
B2.2 Commutative Algebra

Sheet 3 — HT25

Sections 1-10

Section A

1. Let R be a subring of a ring T . Suppose that T is integral over R. Let p be a prime

ideal of R and let q1, q2 be prime ideals of T such that q1 ∩R = q2 ∩R = p. Show that

if q1 ⊆ q2 then q1 = q2.

Solution: The ring R/p is can be viewed as a subring of T/q1 and by assumption we

have (q2 mod q1) ∩ R/p = (0). We may thus assume without loss of generality that R

and T to be domains and that q1 and p are zero ideals.

Now let e ∈ q2 ∖ {0} and let P (x) ∈ R[x] be a non-zero monic polynomial such that

P (e) = 0. Since T is a domain, we may assume that the constant coefficient of P (x)

is non-zero (otherwise, replace P (x) by P (x)/xk for a suitable k ⩾ 1). But then the

constant term P (0) is a linear combination of positive powers of e (since P (e) = 0), so

P (0) ∈ R ∩ q2 = (0). This is a contradiction.
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Section B

2. Let R be a ring. Show that the two following conditions are equivalent:

(a) R is a Jacobson ring.

(b) If p ∈ Spec(R) and R/p contains an element b such that (R/p)[b−1] is a field, then

R/p is a field.

Here we write (R/p)[b−1] for the localisation ofR/p at the multiplicative subset 1, b, b2, . . . .

3. Let k be field and let R be a finitely generated algebra over k. Show that the two

following conditions are equivalent:

(a) Spec(R) is finite.

(b) R is finite over k.

4. Let k be an algebraically closed field. Let P1, . . . , Pd ∈ k[x1, . . . , xd]. Suppose that the

set

{(y1, . . . , yd) ∈ kd |Pi(y1, . . . , yd) = 0 ∀i ∈ {1, . . . , d}}

is finite. Show that

Spec(k[x1, . . . , xd]/(P1, . . . , Pd))

is finite.

5. Let R be a ring and let R0 be the prime ring of R (see the preamble of the notes for

the definition). Suppose that R is a finitely generated R0-algebra. Suppose also that R

is a field. Prove that R is a finite field.

6. Let k be a field and let m be a maximal ideal of k[x1, . . . , xd]. Show that there are poly-

nomials P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd(x1, . . . , xd) such that m = (P1, . . . , Pd).
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Section C

7. Let R be a domain. Show that R[x] is integrally closed if R is integrally closed.

Solution: Suppose that R is integrally closed in its fraction field K. The fraction field

of R[x] is K(x) = (K[x])(K[x] ∖ {1})−1. Let Q(x) ∈ K(x) and suppose that Q(x) is

integral over R[x]. Suppose for a contradiction that Q(x) ̸∈ R[x], and take Q(x) of

smallest possible degree. Clearly Q(x) is not the zero polynomial.

Then Q(x) is in particular integral over K[x] and we saw in the solution of Question 4,

sheet 2, that K[x] is integrally closed, since it is a PID. So we deduce that Q(x) ∈ K[x].

Now let

Qn + Pn−1Q
n−1 + · · ·+ P0 = 0

be a non trivial integral equation for Q with Pi ∈ R[x] for all n. Evaluating at x = 0

shows that the constant term of Q(x) is integral over R, and hence lies in R. Since

the integral closure of R[x] is a ring, we may subtract the constant term, and assume

that the constant term of Q is zero. But then we can also divide by a power of x, and

decrease the degree of Q. Contradiction.
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