 107,
before Lemma 10.8.

Lemma 11.6. Let R be a ring. Let I ⊆ R be an ideal. Let M• be an I-
filtration on M . Suppose that Mj is finitely generated as an R-module
for all j ⩾ 0. Let R# be the corresponding graded ring and let M# be
the corresponding graded R#-module. The following are equivalent:

(1) The R#-module M# is finitely generated.
(2) The filtration M• is stable.

Proof. Let n ⩾ 0 and consider the graded subgroup

M#
(n) = (

n⊕
j=0

Mj)
⊕

(
∞⊕
k=1

IkMn)

of M#. Note that M#
(n) is a sub-R#-module of M# by construction.

Note also that each Mj with j ∈ {0, . . . , n} is finitely generated as
an R-module by assumption and thus M#

(n) is finitely generated as a
R#-module (it is generated by

⊕n
j=0Mj). We have inclusions

M#
(0) ⊆M#

(1) ⊆M#
(2) ⊆ . . .

and by construction we have M# = ∪∞
i=0M

#
(i).

Note that saying that the I-filtration M• is stable is equivalent to
saying that M#

(n0+k)
= M#

(n0)
for all k ⩾ 0 and some n0 ⩾ 0. We claim

that M#
(n0+k)

=M#
(n0)

for all k ⩾ 0 and some n0 ⩾ 0 if and only if M# is
finitely generated as a R#-module. Indeed, if M# is finitely generated
as a R#-module, then M#

(n0+k)
= M#

(n0)
for all k ⩾ 0 as soon as M#

(n0)

contains a given finite set of generators for M# = ∪∞
i=0M

#
(i). On the

other hand, if M#
(n0+k)

= M#
(n0)

for all k ⩾ 0 then M# = M#
(n0)

, and
M# is finitely generated since M#

(n0)
is finitely generated. □

Proposition 11.7 (Artin–Rees Lemma). Let R be a noetherian ring.
Let I ⊆ R be an ideal. Let M be a finitely generated R-module and let
M• be a stable I-filtration on M . Let N ⊆ M be a submodule. Then
the filtration N ∩M• is a stable I-filtration of N .

Proof. By construction, there is a natural inclusion of R#-modules
N# ⊆M#. By Lemma 11.6, the R#-module M# is finitely generated.
The module N# is thus also finitely generated by Lemma 11.5 and by
Lemma 7.4. Hence N ∩M• is a stable I-filtration by Lemma 11.6. □

Corollary 11.8. Let R be a noetherian ring. Let I ⊆ R be an ideal and
let M be a finitely generated R-module. Let N ⊆ M be a submodule.
Then there exists a natural number n0 ⩾ 0 such that

In(In0M ∩N) = In0+nM ∩N.



COMMUTATIVE ALGEBRA 49

for all n ⩾ 0.

Proof. Apply the lemma of Artin-Rees to the filtration I•M of M . □

Corollary 11.9 (Krull’s theorem). Let R be a noetherian ring. Let
I ⊆ R be an ideal and let M be a finitely generated R-module. Then
we have ⋂

n⩾0

InM =
⋃

r∈1+I

ker([r])

where [r] : M →M is defined by m 7→ r ·m.

Proof. Let N = ∩n⩾0I
nM . By Corollary 11.8, there exists a natural

number n0 ⩾ 0 such that
I(In0M ∩N) = IN = In0+1M ∩N = N.

We deduce from Q4 of Sheet 1 (the general form of Nakayama’s lemma)
that there exists r ∈ 1+ I such that rN = 0. Hence N =

⋂
n⩾0 I

nM ⊆⋃
r∈1+I ker(rM). On the other hand, if r ∈ 1 + I, y ∈ M and ry = 0,

then (1 + a)y = y + ay = 0 for some a ∈ I and so y ∈ IM . Since
y + ay = 0, we conclude that y ∈ I2M . Continuing in this way, we
conclude that y ∈ N . □

Corollary 11.10 (of Krull’s theorem). Let R be a noetherian domain.
Let I be a proper ideal of R. Then ∩n⩾0I

n = 0.

Proof. This is clear. □

Corollary 11.11 (of Krull’s theorem). Let R be a noetherian ring and
let I be an ideal of R. Let M be a finitely generated R-module. Suppose
that I is contained in the Jacobson radical of R. Then ∩n⩾0I

nM = 0.

Proof. If r ∈ 1+I then r is a unit (a similar reasoning was made during
the proof of Nakayama’s lemma). Indeed, if r is not a unit, then r is
contained in some maximal ideal m. But then 1 is also contained in
m, since I ⊆ m, which is a contradiction. Hence ker(rM) = 0 and the
result follows from Krull’s theorem. □

Corollary 11.11 is especially useful when R is a local ring (in which
case I is always contained in the Jacobson radical if I ̸= R).

END OF LECTURE 13

11.3. Dimension theory of noetherian rings. We first examine the
case of dimension 0. We will call a ring Artinian if whenever we have
a descending sequence of ideals

I1 ⊇ I2 ⊇ I3 ⊇ . . .

in R, there exists an n ⩾ 1 such that In+k = In for all k ⩾ 0. We then
say that the sequence I• stabilises (compare with Lemma 7.1).

Lemma 11.12. Let R be a noetherian local ring with maximal ideal
m. The following are equivalent:
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(1) dim(R) = 0;
(2) m is the nilradical of R;
(3) mn = 0 for some n ⩾ 1;
(4) R is Artinian.

Proof. We prove a cycle of implications.
(1)⇒(2): If dim(R) = 0 then every prime ideal of R coincides with

m. Hence m is the nilradical of R.
(2)⇒(3): This follows from Lemma 7.5.
(3)⇒(4): Let

I1 ⊇ I2 ⊇ I3 ⊇ . . .

be a descending sequence of ideals in R. Let k ⩾ 0 be the minimal
natural number such that the sequence

mkI1 ⊇ mkI2 ⊇ mkI3 ⊇ . . .

stabilises. The number k exists since mk = 0 for some k ⩾ 0 by
(iii). Suppose for contradiction that k > 0. Let n0 ⩾ 1 be such that
mkIn = mkIn0 for all n ⩾ n0. Consider the descending sequence

mk−1I1 ⊇ mk−1I2 ⊇ mk−1I3 ⊇ . . .

By construction we have mk−1In ⊇ mkIn0 for all n ⩾ 1. There are thus
natural inclusions

mk−1I1/m
kIn0 ⊇ mk−1I2/m

kIn0 ⊇ mk−1I3/m
kIn0 ⊇ . . .

and furthermore, for all n ⩾ n0, we have m(mk−1In/m
kIn0) = 0. Hence

mk−1In/m
kIn0 has a natural structure of R/m-module if n ⩾ n0. In

particular, the sequence

mk−1In0/m
kIn0 ⊇ mk−1In0+1/m

kIn0 ⊇ mk−1In0+2/m
kIn0 ⊇ . . .

is a decreasing sequence of R/m-modules. Also, all these R/m-modules
are finitely generated because R is a noetherian ring. Since R/m is
a field, one thus obtains a decreasing sequence of finite-dimensional
vector spaces and such a sequence must stabilise. Let n1 ⩾ n0 be such
that mk−1In/m

kIn0 = mk−1In1/m
kIn0 for all n ⩾ n1. Then we have

by construction mk−1In = mk−1In1 for all n ⩾ n1. In particular, the
sequence mk−1In also stabilises. This contradicts the minimality of k
so we must have k = 0, i.e., the sequence I1 ⊇ I2 ⊇ I3 ⊇ . . . stabilises.

(4)⇒(1): We argue bv contradiction, and assume that R is Artinian
and that dim(R) ̸= 0. Then there are two prime ideals p0, p1 of R
such that p0 ⊃ p1. In particular, we have m ⊃ p1. This implies that
m is not the nilradical of R (since the nilradical is contained in p1 by
Proposition 3.2).

Since R is Artinian, we know that there is a natural number n0 ⩾ 0
such that mn0 = ∩∞

i=0m
i. By Corollary 11.11, we have ∩∞

i=0m
i = 0 so

we have mn0 = 0. In particular, every element of m is nilpotent and m
is the nilradical of R. This is the desired contradiction. □
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Theorem 11.13 (Krull’s principal ideal theorem). Let R be a noether-
ian ring. Let f ∈ R be an element which is not a unit. Let p be minimal
among the prime ideals containing f . Then we have ht(p) ⩽ 1.

Proof. Note that the maximal ideal of Rp is minimal among the prime
ideals of Rp containing f/1 ∈ Rp (use Lemmata 5.6 and 5.7). Further-
more, the height of p is the same as the height of the maximal ideal of
Rp (again, use Lemma 5.6 and Lemma 5.7). Since Rp is also noetherian
by Lemma 7.3, we may thus suppose that R is a local ring and that p
is a maximal ideal.

Let

p ⊃ p1 ⊃ p2 ⊃ · · · ⊃ pk0

be a chain of prime ideals starting with p. We want to show that
k0 ⩽ 1. We may suppose that k0 > 0 (because if there is no chain as
above with k0 > 0 there is nothing to prove).

Write q = p1. By assumption, we then have f ̸∈ q.
Write λ : R → Rq for the natural map (sending r to r/1). For n ⩾ 1,

write λ(qn) for the ideal of Rq generated by λ(qn). We know that λ(qn)
consists of the elements of the form r/t, where r ∈ qn and t ∈ R ∖ q

(see Lemma 5.6). Also, it is easily checked that λ(qn) = (λ(q))n.
Now consider the ideal In = λ−1(λ(qn)) (this ideal is called the n-th

symbolic power of q). By construction, we have In ⊇ qn. Furthermore,
we have I1 = q by Lemma 5.6. The ideal In has the advantage over
qn that if fr ∈ In for some r ∈ R, then we must have r ∈ In (because
λ(fr)(1/f) = λ(r) ∈ λ(qn), noting that f ∈ R∖ q).

Now consider the ring R/(f). The ring R/(f) is also local (because
if R/(f) had more than one maximal ideal, then so would R) and it is
noetherian (by Lemma 7.2). The ring R/(f) has dimension 0, since its
only maximal ideal (given by p (mod (f))) is a minimal prime ideal of
R/(f) by construction.

Now we are given a descending sequence of ideals

(1) I1 ⊇ I2 ⊇ I3 . . .

We conclude from Lemma 11.12 that the image of this sequence in
R/(f) must stabilise (note that the image of an ideal by a surjective
homomorphism is an ideal). In other words, there is an n0 ⩾ 1 with the
property that for any n ⩾ n0, we have In ⊆ In+1+(f). Furthermore, in
this situation, if r ∈ In, t ∈ In+1 and r = t+hf for some h ∈ R, then we
have r−t ∈ In, and so h ∈ In (see above). This means that we actually
have In ⊆ In+1+(f)In, and in particular In ⊆ In+1+pIn. In particular,
the natural map In+1/pIn+1 → In/pIn is surjective. By Corollary 3.7
we conclude that In+1 → In is surjective, so that In+1 = In. So the
sequence (1) stabilises at n0.
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Now note that since In ⊇ qk for all n ⩾ 1, we have λ(In) = λ(qn) =

(λ(q))n. Hence the descending sequence of ideals of Rq

λ(q) ⊇ (λ(q))2 ⊇ (λ(q))3 ⊇ . . .

also stabilises at n0. But now (this is the crucial step of the proof),
Corollary 11.11 implies that

∩i⩾0(λ(q))
i = 0,

so that we have (λ(q))n0 = 0. Since λ(q) is the maximal ideal of Rq (by
Lemma 5.6), we conclude from Lemma 11.12 that Rq has dimension 0.
In particular, we have ht(q) = 0 (by Lemma 11.2). In other words, q
cannot contain any prime ideal other than itself. Hence k = 1. □

Lemma 11.14. Let R be a noetherian ring. Let p, p′ be prime ideals
of R and suppose that p ⊂ p′. There exists a prime ideal q such that
p ⊆ q ⊂ p′ and q is maximal among prime ideals with this property.

Proof. Suppose that the conclusion does not hold. Let q1 be any prime
ideal such that p ⊆ q1 ⊂ p (we might eg take q1 = p). By assumption,
there exists a prime ideal q2 such that q1 ⊂ q2 ⊂ p. Applying the
assumption again to q2, we obtain a prime ideal q3 such that q2 ⊂ q3 ⊂
p. Continuing in this way we obtain an ascending sequence of ideals

q1 ⊂ q2 ⊂ q3 ⊂ . . .

However, this sequence must stop since R is noetherian. This is a
contradiction, so one of the prime ideals qi must have the property
mentioned in the lemma. □

Corollary 11.15. Let R be a noetherian ring. Let f1, . . . , fk ∈ R. Let
p be a prime ideal minimal among those containing (f1, . . . , fk). Then
ht(p) ⩽ k.

Proof. By induction on k. The case k = 1 is Krull’s principal ideal
theorem. We suppose that k > 1 and that the statement is true for
k − 1 in place of k.

Just as at the beginning of the proof of Krull’s principal ideal theo-
rem, we may suppose that R is a local ring with maximal ideal p.

Let
p ⊃ p1 ⊃ p2 ⊃ . . .

be a (possibly infinite) chain of prime ideals beginning with p and of
length ht(p). We also assume that there are no prime ideals between p
and p1, other than p and p1. Note that this last condition is automati-
cally satisfied if ht(p) <∞, because the chain then has maximal (finite)
length. If ht(p) = ∞ we can create a chain satisfying this condition
using Lemma 11.14.

We want to show that that ht(p) ⩽ k. We may suppose that ht(p) >
0, otherwise there is nothing to prove. Let q = p1. We claim that
ht(q) ⩽ k − 1 (so, in particular, we cannot have ht(p) = ∞).
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We prove the claim. From the assumptions, there is an fi such that
fi ̸∈ q (otherwise p is not minimal among the prime ideals containing
(f1, . . . , fk)). Up to renumbering, we may assume that f1 ̸∈ q. Since
there are no prime ideals between p and q other than p and q, we see
that p is minimal among the prime ideals containing (q, f1). Hence the
ring R/(q, f1) has dimension 0. We conclude from Lemma 11.12 (iii)
that the image of all the fi are nilpotent in R/(q, f1). In other words
there are elements bi ∈ q, ai ∈ R and integers ni ⩾ 2 such that

fni
i = aif1 + bi.

Note that

p ⊇ (f1, f
n2
2 , fn3

3 , . . . , fnk
k ) = (f1, b2, . . . , bk)

and that p is also minimal among all the prime ideals containing
(f1, b2, . . . , bk), since

r((f1, f
n2
2 , fn3

3 , . . . , fnk
k )) = r((f1, f2, . . . , fk)).

Write J = (b2, . . . , bk). Note that J ⊆ q. Since p is minimal among
all the prime ideals containing f1 and J , we see that p (mod J) is min-
imal among all the prime ideals of R/J containing f1 (mod J). Hence
ht(p (mod J)) ⩽ 1 by Krull’s principal ideal theorem. On the other
hand, we have

p (mod J) ⊃ q (mod J)

(since J ⊆ q ⊆ p and q ⊂ p) so ht(p (mod J)) = 1 and ht(q (mod J)) =
0. In particular, q is minimal among all the prime ideals containing
J . Applying the inductive hypothesis, we see that ht(q) ⩽ k − 1. In
particular, the chain (∗) is finite.

Finally, we see from the assumptions that ht(p) = ht(q)+ 1 ⩽ k and
so the corollary is proven. □

In particular, in a noetherian ring, the height of any prime ideal is
finite. Together with Lemma 11.2, this shows that the dimension of a
noetherian local ring is finite.

It is not true however that any noetherian ring has finite dimension.
For an example of a noetherian ring of infinite dimension, see Ex. 3 of �

chap. 11, p. 126 of [AM].
Note also that Corollary 11.15 implies that ht((f1, . . . , fk)) ⩽ k. If

we have ht((f1, . . . , fk)) = k, then any minimal prime ideal associated
with (f1, . . . , fk) has height k (because any such ideal has height ⩾ k
by assumption, and height ⩽ k by Corollary 11.15).

Corollary 11.16. Let R be a noetherian ring. Let

p0 ⊃ p1 ⊃ p2 ⊃ . . .

be a descending chain of prime ideals of R. Then there is i0 ⩾ 0 such
that pi0+i = pi0 for all i ⩾ 0. Moreover, if p0 is generated by c elements,
we have i0 ⩽ c.
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The proof follows directly from Corollary 11.15 and the definition of
the height.

Corollary 11.17. Let R be a noetherian ring. Let p be a prime ideal of
height c. Suppose that 0 ⩽ k ⩽ c and that we have elements t1, . . . , tk ∈
p such that ht((t1, . . . , tk)) = k. Then there are elements tk+1, . . . , tc ∈
p, such that ht(t1, . . . , tc) = c.

Note that the assumptions imply that we have k ⩽ c. Here we set
(t1, . . . , tk) = (0) (resp. (t1, . . . , tc) = 0) if k = 0 (resp. if c = 0).
Note also that if ht(t1, . . . , tc) = c then p is a minimal prime ideal
associated with the ideal (t1, . . . , tc). Indeed, if there were a prime
ideal q such that q ⊂ p and q ⊇ (t1, . . . , tc), then we would have
ht(p) = c > ht(q) ⩾ ht(t1, . . . , tc) = c, which is a contradiction.

Proof. If c = 0 then p is a minimal prime ideal of R and then ht((0)) =
c = 0 so there is nothing to prove. So we suppose that c > 0. We may
obviously assume that k < c.

By induction on k < c, it is sufficient to construct an element t ∈ p
so that ht((t1, . . . , tk, t)) = k + 1. Since by Corollary 11.15, we have
ht((t1, . . . , tk, t)) ⩽ k+1 for any t ∈ R, we actually only have to find an
element t ∈ p such that ht((t1, . . . , tk, t)) > k. Suppose for contradic-
tion that such an element does not exist. Since ht((t1, . . . , tk, t)) ⩾ k for
any t ∈ R, this implies that ht((t1, . . . , tk, t)) = k for all t ∈ p. In partic-
ular, for any t ∈ p, there is a prime ideal q, which contains (t1, . . . , tk, t)
and which has height k; now q contains a minimal prime ideal q1 as-
sociated with (t1, . . . , tk) by Lemma 6.12 and we have ht(q1) ⩾ k by
assumption; hence we must have q = q1, so that q is a minimal prime
ideal associated with (t1, . . . , tk), which has height k. We conclude that
for all t ∈ p, t is contained in a minimal prime ideal of height k as-
sociated with (t1, . . . , tk). In other words, p is contained in the union
of the minimal prime ideals of height k associated with (t1, . . . , tk).
By Proposition 6.1 (1), we conclude that p is contained in, and hence
equal to, one of these minimal prime ideals. Since ht(p) = c > k, this
contradicts Corollary 11.15. □

END OF LECTURE 14

11.4. The dimension of polynomial rings. We now turn to the
computation of the dimension of polynomial rings. The main result is

Theorem 11.18. Let R be a noetherian ring. Suppose that dim(R) <
∞. Then dim(R[x]) = dim(R) + 1.

Before we start with the proof, we prove a few intermediate results.

Lemma 11.19. Let K be a field and let p be a non zero prime ideal of
K[x]. Then ht(p) = 1. In particular, we have dim(K[x]) = 1.
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Proof. Exercise. This follows from the fact that non-zero prime ideals
of K[x] are maximal and from the fact that the zero ideal in K[x] is
prime, since K[x] is a domain. □

If R is a ring and a is an ideal of R, we shall write a[x] for the ideal
generated by a in R[x]. The ideal a[x] can easily be seen to consist of
the polynomials with coefficients in a (hence the notation). If the ideal
a is also prime, then so is a[x], since

R[x]/a[x] ≃ (R/a)[x]

and (R/a)[x] is a domain, if R/a is a domain.
The construction in the following lemma already appears in Propo-

sition 8.12.

Lemma 11.20. Let ϕ : R → T be a ring homomorphism.
Let p ∈ Spec(R) and let I be the ideal generated by ϕ(p) in T .
Write ψ : R/p → T/I for the ring homomorphism induced by ϕ and

let S = (R/p)∖ {0}.
Write ψS : Frac(R/p) → (T/I)ψ(S) for the induced ring homomor-

phism.
Finally, write ρ : T → (T/I)ψ(S) for the natural ring homomorphism.
Then Spec(ρ)(Spec((T/I)ψ(S))) consists precisely of the prime ideals

q of T , such that ϕ−1(q) = p.

Proof. We have a commutative diagram of rings

T //

ρ

$$

T/I // (T/I)ψ(S)

R

ϕ

OO

// R/p

ψ

OO

// Frac(R/p)

ψS

OO

leading to a commutative diagram of spectra

Spec(T )

Spec(ϕ)

��

Spec(T/I)

Spec(ψ)

��

oo Spec((T/I)ψ(S))

Spec(ρ)

vv

Spec(ψS)

��

oo

Spec(R) Spec(R/p)oo Spec(Frac(R/p))oo

The lemma is saying that the fibre of Spec(ϕ) above p is precisely
the image of Spec(ρ).

Note first that Spec(Frac(R/p)) consists of one point, since Frac(R/p)
is a field. The image of Spec(Frac(R/p)) in Spec(R/p) is the ideal
(0) ⊆ R/p and the preimage of the ideal (0) ⊆ R/p in R is p. Thus the
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image of Spec(ρ) is contained in the fibre of Spec(ϕ) above p, since the
diagram is commutative.

Now suppose that q ∈ Spec(T ) and that ϕ−1(q) = p (i.e., q lies inside
the fibre of Spec(ϕ) above p).

Then q ⊇ I and there is thus an ideal q′ ∈ Spec(T/I), such that q is
the image of q′ in Spec(T ). On the other hand, we know that ψ−1(q′) is
the 0 ideal, since ϕ−1(q) = p and the diagram of rings is commutative.
In other words, we have q′ ∩ ψ(S) = ∅. We conclude from Lemma 5.6
that q′ lies in the image of the map Spec((T/I)ψ(S)) → Spec(T/I).

This concludes the proof of the lemma. □

Note that the correspondence between
• prime ideals q such that ϕ−1(q) = p, and
• prime ideals of (T/I)ψ(S)

described by the lemma respects the inclusion relation in both direc-
tions (i.e., an inclusion of prime ideals holds on one side if and only if
it holds on the other side) (why?).

The previous lemma will be applied below in the situation where
T = R[x]. In this situation, we have

(T/I)ψ(S) = (R[x]/p[x])ψ(S) ≃ (R/p)[x](R/p)∗ = Frac(R/p)[x].

Here we used the fact that if A is a domain, we have a natural identi-
fication

(A[x])A∗ ≃ Frac(A)[x]

(exercise).

Lemma 11.21. We keep the notation of Lemma 11.20. Suppose that
we have a chain of prime ideals

q0 ⊃ q1 ⊃ · · · ⊃ qk

in T , such that ϕ−1(qi) = p for all i ∈ {0, . . . , k}. Then k ⩽ dim((T/I)ψ(S)).

Proof. This is an immediate consequence of Lemma 11.20 and the fol-
lowing remark. □

Lemma 11.22. Let R be a ring and let N be the nilradical of R. Then
the nilradical of R[x] is N [x].

Proof. Any element of N [x] is a polynomial with nilpotent coefficients
and is thus clearly nilpotent (check). On the other hand, let P (x) =
a0 + a1x + · · · + adx

d ∈ R[x] be an element of the nilradical of R[x]
(i.e., a nilpotent polynomial). Suppose for contradiction that P (x)
has a coefficient ai, which is not nilpotent. Let p ∈ Spec(R) be a
prime ideal, such that ai ̸∈ p. Then P (x) (mod p) ∈ (R/p)[x] is a non
zero nilpotent polynomial. This is contradiction, since (R/p)[x] is a
domain. □
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Lemma 11.23. Let R be a noetherian ring and let p1, . . . , pk be the
minimal prime ideals of R. Then the minimal prime ideals of R[x]
are the ideals p1[x], . . . , pk[x]. More generally, if I is an ideal of R
and p1, . . . , pk are the minimal prime ideals associated with I, then the
ideals p1[x], . . . , pk[x] are the minimal prime ideals associated with I[x].

Proof. We first prove the first statement. Note that we have
⋂
i pi =

r((0)), because the nilradical r((0)) of R is decomposable by the Lasker-
Noether theorem. We deduce from this that

⋂
i pi[x] = r((0))[x]. Thus⋂

i pi[x] is a minimal primary decomposition of r((0))[x] (use Proposi-
tion 6.1 (ii)). In view of Lemma 11.22, this implies that the minimal
prime ideals of R[x] are precisely the ideals p1[x], . . . , pk[x] (use Theo-
rem 6.8 and Lemma 6.11), which is what we wanted to prove.

For the second statement, apply the first statement to pi (mod I),
noting that (R/I)[x] ≃ R[x]/I[x] (or provide a direct proof, similar to
the proof for I = (0)). □

Lemma 11.24. Let R be a noetherian ring and let I be an ideal of R.
Then ht(I) = ht(I[x]).

Proof. Suppose first that the lemma is proven if I is a prime ideal.
We first prove the statement if I = p ∈ Spec(R). Let c = ht(p)

and let a1, . . . , ac ∈ p be such that ht((a1, . . . , ac)) = c, so that p is a
minimal prime ideal associated with (a1, . . . , ac). This exists by Corol-
lary 11.17. Let J = (a1, . . . , ac). By the previous lemma, p[x] is a
minimal prime ideal associated with J [x]. We conclude from Corol-
lary 11.15 that ht(p[x]) ⩽ c (since the elements a1, . . . , ac generate J [x]
in R[x]). On the other hand, if

p ⊃ p1 ⊃ p2 · · · ⊃ pc

is a descending chain of prime ideals in R, then

p[x] ⊃ p1[x] ⊃ p2 · · · ⊃ pc[x]

is a descending chain of prime ideals in R[x], so that ht(p[x]) ⩾ c.
Hence ht(p[x]) = c.

Now let us look at the general case. We know that there is a minimal
prime ideal p associated with I, such that ht(p) = ht(I). We conclude
from this that ht(I[x]) ⩽ ht(p[x]) = ht(p) = ht(I). On the other
hand there is a minimal prime ideal q associated with I[x] such that
ht(q) = ht(I[x]). By Lemma 11.23, we have q = (q ∩R)[x], and so

ht(I[x]) = ht(q) = ht((q∩R)[x]) = ht(q∩R) ⩾ ht(I[x]∩R) = ht(I). □

Lemma 11.25. Let q be a prime ideal of R[x] and let I be an ideal
of R such that I ⊆ q ∩ R. Suppose that q ∩ R is a minimal prime
ideal associated with I. Let q′ ⊆ q be a prime ideal of R[x], which is a
minimal prime ideal associated with I[x]. Then q′ = (q ∩R)[x].
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Proof. We have
q′ ∩R ⊇ I[x] ∩R = I

and thus
(q′ ∩R)[x] ⊇ I[x].

Hence
q′ ⊇ (q′ ∩R)[x] ⊇ I[x].

By minimality, we thus have q′ = (q′ ∩ R)[x]. On the other hand, we
have q′ ⊆ q, and so

q′ = (q′ ∩R)[x] ⊆ (q ∩R)[x].
Now by Lemma 11.23, we know that (q∩R)[x] is a minimal prime ideal
associated with I[x] and thus we must have q′ = (q ∩R)[x]. □

Proposition 11.26. Let R be a noetherian ring and p be a prime ideal
of R[x]. Then

ht(p) ⩽ 1 + ht(p ∩R).
If p is maximal, we even have

ht(p) = 1 + ht(p ∩R).

Proof. Let δ = ht(p∩R) and let c = ht(p). Note that since (p∩R)[x] ⊆
p, we have δ ⩽ c by Lemma 11.24. Let a1, . . . , ac ∈ p be such that
ht((a1, . . . , ai)) = i for all i ∈ {1, . . . , c}. This exists by Corollary 11.17
(or rather, its proof). Using Lemma 11.24 again, we may suppose that
a1, . . . , aδ ∈ p ∩ R. In particular, (p ∩ R)[x] is a minimal prime ideal
associated with (a1, . . . , aδ).

We shall now inductively define a chain of prime ideals

p = q0 ⊃ q1 ⊃ · · · ⊃ qc

such that qi is a minimal prime ideal associated with (a1, . . . , ac−i). We
let q0 = p and we suppose that i > 0 and that the ideals q0, . . . , . . . qi−1

are given. We then let qi be a (arbitrary) minimal prime ideal asso-
ciated with (a1, . . . , ac−i), which is contained in qi−1. This exists by
Lemma 6.12 and so we have constructed our chain of prime ideals.

Note that we have by construction ht(qi) = c − i (see after Corol-
lary 11.15).

Now note the key fact that both qc−δ and (p ∩ R)[x] are minimal
prime ideals associated with (a1, . . . , aδ). Applying Lemma 11.25, we
find that we actually have

qc−δ = (p ∩R)[x].
We thus see that for all i ∈ {0, . . . , c− δ}, we have

p ⊇ qi ⊇ (p ∩R)[x]
implying that

p ∩R ⊇ qi ∩R ⊇ p ∩R
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so that qi ∩ R = p ∩ R. We now conclude from Lemma 11.21 and
Lemma 11.19 that
c−δ ⩽ dim((R[x]/(p∩R)[x])(R/(p∩R))∗) = dim(Frac(R/(p∩R))[x]) ⩽ 1.

This proves the first statement. For the second one, note that if p is
maximal then p ̸= (p∩R)[x] = qc−δ (because (p∩R)[x] is not maximal),
so c−δ ⩾ 1. In particular, we then have that c = δ+1, as required. □

Proof of Theorem 11.18. Let m be a maximal ideal of R[x] so that
ht(m) = dim(R[x]). This exists by Lemma 11.2. We then have ht(m) =
1 + ht(m ∩R) by the last proposition.

We must then have ht(m ∩ R) = dim(R). Indeed, suppose for con-
tradiction that ht(m ∩ R) < dim(R). Then there is a maximal ideal
p in R such that ht(p) > ht(m ∩ R). Let n be a maximal ideal of
R[x], which contains p[x]. By maximality, we have n ∩ R = p, so that
ht(n) = 1 + ht(p) > 1 + ht(m ∩R) = ht(m), a contradiction.

So we conclude that ht(m) = dim(R[x]) = dim(R) + 1, as required.
□

Remark 11.27. Let R be a noetherian ring and let p ⊆ q be prime
ideals of R. We then obviously have

ht(p) + ht(q (mod p)) ⩽ ht(q)

(where q (mod p) is an ideal of R/p). However it is not true that �

ht(p) + ht(q (mod p)) = ht(q)

in general. One class of rings, where equality holds is the class of so
called catenary domains. One can show that finitely generated algebras
over fields are catenary. So equality will hold if R is a domain, which
is finitely generated over a field (we will not prove this however).

Note that in the proof of Proposition 11.26, we showed that ht((m∩
R)[x]) + ht(m/(m ∩ R)[x]) = ht(m) (why?) and the fact that equality
holds in this situation was crucial in the proof.

Corollary 11.28. Let R be a noetherian ring. Suppose that dim(R) <
∞. Then dim(R[x1, . . . , xt]) = dim(R) + t.

Proof. This follows from Theorem 11.18 and Hilbert’s basis theorem.
□

Corollary 11.29. Let k be a field and let R be a finitely generated
k-algebra. Suppose that R is a domain and let K = Frac(R). Then
dim(R) and the trace tr(K|k) are finite and equal.

For the proof of the corollary, we shall need the following.

Lemma 11.30. Let R be a subring of a ring T . Suppose that T is
integral over R. Then dim(T ) = dim(R).

Note that the lemma also holds if R or T has infinite dimension (in
which case it says that the other ring also has infinite dimension).
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Proof. Suppose first that dim(R), dim(T ) <∞. Let

p0 ⊃ p1 ⊃ · · · ⊃ pdim(R)

be a descending chain of prime ideals in R, which is of maximal length.
By Theorem 8.8, there is a prime ideal qdim(R) in T such that qdim(R) ∩
R = pdim(R) and by Q6 of sheet 2, there are prime ideals qi in T , such
that qi ∩R = pi and such that

q0 ⊃ q1 ⊃ · · · ⊃ qdim(R).

Hence dim(T ) ⩾ dim(R).
Now, resetting terminology, let

q0 ⊃ q1 ⊃ · · · ⊃ qdim(T ).

be a descending chain of prime ideals in T , which is of maximal length.
Then we have

q0 ∩R ⊃ q1 ∩R ⊃ · · · ⊃ qdim(T ) ∩R.
by Q1 of sheet 3. Hence dim(T ) ⩽ dim(R) and thus dim(T ) = dim(R).

The argument in the situation where either dim(R) = ∞ or dim(T ) =
∞ proceeds along the same lines and is left to the reader. □

Proof of Corollary 11.29. By Noether’s normalisation lemma, there is
for some d ⩾ 0 an injection of rings k[x1, . . . , xd] ↪→ R, which makes
R into an integral k[x1, . . . , xd]-algebra. From the previous lemma and
Corollary 11.28, we deduce that dim(R) = d. On the other hand, the
fraction field k(x1, . . . , xd) of k[x1, . . . , xd] is naturally a subfield of K
and since every element of R is integral over k[x1, . . . , xd], we see that
every element of K is algebraic over k(x1, . . . , xd) (why?). Hence

tr(K|k) = tr(k(x1, . . . , xd)|k) = d = dim(R). □

END OF LECTURE 15

12. Dedekind rings (not examinable)

A Dedekind domain is a noetherian domain of dimension one, which
is integrally closed. Examples of Dedekind domains include Z, and
polynomial rings in one variable over a field, which are domains and are
integrally closed. We will see that in a Dedekind domain, every ideal
can be written in unique fashion as a product of powers of distinct
prime ideals. This unique decomposability generalises to ideals the
decomposability into irreducibles of an element that exists in a UFD
(and in fact a Dedekind domain is a UFD if and only if it is a PID -
see Sheet 4). We will also see below that the integral closure of Z in
a finite extension of Q is a Dedekind domain. This last kind of ring is
much studied in algebraic number theory.

We first note a couple of simple facts:

Lemma 12.1. Let R be a Dedekind domain.
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(1) All the non-zero prime ideals of R are maximal.
(2) If q1, q2 are primary ideals and r(q1) ̸= r(q2) then q1 and q2 are

coprime.

Note that the lemma, together with the Chinese remainder theorem,
shows that if q1, . . . , qk are primary ideals with distinct radicals in a
Dedekind domain, we have ⋂

i

qi =
∏
i

qi.

Proof. We prove the claims in turn.
(1) If p is a non-zero prime ideal, then we have the chain p ⊃ (0) of

prime ideals (note that (0) is a prime ideal since R is a domain).
This chain is of maximal length, since R is of dimension one.
Now let m ⊇ p be a maximal ideal containing p. We must have
m = p, otherwise

m ⊃ p ⊃ (0)

would be a chain of prime ideals of length 2, which is impossible
by the above.

(2) Since r(q1) ̸= r(q2), the ideals r(q1) and r(q2) are coprime, since
they are prime, and hence maximal by (i). Thus the conclusion
follows from Lemma 12.2 below. □

Lemma 12.2. Let R be a ring. Suppose that the ideals r(I) and r(J)
of R are coprime. Then I and J are coprime.

Proof. Note that we have r(I + J) ⊆ r(r(I) + r(J)), since I + J ⊆
r(I) + r(J). On the other hand, we also have r(I) + r(J) ⊆ r(I + J),
and thus we have r(r(I) + r(J)) ⊆ r(r(I + J)) = r(I + J). So we have
r(I + J) = r(r(I) + r(J)) (this equality holds without any assumptions
on the ideals r(I) and r(J)). In our situation, we have r(I)+r(J) = (1),
and so r(I+J) = (1). In particular, 1 ∈ I+J , and thus I+J = (1) = R,
as required. □

Exercise 12.3. Let R be an integrally closed domain. Then Rp is also
integrally closed for all p ∈ Spec(R).

Hint: use Lemma 8.7.

Proposition 12.4. Let R be a noetherian local domain of dimension
one with maximal ideal m. The following conditions are equivalent:

(1) R is integrally closed;
(2) m is a principal ideal;
(3) for any non-zero ideal I of R, we have I = mn for a uniquely

determined n ⩾ 0.
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Proof. Let K be the fraction field of R.
(1)⇒(2): Let a ∈ m ∖ {0}. Note that the ring R/(a) is local with

maximal ideal m (mod (a)) and noetherian (see the beginning of the
proof of Krull’s principal ideal theorem for details). Furthermore,
we have ht(m (mod (a))) = dim(R/(a)) = 0, because if there were a
prime ideal properly contained in m (mod (a)), this would lead to a
descending chain m ⊃ p ⊃ (0) of prime ideals in R, which contra-
dicts the assumption that ht(m) = 1. By Lemma 11.12, the ideal
m (mod (a)) is thus nilpotent. Let n > 0 be the minimal integer such
that (m (mod (a)))n = (mn (mod (a))) = (0) and let b ∈ mn−1 be such
that b (mod (a)) ̸= 0. Now let x = a/b ∈ K. We have bm ⊆ mn ⊆ (a)
and so x−1m ⊆ R (note that x−1m is an ideal). Furthermore, we have
x−1 ̸∈ R, for otherwise we would have b = x−1 · a ∈ (a), which is
excluded by assumption.

We claim that we cannot have x−1m ⊆ m. Indeed, suppose that
x−1m ⊆ m. Then x−1 induces a homomorphism of R-modules m → m
(given by multiplication by x−1) and such a homomorphism is annihi-
lated by a monic polynomial P (x) with coefficients in R by Proposi-
tion 8.1 (because m is finitely generated, as R is noetherian). We then
have P (x−1)(h) = 0 for any non zero element h ∈ m and since R is a
domain this implies that P (x−1) = 0. Since R is integrally closed, this
implies that x−1 ∈ R, which is a contradiction.

Hence x−1m ̸⊆ m and since R is local, we thus must have x−1m = R.
In other words, x ∈ R and m = (x).

(2)⇒(3): We first prove that I is a power of m. We may suppose
without restriction of generality that I ̸= R (otherwise I = m0). Sup-
pose for contradiction that I is not a power of m. Let b ∈ R be such
that m = (b). The ring R/I has dimension 0 by Lemma 11.12, and thus
the ideal m (mod I) is nilpotent. Let n > 0 be the largest integer such
that I ⊂ mn. This exists by assumption and because some power of m
is contained in I, since m (mod I) is nilpotent. Let a ∈ I be an element
such that a ̸∈ mn+1 (this exists by construction). By construction, we
may write a = tbn for some t ∈ R. We cannot have t ∈ m because
otherwise we would have a ∈ mn+1, which is excluded. Hence t is a
unit of R (since R is local) and thus mn = (t−1a) = (a) ⊆ I. This is a
contradiction, so we must have I = mn for some n > 0.

Secondly, n is uniquely determined. Indeed, suppose that (bn1) =
(bn2) for n1 ⩽ n2. Then there is a u ∈ R such that bn1 = bn2u. Since
R is a domain, bn2−n1u = 1, so b is a unit if n2 ̸= n1. Since b is not a
unit, we thus have n1 = n2.

(3)⇒(1): The R-module m/m2 is not zero (if it were zero, the ideal
m would be zero by Corollary 3.6, which is not possible, since R has
dimension 1). So we may choose an element x ∈ m∖m2. By assumption
(x) is equal to some power of m, which must be 1 by construction.
Hence m = (x). We conclude that R is a PID and thus a UFD. We
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saw in the solution to Q4 of sheet 2 that any UFD is integrally closed
and thus R is integrally closed. □

Corollary 12.5. The localisation of a Dedekind domain at a non-zero
prime ideal is a PID.

The proof is immediate – after localising, the ring becomes local.

Corollary 12.6. Let R be a Dedekind domain. Then any primary ideal
is equal to a power of its radical.

Proof. Let p be a prime ideal and let a be a p-primary ideal. Let
λ : R → Rp be the natural homomorphism from R to its localisation at
p. Let m = pp be the maximal ideal of Rp (recall that this is also the
ideal generated by λ(p)).

We claim that λ−1(ap) = a. Indeed, consider the exact sequence

0 → a → λ−1(ap) → λ−1(ap)/a → 0.

The localisation at p of this sequence is
0 → ap → (λ−1(ap))p = ap → (λ−1(ap))p/ap = 0 → 0

By Lemma 5.4, there is a natural isomorphism of Rp-modules

(λ−1(ap)/a)p = (λ−1(ap))p/ap = 0.

Now note that r(a) = p by assumption and that for any element a ∈
R ∖ p, we have (a, p) = (1), since p is maximal by Lemma 12.1 (i).
Hence, by Lemma 12.2, we have (a, a) = (1) if a ∈ R ∖ p and in that
case the image of a in R/a is a unit. Since λ−1(ap)/a is naturally an
R/a-module, we conclude that (λ−1(ap)/a)p = λ−1(ap)/a (as we have
localised at units) and we thus see that λ−1(ap)/a = 0. In other words,
λ−1(ap) = a, and the claim is proved.

Now notice that by Proposition 12.4 (3), we have ap = mk = pkp for
some k ⩾ 1. Also we have pk = λ−1(pkp), since pk is also p-primary by
Lemma 6.5. We conclude that

a = λ−1(ap) = λ−1(pkp) = pk

as required. □

Proposition 12.7. Let R be a Dedekind domain. Let I be an ideal in
R. Then all the minimal primary decompositions of I are equal up to
reindexing.

Note that I has primary decompositions by the Lasker-Noether the-
orem, since R is noetherian.

Proof. Let
⋂n
i=1 ai = I be a minimal primary decomposition of I. By

Corollary 12.6, we have ai = pni
i for some distinct prime ideals pi and

some integers ni ⩾ 1. Furthermore, we have
n⋂
i=1

ai =
n∏
i=1

ai
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(see after Lemma 12.1). We thus have to show that if I =
∏m

j=1 q
mj

j

is another representation of I as a product of powers of distinct prime
ideals, then we have n = m and there is some bijection σ : {1, . . . , n} → {1, . . . , n}
such that pi = qσ(i) and ni = mσ(i) for all i ∈ {1, . . . , n}. So suppose
that

m∏
j=1

q
mj

j =
n∏
i=1

pni
i (∗)

where the qi (resp. the pi) are distinct prime ideals. It will be sufficient
to show that if some prime ideal appears with some multiplicity on the
left of (∗) then it will appear with the same multiplicity on the right
of (∗). So consider eg q1. Localising (∗) at q1, we obtain

m∏
j=1

(qj,q1)
mj =

n∏
i=1

(pi,q1)
ni

Now note that if qj ̸= q1, we have qj,q1 = (1) = Rq1 , because qj ̸⊆ q1
(since qj is maximal). Similarly, if pi ̸= q1, we have pi,q1 = (1). Hence
we obtain the equality

(q1,q1)
m1 = (pi1,q1)

ni1

for some i1 ∈ {1, . . . , n} such that pi1 = q1. On the other hand q1,q1 =
pi1,q1 is the maximal ideal of Rq1 and every ideal in Rq1 is a uniquely
determined power of this maximal ideal by Proposition 12.4 (3). Hence
m1 = ni1 . This concludes the proof. □

We conclude from Proposition 12.7 that in a Dedekind domain, every
ideal can be written in a unique way (up to reindexing) as a product of
powers of distinct prime ideals.

The next three results require some knowledge of Galois Theory.

Proposition 12.8. Let R be an integrally closed domain and let K be
its fraction field. Let L|K be a finite separable extension. Then

(1) the fraction field of the integral closure of R in L is L;
(2) the integral closure of R in L is finite over R.

Proof. Omitted. See [AM], Th. 5.17, p. 64. The proof of (1) is easy
(prove it). The proof of (2) exploits the fact that the so-called “trace
form” associated with a finite separable extensions is non-degenerate.

□

Remark. The previous proposition is also true if R is a domain,
which is finitely generated over a field (without the requirement that
R is integrally closed) and L|K is any finite extension of fields (in
particular one could take L = K). This is a theorem of E. Noether.
See D. Eisenbud, Commutative Algebra with a view toward algebraic
geometry, par. 13.3, Cor. 13.13, p. 297. Note that if R is domain, it
is in general difficult to show that the integral closure of R in its own
fraction field is finite over R.
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Corollary 12.9. Let R be Dedekind domain with fraction field K. Let
L be a finite separable extension of K. Let T be the integral closure of
R in L. Then T is also a Dedekind domain.

Proof. The ring T is clearly a domain, and it is integrally closed by
Lemma 8.6 and Proposition 12.8 (1). Also, the ring T is of dimension 1
by Lemma 11.30. Finally, by the Hilbert basis theorem, T is noetherian.
Indeed, T is finite, and in particular finitely generated over R, and R
is noetherian by assumption. □

Proposition 12.10. Let R be an integrally closed domain and let K be
its fraction field. Let L|K be a finite Galois extension of K. Let T be
the integral closure of R in L. Let p ∈ Spec(R) and let q1, q2 ∈ Spec(T )
be prime ideals of T such that q1 ∩ R = q2 ∩ R = p. Then there exists
an element σ ∈ Gal(L|K) such that σ(q1) = q2.

Note that σ(T ) ⊆ T for all σ ∈ Gal(L|K) (why?). In particular, each
σ ∈ Gal(L|K) induces an automorphism σ|T : T

∼→ T of R-algebras,
with inverse (σ−1)|T .

Proof. Suppose first that

q2 ⊆
⋃

σ∈Gal(L|K)

σ(q1).

In this situation, Proposition 6.1 (i) implies that q2 ⊆ τ(q1) for a
particular τ ∈ Gal(L|K). According to Q1 of sheet 3, this is only
possible if q2 = τ(q1) and hence we are done in this situation.

Now suppose that

q2 ̸⊆
⋃

σ∈Gal(L|K)

σ(q1).

In particular, there is an element e ∈ q2 such that e ̸∈ σ(q1) for all σ ∈
Gal(L|K), or in other words such that σ(e) ̸∈ q1 for all σ ∈ Gal(L|K).

Now consider that the element f =
∏

σ∈Gal(L|K) σ(e) is invariant
under Gal(L|K) by construction. Hence f lies in K ∩T , since L|K is a
Galois extension. Since R is integrally closed, we have K ∩ T = R, so
f ∈ R. On the other hand, since e ∈ q2 and q2 is an ideal, we also have
f ∈ q2, so that f ∈ R ∩ q2 = p. In particular, f ∈ R ∩ q1 = p. Now
since q1 is a prime ideal, this implies that one of the elements σ(e) (for
some σ ∈ Gal(L|K)) lies in q1, which is a contradiction.

Hence we must have q2 ⊆
⋃
σ∈Gal(L|K) σ(q1) and we can conclude

using the argument given above. □

The following lemma (and the complement that follows) plays a key
role in Algebraic Number Theory.

Lemma 12.11. Let R be a Dedekind domain with fraction field K. Let
L|K be a finite separable extension of K and let T be the integral closure
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of R in L (recall that T is also a Dedekind domain by Corollary 12.9).
Let p be a non-zero prime ideal in R. Let p̄ = pT be the ideal generated
by p in T . Let

p̄ = qn1
1 · · · qnk

k

be the minimal primary decomposition of p̄. Then the qi are precisely
the prime ideals q of T which have the property that q ∩R = p.

Proof. We have already seen that qn1
1 · · · qnk

k = qn1
1 ∩ · · · ∩ qnk

k . Hence
qi ∩ R ⊇ p and thus qi ∩ R = p, since p is maximal. Thus the qi are
among the prime ideals q of T , with the property that q ∩R = p.

Conversely, let q be a prime ideal of T , such that q ∩R = p. Then
q ⊇ qn1

1 ∩ · · · ∩ qnk
k

and thus by Proposition 6.1 (ii), we have q ⊇ qni
i for some i; since qi is

the radical of qni
i , we thus have q ⊇ qi and thus q = qi (again because

qi is maximal). □

Complement. We keep the notation of the last lemma. If F2|F1 is
a finite field extension, recall that one writes [F2 : F1] for the dimension
of F2 as a F1-vector space. Write fi = [T/qi : R/p]. One can show that∑

i

nifi = [L : K].

See S. Lang, Algebraic Number Theory, I, par. 7, Prop. 21, p. 24 for
a proof. The integer ni is called the ramification degree of qi over p.
Finally, note that it follows from Proposition 12.7 and Proposition 12.10
that the integers ni and fi are independent of i if L|K is a Galois
extension (why?).

END OF LECTURE 16
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