Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2024, Oxford

Cornelia Druțu (University of Oxford)

Part C course MT 2024, Oxford

 $\frac{1}{11}$

Nilpotent and unipotent.

 $h \in End(V)$ is nilpotent if $h^k = 0$ for some k > 0

 \Leftrightarrow in some basis, *h* can be written as an upper triangular matrix with zeroes on the diagonal.

 \Leftrightarrow the only eigenvalue of *h* is 0.

 $g \in End(V)$ is unipotent if g = id + h, where h is nilpotent \Leftrightarrow the only eigenvalue of g is 1. $g \in End(V)$ is quasi-unipotent if g^k is unipotent for some k > 0 \Leftrightarrow all the eigenvalues of g are roots of unity.

A subgroup G < GL(V) is unipotent (respectively quasi-unipotent) if every element of G is unipotent (respectively, quasi-unipotent).

2 /

Theorem (Kolchin's theorem)

Suppose that $\mathbb{K} = \overline{\mathbb{K}}$ and G < GL(V) is a unipotent subgroup. Then, for an appropriate choice of basis, G is isomorphic to a subgroup of the group of invertible upper-triangular matrices $\mathcal{T}_n(\mathbb{K})$. In particular G is nilpotent.

Proof. The conclusion is equivalent to the statement that G preserves a full flag

$$0 \subset V_1 \subset \ldots \subset V_{n-1} \subset V,$$

where $i = \dim(V_i)$ for each *i*. The proof is by induction on the dimension *n* of *V*. Clear for n = 1.

We assume that n > 1 and that the statement is true for dimensions < n.

Proof of Kolchin's theorem continued

Suppose first that the action of G on V is reducible: G preserves a proper subspace $V' \subset V$.

We obtain two induced actions of G on V' (by restriction) and on V'' = V/V' (by projection).

Both actions preserve full flags in V', V'' (induction assumption), and the combination of these flags yields a full *G*-invariant flag in *V*.

Assume now that the action of G on V is irreducible.

For $g \in G$ arbitrary the endomorphism g' = g - I is nilpotent, hence it has zero trace.

Therefore, for every $x \in G$, we have

$$tr(g'x) = tr(gx - x) = tr(I) - tr(I) = 0.$$

By Burnside's theorem, *G* spans $End(V) \Rightarrow$ for each $x \in End(V)$ and each $g \in G$, tr(g'x) = 0. $\tau : End(V) \times End(V) \rightarrow \mathbb{K}$ is nondegenerate $\Rightarrow g' = 0$ for all $g \in G$, i.e. $G = \{1\}$.

Cornelia Druţu (University of Oxford)

Variation of Kolchin's theorem

Theorem (Variation of Kolchin's theorem)

Suppose $\mathbb{K} = \overline{\mathbb{K}}$, G < GL(V) quasiunipotent and, moreover, there exists an upper bound α on the orders of eigenvalues of elements $g \in G$. Then G contains a finite index subgroup isomorphic to a subgroup of the group $\mathcal{U}_n(\mathbb{K})$ of upper triangular matrices with 1 on the diagonal. The index depends only on V and on α . In particular G is virtually nilpotent.

Proof. By induction on the dimension of V.

As before, it suffices to consider the case when *G* acts irreducibly on *V*. The orders of the eigenvalues of elements of *G* are uniformly bounded \Rightarrow the set of traces of elements of *G* is a certain finite set $C \subset \mathbb{K}$ of cardinality $q = q(\alpha)$.

Our first application to Burnside $\Rightarrow G$ is finite, of cardinality at most q^{n^2} , where $n = \dim V$.

Theorem (Lie-Kolchin-Mal'cev Theorem)

Let $G \leq GL(V)$ be solvable linear, with $n = \dim V$ (G solvable linear of degree n). Then G has a triangularizable normal subgroup K of finite index at most $\mu(n)$, a number that depends only on n.

Definition

Let \mathcal{X} and \mathcal{Y} be two classes of groups. A group G is \mathcal{X} -by- \mathcal{Y} if there exists a short exact sequence

$$\{1\} \longrightarrow N \stackrel{i}{\longrightarrow} G \stackrel{\pi}{\longrightarrow} Q \longrightarrow \{1\}\,,$$

such that $N \in \mathcal{X}$ and $Q \in \mathcal{Y}$.

Solvable linear groups versus nilpotent and polycyclic

Corollary

Let G be a solvable linear group of degree n.

- (i) G has an unipotent-by-abelian normal subgroup of index $\leq \mu(n)$,
- (ii) (the Zassenhaus Theorem) the derived length of G is at most $\beta(n) := n + \log_2 \mu(n)$.

This can be combined with the following general result.

Theorem

Every unipotent subgroup of $GL(n,\mathbb{Z})$ is finitely generated.

The two previous results imply the following.

Corollary

Every finitely generated solvable group linear over $\ensuremath{\mathbb{Z}}$ is polycyclic.

Another comparison between solvable and polycyclic

The converse is also true.

Theorem (Auslander's Theorem)

Every polycyclic group is linear over \mathbb{Z} .

Corollary

Every polycyclic group is virtually (finitely generated nilpotent)-by-(f.g. abelian).

We have thus obtained the following way of distinguishing polycyclic groups among solvable groups.

Theorem

Given a f.g. solvable group G, the following are equivalent:

- *G* is polycyclic;
- G is linear over \mathbb{Z} .

Comparison between solvable and nilpotent: growth

Final topic of this course: distinguishing f.g nilpotent groups in the larger class of f.g. solvable groups *via* their growth.

This is the celebrated Milnor-Wolf Theorem.

Byproducts of the proof: new features that allow to distinguish between solvable and polycyclic, polycyclic and nilpotent.

Let $G = \langle S \rangle$, where S finite, $S^{-1} = S$, $1 \notin S$. Let dist_S be the word metric associated to S. The growth function of G with respect to S is

 $\mathfrak{G}_{G,S}(R) := \operatorname{card} \overline{B}(1,R).$

Question: How much does $\mathfrak{G}_{G,S}$ depend on S?

9/

Growth functions

Definition

Given $f, g: X \to \mathbb{R}$ with $X \subset \mathbb{R}$, we define an asymptotic inequality $f \leq g \Leftrightarrow \exists a, b > 0, c \geq 0$ and $x_0 \in \mathbb{R}$ such that $\forall x \in X, x \geq x_0$, $bx + c \in X$ and $f(x) \leq ag(bx + c)$.

 $f \asymp g \Leftrightarrow f \preceq g$ and $g \preceq f$; we say that f and g are asymptotically equal.

Lemma

Assume that $(G, \operatorname{dist}_S)$ and $(H, \operatorname{dist}_X)$ are bi-Lipschitz equivalent, i.e. $\exists L > 0$ and a bijection $f : G \to H$ such that

$$\frac{1}{L} \operatorname{dist}_{\mathcal{S}}(g,g') \leqslant \operatorname{dist}_{X}(f(g),f(g')) \leqslant L \operatorname{dist}_{\mathcal{S}}(g,g'), \forall g,g' \in G.$$
(1)

Then $\mathfrak{G}_{G,S} \simeq \mathfrak{G}_{H,X}$. In particular true when $(H, \operatorname{dist}_X) = (G, \operatorname{dist}_{S'}), \ G = \langle S' \rangle$.

10 11

Growth functions

Corollary

If S, S' are two finite generating sets of G then $\mathfrak{G}_S \simeq \mathfrak{G}_{S'}$. Thus, one can speak of growth function \mathfrak{G}_G of a group G, well defined up to \simeq .

Examples

- If $G = \mathbb{Z}^k$ then $\mathfrak{G}_S \simeq x^k$ for every finite generating set $S = S^{-1}$.
- If G = F_k, the free group of finite rank k ≥ 2, and X is the set of k letters/symbols then

$$\mathfrak{G}_{X\sqcup X^{-1}}(n) = 1 + (q^n-1)rac{q+1}{q-1}, \quad q = 2k-1.$$

11 /