
C5.7 Topics in Fluid Mechanics Michaelmas Term 2023

Problem Sheet 3: Solutions

1. Let gm = (α2 +m2π2). For σ = iΩ, Ω real and non-zero, we have

−AΩ2 + iBΩ + C = 0

and hence (i) B = 0, Ω2 = C/A. Noting A > 0 we require (ii) C > 0.

Thus at the bifurcation we have

g2m(1 + Le) + α2 (Ras − RaLe) = 0,

and thus (
Ra− Ras

Le

)
=

(
1 +

1

Le

)
g2m
α2

.

From (ii), for we require
g3m + (Ras − Ra)α2gm > 0

and thus

Ra− Ras <
g2m
α2

.

Hence, at the bifurcation we must have(
Ra− Ras

Le

)
>

(
1 +

1

Le

)
(Ra− Ras)

and hence

Ras >
Ra

Le
.
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2. The problem is illustrated schematically below

Darcy’s law in the porous medium gives the vertical Darcy velocity

w = −k

µ

(
∂p

∂z
+ ρg

)
.

Given that the problem is assumed one-dimensional, incompressibility requires that ∂w/∂z = 0
so that ∂2p/∂z2 = 0. Hence we must have p = Az +B with the constants of integration A and
B chosen to satisfy the boundary conditions that p(0) = 0 and p(h) = −γκ, which gives

p = −γκ
z

h
.

From Darcy’s law the Darcy velocity within the liquid is

w = −k

µ
(ρg − γκ/h) .

Now, we would like to use the kinematic condition to match the velocity at which the interface
moves with the fluid velocity in the layer. However, the physical fluid velocity at the interface
is ḣ and so w = ϕḣ where ϕis the porosity. We therefore have

ḣ = − k

µϕ
(ρg − γκ/h) =

kρg

µϕ

(
h∞ − h

h

)
where h∞ = γκ/ρg is the equilibrium rise height of the liquid.

For h ≪ h∞, we have hḣ ≈ ρgkh∞/µϕ so that

h ≈
(
2ρgkh∞

µϕ
t

)1/2

=

(
2γκk

µϕ
t

)1/2

.
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Expect that as t → ∞, ḣ → 0 and so h → h∞, as required.

To find the time taken to reach a given height, s, we separate variables and integrate to find∫ s

0

h dh

h∞ − h
=

∫ ts

0

kρg

µϕ
dt =

kρg

µϕ
ts

and hence

−h∞ log

(
h∞ − s

h∞

)
− s =

kρg

µϕ
ts.

Finally we have

ts = − µϕ

kρg
[s+ h∞ log (1− s/h∞)] ,

as required.
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3. We consider the scenario illustrated schematically below.

(a) Since the fluids occupy a porous medium, we have ui = −k/µi∇pi for i = 1, 2. We also
have that both fluids are incompressible, so that ∇ · ui = 0 and hence ∇2pi = 0.

In the base state, both fluids move with velocity ui = V i so that p
(0)
i = −µiV x/k+Ai. However,

since the interface is flat, the pressure must be continuous across the interface at x = V t and
so we take, wlog, p

(0)
i (V t) = 0, i.e.

p
(0)
i (x) =

µiV

k
(V t− x)

(b) We now consider the perturbation of the interface to x = ζ(y, t) = V t + ϵeσt sinκy where
we assume that ϵ is small. Because of the perturbation to the interface, the pressure fields, and
hence velocities, will also be perturbed. We let pi = p

(0)
i + ϵp

(1)
i + ... and ui = u

(0)
i + ϵu

(1)
i + ...

Since we expect the pressure perturbations to inherit the sinusoidal dependence on y of the
perturbed interface and they must be harmonic functions, we take as our ansatz

p
(1)
1 = A1e

σt+κx sinκy, p
(1)
2 = A2e

σt−κx sinκy

where the signs of the exponents in x have been taken to ensure that p
(1)
1 → 0 as x → −∞ and

similarly for p
(1)
2 .

To determine the coefficients Ai, we must use the kinematic boundary condition, which takes
the form

ui · i =
Dζ

Dt
= V + ϵeσt

[
σ sinκy + ϵκ cosκy u

(1)
i · j

]
≈ V + ϵeσt [σ sinκy] .

The left hand side may be calculated from Darcy’s law and the above solution for the pressure
field; we find that

− k

µi

∂

∂x

[
µiV

k
(V t− x) + ϵAie

σt±κx sinκy

]∣∣∣∣
x=V t+ϵeσt sinκy

≈ V + ϵeσt [σ sinκy]

4



and hence
Ai = ∓σ

µi

kκ
e∓κV t

with the − taken for i = 1 and the + for i = 2.

In summary, we have that

p
(1)
1 = −σ

µ1

kκ
eσt+κ(x−V t) sinκy

and
p
(1)
2 = σ

µ2

kκ
eσt−κ(x−V t) sinκy.

(c) To determine the growth rate, we use the pressure jump due to surface tension, which reads

p2 − p1|x=ζ(y,t) = γ

(
∂2ζ

∂y2

)
= −γκ2ϵeσt sinκy.

Being careful to include the perturbation to p
(0)
i from the perturbed interface, we have

(µ1 − µ2)V

k
+ σ

µ1 + µ2

kκ
= −γκ2.

from which we have

σ(µ1 + µ2) = −γkκ3 − (µ1 − µ2)V κ, (1)

as required.

Now, if (µ1−µ2)V > 0 then σ < 0 for all k > 0 and so the interface is stable. (This corresponds
to the more viscous liquid invading the less viscous.)

If (µ1 − µ2)V < 0 then σ > 0 (i.e. the interface is unstable) for 0 < κ < κ0 where

0 = −γkκ3
0 − (µ1 − µ2)V κ0

i.e. κ0 = [(µ2 − µ1)V/γk]
1/2. Thus the interface is unstable provided that the wavelength is too

large for surface tension to suppress it.

(d) Experimentally, we expect to observe the mode that grows most quickly. The fastest growing
mode, κ = κm, has σ

′(κm) = 0 so that

0 = −3γkκ2
m + (µ2 − µ1)V

so that κm = 3−1/2κ0. The corresponding wavelength is

λ =
2π

κm

= 2
√
3πk1/2Ca−1/2.

(e) This is not likely to be a realistic model of the Saffman-Taylor instability in a porous medium
because the surface tension force was related to the macroscopic curvature of the interface. In
the physical problem the surface tension jump is more likely to be determined by the microscopic
curvature, and hence be related to the scale of the pores themselves.
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4. The problem is illustrated schematically below. To determine the pressure within the lens, begin
at sea level at some distance from the island. Going vertically down, we see that the pressure
at the base of the lens must be pbase = ρsgd(r) where ρs is the density of the (salty) sea.

Now, if the lens is long and thin, then the scaling arguments from lectures show that the pressure
within the lens must be approximately hydrostatic. Moving from the base vertically upwards,
and assuming that the pressure is hydrostatic, then we have that at a depth z below sea level

p[z(r)] = pbase − ρ0g[d(r)− z] = (ρs − ρ0)gd(r) + ρ0gz. (2)

From Darcy’s law, the horizontal (Darcy) velocity within the lens is given by

u = −k

µ

∂p

∂r
= −k(ρs − ρ0)g

µ
d′(r).

Conservation of mass across a ring at a radius r yields that 2πr×u× d(r) = πr2wr (we assume
that the problem is in steady state and so the total flux of fluid in must balance that across the
ring). We therefore have that

−2
k(ρs − ρ0)g

µ
dd′ = rwr,

from which we find that
d2 =

wrµ

2(ρs − ρ0)gk
(R2 − r2)

where the radius R is that at which d = 0 and hence where the lens meets sea level. The result
for d(r) then follows.

[Note that we have not said anything about what R is. In reality, this must be determined by the
length scale over which mixing between the salty and fresh water can happen to ensure a steady
state. The word ‘steady’ is not used in the question to avoid confusion about whether there is
really flow (and to emphasise that hydrostatic pressure may be assumed because of the thinness
of the geometry).]

6



To calculate the profile of the upper surface of the lens, we note that on this surface p = 0.
Hence, from (2) we have that it is given by

z = −ρs − ρ0
ρ0

d(r),

which is negative since positive z correspond to distances below sea level.
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5. (a) The scaling form of the pde is
H

T
∼ H2

R2

while volume conservation gives us
Tα ∼ HR2

so that H ∼ TαR−2. Substituting this into the first scaling relationship, we have

T ∼ R2/H ∼ R4/Tα

and hence that R ∼ T (α+1)/4, H ∼ T (α−1)/2.

From these scalings, it is natural to consider the combinations rt−(α+1)/4 and ht−(α−1)/2 so that
we make the similarity ansatz

h(r, t) = t(α−1)/2f(η), where η = rt−(α+1)/4.

Substitution of this ansatz into the pde gives

t(α−3)/2

(
α− 1

2
f − α + 1

4
ηf ′

)
= t−2α+1

4
1

η

d

dη

(
t2

α−1
2 ηf

df

dη

)
and hence

d

dη

(
ηf

df

dη

)
+

α + 1

4
η2f ′ +

1− α

2
ηf = 0, (3)

as desired.

We also have the volume constraint, which becomes

1

2π
=

∫ ηN

0

ηf(η) dη,

and the front condition that h[a(t), t)] = 0, which becomes f(ηN) = 0 with ηN = a(t)/t(α+1)/4.

(b) We now let η = ηN(1 − x) with x ≪ 1 to examine the region within the current but close
to the edge, or nose. Substituting this ansatz into (3) and linearising gives

η−2
N

d

dx

(
ηNf

df

dx

)
+

α + 1

4
η2Nη

−1
N f ′ +

1− α

2
ηNf = 0.

We spot that by letting f = η2NF (x) we may write

d

dx

(
F
dF

dx

)
+

α + 1

4
F ′ +

1− α

2
F = 0 (4)
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and, since F (x = 0) = 0, we expect that we may neglect the F term here, i.e. F ≪ 1, and check
this a posteriori. We find that

d

dx

(
F
dF

dx

)
+

α + 1

4
F ′ ≈ 0

so that

F
dF

dx
+

α + 1

4
F ≈ A = 0 [Since F = 0 at the nose]

We therefore find that

F = −α + 1

4
x,

in which case it is self-consistent to neglect the linear term (4).

Finally, we have

f(η) = η2N
α + 1

4
(1− η/ηN),

as required.
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