B2.2 Commutative Algebra

Sheet 2 — HT25

Sections 1-8

Section A

1. Consider the ideals $\mathfrak{p}_1 = (x, y)$, $\mathfrak{p}_2 = (x, z)$ and $\mathfrak{m} = (x, y, z)$ of K[x, y, z], where K is a field. Show that $\mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a minimal primary decomposition of $\mathfrak{p}_1 \cdot \mathfrak{p}_2$. Determine the isolated and the embedded prime ideals of $\mathfrak{p}_1 \cdot \mathfrak{p}_2$.

Mathematical Institute, University of Oxford Dawid Kielak: kielak@maths.ox.ac.uk

Section B

- 2. Let K be a field. Show that the ideal $(x^2, xy, y^2) \subseteq K[x, y]$ is a primary ideal, which is not irreducible.
- 3. Let R be a noetherian ring and let T be a finitely generated R-algebra. Let G be a finite subgroup of the group of automorphisms of T as a R-algebra. Let T^G be the fixed point set of G (ie the subset of T, which is fixed by all the elements of G).
 - (a) Show that T is integral over T^G .
 - (b) Show that T^G is a subring of T, which contains the image of R and that T^G is finitely generated over R.
- 4. Show that \mathbb{Z} is integrally closed and that the integral closure of \mathbb{Z} in $\mathbb{Q}(i)$ is $\mathbb{Z}[i]$.
- 5. Let S be a ring and let $R \subseteq S$ be a subring of S. Suppose that R is integrally closed in S. Let $P(x) \in R[x]$ and suppose that P(x) = Q(x)J(x), where $Q(x), J(x) \in S[x]$ and Q(x) and J(x) are monic. Show that $Q(x), J(x) \in R[x]$. Use this to give a new proof of the fact that if $T(x) \in \mathbb{Z}[x]$ and $T(x) = T_1(x)T_2(x)$, where $T_1(x), T_2(x) \in \mathbb{Q}[x]$ are monic polynomials, then $T_1(x), T_2(x) \in \mathbb{Z}[x]$.
- 6. Let R be a subring of a ring T and suppose that T is integral over R. Let \mathfrak{p} be prime ideal of R and let \mathfrak{q} be a prime ideal of T. Suppose that $\mathfrak{q} \cap R = \mathfrak{p}$. Let $\mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq \cdots \subseteq \mathfrak{p}_k$ be primes ideal of R and suppose that $\mathfrak{p}_1 = \mathfrak{p}$. Show that there are prime ideals $\mathfrak{q}_1 \subseteq \mathfrak{q}_2 \subseteq \cdots \subseteq \mathfrak{q}_k$ of T such that $\mathfrak{q}_1 = \mathfrak{q}$ and such that $\mathfrak{q}_i \cap R = \mathfrak{p}_i$ for all $i \in \{1, \ldots, k\}$.
- 7. Let R be a ring. Let S be the set of ideals in R that are not finitely generated; assume that $S \neq \emptyset$.
 - (a) Show that S has at least one maximal element.
 - (b) Let I be maximal element of S (with respect to the relation of inclusion). Show that I is prime.
 - (c) Suppose that all the prime ideals of R are finitely generated. Prove that R is noetherian.

[Hint: exploit the fact that R/I is noetherian.]

Mathematical Institute, University of Oxford Dawid Kielak: kielak@maths.ox.ac.uk

Section C

8. Let R be a ring. Let S be the set of non-principal ideals in R; assume that $S \neq \emptyset$. Prove that S admits maximal elements, and that every such element a prime ideal.

Mathematical Institute, University of Oxford Dawid Kielak: kielak@maths.ox.ac.uk