B2.2 Commutative Algebra Sheet 1 — HT25 Sections 1-5

Section A

1. Let R be a ring. Show that the Jacobson radical of R coincides with the set

 $\{x \in R \mid 1 - xy \text{ is a unit for all } y \in R\}.$

Solution: Suppose that x lies in the Jacobson radical of R. Suppose for contradiction that 1 - xy is not a unit for some $y \in R$. Let \mathfrak{m} be a maximal ideal containing 1 - xy. We know that $xy \in \mathfrak{m}$ since $x \in \mathfrak{m}$ and thus we conclude that $1 \in \mathfrak{m}$, a contradiction.

Suppose now that $x \in R$ and that there is a maximal ideal \mathfrak{m} not containing x. Then $x + \mathfrak{m}$ is non-trivial in the field R/\mathfrak{m} and hence it is a unit; thus, there is a $y \in R$ such that $xy + \mathfrak{m} = 1 + \mathfrak{m}$. In other words, $1 - xy \in \mathfrak{m}$ and so 1 - xy is not a unit.

Section B

- 2. Let R be a ring.
 - (a) Show that if $P(x) = a_0 + a_1 x + \dots + a_k x^k \in R[x]$ is a unit of R[x] then a_0 is a unit of R and a_i is nilpotent for all $i \ge 1$.
 - (b) Show that the Jacobson radical and the nilradical of R[x] coincide.
- 3. Let R be a ring and let $N \subseteq R$ be its nilradical. Show that the following are equivalent:
 - (a) R has exactly one prime ideal.
 - (b) Every element of R is either a unit or is nilpotent.
 - (c) R/N is a field.
- 4. Let R be a ring and let $I \subseteq R$ be an ideal. Let $S = \{1 + r \mid r \in I\}$.
 - (a) Show that S is a multiplicative set.
 - (b) Show that the ideal generated by the image of I in R_S is contained in the Jacobson radical of R_S .
 - (c) Prove the following generalisation of Nakayama's lemma:

Lemma. Let M be a finitely generated R-module and suppose that IM = M. Then there exists $r \in R$, such that $r - 1 \in I$ and rM = 0.

- 5. Let R be a ring and let M be a finitely generated R-module. Let $\phi: M \to M$ be a surjective homomorphism of R-modules. Prove that ϕ is injective, and is thus an automorphism. [Hint: use ϕ to construct a structure of R[x]-module on M and use the previous question.]
- 6. Let R be a ring. Let S be the subset of the set of ideals of R defined as follows: an ideal I is in S if and only if all the elements of I are zero-divisors. Show that S has maximal elements (for the relation of inclusion) and that every maximal element is a prime ideal. Show that the set of zero-divisors of R is a union of prime ideals.

Section C

7. Let R be a ring. Consider the inclusion relation on the set Spec(R). Show that there are minimal elements in Spec(R).

Solution: Let \mathcal{T} be a totally ordered subset of $\operatorname{Spec}(R)$ for the relation \supseteq . Note that the maximal elements for the relation \supseteq are the minimal elements for the inclusion relation (which is \subseteq). Let $I = \bigcap_{\mathfrak{p} \in \mathcal{T}} \mathfrak{p}$. Then I is an ideal. We claim that I is prime.

To see this, let $x, y \in R$ and suppose for contradiction that $x, y \in R \setminus I$ and that $xy \in I$. By assumption there are prime ideals $\mathfrak{p}_x, \mathfrak{p}_y \in \mathcal{T}$ such that $x \notin \mathfrak{p}_x$ and $y \notin \mathfrak{p}_y$. Suppose without restriction of generality that $\mathfrak{p}_x \supseteq \mathfrak{p}_y$ (recall that \mathcal{T} is totally ordered). We have $xy \in \mathfrak{p}_y$ and thus either x or y lies in \mathfrak{p}_y . This contradicts the fact that $x, y \notin \mathfrak{p}_y$. The ideal I thus lies in Spec(R) and it is a lower bound for \mathcal{T} . We may thus apply Zorn's lemma to conclude that there are minimal elements in Spec(R).