Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2024, Oxford

Cornelia Druțu (University of Oxford)

Infinite Groups

Part C course MT 2024, Oxford

 $\frac{1}{13}$

Albert Einstein: Politics is for the present, but an equation is something for eternity.

Mahatma Gandhi: Live as if you were to die tomorrow. Learn as if you were to live forever.

Residual finiteness

The idea: approximate an infinite group by its finite quotients. So one needs to have enough finite quotients.

Proposition

1

Let G be a group. The following are equivalent:

 $\bigcap_{i\in I}H_i=\{1\},$

where $\{H_i : i \in I\}$ is the set of all finite-index subgroups in G;

Our every g ∈ G \ {1}, there exists a finite group Φ and a homomorphism φ : G → Φ, such that φ(g) ≠ 1.

Definition

A group satisfying the above is called residually finite.

Cornelia Druțu (University of Oxford)

3 / 13 /

Properties of RF

Proposition

- G, H residually finite (RF) $\Rightarrow G \times H$ RF;
- **2** G RF and $H \leq G \Rightarrow H$ RF;
- **3** $H \leq G$ of finite index and $H RF \Rightarrow G RF$;
- **9** *H* finitely generated *RF* and *Q RF* \Rightarrow *H* \rtimes *Q RF*.

Remark

There exist short exact sequences

$$\{1\} \longrightarrow \mathbb{Z}_2 \stackrel{i}{\longrightarrow} G \stackrel{\pi}{\longrightarrow} Q \longrightarrow \{1\},$$

with Q finitely generated RF and G not RF (J. Millson 1979).

Corollary

The free group F_2 of rank 2 is residually finite. Every free group of (at most) countable rank is residually finite.

Remark

This in particular shows that G RF does not imply G/N RF, for $N \triangleleft G$.

Remark

Given a short exact sequence

$$\{1\} \longrightarrow H \stackrel{i}{\longrightarrow} G \stackrel{\pi}{\longrightarrow} F(X) \longrightarrow \{1\},\$$

with H finitely generated RF and X finite or countable, G is residually finite.

Back to polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Proof by induction on the length $\ell(G)$.

For $\ell(G) = 1$, G is cyclic.

Assume that the statement is true for polycyclic groups of length n, let G be polycyclic with $\ell(G) = n + 1$.

Let N_1 be the first (sub)normal subgroup in a cyclic series of minimal length n + 1.

Then N_1 is polycyclic of length n, hence finitely presented (respectively residually finite) by the induction hypothesis.

Induction proving polycyclic groups are FP and RF

We have the short exact sequence

$$\{1\} \longrightarrow \mathcal{N}_1 \stackrel{i}{\longrightarrow} G \stackrel{\pi}{\longrightarrow} C \longrightarrow \{1\},\$$

where C is cyclic.

This implies *G* finitely presented.

When C finite, N has finite index, hence G RF.

When $C = \mathbb{Z}$, $G = N_1 \rtimes \mathbb{Z}$, hence RF.

Normal poly- C_{∞} subgroup

Proposition

A polycyclic group contains a normal subgroup of finite index which is $poly-C_{\infty}$.

- Proof By induction on the length $\ell(G) = n$.
- For n = 1 the group G is cyclic and the statement true.

Assume the assertion is true for n and consider a polycyclic group G with a cyclic series of length n + 1.

The induction hypothesis implies that N_1 (the first group in the series) contains a normal subgroup S of finite index which is poly- C_{∞} .

Proposition 2.8, (2), in Revision Notes implies that S contains S_1 characteristic subgroup of N_1 of finite index.

Since $N_1 \lhd G$, S_1 is normal in G.

 $S_1 \leqslant S \Rightarrow S_1$ is poly- C_∞ .

If G/N_1 is finite then S_1 has finite index in G.

Normal poly- C_{∞} subgroup 2

Assume G/N_1 is infinite cyclic.

Then the group $K = G/S_1$ contains the finite normal subgroup $F = N_1/S_1$ such that K/F is isomorphic to \mathbb{Z} .

In other words, we have the short exact sequence

$$\{1\} \longrightarrow \mathsf{F} \stackrel{\varphi}{\longrightarrow} \mathsf{K} \stackrel{\psi}{\longrightarrow} \mathbb{Z} \longrightarrow \{1\}.$$

Then K is a semidirect product of F and an infinite cyclic subgroup $\langle x \rangle$. The conjugation by x defines an automorphism of F and since $\operatorname{Aut}(F)$ is finite, there exists r such that the conjugation by x^r is the identity on F. We conclude that $\langle x^r \rangle$ is a finite index normal subgroup of K. We have that $\langle x^r \rangle = G_1/S_1$, where G_1 is a finite index normal subgroup in G, and G_1 is poly- C_{∞} since S_1 is poly- C_{∞} .

Polycyclic torsion-free

Proposition

A polycyclic group contains a normal subgroup of finite index which is $poly-C_{\infty}$.

Corollary

(a) A poly- C_{∞} group is torsion-free.

(b) A polycyclic group is virtually torsion-free.

Proof. (a) Induction on the cyclic length. $n = 1 \Rightarrow G$ infinite cyclic. Assume true for groups of cyclic length $\leq n$, let G with $\ell(G) = n + 1$ and N_1 first subgroup in a cyclic series of G. Let g be an element of finite order in G. Its image in $G/N_1 \simeq \mathbb{Z}$ is the identity, hence $g \in N_1$. The induction assumption implies g = 1. (b) follows from (a) and the Proposition.

Cornelia Druțu (University of Oxford)

Part C course MT 2024, Oxford

The Hirsch length

Proposition

The number of infinite quotients in a cyclic series of a polycyclic group G is the same for all series.

This number is called the Hirsch length of G, denoted by h(G).

Proof uses the Jordan-Hölder Theorem:

Any two finite subnormal series in a group have equivalent refinements. A series is a refinement of another series if the subgroups of the latter all occur in the former.

Two finite series are equivalent if they have the same sequence of quotients N_i/N_{i+1} , up to permutation.

To prove the proposition it then suffices to show the following

Lemma

A refinement of a cyclic series is also cyclic. Moreover, the number of quotients isomorphic to \mathbb{Z} is the same for both series. Part C course MT 2024, Oxford

Cornelia Druțu (University of Oxford)

Infinite Groups

Proof of the lemma

Proof. Consider a cyclic series

$$H_0 = G \geqslant H_1 \geqslant \ldots \geqslant H_n = \{1\}.$$

A refinement of this series is composed of a concatenation of sub-series

$$H_i = R_k \geqslant R_{k+1} \geqslant \ldots \geqslant R_{k+m} = H_{i+1}.$$

 $\begin{array}{l} H_i/H_{i+1} \mbox{ cyclic } \Rightarrow H_i/R_{j+1} \mbox{ cyclic } (\mbox{quotient}) \Rightarrow R_j/R_{j+1} \mbox{ cyclic } (\mbox{subgroup}).\\ H_i/H_{i+1} \mbox{ finite } \Rightarrow \mbox{ all } R_j/R_{j+1} \mbox{ are finite.}\\ \mbox{Assume } H_i/H_{i+1} \simeq \mathbb{Z}.\\ \mbox{By induction on } m \geqslant 1: \mbox{ exactly one quotient } R_j/R_{j+1} \simeq \mathbb{Z}.\\ \mbox{For } m=1, \mbox{ clear. Assume true for } m, \mbox{ consider the case of } m+1.\\ \mbox{If } H_i/R_{k+m} \mbox{ is finite then all } R_j/R_{j+1} \mbox{ with } j \leqslant k+m-1 \mbox{ are finite.}\\ \mbox{ } R_{k+m}/R_{k+m+1} \mbox{ cannot be finite, otherwise } H_i/H_{i+1} \mbox{ finite.}\\ \mbox{Therefore } R_{k+m}/R_{k+m+1} \simeq \mathbb{Z}. \end{array}$

Proof of the lemma, continued

Assume $H_i/R_{k+m} \simeq \mathbb{Z}$. Inductive assumption \Rightarrow exactly one $R_j/R_{j+1} \simeq \mathbb{Z}, j \leq k+m-1$. R_{k+m}/R_{k+m+1} is a subgroup of $H_i/R_{k+m+1} \simeq \mathbb{Z}$ such that the quotient by this subgroup is also isomorphic to \mathbb{Z} . This can only happen when R_{k+m}/R_{k+m+1} is trivial.

Let G be a finitely generated nilpotent group of class k. Let m_i denote the free rank of the abelian group $C^iG/C^{i+1}G$. The Hirsch number of G is $h(G) = \sum_{i=1}^k m_i$.

Proposition

For each finitely generated nilpotent group the Hirsch number equals the Hirsch length.

Proof is Exercise 2, Ex. Sheet 3.