
B2.2 Commutative Algebra

Sheet 2 — HT25

Sections 1-8

Section A

1. Consider the ideals p1 = (x, y), p2 = (x, z) and m = (x, y, z) of K[x, y, z], where K is a

field. Show that p1 ∩ p2 ∩m2 is a minimal primary decomposition of p1 · p2. Determine

the isolated and the embedded prime ideals of p1 · p2.

Solution: For future reference, note that we have

m2 = ((x) + (y) + (z))2 = (x2, y2, z2, xy, xz, yz)

and

p1 · p2 = ((x) + (y))((x) + (z)) = (x2, xz, yx, yz).

We have p1 · p2 ⊆ p1 ∩ p2 and we also clearly have p1 · p2 ⊆ m2 since p1, p2 ⊆ m.

Thus we have p1 · p2 ⊆ p1 ∩ p2 ∩ m2. Note that p1 and p2 are prime since the rings

K[x, y, z]/p1 ≃ K[z] and K[x, y, z]/p2 ≃ K[y] are domains. Note also that m is a

maximal ideal, since K[x, y, z]/m ≃ K is a field. Thus p1, p2 and m2 are primary (see

after Lemma 6.4 for the latter). The radicals of the ideals p1, p2 and m2 are p1, p2

and m (see again Lemma 6.4 for the latter). These three ideals are distinct. Finally,

we have p1 ̸⊇ p2 ∩ m2 (because z2 ̸∈ p1 but z2 ∈ p2 ∩ m2), p2 ̸⊇ p1 ∩ m2 (because

y2 ̸∈ p2 but y2 ∈ p1 ∩m2) and m2 ̸⊇ p1 ∩ p2 (because x ̸∈ m2 but x ∈ p2 ∩ p2). Hence if

p1 · p2 = p1 ∩ p2 ∩m2 then this decomposition is indeed primary and minimal. Thus we

only have to show that p1 · p2 ⊇ p1 ∩ p2 ∩m2.

From the above, we have to show that

(x, y) ∩ (x, z) ∩ (x2, y2, z2, xy, xz, yz) ⊆ (x2, xz, yx, yz).

This is immediate, since all the ideals we are considering have the property that a

polynomial lies in such an ideal if and only if all of the monomial summands of the

polynomial lie in the ideal.
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Section B

2. Let K be a field. Show that the ideal (x2, xy, y2) ⊆ K[x, y] is a primary ideal, which is

not irreducible.

3. Let R be a noetherian ring and let T be a finitely generated R-algebra. Let G be a

finite subgroup of the group of automorphisms of T as a R-algebra. Let TG be the fixed

point set of G (ie the subset of T , which is fixed by all the elements of G).

(a) Show that T is integral over TG.

(b) Show that TG is a subring of T , which contains the image of R and that TG is

finitely generated over R.

4. Show that Z is integrally closed and that the integral closure of Z in Q(i) is Z[i].

5. Let S be a ring and let R ⊆ S be a subring of S. Suppose that R is integrally closed in

S. Let P (x) ∈ R[x] and suppose that P (x) = Q(x)J(x), where Q(x), J(x) ∈ S[x] and

Q(x) and J(x) are monic. Show that Q(x), J(x) ∈ R[x]. Use this to give a new proof

of the fact that if T (x) ∈ Z[x] and T (x) = T1(x)T2(x), where T1(x), T2(x) ∈ Q[x] are

monic polynomials, then T1(x), T2(x) ∈ Z[x].

6. Let R be a subring of a ring T and suppose that T is integral over R. Let p be prime ideal

of R and let q be a prime ideal of T . Suppose that q ∩ R = p. Let p1 ⊆ p2 ⊆ · · · ⊆ pk

be primes ideal of R and suppose that p1 = p. Show that there are prime ideals

q1 ⊆ q2 ⊆ · · · ⊆ qk of T such that q1 = q and such that qi∩R = pi for all i ∈ {1, . . . , k}.

7. Let R be a ring. Let S be the set of ideals in R that are not finitely generated; assume

that S ≠ ∅.

(a) Show that S has at least one maximal element.

(b) Let I be maximal element of S (with respect to the relation of inclusion). Show

that I is prime.

(c) Suppose that all the prime ideals of R are finitely generated. Prove that R is

noetherian.

[Hint: exploit the fact that R/I is noetherian.]
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Section C

8. Let R be a ring. Let S be the set of non-principal ideals in R; assume that S ≠ ∅.
Prove that S admits maximal elements, and that every such element a prime ideal.

Solution: The existence of maximal elements follows from Zorn’s lemma. Let I be one

such. Let x, y ̸∈ I and suppose for contradiction that xy ∈ I. Let Ix = (x) + I. By

assumption, we have Ix = (gx) for some gx ∈ R. Let ϕ : R → Ix be the surjection of

R-modules given by the formula ϕ(r) = rgx. We then have I ⊆ ϕ−1(I).

Suppose first that I = ϕ−1(I). In other words, for all r ∈ R, we have rgx ∈ I if and

only if r ∈ I. This contradicts the fact that ygx ∈ I. So we conclude that I ⊂ ϕ−1(I).

From the definition of I, we then see that ϕ−1(I) is a principal ideal of R, and hence so

is I = ϕ(ϕ−1(I)). This is a contradiction.

Mathematical Institute, University of Oxford

Dawid Kielak: kielak@maths.ox.ac.uk

Page 3 of 3


