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1 Introduction
[UNDER CONSTRUCTION !] In data science and in many applications such as quantum field the-
ories, we have to handle datasets with a large number of attributes, and often labels and attributes
demonstrating a dataset are not independent. It is convenient to represent datasets with D many at-
tributes as vectors in the Euclidean space of D dimensions, where D though is very large. In many
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applications, D is larger than the size of the sample data. Often datasets in applications are located
in a lower dimensional sub-manifolds, so there is a question of reducing dimensions in datasets. This
course does not address this kind of questions, nor to address anything about learning from data or
about regenerating datasets. Rather, we attempt to develop an array of mathematical tools to address
the question of describing the distributions of datasets.

Prerequisite: It is essential that you have good computational skills from (1) Prelims Calculus,
(2) A2.1 Metric Spaces, (3) First half of A8 Probability, and (4) A4 Integration.

Main tools: We shall introduce a few new concepts on the way, but no one of them is particularly
new, and they are introduced mainly for convenience. We shall mainly use the computational tools
developed in elementary calculus such as finding derivatives using various rules, finding some simple
integrals, a little bit algebra for helping organizing your computations and etc. A4 Integration is re-
quired to backup and to justify your computations. You shall enjoy the powerful techniques developed
in this course, and you shall appreciate the results established in this course like the isoperimetric in-
equalities both for Gaussian measures and for the Lebesgue measures. You shall be able to appreciate
the main method developed in this course, i.e. the method of stochastic quantization in its simplest
form.

About this course: This is not a course about data science, it is a course which is quite useful for
understanding datasets. It is a probability course with strong flavor of analysis. While I hope in near
future these tools shall be used widely in data science.

The standard one dimensional normal distribution, even in high-dimensional probability, remains
to play an important role as in elementary Probability Theory. The Gaussian distribution function

Φ(x) =
� x

−∞

1√
2π

e−
x2
2 dx for x ∈ R

whose probability density function (PDF) is its derivative: Φ ′(x) = 1√
2π

e−
x2
2 . Clearly its second

derivative Φ ′′(x) = −xΦ ′(x). Φ is strictly increasing on (−∞,∞) taking values in (0,1), whose
inverse function Φ−1 : (0,1) 7→ (−∞,∞) is also strictly increasing. A fundamental fact about normal
distribution is that the tail probability

1−Φ(r) =
�

∞

r

1√
2π

e−
x2
2 dx

decays to zero in a speed like e−r2/2 as r → ∞.

In fact we have more precise quantitative decay estimates.

Exercise. For r > 0 we have

(
r+

1
r

)−1

Φ
′(r)≤ 1−Φ(r)<

1
r

Φ
′(r).
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[Hint: Observe that
�

∞

r

1√
2π

e−
x2
2 dx <

�
∞

r

x
r

1√
2π

e−
x2
2 dx

=

�
∞

r

(
1+

1
x2

)
1√
2π

e−
x2
2 dx

<

(
1+

1
r2

)�
∞

r

1√
2π

e−
x2
2 dx.

You may read page 4 in H. P. McKean: Stochastic Integrals. Academic Press New York and London
(1969), or any other books on probability.]

Therefore we conclude that

1−Φ(r) =
�

∞

r

1√
2π

e−
x2
2 dx ≤ min

{
1
2
,

1√
2π

1
r

e−
r2
2

}
for any r > 0.

Suppose X has a normal distribution with mean zero and variance σ2, then for every r > 0

P [X > r] =
�

∞

r

1√
2πσ2

e−
x2

2σ2 dx

= σ

�
∞

r/σ

1√
2π

e−
x2
2 dx

≤ min
{

σ

2
,

σ2
√

2π

1
r

e−
r2

2σ2

}
∼ exp

(
− r2

2σ2

)
which maybe called the Gaussian decay rate. We shall later on prove that

P [X > r]≤ exp
(
− r2

2σ2

)
for every r > 0.

In this course, we shall develop an array of mathematical tools for establishing effective tail esti-
mates for high-dimensional probability distributions. In contrast with the traditional probability the-
ory and classical stochastic analysis, where the concepts such as independence, martingale property,
Markov property, play dominated roles, in High-Dimensional Probability, we seek for tools which can
be used for handling distributions of random fields which do not possess these properties. These tools
shall be particularly useful for the study of distributions of datasets with large numbers of attributes
with complex (dependent) structures.

Let us collect several notions, notations and a few elementary facts which shall be used in this
course.

Suppose (X ,d) is a metric space, then the topology on X defined by the metric d is the collection
of all open subsets, that is all subset U which have the following property: for every x ∈U , there is a
positive number r (depending on x in general though) such that the open ball centered at x with radius
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r, Bx(r) is a subset of U . A metric space is separable if it has a countable dense subset. A metric
space is complete if every Cauchy sequence has a limit. A complete and separable metric space is
called a Polish space.

The σ -algebra generated by open subsets, i.e. the smallest σ -algebra on X , containing all open
subsets (and therefore all closed subsets as well) is called the Borel σ -algebra, denoted by B(X). By
saying a measure on a metric space, we mean a measure on the Borel σ -algebra on a metric space,
unless otherwise specified. In particular, any continuous function on a metric space is measurable
(with respect to the Borel σ -algebra), cf. A4 Integration.

Most distributions one has to deal with in applications are probability measures on sample spaces
with additional space structures, such as linear structures you studied in Linear Algebras. The most
convenient way to introduce a distance on a vector space X is through a norm. We recall that a
function x 7→ ∥x∥ from a vector space X 7→ [0,∞) if ∥x∥= 0 only for x = 0, ∥λx∥= |λ |∥x∥ for every
scalar λ and x ∈ X , and the triangle inequality holds: ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for any x,y ∈ X . The
topology (i.e. the collection of open sets) on X is defined by the induced distance d(x,y) = ∥x− y∥
(for x,y ∈ X). In this way we call (X ,∥·∥) is a normed (linear, or vector) space, that is, a vector space
equipped with a norm. Such normed space is called a Banach space if it is complete as a metric space
(cf. A2.1 Metric Spaces).

A scalar (or inner) product on X is a mapping ⟨·, ·⟩ from the product space X ×X to C,which
sends an ordered pair (x,y) to a number ⟨x,y⟩ which satisfies the following properties: ⟨x,y⟩= ⟨y,x⟩
for every pair x,y∈ X , ⟨x,x⟩ ≥ 0 for every x and = 0 only for x = 0, the mapping x 7→ ⟨x,y⟩ is linear (in
x) for every y, and y 7→ ⟨x,y⟩ is conjugate linear (in y) for every x, i.e. ⟨x,y1 + y2⟩ = ⟨x,y1⟩+ ⟨x,y2⟩
and ⟨x,λy⟩ = λ̄ ⟨x,y⟩ for any number λ , and x,y ∈ X . ∥x∥ =

√
⟨x,x⟩ for x ∈ X defines a norm on

X , the norm ∥·∥ induced by the scalar product. A Banach space whose norm is induced by a scalar
product is called a Hilbert space.

Like in A4 (Integration) and A8 (Probability), we shall apply the following conventions and no-
tations. Firstly two symbols ∞ and −∞ are introduced with the convention that −∞ < a < ∞ for any
real number a, 0 ·∞ = 0, a ·∞ = ∞ if a > 0, and ∞ ·∞ = ∞, as in A4 Integration.

If (E,F ,µ) is a σ -finite measure space, and f is a measurable function, then f+ = max{ f ,0}
and f− = max{− f ,0} are the positive part and negative part. Both f+ and f− are non-negative
and measurable, f = f+− f− and | f | = f++ f−. Integrals

�
E f+dµ and

�
E f−dµ are well defined

(though may equal to ∞). If both integral
�

E f+dµ and
�

E f−dµ are finite, then f is called integrable
with resect to µ , or called µ-integrable. The integral of f is denoted by

�
E f dµ , which equals namely�

E f+dµ −
�

E f−dµ . For simplicity, if f is measurable, and if f is non-negative or integrable, then its
integral

�
E f dµ is also denoted by

�
E f (x)µ(dx),

�
f dµ , or by µ( f ) if no confusion arises.

For every p > 0, then Lp(E,F ,µ), Lp(E) (to emphasis the space), Lp(µ) (to stress the measure
in question), denotes the totality of all measurable functions f such that | f |p is integrable. For such

function f , ∥ f∥p =
(�

E | f |
pdµ

) 1
p .

It is a very important fact that for every p ≥ 1, Lp(E,F ,µ) is a linear space and f 7→ ∥ f∥p is a
norm. In particular if p ≥ 1, then

∥ f +g∥p ≤ ∥ f∥p +∥g∥p for any f ,g ∈ Lp(E,F ,µ),

which is called the Minkowski inequality. This inequality can be proved by using the convexity of the
power function xp on (0,∞) if p ≥ 1. The detail of the proof is left as an exercise (see Problem Sheet
1).

Let us recall a real function ρ defined on an interval (a,b) (not necessary bounded) is convex if

ρ(λ s+(1−λ )t)≤ λρ(s)+(1−λ )ρ(t)
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for any s, t ∈ (a,b) and λ ∈ [0,1]. A function ρ is concave if −ρ is convex.

Proposition 1.1. If ρ is convex on (a,b) and X is an random variable valued in (a,b), then ρ(EX)≤
Eρ(X) as long as both X and ρ(X) are integrable.

Proposition 1.2. The Hölder inequality: If f and g are two measurable functions on a σ -finite mea-
sure space (E,F ,µ), then

�
E
| f g|dµ ≤

(�
E
| f |pdµ

) 1
p
(�

E
|g|qdµ

) 1
q

(1.1)

if p > 1 and 1
p +

1
q = 1. In particular if f ∈ Lp(E,µ) and g ∈ Lq(E,µ) then f g ∈ L1(E,µ). The case

where p = q = 2 is called the Cauchy-Schwartz inequality.

Proof. If one of the integral on the right-hand side vanishes, then f or g equals zero almost surely,
which forces that f g = 0 almost surely too, thus both sides of the inequality are zero. The inequality
is trivial in this case. Thus let us assume both integrals on the right-hand side are greater than zero
(but may be ∞). For this case, if one of the integral on the right-hand side is ∞, the the right-hand side
is infinity, so the inequality is surely true and of course is also trivial. Therefore we may assume that

0 < ∥ f∥p =

(�
E
| f |pdµ

) 1
p

< ∞

and

0 < ∥g∥q =

(�
E
|g|qdµ

) 1
q

< ∞.

For this case, by replacing f by f/∥ f∥p and g/∥g∥q, we may further assume that ∥ f∥p = ∥g∥q = 1.
Now we use the elementary inequality

st ≤ 1
p

sp +
1
q

tq

for any non-negative s, t [This inequality follows by inspecting the function ϕ(x) = x− 1
pxp − 1

q (for
x ≥ 0) and showing the maximum ϕ(1)≤ 0].

The Hölder inequality may be stated as the following convenient form
�

E
| f |α |g|1−αdµ ≤

(�
E
| f |dµ

)α(�
E
|g|dµ

)1−α

(1.2)

where α ∈ (0,1) is a constant, f ,g are µ-integrable.
A special case for probabilities is worthy of mention.

Proposition 1.3. Let (Ω ,F ,P) be a probability space. Then

(E|X |)p ≤ E(|X |p)

for every p ≥ 1, X is p-th integrable. Equivalently

E(|X |α)≤ (E|X |)α

for every constant α ∈ (0,1), and X is integrable.
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Proposition 1.4. Suppose X > 0 and Y are two measurable functions on a σ -finite measure space
(E,F ,µ). Then

µ

(
Y 2

X

)
≥ (µ (|Y |))2

µ(X)
. (1.3)

Here we use also µ( f ) to denote the integral
�

E f dµ .

Proof. In fact by Cauchy-Schwartz inequality

µ (|Y |) = µ

(√
X
|Y |√

X

)
≤
√

µ(X)

√
µ

(
Y 2

X

)
which yields (1.3).

It should be understood that the main task in probability theory (i.e. statistical mechanics) is to
give a good description of the distribution of a random variable. For a real random variable X , we are
interested in its distribution function FX(t) = P [X ≤ t], which is a reason we are so interested in tail
estimates such as P [X ≥ t].

Proposition 1.5. Let ρ : (0,∞) 7→ [0,∞) be right-continuous and increasing with its right-hand limit at
0: ρ(0+) = 0. Let mρ denote the Lebesgue–Stieltjes measure associated with ρ (cf. A4 Integration),
i.e. mρ is the unique measure on ([0,∞),B([0,∞))) such that mρ((s, t]) = ρ(t)−ρ(s) for any t > s ≥
0, and mρ({0}) = 0.

Let X and Y be two non-negative measurable functions on a σ -finite measure space (E,F ,µ).
1) It holds that �

E
ρ(X)dµ =

�
∞

0
µ[X ≥ λ ]mρ(dλ ). (1.4)

2) Suppose that there is a constant C > 0 such that µ [X ≥ λ ] ≤ Cµ [Y ≥ λ ] for all λ > 0. Then�
E ρ(X)dµ ≤C

�
E ρ(Y )dµ .

Proof. The proof follows from the construction of mρ and the Fubini theorem (cf. A4 Integration).
Indeed�

E
ρ(X(ω))µ(dω) =

�
E
(ρ(X(ω))−ρ(0+))µ(dω) =

�
E

mρ((0,X(ω)])µ(dω)

=

�
E

[�
(0,X(ω)]

mρ(dλ )

]
µ(dω) =

�
E

[�
∞

0
1[λ≤X(ω)]mρ(dλ )

]
µ(dω)

=

�
E×(0,∞)

1[X(ω)≥λ ]mρ(dλ )µ(dω)

=

�
(0,∞)

µ({X ≥ λ})mρ(dλ )

where we have used the fact that mρ((s, t]) = ρ(t)−ρ(s) for any t ≥ s ≥ 0 by definition.

Proposition 1.6. If f is a non-negative, Borel measurable function on RD, then�
RD

f (x)dx =
�

∞

0
Leb({ f > t})dt (1.5)

where Leb denotes the Lebesgue measure on RD.
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Proof. We may observe that, if ρ is increasing, continuous and ρ(0+)= 0 in Lemma 1.5, then µ[X ≥
λ ] can be replaced by µ[X > λ ]. In fact

�
RD

f (x)dx =
�

∞

0
Leb({ f ≥ t})dt.

Since t 7→ Leb({ f > t}) is decreasing so that

{t ≥ 0 : Leb({ f > t}) ̸= Leb({ f ≥ t})}

is at most countable, and therefore is a null subset with respect to the Lebesgue measure. Therefore
(1.5) follows immediately.

Proposition 1.7. Suppose X and A are two non-negative random variables on a probability space,
and suppose

P [X ≥ λ ]≤ 1
λ
E [A : X ≥ λ ] for any λ > 0.

Then, for any p > 1

E [X p]≤
(

p
p−1

)p

E [Ap] . (1.6)

Proof. We can assume that X is bounded, otherwise we use min{X ,n} (for n = 1,2, . . .) instead and
take limit as n → ∞. Let ρ(t) = t p for t > 0. Then, by (1.4) [with ρ(t) = t p for t > 0]

E [X p] =

�
∞

0
P [X ≥ λ ]mρ(dλ )≤

�
∞

0

1
λ
E [A : X ≥ λ ]ρ ′(λ )dλ

≤ p
�

∞

0
E [A : X ≥ λ ]λ p−2dλ .

Using Fubini’s theorem for the last integration, we obtain that

E [X p]≤ pE
[

A
� X

0
λ

p−2dλ

]
=

p
p−1

E
[
AX p−1] .

Apply Hölder’s inequality to obtain that

E [X p]≤ p
p−1

(E [Ap])
1
p (E [X p])

1
q

where 1
p +

1
q = 1. Rearranging the inequality to complete the proof.

2 General concentration inequalities
Let us begin with a very general concentration principle of high-dimensional distributions, which is
not quantitative as we wish and therefore it has a very limited value.

Lemma 2.1. Let (E,ρ) be a Polish space, and P be any probability measure on (E,B(E)). Then for
every ε > 0 there is a compact subset K ⊂ E, such that P [E \K]< ε .
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Proof. Since E is separable, for every δ > 0, E can be covered by countable many balls with radius
δ . Therefore, for every n, there is a sequence of closed balls B(n)

i of radius 1
2n (where i = 1,2, . . .) such

that ∪iB
(n)
i = E for each n. By construction

lim
k→∞

P
(
∪k

i B(n)
i

)
= P(∪iB

(n)
i ) = P(E) = 1.

Hence for each n, there is kn such that

P
(
∪kn

i B(n)
i

)
> 1− ε

2n .

Let K = ∩∞
n=1 ∪

kn
i B(n)

i . K is totally bounded by definition and is also closed. Since E is complete,
therefore K is compact. Since

P(Kc)≤
∞

∑
n=1

P

[(
kn⋃
i

B(n)
i

)c]
<

∞

∑
n=1

ε

2n = ε

and therefore P(K)> 1− ε .

2.1 One-dimensional distributions
The most familiar estimates are perhaps those derived from the Markov inequality. Recall that if X is
a real and integrable random variable on a probability space (Ω ,F ,P), then for every λ > 0 we have

P [X ≥ λ ] = E
[
1{X≥λ}

]
≤ E

[
X
λ

1{X≥λ}

]
=

1
λ
E
[
X1{X≥λ}

]
In particular, if X is non-negative

P [X ≥ λ ]≤ 1
λ
E [X ] for λ > 0 (2.1)

which is called the Markov inequality.
There are variations of the Markov inequality. Suppose φ : R→ (0,∞) is increasing, then

P [X ≥ λ ] = P [φ(X)≥ φ(λ )]≤ E
[

φ(X)

φ(λ )
1{X≥λ}

]
=

1
φ(λ )

E [φ(X) : X ≥ λ ]

which of course yields that

P [X ≥ λ ]≤ 1
φ(λ )

E [φ(X) : X ≥ λ ] (2.2)

for any λ and increasing, positive function φ . In particular

P [|X −µ| ≥ λ ]≤ 1
λ pE [|X −µ|p] for λ > 0 (2.3)
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for any µ and p ≥ 0. The inequality reduces to the Chebyshev inequality where µ = E [X ] and p = 2.
Similarly if ψ : R→ (0,∞) is decreasing, then

P [X ≤ λ ] = P [ψ(X)≥ ψ(λ )]≤ E
[

ψ(X)

ψ(λ )
1{X≤λ}

]
.

Therefore

P [X ≤ λ ] = P [ψ(X)≥ ψ(λ )]≤ E
[

ψ(X)

ψ(λ )

]
for any λ and any positive and decreasing function ψ .

Proposition 2.2. (Chernoff’s inequality) Suppose E
[
eλX
]

exists for all λ , then

P [X ≥ t]≤ e−I+X (t) for every t ∈ R, (2.4)

where
I+X (t) = sup

λ≥0

{
λ t − lnE

[
eλX
]}

. (2.5)

Proof. φ(x) = eλx (where λ ≥ 0) is increasing, therefore

P [X ≥ t]≤ 1
eλ t

E
[
eλX
]
= e−(λ t−lnE[eλX ])

for every t and λ ≥ 0. However the left-hand side is independent of λ ≥ 0, therefore

P [X ≥ t]≤ e−supλ≥0(λ t−lnE[eλX ])

which completes the proof.

The function I+X (which takes non-negative values, but maybe infinity) is called the Cramér trans-
form of (the distribution of) X . We will revisit this function later on.

Example. Let X has a normal distribution N(0,σ2). Then

E
[
eλX
]
=

�
∞

−∞

1√
2πσ2

exp
(
− x2

2σ2 +λx
)

dx

=

�
∞

−∞

1√
2πσ2

exp
(
−(x−σ2λ )2

2σ2 +
σ2λ 2

2

)
dx

= exp
(

σ2λ 2

2

)
so that

P [X ≥ t]≤ e−supλ≥0

(
λ t−σ2λ2

2

)
where the sup is achieved at λ = t

σ2 , and therefore

P [X ≥ t]≤ exp
(
− t

2σ2

)
.
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2.2 The Cramér theorem
Let X1,X2, . . . be an independent identically distributed sequence of (real) random variables on a prob-
ability space (Ω ,F ,P), with a common distribution µ which is a probability measure on (R,B(R)).
Assume that X1 is integrable, and let a = E [X1] =

�
R xµ(dx). Then the strong law of large numbers

says
1
n

n

∑
i=1

Xi → a almost surely.

That is to say, the distribution of the average 1
n ∑

n
i=1 Xi is concentrated about the mean value a, and

tends to Dirac’s delta measure δa at a as n → ∞. This result is at the core of probability, statistics
and AI technology. In this section, we give more precise information about the concentration of the
distribution µn of 1

n ∑
n
i=1 Xi.

The distribution µn of 1
n ∑

n
i=1 Xi (for n = 1,2, . . .) is a probability measure on (R,B(R)), by defi-

nition

µn(A) = P

[
1
n

n

∑
i=1

Xi ∈ A

]
for A ∈ B(R).

Let us assume that the exponential moment of X = X1 is finite, that is, E(eλX) < ∞ for every λ .
For simplicity, let ψX(λ ) = lnE(eλX). The Legendre transform of ψX is defined by

IX(x) = sup
λ∈R

{λx−ψX(λ )} for x ∈ R.

IX takes values in [0,∞].
Now we are in a position to state the first example of large deviation principle.

Theorem 2.3. (H. Cramèr) Suppose E(eλX)< ∞ for every λ , then 1
n ∑

n
i=1 Xi (for n = 1,2, . . .) satisfies

the large deviation principle (LDP) with the rate function IX , in the sense that

limsup
n→∞

1
n

logP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤− inf

x∈F
IX(x) (2.6)

for every closed subset F ⊂ R, and

liminf
n→∞

1
n

logP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥− inf

x∈G
IX(x) (2.7)

for every open subset G ⊂ R.

We divide the proof of this theorem into several steps.

Lemma 2.4. 1) The function λ 7→ E(eλX) is smooth and log-convex, that is λ → ψX(λ ) is convex.
2) IX is a convex, and Kc = {x : IX(x)≤ c} is compact for every c.
3) IX(a) = 0 where , and IX ↑ on (a,∞) and IX ↓ on (−∞,a).
4) We have

inf
(x,y]

IX = IX(y) if x < y ≤ a

and
inf
[x,y)

IX = IX(x) if a ≤ x < y .
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Proof. 1) We only need to show that logE(eλX) is convex. For every α ∈ (0,1)

E(e(αλ1+(1−α)λ2)X) =

�
eαλ1xe(1−α)λ2x

µ(dx)

≤
(�

eλ1x
µ(dx)

)α(�
eλ2x

µ(dx)
)1−α

(µ is the distribution of X = X1), where the inequality follows from Hölder inequality with p = 1
α

.
Therefore λ 7→ logE(eλX) is convex.

2) IX is non-negative, and is convex as it is the supremum of the linear functions. In particular IX
is continuous on {x : IX(x)< ∞}. We show that for every c > 0

Kc = {x ∈ R : IX(x)≤ c}

is compact. Since IX is continuous on {IX < ∞}, so Kc is closed, thus we only need to show that Kc is
bounded. If x ∈ Kc then

±x−ψX(±1)≤ c

which implies that
|x| ≤ c+ |ψX(1)|+ |ψX(−1)|

for every x ∈ Kc. Hence Kc is bounded.
3) Since − lnx is convex on (0,∞), by Jensen’s inequality

logE(eλX) = log
�

eλx
µ(dx)

≥ λ

�
xµ(dx) = λa

which implies that
λa−ψX(λ )≤ 0 for all λ

Therefore we must have IX(a) = 0 so a is the global minimum of IX . The other claims then follows
immediately as Iµ is convex.

Lemma 2.5. 1) We have
xλ −ψX(λ )≤ (x−a)λ (2.8)

for any x and λ . Here we recall that ψX(λ ) = lnE(eλX).
2) We have

IX(x) = sup
λ≥0

{λx−ψX(λ )} for x ≥ a (2.9)

and
IX(x) = sup

λ≤0
{λx−ψX(λ )} for x ≤ a . (2.10)

Proof. By the proof of 3) in the previous lemma, (2.8) follows from Jensen’s inequality. In particular,
λx−ψX(λ )≤ 0 for any x and λ such that (x−a)λ ≤ 0. Therefore

IX(x) = sup
λ :(x−a)λ≥0

{λx−ψX(λ )}

for any x, which implies (2.9, 2.10) immediately.
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Lemma 2.6. Let µ be the distribution of X = X1 and a = EX. Then

µ ([x,∞))≤ exp(−IX(x)) = exp
(
− inf

[x,∞)
IX

)
for x ≥ a

and

µ ((−∞,x])≤ exp(−IX(x)) = exp
(
− inf

(−∞,x]
IX

)
for x ≤ a .

Proof. Indeed we have already proven the first inequality: if λ ≥ 0 and x ≥ a

µ ([x,∞)) =

�
z≥x

µ(dz)≤
�

z≥x

eλ z

eλx
µ(dz)≤

�
R

eλ z

eλx
µ(dz) = e−(λx−ψX (λ ))

which yields that

µ ([x,∞))≤ exp

{
− sup

λ≥0
(λx−ψX(λ ))

}
= exp{−IX(x)} .

Similarly we may prove the case where x ≤ a.

After having established the elementary facts we are now in a position to prove the LDP bounds.

Proof of upper bound (2.6). If F = /0 or a ∈ F then inf Iµ = 0 so that infF Iµ = 0 the bound is trivial
in this case. Therefore we assume that a /∈ F . If F ⊂ [a,∞), then F ⊂ [y,∞) where y = inf{z : z ∈ F}.
Hence

inf
F

IX = IX(y) = sup
λ≥0

{λy−ψX(λ )} . (2.11)

For every λ > 0

P

[
1
n

n

∑
i=1

Xi ∈ F

]
≤ P

[
1
n

n

∑
i=1

Xi ≥ y

]
≤
�
{ 1

n ∑
n
i=1 Xi≥y}

e
1
n λ ∑

n
i=1 Xi

eλy
dP

≤
�

Ω

e
1
n ∑

n
i=1 λXi

eλy
dP=

�
Ω

∏
n
i=1 e

λ

n Xi

eλy
dP

= e−λy
n

∏
i=1

�
Ω

e
λ

n XidP= e−λy
(
E
(

e
λ

n X
))n

.

Taking log both sides to obtain that

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤−

{
λ

n
y− lnMµ

(
λ

n

)}
for every λ ≥ 0. It thus follows that

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤− sup

λ≥0
{λy−ψX (λ )}=−IX(y)

=− inf
F

IX =−IX(minF).
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We thus have proven the upper bound for the case that F ⊂ [a,∞).
Similarly we may show that

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤− inf

F
IX =−Iµ (maxF) if F ⊂ (−∞,a] .

Finally for an arbitrary closed set F in R, let F1 = F ∩ (−∞,a] and F2 = F ∩ [a,∞). Then

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤ 1

n
ln

(
P

[
1
n

n

∑
i=1

Xi ∈ F1

]
+P

[
1
n

n

∑
i=1

Xi ∈ F2

])
so that

limsup
n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤ max

k=1,2

{
limsup

n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ Fk

]}
≤ max{−IX (maxF1) ; − IX (minF2)}
= −min{IX (maxF1) ; IX (minF2)}
≤ − inf

F
IX

which is the upper bound for large deviations.

Proof of lower bound (2.7) Let G be an open subset of R. We are going to show that for every
x ∈ G,

liminf
n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥−IX(x) .

Obviously we only need to prove the previous inequality for those x ∈ G such that IX(x)< ∞.
We consider two cases.
Firstly let us consider the case that the supremum IX(x) of supλ (λx−ψX(λ )) is not achievable.

Then x ̸= a (as IX(a) = 0 which is achieved when λ = 0). Without loss of generality, let us assume
that x > a. Then we may choose a sequence of λn > 0 such that λn → ∞ and λnx−ψX(λn)→ IX(x)
as n → ∞.

By Lebesgue’s dominated convergence theorem

lim
n→∞

�
(−∞,x)

eλn(z−x)
µ(dz) = 0

and therefore

lim
n→∞

�
[x,∞)

eλn(z−x)
µ(dz) = lim

n→∞

�
R

eλn(z−x)
µ(dz)

= lim
n→∞

e−{λnx−log
�
R exp(λnz)µ(dz)}

= exp(−IX(x))< ∞. (2.12)

On the other hand, for any δ > 0 we have�
[x+δ ,∞)

eλn(z−x)
µ(dz)≥ eδλn µ([x+δ ,∞))

13



so that

µ([x+δ ,∞)) ≤ e−δλn

�
[x+δ ,∞)

eλn(z−x)
µ(dz)

≤ e−δλn

�
R

eλn(z−x)
µ(dz)

≤ e−δλne−{λnx−log
�
R eλnzµ(dz)} .

Letting n → ∞ we conclude that

µ([x+δ ,∞))≤ e− limn→∞{λnx−log
�
R eλnzµ(dz)} lim

n→∞
e−δλn = 0

for every δ > 0. Therefore µ((x,∞)) = 0. Hence by (2.12)

lim
n→∞

�
[x,∞)

eλn(z−x)
µ(dz) = µ({x}) = exp(−IX(x)) .

Now

P

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ P

[
1
n

n

∑
i=1

Xi = x

]
≥ P [Xi = x for all i = 1, . . . ,n]

= (P [X1 = x])n

and therefore

liminf
n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ lnP [X1 = x] = ln µ({x}) =−IX(x) .

Similarly one may handle the case that x < a.
Next we consider the case that x ∈ G and there is λ0 such that IX(x) = λ0x − ψX(λ0). Then

(x− a)λ0 ≥ 0 (see (2.8)), and λ0 is a critical point of the function λ 7→ λx−ψX(λ ), so its partial
derivative w.r.t. λ at λ0 vanishes. Hence

x =

�
R zeλ0zµ(dz)�
R eλ0zµ(dz)

. (2.13)

Without losing generality, assume that x≥ a so that λ0 ≥ 0. Choose δ > 0 such that (x−δ ,x+δ )⊂G.
Then

P

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ P

[∣∣∣∣∣1n n

∑
i=1

Xi − x

∣∣∣∣∣< δ

]

≥ E

{
eλ0 ∑

n
i=1 Xi

enλ0(x+δ )
:

∣∣∣∣∣1n n

∑
i=1

Xi − x

∣∣∣∣∣< δ

}

= e−nλ0(x+δ )E

{
eλ0 ∑

n
i=1 Xi;

∣∣∣∣∣1n n

∑
i=1

Xi − x

∣∣∣∣∣< δ

}
= e−nλ0(x+δ )

�
Rn

eλ0 ∑
n
i=1 zi1{| 1

n ∑
n
i=1 zi−x|<δ}µ(dz1) · · ·µ(dzn)
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Define a new probability measure v on R by

ν(dz) =
eλ0z�

R eλ0zµ(dz)
µ(dz)

which is a probability measure on (R,B(R)). Then the previous inequality may be written as

P

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ e−nλ0(x+δ )

(�
R

eλ0z
µ(dz)

)n�
Rn

1{| 1
n ∑

n
i=1 zi−x|<δ}v(dz1) · · ·v(dzn)

= e−nλ (x+δ )

(�
R

eλ0z
µ(dz)

)n

P

{∣∣∣∣∣1n n

∑
i=1

Yi − x

∣∣∣∣∣< δ

}
where Yi are i.i.d distribution ν , so that its mean (see equation (2.13))

E [Yi] =

�
R

ziv(dzi) =

�
R

zieλ0zi�
R eλ0zµ(dz)

µ(dzi)

=
1�

R eλ0zµ(dz)

�
R

zieλ0zi µ(dzi)

= x.

By the strong law of large numbers

P

{∣∣∣∣∣1n n

∑
i=1

Yi − x

∣∣∣∣∣< δ

}
→ 1 as n → ∞

and therefore the previous estimate yields that

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ −λ0(x+δ )+ψX(λ0)

+
1
n

logP

{∣∣∣∣∣1n n

∑
i=1

Yi − x

∣∣∣∣∣< δ

}
→ −λ0(x+δ )+ψX(λ0) as n → ∞ .

Therefore

liminf
n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ −(λ0x−ψX(λ0))−δλ0

= −IX(x)−δλ0 ∀δ > 0.

By letting δ ↓ 0 we obtain

liminf
n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥−IX(x) for every x ∈ G.

Thus we have completed the proof of Cramér’s theorem.
The proof is complete.

15



2.3 Independent random variables
Let us consider the simplest case of high-dimensional distribution, that is, the distributions of inde-
pendent random variables, which are the focus of the classical probability theory.

Let us begin with the following generalization of the Chebyshev inequality to independent random
vectors.

Theorem 2.7. (Kolmogorov’s inequality) Let X1, · · · , Xn be independent real square integrable ran-
dom variables, µi = EXi and σ2

i = var(Xi) (for i = 1, · · · ,n). Let Sk = ∑
k
i=1 (Xi −µi) for k = 1, · · · ,n.

Then

P

[
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

(Xi −µi)

∣∣∣∣∣≥ λ

]
≤ 1

λ 2E

[
S2

n : max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

(Xi −µi)

∣∣∣∣∣≥ λ

]
(2.14)

for every λ > 0. In particular

P

[
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

(Xi −µi)

∣∣∣∣∣≥ λ

]
≤ ∑

n
l=1 σ2

i
λ 2 (2.15)

for every λ > 0.

Proof. Let λ > 0. Let T be the first time k that |Sk| ≥ λ . If no such k exists then T = ∞. Let
Al = {T = l} and A = {T ≤ n}. Then A is the event that max1≤k≤n |Sk| ≥ λ , and

Al = {|Sk|< λ for k = 1, · · · , l −1 and |Sl| ≥ λ}

for l = 1, · · · ,n. Al are disjoint and A = ∪n
l=1Al . Observe that Al depends only on X1, · · · , Xl and

therefore is independent of Xl+1,· · · , Xn. Now

S2
n1A =

n

∑
l=1

S2
n1Al =

n

∑
l=1

[
(Sn −Sl)

2 +2(Sn −Sl)Sl +S2
l
]

1Al

=
n

∑
l=1

(Sn −Sl)
21Al +2

n

∑
l=1

(Sn −Sl)Sl1Al +
n

∑
l=1

S2
l 1Al

an identity you may be familiar if you have taken B8.1. Taking expectation we obtain that

E
[
S2

n1A
]
=

n

∑
l=1

E
[
(Sn −Sl)

21Al

]
+2

n

∑
l=1

E
[
(Sn −Sl)Sl1Al

]
+

n

∑
l=1

E
[
S2

l 1Al

]
.

Now note that Sn −Sl and Sl1Al are independent, so that

E
[
(Sn −Sl)Sl1Al

]
= E [Sn −Sl]E

[
Sl1Al

]
= 0,

E
[
(Sn −Sl)

21Al

]
= E

[
(Sn −Sl)

2]P [Al]

= E

( n

∑
k=l+1

(Xk −µk)

)2
P [Al]

= P [Al]
n

∑
k=l+1

σ
2
k

16



and E
[
S2

l 1Al

]
≥ λ 2P [Al] for l = 1, · · · ,n. Hence

E
[
S2

n1A
]
≥

n−1

∑
l=1

P [Al]
n

∑
k=l+1

σ
2
k +λ

2
n

∑
l=1

P [Al]

=
n−1

∑
l=1

P [Al]
n

∑
k=l+1

σ
2
k +λ

2P [A]

which yields that λ 2P [A]≤ E
[
S2

n1A
]

and the proof is complete.

The same idea in fact allows us to handle high-dimensional distributions, demonstrating in the
following result.

Theorem 2.8. (Lévy’s maximal inequality) Suppose X1,· · · , Xn are independent random vectors of
dimension D with mean zero, and suppose every Xi is symmetric, i.e. Xi and −Xi have the same
distribution for every i = 1, · · · ,n. Then

P

[
max

1≤k≤n

∥∥∥∥∥ k

∑
i=1

Xi

∥∥∥∥∥> λ

]
≤ 2P

[∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥> λ

]
(2.16)

and

P
[

max
1≤k≤n

∥Xk∥> λ

]
≤ 2P

[∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥> λ

]
(2.17)

for every λ > 0. Here ∥·∥ is a norm on RD.

Proof. To prove the first inequality (2.16), let Sk = ∑
k
i=1 Xi for k = 1, · · · ,n, and T be the first time k

(if exists, otherwise T = ∞) that ∥Sk∥ > λ . Let A = {T ≤ n}. Then A = ∪n
k=1Ak is a disjoint union.

Define
S(k)n = Sk −Xk+1 −·· ·−Xn = Sk − (Sn −Sk) = 2Sk −Sn

for k = 1, · · · ,n. Then (X1, · · · ,Xk,S
(k)
n ) and (X1, · · · ,Xk,Sn) have the same distribution, and therefore

P [Ak ∩{∥Sn∥> λ}] = P
[
Ak ∩

{∥∥∥S(k)n

∥∥∥> λ

}]
.

On the other hand the previous identity implies that

Ak = (Ak ∩{∥Sn∥> λ})∪
(

Ak ∩
{∥∥∥S(k)n

∥∥∥> λ

})
for each k, and therefore

P [Ak]≤ 2P [Ak ∩{∥Sn∥> λ}]
for k = 1, · · · ,n. Adding over k to obtain that

P [A]≤ 2
n

∑
k=1

P [Ak ∩{∥Sn∥> λ}] = 2P [A∩{∥Sn∥> λ}]

which yields the claim by simply dropping A on the right-hand side.
To prove the second inequality, define T = inf{i : ∥Xi∥> λ} and B = {T ≤ n}. Then B = ∪n

k=1Bk
is a disjoint union, where Bk depends only on ∥Xi∥ for i ≤ k (where k = 1, · · · ,n). Again Sk = ∑

n
i=1 Xi

but this time S(k)n = 2Xk − Sn, and (X1, · · · ,Xk,S
(k)
n ) and (X1, · · · ,Xk,Sn) have the same distribution.

The same argument now yields (2.17).
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The symmetry of the distribution of Xi is an unwanted assumption in the previous concentration
inequality, so there are efforts for removing this assumption.

Theorem 2.9. (Lévy-Ottaviani) Suppose Xi (where i = 1, · · · ,n) are independent random vectors of
D dimensions. Then

P

[
max

1≤k≤n

∥∥∥∥∥ k

∑
i=1

Xi

∥∥∥∥∥> λ

]
≤ 3 max

1≤k≤n
P

[∥∥∥∥∥ k

∑
i=1

Xi

∥∥∥∥∥> λ

3

]
(2.18)

for every λ > 0. Here ∥·∥ is a norm on RD.

Proof. Let Sk =∑
k
i=1 Xi (for k= 1, · · · ,n). Let a,b be two positive number, and T = inf{k : ∥Sk∥> a+b}.

Then
Ak = {T = k}= {∥Si∥ ≤ a+b for i = 1, . . . ,k−1 and ∥Sk∥> a+b}

depends only on X1, · · · ,Xk, so is independent of Xk+1, · · · ,Xn (for every k). Now

P [∥Sn∥> a]≥ P [∥Sn∥> a,T ≤ n]

=
n

∑
k=1

P [∥Sn∥> a,T = k]

≥
n

∑
k=1

P [∥Sn −Sk∥ ≤ b,T = k]

=
n

∑
k=1

P [∥Sn −Sk∥ ≤ b]P [T = k]

where the second inequality follows from the triangle inequality that ∥Sn −Sk∥ ≥ ∥Sk∥−∥Sn∥, and
the last equality follows from the independence of {T = k} and ∥Sn −Sk∥. While

P [∥Sn −Sk∥ ≤ b] = 1−P [∥Sn −Sk∥> b]
≥ 1− max

1≤k≤n
P [∥Sn −Sk∥> b]

Plugging it into the previous inequality to obtain that

P [∥Sn∥> a]≥
(

1− max
1≤k≤n

P [∥Sn −Sk∥> b]
) n

∑
k=1

P [T = k]

=

(
1− max

1≤k≤n
P [∥Sn −Sk∥> b]

)
P [T ≤ n]

so after rearranging the terms we deduce that

P [T ≤ n]≤ P [∥Sn∥> a]
1−max1≤k≤nP [∥Sn −Sk∥> b]

(2.19)

which is called the Lévy-Ottaviani inequality.
Setting a = λ

3 and b = 2λ

3 so that b− a = a = λ

3 . Using Triangle inequality ∥Sk∥ ≥ ∥Sn −Sk∥−
∥Sn∥, so that

P [∥Sn −Sk∥> b]≤ P [∥Sn∥> a]+P [∥Sk∥> a]
≤ 2 max

1≤k≤n
P [∥Sk∥> a] ,
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and therefore

P [T ≤ n]≤ P [∥Sn∥> a]
1−2max1≤k≤nP [∥Sk∥> a]

≤ K
1−2K

where
K = max

1≤k≤n
P [∥Sk∥> a]

and we have used the elementary inequality that K
1−2K ≤ 3K for K ∈ [0,1]. The proof is complete.

3 Gaussian distributions

Unfortunately it is a rather challenging problem for describing the distributions of general high-
dimensional datasets. Here we give a detailed study of a class of random datasets with high-dimensional
Gaussian distributions. The approach we have adapted is a primary version called stochastic quanti-
zation.

3.1 High-dimensional normal distributions

Let X = (X1, · · · ,XD) be a (random) data set of D dimensions. Suppose X has a normal distribution,
hence its distribution can be determined by its mean vector µ = (µi) and its co-variance matrix Σ =
(σi j), where µi = E [Xi] and σi j = E

[
(Xi −µi)(X j −µ j)

]
(for i, j = 1, · · · ,D). More precisely, the law

of X is a probability measure on RD with a probability density function (pdf) GΣ (x−µ) with respect
to the Lebesgue measure on RD, where

GΣ (x) =
1

(2π)D/2
√

detΣ
exp
(
−1

2
x ·Σ−1x

)
for x ∈ RD,

which is a central Gaussian density with co-variance matrix Σ . Here Σ−1 denotes the inverse of Σ .
We will write Σ−1 = (σ i j), so that ∑l σ ilσl j = δi j for any i, j ≤ D. Σ = (σi j) defines a scalar product
on RD: ⟨x,y⟩

Σ−1 = x ·Σ−1y for x,y ∈ RD and its a Hilbert norm ∥x∥
Σ−1 =

√
x ·Σ−1x. The Gaussian

density

GΣ (x) =
1

(2π)D/2
√

detΣ
exp
(
−1

2
∥x∥2

Σ−1

)
for x ∈ RD. (3.1)

By means of change of variables we may see that
�
RD GΣ (x)dx = 1.

Lemma 3.1. The norm distance

∥x− y∥
Σ−1 = sup

{
f (x)− f (y) : f ∈C1 such that ∇ f ·Σ∇ f ≤ 1

}
.

Note that, since Σ is a constant matrix, therefore the right-hand side is translation invariant.

The proof is left as an exercise.

Remark 3.2. A centered Gaussian random variable X = (X1, · · · ,XD) is symmetric, that is, X and
−X have the same distribution.
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The distribution of a centered Gaussian random is parameterized by the co-variance matrix Σ ,
which is positive definite and symmetry, so that |σi j| ≤ σiσ j where σ2

i = σii is the variance of Xi,
where i, j = 1, · · · ,D. Since GΣ is positive, it is a good idea to look at its logarithm

lnGΣ (x) =−D
2

ln(2π)− 1
2

lndetΣ − 1
2

x ·Σ−1x.

To calculate its derivatives with respect to variables σi j (for i < j) and σii = σ2
i (for i = 1, · · · ,D), we

shall calculate its differential with respect to Σ .

Lemma 3.3. Let Σ(ε) (for ε > 0 but small enough so that Σ(ε) remains positive definite) be a
variation such that Σ(0) = Σ and d

dε

∣∣
ε=0 Σ(ε) = A, where A is a symmetric matrix. Then

d
dε

∣∣∣∣
ε=0

lnGΣ(ε)(x) =−1
2

tr(Σ−1A)+
1
2

x ·Σ−1AΣ
−1x for x ∈ RD.

Proof. Clearly we have

d
dε

∣∣∣∣
ε=0

lnGΣ(ε)(x) =−1
2

d
dε

∣∣∣∣
ε=0

lndetΣ(ε)− 1
2

x · d
dε

∣∣∣∣
ε=0

Σ(ε)−1x. (3.2)

Now observe that

d
dε

∣∣∣∣
ε=0

lndetΣ(ε) =
D

∑
i=1

d
dε

∣∣
ε=0 λi(ε)

λi
= tr

(
Σ
−1 d

dε

∣∣∣∣
ε=0

Σ(ε)

)
= tr

(
Σ
−1A

)
,

(which is called Jacobi’s formula), and

0 =
d

dε

∣∣∣∣
ε=0

(
ΣΣ

−1)= Σ
d

dε

∣∣∣∣
ε=0

Σ
−1 +AΣ

−1

which yields that
d

dε

∣∣∣∣
ε=0

Σ
−1 =−Σ

−1AΣ
−1.

Using these equations in (3.2) we prove the lemma.

Corollary 3.4. Let Σ = (σi j) be symmetric and positive. Then

∂

∂σii
GΣ =

1
2

∂ 2

∂x2
i

GΣ for i = 1, . . . ,D (3.3)

and
∂

∂σi j
GΣ =

∂ 2

∂x j∂xi
GΣ for i ̸= j. (3.4)

Proof. Set A = (akl) where aii = 1 otherwise akl = 0 (i.e. akl = δkiδli) in Lemma 3.3. Then

tr(Σ−1A) = σ
klalk = σ

kl
δliδki = σ

ii
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and

x ·Σ−1AΣ
−1x = xkσ

kbabcσ
clxl = xkσ

ki
σ

ilxl =

(
D

∑
k=1

σ
kixk

)2

hence
∂

∂σii
lnGΣ (x) =

1
2

(
D

∑
k=1

σ
kixk

)2

− 1
2

σ
ii.

Similarly, if i ̸= j, we set in Lemma 3.3, A = (akl) where ai j = a ji = 1 (for i ̸= j) and otherwise
akl = 0. That is, akl = δkiδl j +δliδk j , we deduce that

∂

∂σi j
lnGΣ (x) =

D

∑
k=1

σ
kixk

D

∑
k=1

σ
l jxl −σ

i j.

On the other hand, we may differentiate GΣ in the space variables x = (x1, · · · ,xD) to obtain

∂

∂xi
GΣ (x) =−GΣ (x)

D

∑
l=1

σ
ilxl

and
∂ 2

∂x j∂xi
GΣ (x) = GΣ (x)

(
D

∑
k=1

σ
jkxk

D

∑
l=1

σ
ilxl −σ

i j

)
.

Comparing the previous equations our corollary follows immediately.

Remark 3.5. Jacob’s formula holds for any matrix valued function:

d
dε

detΓ (ε) = tr
(

adj(Γ (ε))
d

dε
Γ (ε)

)
where adj(Γ (ε)) denotes the adjugate matrix of Γ (ε). If Γ (ε)−1 exists, then

Γ (ε)−1 =
1

detΓ (ε)
adj(Γ (ε))

that we have learned from linear algebra, so that for this case

d
dε

detΓ (ε) = detΓ (ε)tr
(

Γ (ε)−1 d
dε

Γ (ε)

)
which is Jacobi’s formula for differentiation of determinants.

Theorem 3.6. (Joag-Dev, Pelman and Pitt 1983) Let f : RD 7→R be a C2-function whose derivatives
are at most polynomial growth. Let

h(σi j) =

�
RD

f (x)GΣ (x)dx

where Σ = (σi j) is symmetric and positive definite (so h is considered as a function of σi j for i ≤ j).
Suppose that k < l is a pair, such that ∂ 2

∂xk∂xl
f ≥ 0 on RD. Then h is increasing in the variable σkl .
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Proof. By an inspection, we are justified for differentiating σkl under the integration, to obtain that

∂

∂σkl
h =

�
RD

f (x)
∂

∂σkl
GΣ (x)dx =

�
RD

f (x)
∂ 2

∂xk∂xl
GΣ (x)dx,

where the second equality follows from (3.4). Integration by parts twice, we then deduce that

∂

∂σkl
h =

�
RD

GΣ (x)
∂ 2

∂xk∂xl
f (x)dx ≥ 0

and the conclusion follows immediately.

Theorem 3.7. (Slepian’s Inequality) If X = (X1, · · · ,XD) and Y = (Y1, · · · ,YD) are two centered Gaus-
sian vectors. Suppose that EX2

i = EY 2
i and E|Xi −X j|2 ≤ E|Yi −Yj|2 for any i, j = 1, . . . ,D. Then

P
[

sup
i

Xi ≥ t
]
≤ P

[
sup

i
Yi ≥ t

]

for all t, and

E
[

sup
i

Xi

]
≤ E

[
sup

i
Yi

]
.

Proof. The assumptions imply that the variances E
[
XiX j

]
≥ E

[
YiYj

]
for any i, j. Let t > 0. Since

1(−∞,t] is non-negative, and decreasing, we may choose a sequence of functions hn which are C1,
decreasing, non-negative, such that hn and their derivatives are uniformly bounded, and h(n) → 1(−∞,t]
as n → ∞. Let fn(x1, · · · ,xD) = hn(x1) · · ·hn(xD). Then

∂ 2 fn

∂xi∂x j
(x) = h′n(xi)h′n(x j) ∏

k ̸=i, j
hn(xk)≥ 0

for any i ̸= j. Since EX2
i = EY 2

i for every i, by Theorem 3.6, we have

E [ fn(X1, · · · ,XD)]≥ E [ fn(Y1, · · · ,YD)] .

Letting n → ∞, we obtain that

P
[

sup
i

Xi ≤ t
]
≥ P

[
sup

i
Xi ≤ t

]
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which is equivalent to the first inequality. To show the second inequality, we observe that

E
[

sup
i

Xi

]
= E

[(
sup

i
Xi

)+
]
−E

[(
sup

i
Xi

)−
]

=

�
∞

0
P

[(
sup

i
Xi

)+

> t

]
dt −

�
∞

0
P

[(
sup

i
Xi

)−
> t

]
dt

=

�
∞

0
P
[

sup
i

Xi > t
]

dt −
�

∞

0
P
[
−sup

i
Xi > t

]
dt

=

�
∞

0
P
[

sup
i

Xi > t
]

dt −
�

∞

0
P
[

sup
i

Xi <−t
]

dt

=

�
∞

0
P
[

sup
i

Xi > t
]

dt −
� 0

−∞

P
[

sup
i

Xi < t
]

dt

≤
�

∞

0
P
[

sup
i

Yi > t
]

dt −
� 0

−∞

P
[

sup
i

Yi < t
]

dt

= E
[

sup
i

Yi

]
which completes the proof.

3.2 Heat kernel

The heat kernel on RD equipped with the metric Σ is defined by

pΣ (t,x,y) =
1

(4πt)D/2
√

detΣ
exp
(
− 1

4t
(y− x) ·Σ−1(y− x)

)
(3.5)

for t > 0, x,y ∈ RD. By definition, GΣ (x) = pΣ (
1
2 ,0,x) and pΣ (t,x,y) = G2tΣ (y− x).

Let us first derive the properties of the heat kernel as a variable depending on t, x, y, and Σ , with
D fixed (but large).

For any t > 0 and x ∈ RD, pΣ (t,x,y)dy is a probability measure on RD (with the Borel σ -
algebra), denoted by PΣ (t,x,dy) for simplicity, or simply by P(t,x,dy). By definition PΣ (t,x,A) =�

A pΣ (t,x,y)dy for every A ∈ B(RD), and therefore PΣ is a mapping which maps (t,x,A) ∈ (0,∞)×
RD ×B(RD) to PΣ (t,x,A).

Proposition 3.8. For every x ∈RD, the probability measures PΣ (t,x,dy) converge weakly, as t ↓ 0, to
Dirac measure δx(dy). That is

lim
t↓0

�
RD

pΣ (t,x,y) f (y)dy = f (x) for any x ∈ RD

for every bounded and continuous function f .

Proof. Since Σ is positive definite and symmetry, so that there is a square root Σ
1
2 of Σ , a symmetric

positive definite matrix such that Σ
1
2 Σ

1
2 = Σ . Making change of variable: y =

√
2tΣ

1
2 z+ x, whose
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Jacobi is detΣ
1
2 = (2t)

D
2
√

detΣ . Therefore
�
RD

pΣ (t,x,y) f (y)dy =
�
RD

1
(2π)D/2 exp

(
−1

2
|z|2
)

f
(√

2tΣ
1
2 z+ x

)
dz

→
�
RD

1
(2π)D/2 exp

(
−1

2
|z|2
)

f (x)dz = f (x)

as t ↓ 0, where the limit taking under integration is justified by Lebesgue’s dominated convergence
theorem [cf. A4: Integration].

In view of this lemma, we may define for each t > 0 an operator Pt which maps a function f to
another function Pt f , by the following formula:

Pt f (x) =
�
RD

f (y)pΣ (t,x,y)dy =
�
RD

f (y)PΣ (t,x,dy) for x ∈ RD

as long as the right-hand side is well defined. For example, for any f which is non-negative and is
measurable, for f in Lp(RD) for any p ≥ 1, for f which is bounded and measurable, i.e. f ∈ L∞(RD).

Remark 3.9. If f is measurable and non-negative, then Pt f is also non-negative. Therefore the
operator Pt preserves the positivity.

Remark 3.10. If f is bounded and measurable, then, according to the theorem of taking derivatives
under integration (cf. A4 Integration), the function u(t,x)≡ Pt f (x) is smooth in both variables t > 0
and x ∈ RD.

Remark 3.11. Suppose X is a random variable in RD with a normal distribution N(m,Σ), then with
the definitions above, E [ f (X)] = P2 f (m).

By a slightly complicated but completely elementary computation, we prove the following lemma.

Proposition 3.12. The heat kernel {pΣ (t,x,y) : t > 0} possesses the following properties.
1) pΣ (t,x,y) is positive, smooth for t > 0, x,y in RD, and pΣ (t,x,y) = pΣ (t,x,y) for any t > 0 and

x,y.
2) The following equality holds:

pΣ (s,x,z)pΣ (t,z,y) = pΣ (s+ t,x,y)pΣ

(
2st

t + s
,

t
t + s

x+
s

t + s
y,z
)

(3.6)

for any s > 0, t > 0 and x,y,z ∈ RD.
3) Chapman-Kolmogorov’s equality holds:

�
RD

pΣ (s,x,z)pΣ (t,z,y)dz = pΣ (s+ t,x,y) (3.7)

for any s > 0, t > 0 and x,y ∈ RD.

Proof. 1) is obvious by the expression (3.5). Clearly (3.7) follows by integrating (3.6) and the fact
�
RD

pΣ

(
2st

t + s
,a,z

)
dz = 1
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for every a ∈ RD. To show 2) we use the polar identity for the scalar product ⟨x,y⟩
Σ−1 which yields

that

∥∥∥∥z− x√
2s

∥∥∥∥2

Σ−1
+

∥∥∥∥y− z√
2t

∥∥∥∥2

Σ−1
=

∥∥∥∥∥∥ z−a√
2st
t+s

∥∥∥∥∥∥
2

Σ−1

+

∥∥∥∥ y− x√
2t +2s

∥∥∥∥2

Σ−1

where a = t
t+sx+ s

t+sy, and the equality (3.6) follows immediately.

Proposition 3.13. The family of operators Pt for t > 0 together with P0 = I the identity operator forms
a semi-group of linear operators, denoted by (Pt)t≥0, in the following sense.

1) For each t ≥ 0, Pt is linear: Pt( f +g) = Pt f +Ptg and Pt(c f ) = cPt f for any constant c, for any
measurable function f , g which are bounded, or non-negative.

2) For any s, t ≥ 0, it holds that Pt+s f = Pt(Ps f ) for any measurable function f which is bounded
or non-negative.

3) For each t > 0, Pt is self-adjoint, and Pt is a contraction in Lp(Rd) for every p ≥ 1.

The first item follows from the definition of Pt and the second item shows that Pt+s = Pt ◦Ps (often
shall write PtPs for simplicity), called the semi-group property. The family (Pt)t≥0 is the heat semi-
group on RD with the metric Σ . 3) follows from the symmetry that pΣ (t,x,y) = pΣ (t,y,x). Indeed

�
f Ptg =

� �
f (x)g(y)pΣ (t,x,y)dy

=

� �
f (x)g(y)pΣ (t,y,x)dy

=

�
gPt f

for any f ,g ∈ L2(RD).

Proposition 3.14. The Lebesgue measure is the invariant measure of (Pt)t>0, that is,
�
RD

Pt f (x)dx =
�
RD

f (x)dx for all t > 0

for any f ∈ L1(RD).

Remark 3.15. Let us recall, for a given p ≥ 1, that Lp(RD) denotes the normed space of all p-th
integrable functions (identified up to almost surely) with respect to the Lebesgue measure on RD

whose norm ∥·∥p defined by ∥ f∥p =
(�

RD | f (x)|pdx
) 1

p . Lp(RD) is complete and separable, so that
Lp(RD) is a Banach space. Similarly L∞(RD) is a separable Banach space to. As a matter of fact, for
every p≥ 1, Pt can be extended to be a linear operator from Lp(RD) to Lp(RD) such that Pt+s = Pt ◦Ps
for any s, t > 0. Every Pt is a contraction on Lp(RD), i.e. ∥Pt f∥p ≤ ∥ f∥p for every f ∈ Lp(RD).
Moreover Pt f 7→ f in Lp(RD) as t ↓ 0.

3.3 Geometric properties of normal distributions
In this part we study the geometric aspects of the heat kernel pΣ (t,x,y). Firstly we observe that
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ln pΣ (t,x,y) =−D
2

ln(4πt)− 1
2

lndetΣ − 1
4t
(y− x) ·Σ−1(y− x)

which allows us to work out the derivatives of pΣ with respect to all variables t > 0, x (equivalently y
too) and Σ = (σi j). In fact

∂

∂ t
ln pΣ (t,x,y) =−D

2t
+

1
4t2 (y− x) ·Σ−1(y− x), (3.8)

∂

∂xi
ln pΣ (t,x,y) =

1
2t

D

∑
l=1

σ
il(yl − xl). (3.9)

We therefore have proved the following important fact.

Theorem 3.16. Let Σ =(σi j) be a positive definite and symmetric D×D matrix, and ∆Σ =∑
D
i, j=1 σi j

∂ 2

∂x j∂xi

a differential operator of second order in RD. Then pΣ (t,x,y) is the fundamental solution to the heat
operator ∂

∂ t −∆Σ in the following sense:(
∂

∂ t
−∆Σ

)
pΣ (t,x,y) = 0 for t > 0,x,y ∈ RD

(where ∆Σ either acts on the variable x or y with the other variables being fixed), and pΣ (t,x,y)dy →
δx weakly as t ↓ 0 for each x.

Proof. First we have the time derivative of pΣ is given by

∂

∂ t
pΣ (t,x,y) =

(
−D

2t
+

1
4t2 (y− x) ·Σ−1(y− x)

)
pΣ (t,x,y).

While the space derivative of pΣ (t,x,y) can be calculated as the following:

∂ 2

∂xi∂x j
ln pΣ (t,x,y) =− 1

2t
σ

i j

which reflects the fact that ln pΣ (t,x,y) is a quadratic polynomial of x,y. Therefore

∂ 2

∂xi∂x j
pΣ (t,x,y) =

∂

∂x j

(
pΣ (t,x,y)

∂

∂xi
ln pΣ (t,x,y)

)
=

∂

∂x j
pΣ (t,x,y)

∂

∂xi
ln pΣ (t,x,y)+ pΣ (t,x,y)

∂ 2

∂x j∂xi
ln pΣ (t,x,y)

=

(
∂

∂x j
ln pΣ (t,x,y)

∂

∂xi
ln pΣ (t,x,y)+

∂ 2

∂x j∂xi
ln pΣ (t,x,y)

)
pΣ (t,x,y)

=

(
1

4t2

D

∑
k,l=1

σ
ik

σ
jl(yl − xl)(yk − xk)−

1
2t

σ
i j

)
pΣ (t,x,y),
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and therefore

∆Σ pΣ (t,x,y) =

(
1

4t2

D

∑
k,l=1

D

∑
i, j=1

σi jσ
ik

σ
jl(yl − xl)(yk − xk)−

1
2t

D

∑
i, j=1

σi jσ
i j

)
pΣ (t,x,y)

=

(
1

4t2 (y− x) ·Σ−1(y− x)− D
2t

)
pΣ (t,x,y)

=
∂

∂ t
pΣ (t,x,y).

This completes the proof.

Corollary 3.17. Suppose that f is a bounded measurable function on RD. Let u(t,x) = Pt f (x) (for
t > 0 and x ∈ RD). Then u is smooth on (0,∞)×RD, and u solves the heat equation(

∂

∂ t
−∆Σ

)
u(t,x) = 0 in (0,∞)×RD. (3.10)

If in addition f is continuous, then u(t,x)→ f (x) as t ↓ 0 for every x ∈ RD.

Proof. Since u(t,x) =
�
RD f (y)pΣ (t,x,y)dy, all conclusions follow by using the theorem of differen-

tiation under intergrals.

The heat equation (3.10) may be written as ∂

∂ t Pt f = ∆Σ (Pt f ) for every bounded (or non-negative)
measurable function f , so by abusing notation, the last equation may be written as ∂

∂ t Pt = ∆Σ Pt for
every t > 0. In this sense, we say ∆Σ is the infinitesimal generator of the heat semi-group (Pt)t≥0, and
formally write as Pt = e∆Σ t for t > 0.

Remark 3.18. The heat semigroup Pt (hence its heat kernel pΣ (t,x,y)) is uniquely determined by the
second-order differential operator ∆Σ , and equivalently determined by the quadratic form:

�
RD

−ψ(x)∆Σ ϕ(x)dx =
�
RD

−ψ(x)σi j
∂ 2

∂x j∂xi
ϕ(x)dx

=

�
RD

σi j
∂ϕ

∂xi

∂ψ

∂x j
dx

for any ϕ,ψ belonging to W 2,1(RD).

Proposition 3.19. It holds that

∥∇ ln pΣ (t,x,y)∥2
Σ
− ∂

∂ t
ln pΣ (t,x,y) =

D
2t

(3.11)

for every t > 0, x,y ∈ RD, where ∥a∥2 = a ·Σa [Note that it is not ∥a∥2
Σ−1].

Proof. The verification is completely elementary. In fact

∂

∂ t
ln pΣ (t,x,y) =−D

2t
+

1
4t2 (y− x) ·Σ−1(y− x), (3.12)

and

∑
i, j

σi j
∂

∂xi
ln pΣ (t,x,y)

∂

∂x j
ln pΣ (t,x,y) =

1
4t2 (y− x) ·Σ−1(y− x) (3.13)

which completes the proof.
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Exercise. [Hard] Suppose u(x, t) = Ptϕ where ϕ is a positive continuous function. Let f (x, t) =
lnu(x, t), X = ∇ ln f ·Σ∇ ln f and Y = ∂

∂ t ln f .

(1) Work out
(

∂

∂ t −∆Σ

)
X and

(
∂

∂ t −∆Σ

)
Y .

(2) Show that

X(x, t)−Y (x, t)≤ D
2t

for all x and t > 0.
[Hint: you may look at the paper by D. Bakry and Z. Qian: Harnack inequalities on a manifold

with positive or negative Ricci curvature, in Revista Matemática Iberoamericana (1999) Volume: 15,
Issue: 1, page 143-179.]

4 The Ornstein-Uhlenbeck semi-group
In the previous section we have studied a few properties of Gaussian measures on RD. In particular
we demonstrate that the Lebesgue measure is the invariant measure of heat semi–group Pt = et∆Σ (for
t ≥ 0) defined via the heat kernel pΣ (t,x,y). In this section we introduce a dynamical system whose
invariant measure is the Gaussian measure GΣ (x)dx. More precisely, we construct a semi-group Qt
(for t > 0) in analogs with the heat semigroup, such that GΣ (x)dx is the invariant measure of (Qt)t>0.

For simplicity we use γ(dx) denote the Gaussian measure GΣ (x)dx on the Borel σ -algebra B(RD),
if no confusion may arise. Let Lp(γ) (for every p∈ [1,∞]) denote the Lp-space over the measure space
(RD,B(RD),γ).

4.1 The Mehler formula
The simplest way to construct the Orenstein-Uhlenbeck semigroup Qt is to apply the Mehler formula.
For every t > 0 define linear operator Qt : f 7→ Qt f by setting

Qt f (x) =
�
RD

f
(

e−tx+
√

1− e−2ty
)

GΣ (y)dy (4.1)

for every t > 0 and x ∈ RD, where f is a Borel measurable function as long as the integral on the
right-hand is defined – for example f is bounded or f is non-negative. Clearly Qt1 = 1 for every
t > 0, and Qt f ≥ 0 as long as f is non-negative.

Making a change of variable one can rewrite the above formula as the following

Qt f (x) =
�
RD

f (y)
exp
(
− 1

2(1−e−2t)
(y− e−tx) ·Σ−1(y− e−tx)

)
(2π(1− e−2t))

D
2
√

detΣ

dy

=

�
RD

f (y)qΣ (t,x,y)GΣ (dy) (4.2)

where

qΣ (t,x,y) =
1

GΣ (y)

exp
(
− 1

2(1−e−2t)
(y− e−tx) ·Σ−1(y− e−tx)

)
(2π(1− e−2t))

D
2
√

detΣ

(4.3)

is called the transition probability density function of the OU semi-group.
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Recall that the heat kernel associated a positive definite and symmetric Σ is given by

pΣ (t,x,y) =
1

(4πt)D/2
√

detΣ
exp
(
− 1

4t
(y− x) ·Σ−1(y− x)

)
so that

qΣ (t,x,y) = pΣ

(
1− e−2t

2
,e−tx,y

)
1

GΣ (y)
(4.4)

for every t > 0 and x,y ∈ RD. Here the Gaussian density GΣ (y) is inserted in the definition of the
probability density kernel qΣ , since we expect that the Gaussian measure GΣ (y)dy is the invariant
measure for Qt .

Lemma 4.1. Suppose f is continuous and is of at most polynomial growth, then

lim
t↓0

Qt f (x) = f (x) and lim
t→∞

Qt f (x) =
�
RD

f (y)GΣ (dy) (4.5)

for every x ∈ RD.

This follows immediately from the Mehler formula (4.1).

Lemma 4.2. The transition probability function of the Orenstein-Uhlenbeck semi-group is given by

qΣ (t,x,y) =
1

(1− e−2t)
D
2

exp
(
−1

2
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

e2t −1

)
(4.6)

for every t > 0 and for any x,y. In particular q is symmetric: qΣ (t,x,y) = qΣ (t,y,x).

Proof. By (4.3) the transition probability density function

qΣ (t,x,y) =
1

(1− e−2t)
D
2

exp(−I(t,x,y))

where
I(t,x,y) =

1
2(1− e−2t)

(y− e−tx) ·Σ−1(y− e−tx)− 1
2

y ·Σ−1y.

Collecting the quadratic terms of y together we have

I(t,x,y) =
1
2

e−2t

1− e−2t

(
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

)
ant the conclusion follows immediately.

Lemma 4.3. We have

qΣ (s,x,y)qΣ (t,y,z) = qΣ (s+ t,x,z)qΣ (T (s, t),cs,t(x,z),y)

where T = T (s, t) and cs,t(x,z) are given by

1
e2T −1

=
1

e2s −1
+

1
e2t −1
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and

cs,t(x,z) =
eT

e2(t+s)−1

(
(e2t −1)esx+(e2s −1)etz

)
for s, t > 0 and x,y,z ∈ RD.

Therefore the Chapman-Kolmogorov equality holds
�
RD

qΣ (s,x,y)qΣ (t,y,z)GΣ (y)dy = qΣ (s+ t,x,z)

for any s, t > 0 and x,z ∈ RD.

Proof. Let a(t) =
(
1− e−2t)D

2 and

I(t,x,y) =
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

e2t −1
.

Then qΣ (s,x,y) = a(s)−1 exp
(
−1

2 I(s,x,y)
)
, and

qΣ (s,x,y)qΣ (t,y,z)
qΣ (s+ t,x,z)

=
a(s+ t)
a(s)a(t)

exp
(
−1

2
(I(s,x,y)+ I(t,y,z)− I(s+ t,x,z))

)
.

Let us calculate J = I(s,x,y)+ I(t,y,z)− I(s+ t,x,z). By definition T = T (s, t)> 0 is given b

1
e2T −1

=
1

e2s −1
+

1
e2t −1

=
e2t + e2s −2

(e2s −1)(e2t −1)
.

Hence

eT =

√
1+

(e2s −1)(e2t −1)
e2t + e2s −2

=

√
e2(t+s)−1

e2t + e2s −2

and

a(s+ t)
a(s)a(t)

=

(
e2(t+s)−1

(e2s −1)(e2t −1)

)D
2

=

(
e2T

e2T −1

)D
2

=
1

a(T )
.

Moreover, one can verify that

J =
1

e2T −1
(
y ·Σ−1y−2eT c ·Σ−1y+ c ·Σ−1c

)
and therefore

qΣ (s,x,y)qΣ (t,y,z)
qΣ (s+ t,x,z)

=
1

a(T )
exp
(
−1

2
I(T,c,y)

)
which completes the proof.

In what follows we will work with a fixed symmetric, positive definite D×D matrix Σ , and we will
use γ(dx) to denote the Gaussian measure GΣ (x)dx on (RD,B(RD)). Let Lp(γ) denote the Lp-space
over the probability space (RD,B(RD),γ).
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Proposition 4.4. The OU semi-group (Qt)t≥0 possesses the following properties.
1) For every t > 0, Qt is symmetric:

�
RD

f (x)Qtg(x)γ(dx) =
�
RD

g(x)Qt f (x)γ(dx)

for any f and g belonging to L2(γ). In particular, γ is an invariant measure of Qt . That is
�
RD

Qt f (x)γ(dx) =
�
RD

f (x)γ(dx)

2) (Qt)t≥0 is a semi-group: QsQt = Qt+s for any s, t ≥ 0, where Q0 = I is the identity operator.
3) For every t > 0, Qt is a contraction on Lp(γ), in the sense that ∥Qt f∥Lp(γ) ≤ ∥ f∥Lp(γ) for every

p ≥ 1 and f ∈ Lp(γ).

Proof. 1) follows from the fact that qΣ (t,x,y) = qΣ (t,y,x):
�

g(x)Qt f (x)γ(dx) =
� �

g(x) f (y)qΣ (t,y,x)γ(dy)γ(dx)

=

�
f (y)Qtg(y)γ(dy).

2) follows from Lemma 4.3

QsQt f (x) =
� �

qΣ (s,x,y)qΣ (t,y,z) f (z)γ(dz)γ(dy)

=

�
qΣ (s+ t,x,z) f (z)

(�
qΣ (T (s, t),cs,t(x,z),y)γ(dy)

)
γ(dz)

= Qt+s f (x)

which proves the semi-group property.
We only need to prove 3) for bounded and continuous function f . Then, by using Hölder’s in-

equality,

∥Qt f∥p
Lp(γ)

=

� ∣∣∣∣� f (y)qΣ (t,x,y)γ(dy)
∣∣∣∣p γ(dx)

≤
� �

| f (y)|p qΣ (t,x,y)γ(dy)γ(dx)

=

� �
| f (y)|p qΣ (t,y,x)γ(dy)γ(dx)

=

�
| f (y)|p γ(dy)

where the inequality follows from the Hölder’s inequalty to f and constant function 1 with probability
measure m(dy) = qΣ (t,x,y)γ(dy) for each x, and the last equality follows from Fubini’s theorem by
integrating the variable x first to give 1.

Using the fact that the space Cb(RD) of bounded and continuous functions is dense in Lp(RD) for
every p ≥ 1, the following proposition follows immediately.
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Proposition 4.5. Suppose that f ∈ Lp(γ),

lim
t→∞

∥∥∥∥Qt f −
�
RD

f dγ

∥∥∥∥
Lp(γ)

= 0

and
lim
t↓0

∥Qt f − f∥Lp(γ) = 0.

Remark 4.6. Let t,s > 0. Consider two linear mappings T,S : RD ×RD → RD defined by

T (x,y) = e−tx+
√

1− e−2ty

and

S(y,z) = e−s

√
1− e−2t√

1− e−2(t+s)
y+

√
1− e−2s√

1− e−2(t+s)
z

for x,y,z ∈ RD. Then �
RD×RD

f ◦T (x,y)γ(dx)γ(dy) =
�
RD

f (x)γ(dx)

and similarly �
RD×RD

f ◦S(y,z)γ(dy)γ(dz) =
�
RD

f (x)γ(dx)

for any Borel measurable function f . The proof is left as an exercise.

We next establish the most remarkable property of the OU semi-group (Qt)t>0.

Proposition 4.7. 1) For every t > 0 it holds that

∂

∂xi Qt f = e−tQt

(
∂ f
∂xi

)
for any C1 function f whose partial derivatives ∂ f

∂xi are γ-integrable, where i = 1, . . . ,D.

Proof. Suppose f is differentiable with a compact support, then we may differentiate Qt f (x) under
integration to obtain

∂Qt f
∂xi (x) =

�
RD

∂

∂xi f
(

e−tx+
√

1− e−2ty
)

γ(dy)

=

�
RD

e−t ∂ f
∂xi

(
e−tx+

√
1− e−2ty

)
γ(dy)

= e−tQt

(
∂ f
∂xi

)
which completes the proof.

Theorem 4.8. (Domination inequality) The following domination inequality holds√
∇Qt f ·Σ∇Qt f ≤ e−tQt

(√
∇ f ·Σ∇ f

)
(4.7)

for every C1 function f and t ≥ 0. The domination inequality implies the following weak domination
inequality

∇Qt f ·Σ∇Qt f ≤ e−2tQt (∇ f ·Σ∇ f )

for every C1 function f and t ≥ 0.
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Proof. The proof relies on the Cauchy-Schwartz inequality |a ·Σb| ≤
√

a ·Σa
√

b ·Σb for any a,b ∈
RD (its proof is left as an exercise). By an approximation procedure, we may prove the domination
inequality for C1-function f with bounded derivatives. For simplicity, use fi to denote the partial
derivative ∂

∂xi
f . By the Mehler formula

∂

∂xi
Qt f (x) = e−t

�
RD

fi(e−tx+
√

1− e−2ty)γ(dy)

for i = 1, . . . ,D, and Fubini’s theorem, we have

∇Qt f ·Σ∇Qt f = e−2t
�
RD

�
RD

∇ f (e−tx+
√

1− e−2ty) ·Σ∇ f (e−tx+
√

1− e−2tz)γ(dy)γ(dz)

≤ e−2t
� �

RD

√
∇ f ·Σ∇ f |e−tx+

√
1−e−2ty

√
∇ f ·Σ∇ f |e−tx+

√
1−e−2tzγ(dy)γ(dz)

= e−2t
(�

RD

√
∇ f (e−tx+

√
1− e−2ty) ·Σ∇ f (e−tx+

√
1− e−2ty)γ(dy)

)2

= e−2t
(

Qt

(√
∇ f ·Σ∇ f

))2

which yields (4.7).

We next goal is to identify the infinitesimal generator of Qt , which is the elliptic differential
operator L = ∆Σ − x ·∇.

Proposition 4.9. The infinitesimal generator of the Ornstein-Uhlenbeck semi-group (Qt)t≥0 is L =
∆Σ − x ·∇, in the following sense. If f is continuous with at most polynomial growth, then u(t,x) =
Qt f (x) belongs to C1,2((0,∞)×RD) and solves the following initial value problem of the parabolic
equation: (

L− ∂

∂ t

)
u(t,x) = 0, lim

t↓0
u(t,x) = f (x).

Therefore ∂

∂ t Qt = LQt for t ≥ 0. This fact may be denoted as formally Qt = etL.

Proof. According to Lemma 4.2 the transition probability density function

qΣ (t,x,y) =
1

(1− e−2t)
D
2

exp
(
−1

2
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

e2t −1

)
so that

lnqΣ (t,x,y) =−D
2

ln
(
1− e−2t)− 1

2
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

e2t −1
.

Thus

∂

∂ t
lnqΣ (t,x,y) =−D

e−2t

1− e−2t +
etx ·Σ−1y

e2t −1

+
e2t

(e2t −1)2

(
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

)
∂

∂xi
lnqΣ (t,x,y) =−σ

ik xk − etyk

e2t −1
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and

∂ 2

∂x j∂xi
qΣ (t,x,y) =

∂

∂x j

(
−σ

ik xk − etyk

e2t −1
qΣ (t,x,y)

)
= σ

ik
σ

jl xk − etyk

e2t −1
xl − etyl

e2t −1
qΣ (t,x,y)−σ

i j 1
e2t −1

qΣ (t,x,y).

Hence

x ·∇qΣ (t,x,y) =−xiσ
ik xk − etyk

e2t −1
qΣ (t,x,y)

=−x ·Σ−1(x− ety)
e2t −1

qΣ (t,x,y)

and

∆Σ qΣ (t,x,y) =
(
(x− ety) ·Σ−1(x− ety)

(e2t −1)2 − D
e2t −1

)
qΣ (t,x,y).

Therefore (
∂

∂ t
−∆Σ

)
qΣ (t,x,y) =

x ·Σ−1 (x− ety)
e2t −1

qΣ (t,x,y)

=−x ·∇qΣ (t,x,y).

which implies that (
∂

∂ t
−∆Σ + x ·∇

)
qΣ (t,x,y) = 0.

Suppose f is continuous with at most polynomial growth, then

∂

∂ t
u(x, t) =

�
RD

f (y)
∂

∂ t
qΣ (t,x,y)γ(dy)

=

�
RD

f (y)(∆Σ qΣ (t,x,y)− x ·∇qΣ (t,x,y))γ(dy)

= ∆Σ

�
RD

f (y)qΣ (t,x,y)γ(dy)− x ·∇
�
RD

f (y)qΣ (t,x,y)γ(dy)

= (∆Σ − x ·∇)u(x, t)

which completes the proof.

Since Qt is symmetric on L2(γ), so we expect its infinitesimal generator L = ∆Σ − x ·∇ is also
symmetric on L2(γ), which is the context of the following lemma.

Lemma 4.10. (Integration by parts) The differential operator L = ∆Σ − x ·∇ is symmetric on L2(γ),
in the sense that �

RD
ψ(x)Lϕ(x)γ(dx) =

�
RD

ϕ(x)Lψ(x)γ(dx)

=−
�
RD

∇ϕ ·Σ∇ψγ(dx) (4.8)

for any C2-functions ϕ , ψ , whose first and second derivatives belong to L2(γ).
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Proof. By using the identity
∂

∂x j lnGΣ (x) =−
D

∑
l=1

σ
jlxl (4.9)

we obtain that�
RD

∑
i, j

σi j
∂ϕ(x)

∂xi
∂ψ(x)

∂x j γ(dx) =−
�
RD

∑
i, j

σi j
∂

∂x j

(
∂ϕ

∂xi GΣ

)
ψdx

=−
�
RD

(
∆Σ ϕ +∑

i, j
σi j

∂ lnGΣ

∂x j
∂ϕ

∂xi

)
ψGΣ dx

=−
�
RD

(
∆Σ ϕ −∑

i
xi ∂ϕ

∂xi

)
ψγ(dx),

which implies (4.8) as Σ = (σi j) is symmetric.

Remark 4.11. [Not examinable] You may wonder where the Mehler formula comes from. Let us give
its derivation. Recall that we wish to define a Markov semi-group Qt whose invariant measure is the
Gaussian measure γ(dx). From the theory of diffusion processes [to be learned in SDE course, C8.1],
we first identify the infinitesimal generator L of Qt , which must satisfy the equality:�

RD
−ψLϕdγ =

�
RD

∇ϕ ·Σ∇ψdγ.

Now integration by parts gives�
RD

∇ϕ ·Σ∇ψdγ =

�
RD

GΣ Σ∇ϕ ·∇ψdx =−
�
RD

ψdiv(GΣ Σ∇ϕ)dx

which gives that

Lϕ =
1

GΣ

div(GΣ Σ∇ϕ) = ∆Σ ϕ − x ·∇ϕ.

This is exactly the generator we have already seen. The diffusion process, whose transition proba-
bility function gives the semi-group Qt , can be constructed as the solution to the following stochastic
differential equation

dXt =
√

2Σ
1
2 dBt −Xtdt, X0 = x

which can be solved explicitly

Xt = e−tx+ e−t
� t

0

√
2Σ

1
2 esdBs

which implies that the distribution of Xt has a normal distribution with a mean e−tx and co-variance
matrix

(
1− e−2t)Σ . Therefore

Qt f (x) = E [ f (Xt)|X0 = x]

=

�
RD

f (y)dN
(
e−tx,

(
1− e−2t)

Σ
)

=

�
RD

f (y)
exp
(
− 1

2(1−e−2t)
(y− e−tx) ·Σ−1(y− e−tx)

)
(2π(1− e−2t))

D
2
√

detΣ

dy

which leads to the Mehler formula.

35



4.2 Entropy and the logarithmic Sobolev inequality
Recall that γ(dx) is the central Gaussian measure with Gaussian density GΣ (x) on B(RD). The
entropy functional Ent (associated with the measure γ(dx)) is defined by

Ent(h) =
�
RD

h lnhdγ −
(�

RD
hdγ

)
ln
(�

RD
hdγ

)
(4.10)

for every non-negative h∈ L1(γ), where s lns is assigned to be 0= lims↓0 s lns at s= 0. Since s 7→ s lns
is convex on (0,∞), according to the Jensen inequality, Ent(h)≥ 0 for every non-negative h ∈ L1(γ).

Theorem 4.12. (L. Gross) For every f ∈W 2,1(γ), that is, both f and its derivative belong to L2(γ),
it holds that

Ent( f 2)≤ 2
�
RD

(∇ f ·Σ∇ f )dγ. (4.11)

Proof. By approximation property, we may assume that f ∈ C2. Since |∇| f || = |∇ f | almost surely
(with respect to the Lebesgue measure),

�
RD

(∇ f ·Σ∇ f )dγ =

�
RD

(∇| f | ·Σ∇| f |)dγ.

Thus we may assume that f is non-negative. By replace f by f + ε for any constant ε > 0 then send
ε ↓ 0, we can further assume that f is bounded by a positive constant.

Let ψ(s) = s lns and consider one variable function

F(t) =
�
RD

ψ
(
Qt( f 2)

)
dγ =

�
RD

Qt( f 2) lnQt( f 2)dγ

for t ∈ (0,∞). Then limt↓0 F(t) =
�

f 2 ln f 2dγ ,

lim
t→∞

F(t) =
(�

RD
f 2dγ

)
ln
(�

RD
f 2dγ

)
and therefore

Ent( f 2) = lim
t↓0

F(t)− lim
t→∞

F(t) =−
�

∞

0

d
dt

F(t)dt. (4.12)

On the other hand

− d
dt

F(t) =−
�
RD

ψ
′ (Qt( f 2)

) ∂

∂ t
Qt( f 2)dγ

=−
�
RD

ψ
′ (Qt( f 2)

)
LQt( f 2)dγ

=

�
RD

∇ψ
′ (Qt( f 2)

)
·Σ∇Qt( f 2)dγ

=

�
RD

ψ
′′ (Qt( f 2)

)
∇Qt( f 2) ·Σ∇Qt( f 2)dγ

where the third equality follows from Lemma 4.10. Since ψ ′(s) = lns+1 and ψ ′′(s) = 1
s , we deduce

that
− d

dt
F(t) =

�
RD

1
Qt( f 2)

∇Qt( f 2) ·Σ∇Qt( f 2)dγ for t > 0. (4.13)
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By the domination inequality√
∇Qt( f 2) ·Σ∇Qt( f 2)≤ e−tQt

(√
∇ f 2 ·Σ∇ f 2

)
= 2e−tQt

(
| f |
√

∇ f ·Σ∇ f
)

≤ 2e−t
√

Qt( f 2)
√

Qt (∇ f ·Σ∇ f )

where the last inequality follows from Cauchy-Schwartz inequality. Rearrange the previous inequality
we deduce that

1
Qt( f 2)

∇Qt( f 2) ·Σ∇Qt( f 2)≤ 4e−2tQt (∇ f ·Σ∇ f ) .

Together with (4.13)

− d
dt

F(t)≤ 4e−2t
�
RD

Qt (∇ f ·Σ∇ f )dγ = 4e−2t
�
RD

∇ f ·Σ∇ f dγ

and, by integrating the inequality over (0,∞) to obtain that

Ent( f 2)≤
�

∞

0
4e−2tdt

�
RD

∇ f ·Σ∇ f dγ = 2
�
RD

∇ f ·Σ∇ f dγ

and therefore the proof is complete.

Remark 4.13. If f ∈C2, then the logarithmic Sobolev inequality may be written as

Ent( f 2)≤−2
�
RD

f L f dγ.

Exercise 1. In this exercise we are going to prove the hyper-contractivity of the Ornstein-Uhlenbeck
semi-group. Let γ(dx) = GΣ (x)dx, and let q : (0,∞) → [1,∞) be differentiable, to be chosen later.
Let f be a positive, bounded and continuous function on RD. Consider two functions on (0,∞):

F(t) =
�
(Qt f )q(t) dγ and G(t) = ∥Qt f∥Lq(t)(γ). Then G(t) = F(t)

1
q(t) and lnG(t) = 1

q(t) lnF(t). There-
fore

G′(t) = G(t)
1

q(t)

(
−q′(t)

q(t)
lnF(t)+

F ′(t)
F(t)

)
and

F ′(t) =
�
RD

d
dt

(Qt f )q(t) dγ

= q′(t)
�
RD

(Qt f )q(t) lnQt f dγ +q(t)
�
RD

(Qt f )q(t)−1 d
dt

Qt f dγ

=
q′(t)
q(t)

�
RD

(Qt f )q(t) ln(Qt f )q(t) dγ +q(t)
�
RD

(Qt f )q(t)−1 LQt f dγ

=
q′(t)
q(t)

[
Ent
(
(Qt f )q(t)

)
+F(t) lnF(t)

]
+q(t)

�
RD

(Qt f )q(t)−1 LQt f dγ.
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Let us now choose function q which increasing, i.e. q′(t) ≥ 0. Applying the logarithmic Sobolev
inequality

Ent
(
(Qt f )q(t)

)
≤ 2

�
RD

∇(Qt f )
q(t)

2 ·Σ∇(Qt f )
q(t)

2 dγ

in the previous equality, one deduces that

F ′(t)≤ q′(t)
q(t)

F(t) lnF(t)+2
q′(t)
q(t)

�
RD

∇(Qt f )
q(t)

2 ·Σ∇(Qt f )
q(t)

2 dγ

−q(t)
�
RD

∇(Qt f )q(t)−1 ·Σ∇Qt f dγ

=
q′(t)
q(t)

F(t) lnF(t)+q(t)
(

1
2

q′(t)− (q(t)−1))
)�

RD
(Qt f )q(t)−2

∇Q ft ·Σ∇Qt f dγ.

The best choice of q for the previous inequality is given as solutions to

1
2

q′(t)− (q(t)−1)) = 0. (4.14)

Suppose q(t)≥ 1 is a solution of (4.14). Then

F ′(t)≤ q′(t)
q(t)

F(t) lnF(t)

and

G′(t) = G(t)
1

q(t)

(
−q′(t)

q(t)
lnF(t)+

F ′(t)
F(t)

)
≤ G(t)

1
q(t)

(
−q′(t)

q(t)
lnF(t)+

q′(t)
q(t)

lnF(t)
)

= 0.

Therefore t → G(t) is decreasing, so that G(t) ≤ G(0). The solution to (4.14) with q(0) = p for a
given p ≥ 1 is q(t) = 1+(p−1)e2t . Therefore

∥Qt f∥Lq(t)(γ) ≤ ∥ f∥Lp(γ) for every t ≥ 0 and f ∈ Lp(γ)

where q(t) = 1+(p− 1)e2t . This is called the hypercontractivity of the Ornstein-Uhlenbeck semi-
group (Qt)t≥0.

4.3 Poincaré inequality
The variance of f (with respect to the Gaussian measure γ(dx) = GΣ (x)dx)

var( f ) =
�
RD

(
f −

�
RD

f dγ

)2

dγ

=

�
RD

f 2dγ −
(�

RD
f dγ

)2

.

The following inequality is called the Poincaré inequality.
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Theorem 4.14. Let γ(dx) = GΣ (x)dx be the Gaussian measure. Then
�
RD

(
f −

�
RD

f dγ

)2

dγ ≤
�
RD

(∇ f ·Σ∇ f )dγ

for any C1-function f such that |∇ f |2 is γ-integrable.

Proof. Let F(t) =
�
RD (Qt f )2 dγ . Then limt→0 F(t) =

�
RD f 2dγ and

lim
t→∞

F(t) =
�
RD

(�
RD

f dγ

)2

dγ =

(�
RD

f dγ

)2

.

Therefore
var( f ) =−

�
∞

0

d
dt

F(t)dt.

Next calculate the derivative

− d
dt

F(t) =−
�
RD

d
dt

(Qt f )2 dγ

=−2
�
RD

Qt f
d
dt

Qt f dγ

=−2
�
RD

Qt f LQt f dγ

= 2
�
RD

∇Qt f ·Σ∇Qt f dγ.

Using the weak domination inequality we thus deduce that

− d
dt

F(t)≤ 2e−2t
�
RD

Qt (∇ f ·Σ∇ f )dγ = 2e−2t
�
RD

∇ f ·Σ∇ f dγ.

Integrating the previous inequality over (0,∞) to get that

var( f )≤
�

∞

0
2e−2tdt

�
RD

(∇ f ·Σ∇ f )dγ =

�
RD

(∇ f ·Σ∇ f )dγ.

Thus we have completed the proof.

4.4 The concentration inequality
In this section we prove the major concentration inequality for Gaussian measure γ(dx) = GΣ (x)dx.

If g is a function on RD, we shall use ∥g∥
∞

to denote the supremum norm of g, that is, ∥g∥
∞
=

supx∈RD |g(x)|.
Theorem 4.15. Let γ(dx) = GΣ (x)dx be a centered Gaussian measure on (RD,B(RD)), and let f be
a C1-function with bounded derivatives. Then�

RD
exp
[

λ

(
f −

�
RD

f dγ

)]
≤ exp

(
λ 2

2
∥∇ f ·Σ∇ f∥

∞

)
(4.15)

for every λ ∈ R, where
∥∇ f ·Σ∇ f∥

∞
= sup

RD
(∇ f ·Σ∇ f )

is the supremum norm of ∇ f ·Σ∇ f over RD.
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Proof. By considering f (x)−
�
RD f dγ instead, without losing generality we may assume that

�
RD f dγ =

0. Let ψ(s) = eλ s. Then ψ ′ = λψ and ψ ′′ = λ 2ψ . Consider

F(t) =
�
RD

ψ (Qt f )dγ =

�
RD

exp(λQt f )dγ for t ≥ 0

Then

lim
t→∞

F(t) =
�
RD

exp
(

λ

�
f dγ

)
dγ = 1

and therefore
F(t)−1 =−

�
∞

t

d
dt

F(t)dt for t ≥ 0.

As before we differentiate under integration, and use the equation that d
dt Qt f = LQt f , to obtain that

− d
dt

F(t) =−
�
RD

d
dt

ψ (Qt f )dγ =−
�
RD

ψ
′ (Qt f )

d
dt

Qt f dγ

=−
�
RD

ψ
′ (Qt f )LQt f dγ.

Next perform integration in the last integral, to get that

− d
dt

F(t) =
�
RD

∇ψ
′ (Qt f ) ·Σ∇Qt f dγ

=

�
RD

ψ
′′ (Qt f )∇Qt f ·Σ∇Qt f dγ

= λ
2
�
RD

ψ (Qt f )∇Qt f ·Σ∇Qt f dγ

Since ψ is positive, we may use the weak domination inequality

∇Qt f ·ΣQt f ≤ e−2tQt (∇ f ·Σ∇ f )≤ e−2t ∥∇ f ·Σ f∥
∞

we thus conclude that

− d
dt

F(t)≤ λ
2e−2t ∥∇ f ·Σ∇ f∥

∞

�
RD

ψ (Qt f )dγ

= λ
2e−2t ∥∇ f ·Σ∇ f∥

∞
F(t),

i.e.
− 1

F(t)
d
dt

F(t)≤ λ
2e−2t ∥∇ f ·Σ∇ f∥

∞

for t > 0. Integrating the inequality over [t,∞) to obtain that

lnF(t)− lnF(∞) =−
�

∞

t

1
F(t)

d
dt

F(t)dt

≤ λ
2
�

∞

t
e−2tdt ∥∇ f ·Σ∇ f∥

∞
=

λ 2

2
∥∇ f ·Σ∇ f∥

∞

Letting t ↓ 0 we conclude that�
RD

exp
(

λ

(
f −

�
RD

f dγ

))
dγ ≤ exp

(
λ 2

2
∥∇ f ·Σ f∥

∞

)
.

The second inequality follows from Markov inequality.
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We next prove the well-known Borell’s inequality for family of Gaussian random variables.
Recall that a function f on RD is Lipschitz, if | f (x)− f (y)| ≤C|x− y| for every x,y ∈ RD, where

C ≥ 0 is a constant. The least C is called the Lipschitz norm of f , denoted by ∥ f∥Lip. That is

∥ f∥Lip = sup
x ̸=y

| f (x)− f (y)|
|x− y|

.

Lemma 4.16. Let f : RD 7→R be Lipschitz continuous (with respect to the standard metric on RD and
R. Then for every ε > 0 there is a C1-function fε such that ∥ fε − f∥

∞
< ε and ∥∇ fε∥∞

≤ ∥ f∥Lip + ε .

For a proof, refer to Appendix.

Corollary 4.17. Let Y = (Y1, · · · ,YD) be an RD-valued random variable with the standard normal
distribution N(0, I) (where I is the identity matrix), and let f : RD 7→ R be Lipschitz continuous.

(a) We have

E
(

eλ ( f (Y )−E f (Y ))
)
≤ exp

(
λ 2

2
∥ f∥2

Lip

)
(4.16)

for any λ ∈ R.
(b) The following Gaussian estimate holds:

P(| f (Y )−E f (Y )|> r)≤ 2exp

(
− r2

2∥ f∥2
Lip

)
(4.17)

for every r > 0.

Proof. Let fε be constructed in Lemma 4.16 for every ε > 0. By Theorem 4.15,

E(exp [λ ( fε(Y )−E fε(Y ))])≤ exp
(

λ 2

2
∥∇ fε∥2

∞

)
≤ exp

(
λ 2

2
(∥ f∥Lip + ε)2

)
for every ε > 0. Letting ε ↓ 0 we obtain (4.16). The Gaussian estimate (4.17) follows from (4.16) as
we have seen in Section 1.

Theorem 4.18. (Borell’s inequality). Let X = (X1, · · · ,XD) be a random variable with central Gaus-
sian distribution with co-variance matrix Σ = (σi j). Then

P

[∣∣∣∣∣ sup
i=1,...,D

X i −E sup
i=1,...,D

X i

∣∣∣∣∣> r

]
≤ 2exp

(
− r2

2supi σii

)
(4.18)

for every r > 0.

Proof. Let Y = (Y1, · · · ,YD) be a random variable in RD with the standard normal distribution N(0, I),
as in the previous corollary. Then Z = Σ

1
2Y has the same distribution as that of X , where Σ

1
2 = (ρi j)

is a positive square root of Σ . Let f (x) = maxi=1,··· ,D
(
∑

D
k=1 ρikxk

)
. For given x,y, there are i and j

such that

f (x) =
D

∑
k=1

ρikxk and f (y) =
D

∑
k=1

ρ jkyk
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(where i, j depend on x,y of course), so that

f (x)− f (y) =
D

∑
k=1

ρikxk −
D

∑
k=1

ρ jkyk ≤
D

∑
k=1

ρikxk −
D

∑
k=1

ρikyk

and similarly

f (y)− f (x)≤
D

∑
k=1

ρ jkyk −
D

∑
k=1

ρ jkxk,

which implies that

| f (x)− f (y)| ≤ max
i

∣∣∣∣∣ D

∑
k=1

ρik(yk − xk)

∣∣∣∣∣
≤ max

i=1,··· ,D

√
∑
k=1

ρ2
ik|x− y|

= max
i=1,··· ,D

√
σii|x− y|.

Thus f is Lipschitz continuous with Lipschitz constant less than maxi
√

σii. Therefore, according to
(4.17)

P

[∣∣∣∣∣ sup
i=1,...,D

X i −E sup
i=1,...,D

X i

∣∣∣∣∣> r

]
= P(| f (Z)−E f (Z)|> r)

≤ 2exp
(
− r2

2supi σii

)
.

Remark 4.19. (a) As long as Esupi Xi is finite (in this case the family of centered Gaussian random
variables (Xi) is called bounded), then the Borell’s inequality is still valid in exactly the same form,
by letting D → ∞. That is, if (Xt)t∈Λ is a family of centered Gaussian random variables, where Λ is
any countable set, such that Esupt∈Λ Xt < ∞, then

P
[∣∣∣∣sup

t∈Λ

Xt −Esup
t∈Λ

Xt

∣∣∣∣> r
]
≤ 2exp

(
− r2

2supt∈Λ σtt

)
(4.19)

for every r > 0, where σtt = var(Xt).
(b) It remains to control the quantity Esupt∈Λ Xt . This can be done by using the technique of

metric entropy, a topic we left for your own study. The reader may refer to the small book by R. J.
Adler [1].

4.5 Estimates of exponential type

In this section we introduce another idea for deriving typical Gaussian type exponential decay esti-
mates, which is in a matter of transport distributions, an idea which is quite useful. It yields interesting
results, though it does not lead to better results as we have developed so far.
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Lemma 4.20. Let X =(X i)i=1,··· ,D and Y =(Y i)i=1,··· ,D be two independent random variables with the
same distribution γ(dx)=GΣ (x)dx, where Σ is symmetric, positive definite. Let X(t)=X sin t+Y cos t
and d

dt X(t) = X cos t−Y sin t for t ∈R. Then for every t, X(t) and d
dt X(t) have independent, and have

the same distribution γ(dx).

Proof. For each t we have

E
[
X(t)iX(t) j]= E

[(
X i sin t +Y i cos t

)(
X j sin t +Y j cos t

)]
= sin2 tE

[
X iX j]+ cos2 tE

[
Y iY j]

= σi j

hence X(t) has distribution γ as well. Let Z(t) = d
dt X(t). Then

E
[
X(t)iZ(t) j]= E

[(
X i sin t +Y i cos t

)(
X j cos t −Y j sin t

)]
= sin t cos t

(
E
[
X iX j]−E

[
Y iY j])

+ cos2 tE
[
Y iX j]− sin2 tE

[
Y jX i]

= 0

which implies X and Z are independent.

Let begin with the following general Gaussian estimate.

Theorem 4.21. Let f : RD 7→ Rn be a C1-function, and Ψ : Rn 7→ R be a convex function. Then
�
RD

�
RD

Ψ( f (x)− f (y))γ(dy)γ(dx)≤
�
RD

�
RD

Ψ

(
π

2
∇ f (x) · y

)
γ(dx)γ(dy) (4.20)

and �
RD

Ψ

(
f (x)−

�
RD

f dγ

)
γ(dx)≤

�
RD

�
RD

Ψ

(
π

2
∇ f (x) · y

)
γ(dx)γ(dy) (4.21)

where f = ( f1, · · · , fn) and ∇ f (x) · y = (∇ f1(x) · y, · · · ,∇ fn(x) · y) for any x,y ∈ RD.

Proof. By considering f i −
�
RD f idγ instead, without losing generality, we assume that

�
RD f idγ = 0

for i = 1, . . . ,n. Let X and Y be independent random variables with the same distribution γ , and
X(t) = X sin t +Y cos t. Then

f (X)− f (Y ) =
� π

2

0

d
dt

f (X(t))dt

=

� π

2

0
∇ f (X(t)) · d

dt
X(t)dt

and therefore

Ψ ( f (X)− f (Y )) =Ψ

(� π

2

0
∇ f (X(t)) · d

dt
X(t)dt

)
Since Ψ is convex, applying Jensen’s inequality (with respect to the 2

π
dt on [0, π

2 ]), to obtain

Ψ ( f (X)− f (Y ))≤ 2
π

� π

2

0
Ψ

(
π

2
∇ f (X(t)) · d

dt
X(t)

)
dt.
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Taking expectation both sides of the inequality to deduce that

E [Ψ ( f (X)− f (Y ))]≤ 2
π

� π

2

0
E
[
Ψ

(
π

2
∇ f (X(t)) · d

dt
X(t)

)]
dt. (4.22)

By Lemma 4.20, both (X ,Y ), and (X(t), d
dt X(t)) (for every t) has the same distribution γ ⊗ γ , so

that
E [Ψ ( f (X)− f (Y ))] =

�
RD

�
RD

Ψ( f (x)− f (y))γ(dy)γ(dx)

and

E
[
Ψ

(
π

2
∇ f (X(t)) · d

dt
X(t)

)]
=

�
RD

�
RD

Ψ

(
π

2
∇ f (x) · y

)
γ(dx)γ(dy)

for every t, so the first inequality follows.
To prove the second inequality, we use Jensen’s inequality again, to deduce that

�
RD

Ψ ( f (x)− f (y))γ(dy)≥Ψ

(
f (x)−

�
RD

f dγ

)
for every x. Integrating out the variable x, we then deduce that

�
RD

�
RD

Ψ ( f (x)− f (y))γ(dy)γ(dx)≥
�
RD

Ψ

(
f (x)−

�
RD

f dγ

)
γ(dx).

Therefore the second inequality follows from the first inequality.

Corollary 4.22. Let γ(dx) = GΣ (x)dx. Suppose f : RD 7→ R is a C1-function, and p ≥ 1. Then
�
RD

∣∣∣∣ f −�
RD

f dγ

∣∣∣∣p dγ ≤Cp

�
RD

|∇ f |pdγ (4.23)

where

Cp =
(

π

2

)p
�
RD

|y|pγ(dy), |y|=

√
D

∑
i=1

(yi)2.

Proof. We apply Theorem 4.21 to convex function Ψ(x) = |x|p. Then�
RD

�
RD

Ψ

(
π

2
∇ f (x) · y

)
γ(dx)γ(dy) =

(
π

2

)p
�
RD

�
RD

|∇ f (x) · y|p γ(dx)γ(dy)

≤Cp

�
RD

|∇ f |p dγ

which yields the conclusion.

If p = 2, then estimate (4.23) becomes a variation of the Poincaré inequality:
�
RD

∣∣∣∣ f −�
RD

f dγ

∣∣∣∣2 dγ ≤C2

�
RD

|∇ f |2dγ

where

C2 =
(

π

2

)2 D

∑
i=1

�
RD

(yi)2
γ(dy) =

(
π

2

)2
trΣ

while the variance var( f ) is dominated by the quadratic form
�

∇ f ·∇ f dγ , instead of
�

∇ f ·Σ∇ f dγ .
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Corollary 4.23. Suppose f is Lipschitz continuous from RD 7→ R with Lipschitz constant C. Then
�
RD

exp

(
α

∣∣∣∣ f −�
RD

f dγ

∣∣∣∣2
)

dγ ≤
�
RD

exp
(

π

2
αCλ |y|2

)
GI(y)dy

where λ is the largest eigenvalue of Σ . The right hand-side is finite as long as α < 2
π2C2λ 2 .

Proof. Let Ψ(t) = exp(αt2) where α ≥ 0 is a constant. Then

Ψ
′′(t) = 2α exp(αt2)+(2αt)2 exp(αt2)≥ 0

so Ψ is convex. We apply (4.21) with Ψ. Then

Ψ

(
π

2
α f ′(x)y

)
= exp

π

2
α

(
D

∑
i=1

∂ f (x)
∂xi yi

)2


≤ exp
(

π

2
α|∇ f |2|y|2

)
and therefore, according to (4.21),

�
RD

exp
(

α

∣∣∣∣ f −�
RD

f dγ

∣∣∣∣)dγ ≤
�
RD

exp
(

π

2
αC|y|2

)
γ(dy).

For the integral on the right-hand side we make a change of variable Σ
1
2 z = y, so that�

RD
exp
(

π

2
αC|y|2

)
γ(dy) =

�
RD

exp
(

π

2
αCy ·Σy

)
GI(y)dy

≤
�
RD

exp
(

π

2
αλDC|y|2

)
GI(y)dy

where now GI(y) is the standard Gaussian density on RD and λD is the largest eigenvalue. By a
standard computation we have�

RD
exp
(

π

2
αλDC|y|2

)
GI(y)dy ≤ 1√

1− α

2 π2C2λ 2
D

which completes the proof.

Corollary 4.24. If f is C1, then
�
RD

exp
(

f (x)−
�
RD

f dγ

)
γ(dx)≤

�
RD

exp
(

π2

8
∇ f ·Σ∇ f

)
dγ (4.24)

Proof. Let us apply (4.21) with Ψ(t) = et which is convex, to obtain that

�
RD

exp
(

f (x)−
�
RD

f dγ

)
γ(dx)≤

�
RD

�
RD

exp
π

2

(
D

∑
i=1

∂ f (x)
∂xi yi

)
γ(dx)γ(dy)

≤
�
RD

�
RD

exp

(
π

2

D

∑
i=1

∂ f (x)
∂xi yi

)
γ(dx)γ(dy).
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For every x (but fixed), Y = (Y i) has a distribution γ . Then Z = π

2 ∑
D
i=1

∂ f (x)
∂xi Y i is Gaussian random

variable whose variance is

var(Z) =
π2

4
∇ f ·Σ∇ f

and therefore �
RD

exp

(
π

2

D

∑
i=1

∂ f (x)
∂xi yi

)
γ(dy) = exp

(
π2

8
∇ f ·Σ∇ f

)
.

Hence (4.24) follows immediately.

4.6 Gaussian isoperimetric inequality
In this section we derive Lévy-Gromov’s isoperimetric function for centered Gaussian measure γ(dx)=
GΣ (x)dx, following the approach put forward by D. Bakry and M. Ledoux [3] via the Ornstein-
Uhlenbeck semigroup (Qt)t≥0, whose invariant measure is γ(dx). B-L [3] aims to give a general
version of Lévy-Gromov’s isoperimetric inequality (for metric-measure spaces with positive curva-
ture) by using Bakry-Emery’s Γ2 formulation (Ricci curvature) and the idea of quantization. While
the most useful case remains the isoperimetric inequality (independent of dimensions) for Gaussian
measures, which is going to be presented in this part.

Let us now introduce the isoperimetric function for Gaussian measure. Suppose ξ is a real random
variable with a standard normal distribution N(0,1), then

Φ(r) = P [ξ ≤ r] =
� r

−∞

1√
2π

exp
(
−x2

2

)
dx (4.25)

which strictly increasing, whose inverse Φ−1 : (0,1) 7→ (−∞,∞) is also increasing. The isopermetric
function is defined to be U = Φ ′ ◦Φ−1 on (0,1), where the derivative Φ ′ is nothing but just the 1-D
standard Gaussian density, i.e. Φ ′(x) = 1√

2π
exp
(
−x2

2

)
. Naturally we extend the definition of U to

[0,1] by setting
U (0) = 0 and U (1) = 0

so that U is differentiable (of any degree) on (0,1) and is continuous on [0,1]. By chain rule and use
the fact that Φ ′′(x) =−xΦ ′, we have

U ′ = Φ
′′ ◦Φ

−1 1
Φ ′ ◦Φ−1 =−Φ

−1 (4.26)

and
U ′′ =− 1

Φ ′ ◦Φ−1 =− 1
U

. (4.27)

In particular U ′′ < 0 on (0,1). Therefore x → U (x) is (strictly) concave on (0,1), symmetric again
the vertical line x = 1

2 at which it attains its maximum 1√
2π

. Moreover

lim
x↓0

U (x)√
2ln 1

x

= 1. (4.28)

Let us begin with several facts we shall use.
Recall that L = ∆Σ − x ·∇ is the infinitesimal generator of the Ornstein-Uhlenbeck semi-group

(Qt)t>0, in the sense that d
dt Qt = LQt for t > 0.
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Lemma 4.25. Let Ψ be a C2-function on R. Then

L(Ψ( f )) =Ψ
′( f )L f +Ψ

′′( f )∇ f ·Σ∇ f (4.29)

for any C2-function f on RD.

Proof. The equality may be called a chain rule for L, which follows immediately from the rules of
computing derivatives. Let fi and fi j denote the partial derivatives ∂

∂xi
f and ∂ 2

∂xi∂x j
f respectively for

simplicity. Then

L(Ψ( f )) =
D

∑
i, j=1

σi jΨ( f )i j −
D

∑
i=1

xiΨ( f )i

=
D

∑
i, j=1

σi j
(
Ψ

′( f ) fi
)

j −Ψ
′( f )

D

∑
i=1

xi fi

=Ψ
′( f )

D

∑
i, j=1

σi j fi j +Ψ
′′( f )

D

∑
i, j=1

σi j f j fi −Ψ
′( f )

D

∑
i=1

xi fi

=Ψ
′( f )L f +Ψ

′′( f )∇ f ·Σ∇ f

which completes the proof.

Lemma 4.26. Let f :RD 7→ [0,1] be a C2-function whose derivatives have at most polynomial growth.
Let t > 0 be fixed but arbitrary, and consider G(s) = Qs (U (Qt−s f )), that is,

G(s)(x, t) =
�
RD

qΣ (s,x,y)U (Qt−s f (y))γ(dy) (4.30)

for s ∈ (0, t) and x ∈ RD. [The argument (x, t) is suppressed if no confusion may arise]. Then

∂

∂ s
G(s) = Qs

(
U ′′ (Qt−s f )∇(Qt−s f ) ·Σ∇(Qt−s f )

)
(4.31)

for every s ∈ (0, t).

Proof. For simplicity we suppress the argument x in G(s)(x) which is fixed though arbitrary. By
differentiating in s under integration (which is allowed under our assumptions on f ), we obtain

∂

∂ s
G(s) =

�
RD

U (Qt−s f (y))
∂

∂ s
qΣ (s,x,y)γ(dy)

−
�
RD

qΣ (s,x,y)U ′(Qt−s f (y))
∂

∂ s
Qt−s f (y)γ(dy)

=

�
RD

U (Qt−s f (y))LqΣ (s,x,y)γ(dy)

−
�
RD

qΣ (s,x,y)U ′(Qt−s f (y))
∂

∂ s
Qt−s f (y)γ(dy)

where we have used the fundamental equation that

∂

∂ s
qΣ (s,x,y) = LqΣ (s,x,y)
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where L operates on the variable y, while x is fixed. Next for the first term we use the symmetry of L,
so that

J1 =

�
RD

U (Qt−s f (y))LqΣ (s,x,y)γ(dy)

=

�
RD

qΣ (s,x,y)LU (Qt−s f (y))γ(dy)

=

�
RD

qΣ (s,x,y)U ′(Qt−s f (y))L(Qt−s f )(y))γ(dy)

+

�
RD

qΣ (s,x,y)U ′′ (Qt−s f (y))∇(Qt−s f ) ·Σ∇(Qt−s f )(y))γ(dy)

where the second equality from the chain rule for L. Substituting J1 into the previous equation for
G′(s), and using the fundamental equation

∂

∂ r
Qr f = L(Qr f )

(with r = t − s > 0), we obtain that

G′(s) =
�
RD

U ′′ (Qt−s f (y))(∇(Qt−s f ) ·Σ∇(Qt−s f ))(y)qΣ (s, ·,y)γ(dy) (4.32)

for every s ∈ (0, t), which is equivalent to (4.31).

Lemma 4.27. Under the same assumptions as in Lemma 4.26. Let

F(s) = (Qs (U (Qt−s f )))2 for s ∈ (0, t).

Then
F ′(s) = 2Qs (U (Qt−s f ))Qs

(
U ′′(Qt−s f )∇(Qt−s f ) ·Σ∇(Qt−s f )

)
for s ∈ (0, t).

Proof. This follows from the previous lemma. Indeed F = G2, so that

F ′(s) = 2G(s)G′(s)

= 2Qs (U (Qt−s f ))Qs
(
U ′′(Qt−s f )∇(Qt−s f ) ·Σ∇(Qt−s f )

)
for every s ∈ (0, t).

Lemma 4.28. Suppose that f is a C1 function with values in [0,1], and suppose both f and its partial
derivatives are γ-integrable. Then√

∇(Qt f ) ·Σ∇(Qt f )
U (Qt f )

≤ 1√
e2t −1

for every t > 0. (4.33)

Proof. We only need to show this for any C2-function f taking values in [0,1]. Let t > 0 and let
F(s) = (Qs (U (Qt−s f )))2 for s ∈ (0, t). Then F(t) = (Qt(U ( f )))2, F(0) = (U (Qt f ))2, and

F(t)−F(0) =
� t

0

d
ds

F(s)ds

= 2
� t

0
Qs (U (Qt−s f ))Qs

(
U ′′(Qt−s f )∇(Qt−s f ) ·Σ∇(Qt−s f )

)
ds. (4.34)
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Using the differential equation that U ′′ =− 1
U in the previous equality, we obtain that

F(t)−F(0) =−2
� t

0
Qs (U (Qt−s f ))Qs

(
∇(Qt−s f ) ·Σ∇(Qt−s f )

U (Qt−s f )

)
ds

≤−2
� t

0

(
Qs

(√
∇(Qt−s f ) ·Σ∇(Qt−s f )

))2
ds (4.35)

where the second inequality follows from the Cauchy-Schwartz inequality:

Qs

(√
∇(Qt−s f ) ·Σ∇(Qt−s f )

)
≤
√

Qs (U (Qt−s f ))

√
Qs

(
∇(Qt−s f ) ·Σ∇(Qt−s f )

U (Qt−s f )

)
which implies that

Qs (U (Qt−s f ))Qs

(
∇(Qt−s f ) ·Σ∇(Qt−s f )

U (Qt−s f )

)
≥
(

Qs

(√
∇(Qt−s f ) ·Σ∇(Qt−s f )

))2
.

By the domination inequality (cf. Theorem 4.8):√
∇(Qt f ) ·Σ∇(Qt f ) =

√
∇(Qs(Qt−s f )) ·Σ∇(Qs(Qt−s f ))

≤ e−sQs

(√
∇(Qt−s f ) ·Σ∇(Qt−s f )

)
for every s ∈ (0, t). Rearrange the inequality to obtain that that(

Qs

(√
∇(Qt−s f ) ·Σ∇(Qt−s f )

))2
≥ e2s

∇(Qt f ) ·Σ∇(Qt f ) (4.36)

for any s ∈ (0, t). Substituting this into (4.35) we thus get that

F(t)−F(0)≤−2
� t

0
e2s

∇(Qt f ) ·Σ∇(Qt f )ds

=−(e2t −1)∇(Qt f ) ·Σ(∇Qt f )

which yields that

∇(Qt f ) ·Σ∇(Qt f )≤ 1
e2t −1

[
(U (Qt f ))2 − (Qt(U ( f )))2

]
and therefore √

∇(Qt f ) ·Σ∇(Qt f )
U (Qt f )

≤ 1√
e2t −1

√
1−
(

Qt(U ( f ))
U (Qt f )

)2

for every t > 0. This completes the proof.

Exercise. Let ψ be an increasing C1 function on [0,∞), and f is a C1 function on RD taking values
in [0,1]. Prove that

ψ (Qt (U ( f )))−ψ (U (Qt f ))≤−(∇(Qt f ) ·Σ∇(Qt f ))
� t

0
e2s ψ ′ (Qs (U (Qt−s f )))

Qs (U (Qt−s f ))
ds
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for any t > 0.
[Hint: For any t > 0 be any but fixed. Consider ϕ(s) = ψ (Qs (U (Qt−s f ))) for s ∈ [0, t]. Then

ψ (Qt (U ( f )))−ψ (U (Qt f )) =
� t

0

d
ds

ϕ(s)ds.

Compute ϕ(s) and use Theorem 4.8 as in the proof of the previous lemma.]

We are now in a position to prove the isoperimetric inequality for Gaussian measures.

Theorem 4.29. (Isoperimetric inequality for Gaussian measures) Let f : RD 7→ [0,1] be C1-function
and |∇ f | is γ-integrable. Then

U

(�
RD

f dγ

)
−
�
RD

U ( f )dγ ≤
�
RD

√
∇ f ·Σ∇ f dγ. (4.37)

Proof. Let us apply the approach we have tested in the previous sections. Consider

F(t) =
�
RD

U (Qt f )dγ.

Then F(∞) = U
(�

RD f dγ
)

and F(0) =
�
RD U ( f )dγ , and

U

(�
RD

f dγ

)
−
�
RD

U ( f )dγ =

�
∞

0

d
dt

F(t)dt.

Next we compute the derivative: differentiating under integration gives

d
dt

F(t) =
�
RD

d
dt

U (Qt f )dγ

=

�
RD

U ′ (Qt f )
d
dt

Qt f dγ.

Using the equation d
dt Qt f = LQt f and performing integration by parts we obtain

d
dt

F(t) =
�
RD

U ′ (Qt f )LQt f dγ

=−
�
RD

∇(U ′ (Qt f )) ·Σ∇(Qt f )dγ

=−
�
RD

U ′′ (Qt f )∇(Qt f ) ·Σ∇(Qt f )dγ.

Since U ′′ =− 1
U , we therefore have

d
dt

F(t) =
�
RD

∇(Qt f ) ·Σ∇(Qt f )
U (Qt f )

dγ

for every t > 0. Finally we apply the estimate we have proven in Lemma 4.28√
∇(Qt f ) ·Σ∇(Qt f )

U (Qt f )
≤ 1√

e2t −1
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and deduce that
d
dt

F(t)≤ 1√
e2t −1

�
RD

√
∇(Qt f ) ·Σ∇(Qt f )dγ

≤ 1√
e2t −1

�
RD

e−tQt(
√

∇ f ·Σ∇ f )dγ

=
e−t

√
e2t −1

�
RD

√
∇ f ·Σ∇ f dγ

Integrating both sides of the previous inequality on (0,∞) we therefor obtain that

U

(�
RD

f dγ

)
−
�
RD

U ( f )dγ ≤
�

∞

0

e−t
√

e2t −1
dt
�
RD

√
∇ f ·Σ∇ f dγ

=

�
RD

√
∇ f ·Σ∇ f dγ

which completes the proof.

If A ∈ RD be a closed subset with a C1-boundary, then

γS(∂A) = liminf
ε↓0

γ(Aε)− γ(A)
ε

where Aε =
{

x ∈ RD : d(x,A)< ε
}

, is called the Minkowski outer content of the boundary of A. Here
the distance d is the metric associated with Σ , i.e.

d(x,y) = sup
f∈C1

{| f (x)− f (y)| : ∇ f ·Σ∇ f ≤ 1} .

Indeed d(x,y) =
√
(x− y) ·Σ−1(x− y) for any x,y ∈ RD. Note that if ε 7→ γ(Aε) is differentiable

(from right), then

γS(∂A) =
d

dε

∣∣∣∣
ε=0+

γ(Aε).

Corollary 4.30. Let γ(dx) = GΣ (x)dx be a central Gaussian measure with co-variance matrix Σ .
Then

U (γ(A))≤ γS(∂A)

for any closed subset A ⊂ RD with a C1-boundary.

Proof. Choose C1-functions fn valued in [0,1]which tends to 1A. Then

U

(�
RD

fndγ

)
−
�
RD

U ( fn)dγ ≤
�
RD

√
∇ fn ·Σ∇ fndγ

for every n. Since U (0) = U (1) = 0 so that

U

(�
RD

fndγ

)
→ U (γ(A)) ,

�
RD

U ( fn)dγ → 0

and �
RD

√
∇ fn ·Σ∇ fndγ → γS(∂A)

which thus yields the isopermetric inequality.
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Theorem 4.31. Suppose γ(dx) = GΣ (x)dx is a Gaussian measure on RD, and A ⊂ RD be Borel
measurable with C1-boundary. Then

γ(At)≥ Φ
(
Φ

−1 (γ(A))+ t
)

for t ≥ 0, (4.38)

where Aε = {x ∈ RD : d(x,A) ≤ ε} for every ε > 0, and the distance d is the metric associated with
Σ , i.e.

d(x,y) = sup
f∈C1

{| f (x)− f (y)| : ∇ f ·Σ∇ f ≤ 1} .

It is a fact that d(x,y) =
√
(x− y) ·Σ−1(x− y) for any x,y ∈ RD.

Proof. The isoperimetric inequality may be written as

d
dr

γ(Ar)≥ U (γ(Ar))

for r ≥ 0, i.e.
1

U (γ(Ar))

d
dr

γ(Ar)≥ 1 for r ≥ 0.

Integrating the inequality over [0, t] (for t > 0) to obtain that
� t

0

1
U (γ(Ar))

d
dr

γ(Ar)dr =
�

γ(At)

γ(A)

1
U (s)

ds ≥ t

On the other hand
�

γ(At)

γ(A)

1
U (s)

ds =
�

γ(At)

γ(A)

1
Φ ′ ◦Φ−1(s)

ds =
�

γ(At)

γ(A)

d
ds

Φ
−1(s)ds

= Φ
−1 (γ(At))−Φ

−1 (γ(A))

and therefore
Φ

−1 (γ(At))−Φ
−1 (γ(A))≥ t

which yield the inequality (4.38).

As a consequence we deduce the following concentration estimate.

Theorem 4.32. Let γ(dx) = GΣ (x)dx be a centered Gaussian measure on RD. Let f : RD → R be a
function such that ∇ f ·Σ∇ f ≤ 1. Let m ∈ RD such that γ ({ f ≤ m})≥ 1

2 . Then

γ ({ f > m+ r})≤
�

∞

r

1√
2π

e−
x2
2 dx (4.39)

for any r ≥ 0.

Proof. Let A = { f ≤ m}. Then γ(A) ≥ 1
2 = Φ(0) which implies that Φ−1(γ(A)) ≥ 0. Also the

condition that ∇ f ·Σ∇ f ≤ 1 implies that Ar ⊂ { f ≤ m+ r}, and therefore, (4.38) yields that

γ ({ f ≤ m+ r})≥ Φ (r) =
� r

−∞

1√
2π

e−
x2
2 dx

and the conclusion follows immediately.
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By an approximation procedure, we therefore have the following.

Proposition 4.33. Let X = (X1, · · · ,XD) be a D-dimensional random vector on (Ω ,F ,P) with the
standard normal distribution N(0, I) on RD, f : RD 7→ R is Lipschitz such that ∥ f∥Lip ≤ 1, and let m
be a number such that P [ f (X)≤ m]≥ 1

2 . Then

P [ f (X)> m+ r]≤
�

∞

r

1√
2π

e−
x2
2 dx

for every r > 0.

Theorem 4.34. Let Y = (Y1, · · · ,YD) be a D-dimensional Gaussian random vector on (Ω ,F ,P) with
mean zero and co-variance matrix Σ = (σi j), and let m be a number such that P [supiYi ≤ m] ≥ 1

2 .
Then

P

[
sup

i=1,··· ,D
Yi > m+ r

]
≤
�

∞

r
supi=1,··· ,D

√
σii

1√
2π

e−
x2
2 dx (4.40)

for every r > 0, where σii = E(Y 2
i ) is the variance of Yi for i = 1, . . . ,D.

Proof. As in the proof of Theorem 4.18, Y and Σ
1
2 X have the same distribution N(0,Σ) (where X has

the standard normal distribution N(0, I)). Apply Proposition 4.33 with

f (x) =
1

supi
√

σii
sup

i
∑

j
ρi jx j

where Σ
1
2 = (ρi j) is a square root of Σ . Then ∥ f∥Lip ≤ 1 (see the proof of the Borell inequality,

Theorem 4.18), and the concentration inequality (4.40) follows immediately.

This theorem implies Borell’s inequality we have proved.

5 Brunn-Minkowski’s inequality, Isoperimetric inequality
In this part we demonstrate some special features of datasets lying in convex domains. The main tool
is the isoperimetric inequality for the Lebesgue measure on RD.

As in the previous sections, if A ⊂RD is a Borel measurable subset, then |A| denotes the Lebesgue
measure of A. If A is a box with sides parallel to axises, and if the length of the side parallel to xi-axis is
αi, then |A|=∏

D
i=1 αi. If A and B are two Borel measurable sets of RD, then A+B= {a+b : a∈A,b∈

B} and λA = {λx : x ∈ A} are Borel measurable too. In particular, if a ∈RD, then a+A = {a}+A is
measurable and |a+A|= |A|, i.e. the Lebesgue measure is translation invariant.

5.1 Prékopa-Leindler’s inequality
Let us begin with a lemma which is the Brunn-Minkowski inequality on R.

Lemma 5.1. Let A,B be two Borel measurable subsets of R. Then

|A+B| ≥ |A|+ |B| (5.1)

and
|λA+(1−λ )B| ≥ λ |A|+(1−λ )|B| (5.2)

for every λ ∈ (0,1).
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Proof. The second inequality follows from the first as |λA|= λ |A|. Let us prove the first inequality for
non-empty compact subsets A and B. Choose a and b such that Ã = {a}+A ⊂R−, B̃ = {b}+B ⊂R+

and Ã∩ B̃ = {0}. Then Ã∪ B̃ ⊂ Ã+ B̃ = a+b+A+B. Therefore

|A+B|= |Ã+ B̃| ≥ |Ã∪ B̃|= |Ã|+ |B̃|= |A|+ |B|

and the proof is complete.

Lemma 5.2. Let a,b are two positive numbers. Then

λa+(1−λ )b ≥ aλ b1−λ (5.3)

for any λ ∈ (0,1).

Proof. This follows from Jensen’s inequality. Since x 7→ lnx is concave (i.e. − lnx is convex) on
(0,∞), therefore

ln(λa+(1−λ )b)≥ λ lna+(1−λ ) lnb

and the inequality follows immediately.

Lemma 5.3. Let f and g be two non-negative, continuous functions on R, and let λ ∈ (0,1) be a
constant. Then �

R
h(x)dx ≥ λ

�
R

f (x)dx+(1−λ )

�
R

g(x)dx (5.4)

where h is defined by

h(x) = sup
y∈R

f
(

x− y
λ

)λ

g
(

y
1−λ

)1−λ

for x ∈ R.

Proof. To prove (5.4), we consider

A(t) = {x ∈ R : f (x)> t} , B(t) = {x ∈ R : g(x)> t} , C(t) = {x ∈ R : h(x)> t}

for every t > 0. By definition of hλ ( f ,g), we have

λA(t)+(1−λ )B(t)⊂C(t) (5.5)

for any t ≥ 0, and therefore

|C(t)| ≥ |λA(t)+(1−λ )B(t)|
≥ λ |A(t)|+(1−λ )|B(t)|,

where the second inequality follows from Lemma 5.1. Integrating the previous inequality in t ∈ (0,∞)
and using the dis-integration formula (1.5) we have

�
R

h(x)dx =
�

∞

0
|C(t)|dt ≥ λ

�
∞

0
|A(t)|dt +(1−λ )

�
∞

0
|B(t)|dt

= λ

�
R

f (x)dx+(1−λ )

�
R

g(x)dx

which completes the proof of (5.4).
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Theorem 5.4. (Prékopa-Leindler Inequality) Let f and g be two non-negative Borel measurable func-
tions on RD and λ ∈ (0,1). Then

�
RD

h(x)dx ≥
(�

RD
f (x)dx

)λ (�
RD

g(x)dx
)1−λ

(5.6)

where h = hλ ( f ,g) defined by

hλ ( f ,g)(x) = sup
y∈RD

f
(

x− y
λ

)λ

g
(

y
1−λ

)1−λ

for x ∈ RD. (5.7)

Proof. [The proof is not examinable.] For simplicity we use h to denote hλ ( f ,g) if no confusion may
arise, and by a simple approximation procedure, we may assume that f and g are continuous. Without
losing generality we shall assume that

�
RD

f (x)dx > 0 and
�
RD

g(x)dx > 0,

as otherwise the inequality is trivial.
Let us prove (5.6) by using induction argument on the dimension D.
If D = 1, then (5.6) follows from (5.4) and (5.3). Indeed

�
R

h(x)dx ≥ λ

�
R

f (x)dx+(1−λ )

�
R

g(x)dx

≥
(�

R
f (x)dx

)λ (�
R

g(x)dx
)1−λ

.

Now assume that D > 2 and let λ ∈ (0,1). Suppose that (5.6) holds for any non-negative functions
f ,g on RD−1.

Let f (x),g(x) be two non-negative, continuous functions on RD (where x ∈RD). Write x = (x,xD)
where x ∈ RD−1 and define

f0(x) =
�

∞

−∞

f (x,s)ds, g0(x) =
�

∞

−∞

g(x,s)ds.

By assumptions

hλ ( f ,g)(x,xD)≥ sup
s∈R

f
(

x− y
λ

,
xD − s

λ

)λ

g
(

y
1−λ

,
s

1−λ

)1−λ

for every y ∈ RD−1. For any x,y ∈ RD−1 fixed but arbitrary, we apply Lemma 5.3, (5.4), with one
dimensional functions s 7→ f

(x−y
λ
,s
)λ

and s 7→ g
(

y
1−λ

,s
)

, to obtain that

�
∞

−∞

hλ ( f ,g)(x,s)ds ≥ λ

�
∞

−∞

f
(

x− y
λ

,s
)

ds+(1−λ )

�
∞

−∞

g
(

y
1−λ

,s
)

ds

≥
(�

∞

−∞

f
(

x− y
λ

,s
)

ds
)λ (� ∞

−∞

g
(

y
1−λ

,s
)

ds
)1−λ
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where the second inequality follows from (5.3). Since y ∈ RD−1 is arbitrary, so that

�
∞

−∞

hλ ( f ,g)(x,s)ds ≥ sup
y∈RD−1

(�
∞

−∞

f
(

x− y
λ

,s
)

ds
)λ (� ∞

−∞

g
(

y
1−λ

,s
)

ds
)1−λ

= hλ ( f0,g0)(x) (5.8)

for every x ∈ RD−1. Using induction assumption with f0 and g0 which are non-negative functions on
RD−1, we thus obtain that

�
RD−1

hλ ( f0,g0)(x)dx ≥
(�

RD−1
f0(x)dx

)λ (�
RD−1

g0(x)dx
)1−λ

.

On the other hand, by (5.8) and Fubini’s theorem
�
RD

hλ ( f ,g)(x)dx =
�
RD−1

�
∞

−∞

hλ ( f ,g)(x,s)ds

≥
�
RD−1

hλ ( f0,g0)(x)dx

≥
(�

RD−1
f0(x)dx

)λ (�
RD−1

g0(x)dx
)1−λ

=

(�
RD

f (x)dx
)λ (�

RD−1
g(x)dx

)1−λ

and therefore (5.6) holds for any non-negative, continuous functions f and g. The proof is complete.

Theorem 5.4 is formulated by H. Brascamp and E. H. Lieb [6] (this paper has an unusual long title
as if the JFA journal printed its Abstract as the title !) The original P-L inequality follows of course
from the above version immediately.

Theorem 5.5. (Pékopa-Leindler Inequality) Let f ,g and h be non-negative measurable functions on
RD and λ ∈ (0,1). Suppose

h(λx+(1−λ )y)≥ f (x)λ g(y)1−λ for any x,y ∈ RD. (5.9)

Then �
RD

h(x)dx ≥
(�

RD
f (x)dx

)λ (�
RD

g(x)dx
)1−λ

. (5.10)

Proof. Under assumption, h(x) ≥ hλ ( f ,g)(x) for every x, and therefore the P-L inequality follows
immediately from (5.6).

Definition 5.6. Let f be a non-negative function on RD. Then f is log-concave (i.e. logarithmically
concave) if

f (λx+(1−λ )y)≥ f (x)λ f (y)1−λ

for any λ ∈ [0,1] and x,y ∈ RD.
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By definition, f is log-concave if and only if − ln f is convex on { f > 0}.

Exercise. Let ρ be log-concave on RD = RD1 ×RD2 (where D1 +D2 = D). Let

ρ1(x1) =

�
RD2

ρ(x1,x2)dx2

where xi ∈ RDi (i = 1,2). Show that ρ1 is log-concave too. [Hint: Use Theorem 5.4].

Theorem 5.7. If ρ is non-negative and log-concave on RD, then
�

λA+(1−λ )B
ρ(x)dx ≥

(�
A

ρ(x)dx
)λ (�

B
ρ(x)dx

)1−λ

for any Borel measurable subsets A,B ⊂ RD and for any λ ∈ (0,1).

Proof. We shall apply Theorem 5.4 to f = 1Aρ and g = 1Bρ . Since ρ is log-concave, for every
λ ∈ (0,1),

ρ

(
x− y

λ

)λ

ρ

(
y

1−λ

)1−λ

≤ ρ(x)

for any x and y. If x−y
λ

∈ A and y
1−λ

∈ B, than x ∈ λA+(1− λ )B, which implies that hλ ( f ,g) ≤
1λA+(1−λ )Bρ . Therefore according to (5.6) we have

�
RD

1λA+(1−λ )Bρ(x)dx ≥
�
RD

hλ ( f ,g)dx

≥
(�

RD
1Aρ(x)dx

)λ (�
RD

1Bρ(x)dx
)1−λ

which yields (5.11).

Lemma 5.8. Let Σ be a symmetric, positive definite D×D-matrix. Then the central Gaussian kernel
GΣ (x) is log-concave.

Proof. Recall that

lnGΣ (x) =−1
2

ln
(
(2π)D detΣ

)
− 1

2
x ·Σ−1x.

Hence we only need to show that x 7→ x ·Σ−1x is convex. Let x,y ∈ RD be any two points. Consider

ϕ(λ ) = (λx+(1−λ )y) ·Σ−1(λx+(1−λ )y)

for λ ∈ [0,1]. Then
ϕ
′(λ ) = 2(x− y) ·Σ−1(λx+(1−λ )y)

and
ϕ
′′(λ ) = 2(x− y) ·Σ−1(x− y)≥ 0

as Σ−1 is symmetric, positive definite. Hence ϕ is convex on [0,1], and therefore

ϕ(λ ) = ϕ(λ1+(1−λ )0)≤ λϕ(1)+(1−λ )ϕ(0)

for any λ ∈ (0,1). That is

−(λx+(1−λ )y) ·Σ−1(λx+(1−λ )y)≥−λx ·Σ−1x− (1−λ )y ·Σ−1y

which in turn yields that lnGΣ is concave.
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As a consequence, we have the following result for Gaussian distributions.

Theorem 5.9. (Geometric form of the isoperimetric inequality for Gaussian measure) Let γ(dx) =
GΣ (x)dx be a centered Gaussian measure on B(RD) with co-variance matrix Σ . Then

γ (λA+(1−λ )B)≥ γ(A)λ
γ(B)1−λ (5.11)

for any Borel measurable subsets A,B ⊂ RD and for any λ ∈ (0,1).

This follows from the fact that x 7→ GΣ (x) is log-concave, Lemma 5.8.

Exercise. Let γ(dx) be the centered Gaussian measure GΣ (x)dx. Let A be a symmetric convex
subset of RD and a ∈ RD.

(a) Prove that
γ(A+a)≤ γ(A+ ta)

for any t ∈ [0,1], and t 7→ γ(A+ ta) is non-increasing on [0,∞).
[Hint: You may assume that Σ = I, otherwise consider Σ− 1

2 A and Σ− 1
2 a instead. Apply Theorem

5.9 to λ = 1
2(t +1), use the fact that γ(A+a) = γ(A−a), and the fact that

A+ ta = λ (A+a)+(1−λ )(A−a)

in (5.11).]

(b) Suppose f is convex and f (x) = f (−x) for every x. Show that
�
RD

f (x)γ(dx)≤
�
RD

f (x+a)γ(dx)

for any a ∈ RD, and conclude that t →
�
RD f (x+ ta)γ(dx) is non-decreasing.

[Hint: Apply (a) to level sets { f ≤ c} for every c.]

(c) Prove that �
RD

|x|pγ(dx)≤
�
RD

|x+a|pγ(dx)

for any a ∈ RD and p ≥ 1.

5.2 Brunn-Minkowski’s theorem
This is a deep result about the Lebesgue measure. Let begin with a weak version which is independent
of the dimension D.

Theorem 5.10. Suppose A,B are two Borel measurable subsets of RD and λ ∈ (0,1). Then

|λA+(1−λ )B| ≥ |A|λ |B|1−λ . (5.12)

Proof. It follows immediately from the Prékopa-Leindler inequality. Indeed, if f = 1A and g = 1B,
then hλ ( f ,g) = 1λA+(1−λ )B. Hence (5.6) gives (5.12).

In fact this weak version, in which the dimension seems missing, is equivalent to the Brunn-
Minkowski inequality, and the dimension may be recovered from the scaling property: |λA|= λ D|A|
for A ∈ B(RD).
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Theorem 5.11. Let A and B be two bounded Borel measurable subsets of RD. Then

|A+B|
1
D ≥ |A|

1
D + |B|

1
D . (5.13)

Proof. We may assume that |A| > 0 and |B| > 0. Let Ã = |A|−1/DA and B̃ = |B|−1/DB. Then |Ã| =
|B̃|= 1, and therefore by (5.12) we deduce that

|λ Ã+(1−λ )B̃| ≥ 1 ∀λ ∈ (0,1).

Set

λ =
|A|1/D

|A|1/D + |B|1/D

so that

1−λ =
|B|1/D

|A|1/D + |B|1/D
.

The previous inequality may be written as∣∣∣∣ 1
|A|1/D + |B|1/D

A+
1

|A|1/D + |B|1/D
B
∣∣∣∣= 1(

|A|1/D + |B|1/D
)D |A+B| ≥ 1

which yields (5.13). The proof is complete.

We are now in a position to prove the well-known isoperimetric inequality. To this end we shall
define the area measure. Suppose Ω ⊂ RD with a C1 boundary ∂Ω . Then the area of ∂Ω is given by

A(∂Ω) = liminf
ε↓0

|Ω + εB1|− |Ω |
ε

where B1 is the unit ball in RD with center 0.

Theorem 5.12. (The isoperimetric inequality) Let Ω ⊂ RD be a relatively compact region with a C1

boundary ∂Ω . Then
A(∂Ω)

|Ω |1− 1
D
≥ A(SD−1)

|B1|1−
1
D

where SD−1 is the unit sphere in D-dimensional space RD. In particular if |Ω | = |B1|, then the area
of SD−1 is smaller than that of ∂Ω , which gives the name of the isopreimetric inequality when D = 2.

Proof. For every ε > 0, by the Brunn-Minkowski inequality, we have

|Ω + εB1| ≥
(
|Ω |

1
D + |εB1|

1
D

)D
=
(
|Ω |

1
D + ε|B1|

1
D

)D

so that

A(∂Ω) = liminf
ε↓0

|Ω + εB1|− |Ω |
ε

≥ lim
ε→0

(
|Ω | 1

D + ε|B1|
1
D

)D
−|Ω |

ε

= D|Ω |1−
1
D |B1|

1
D

=
A(SD−1)

|B1|1−
1
D
|Ω |1−

1
D

and the proof is complete.
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By an elementary computation, we know that the area of the Euclidean unit sphere SD−1 in RD

equals 2πD/2

Γ(D/2) , where Γ(1/2) =
√

π , and therefore the volume of the unit ball B1 in RD is 1
DA(SD−1) =

1
D

2πD/2

Γ(D/2) . If D = 2, then the isoperimetric inequality becomes

A(∂Ω)√
|Ω |

≥ 2
√

π

so that
L2 −4πA ≥ 0

where L and A are the length of the perimeter and the area of a region Ω ⊂ R2.

6 Appendix
In this part we collect several facts about properties of matrices, which are useful in dealing with
high-dimensional datasets.

Let A = (ai j) be an n×n square matrix. Then its determinant

|A|= detA = ∑
σ∈Sn

(−1)σ a1σ1 · · ·anσn

where σ runs over the permutation group Sn of {1, · · · ,n}, and also σ = 0 or 1 according to the parity
of the arrangement σ = {σ1, . . . ,σn}.

For every pair (i, j), Λi j = (−1)i+ j times the determinant of the (n− 1)× (n− 1)-square matrix
with the i-th row, j-th column delated. Then

detA =
n

∑
i=1

ai jΛi j =
n

∑
j=1

ai jΛi j

(for every j, resp. for every i). It is known that A is invertible if and only if detA ̸= 0. In this case the
inverse of A, denoted by A−1, is given by

A−1 =
1

detA
(Λi j)

T ,

where T labels the transport.
Suppose we write a square matrix A in blocks:

A =

(
A11 A12
A21 A22

)
where A11 and A22 are square matrices (but not necessary having the same rank).

1) Suppose A11 is invertible, then(
I 0

−A21A−1
11 I

)(
A11 A12
A21 A22

)(
I −A−1

11 A12
0 I

)
=

(
A11 0
0 A22 −A21A−1

11 A12

)
.

2) Suppose both A and A11 are invertible, then

A−1 =

(
A−1

11
(
I +A12B−1A21A−1

11
)

−A−1
11 A12B−1

−B−1A21A−1
11 B−1

)
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where B = A22 −A21A−1
11 A12.

3) If A11 is invertible, then

det
(

A11 A12
A21 A22

)
= detA11 det

(
A22 −A21A−1

11 A12
)

and, similarly, if A22 is invertible,

det
(

A11 A12
A21 A22

)
= detA22 det

(
A11 −A12A−1

22 A21
)
.

Lemma 6.1. Suppose A and B are two square matrices, then the non-zero eigenvalues of AB and BA
are the same with the same multiplicity. In particular, tr(AB) = tr(BA).
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