B2.2 Commutative Algebra Sheet 3 — HT25 Sections 1-10

Section A

1. Let R be a subring of a ring T. Suppose that T is integral over R. Let \mathfrak{p} be a prime ideal of R and let $\mathfrak{q}_1, \mathfrak{q}_2$ be prime ideals of T such that $\mathfrak{q}_1 \cap R = \mathfrak{q}_2 \cap R = \mathfrak{p}$. Show that if $\mathfrak{q}_1 \subseteq \mathfrak{q}_2$ then $\mathfrak{q}_1 = \mathfrak{q}_2$.

Solution: The ring R/\mathfrak{p} is can be viewed as a subring of T/\mathfrak{q}_1 and by assumption we have $(\mathfrak{q}_2 \mod \mathfrak{q}_1) \cap R/\mathfrak{p} = (0)$. We may thus assume without loss of generality that R and T to be domains and that \mathfrak{q}_1 and \mathfrak{p} are zero ideals.

Now let $e \in \mathfrak{q}_2 \setminus \{0\}$ and let $P(x) \in R[x]$ be a non-zero monic polynomial such that P(e) = 0. Since T is a domain, we may assume that the constant coefficient of P(x) is non-zero (otherwise, replace P(x) by $P(x)/x^k$ for a suitable $k \ge 1$). But then the constant term P(0) is a linear combination of positive powers of e (since P(e) = 0), so $P(0) \in R \cap \mathfrak{q}_2 = (0)$. This is a contradiction.

Section B

- 2. Let R be a ring. Show that the two following conditions are equivalent:
 - (a) R is a Jacobson ring.
 - (b) If p ∈ Spec(R) and R/p contains an element b such that (R/p)[b⁻¹] is a field, then R/p is a field.

Here we write $(R/\mathfrak{p})[b^{-1}]$ for the localisation of R/\mathfrak{p} at the multiplicative subset $1, b, b^2, \ldots$.

- 3. Let k be field and let R be a finitely generated algebra over k. Show that the two following conditions are equivalent:
 - (a) $\operatorname{Spec}(R)$ is finite.
 - (b) R is finite over k.
- 4. Let k be an algebraically closed field. Let $P_1, \ldots, P_d \in k[x_1, \ldots, x_d]$. Suppose that the set

$$\{(y_1, \dots, y_d) \in k^d \mid P_i(y_1, \dots, y_d) = 0 \,\forall i \in \{1, \dots, d\}\}$$

is finite. Show that

$$\operatorname{Spec}(k[x_1,\ldots,x_d]/(P_1,\ldots,P_d))$$

is finite.

- 5. Let R be a ring and let R_0 be the prime ring of R (see the preamble of the notes for the definition). Suppose that R is a finitely generated R_0 -algebra. Suppose also that R is a field. Prove that R is a finite field.
- 6. Let k be a field and let \mathfrak{m} be a maximal ideal of $k[x_1, \ldots, x_d]$. Show that there are polynomials $P_1(x_1), P_2(x_1, x_2), P_3(x_1, x_2, x_3), \ldots, P_d(x_1, \ldots, x_d)$ such that $\mathfrak{m} = (P_1, \ldots, P_d)$.

Section C

7. Let R be a domain. Show that R[x] is integrally closed if R is integrally closed.

Solution: Suppose that R is integrally closed in its fraction field K. The fraction field of R[x] is $K(x) = (K[x])(K[x] \setminus \{1\})^{-1}$. Let $Q(x) \in K(x)$ and suppose that Q(x) is integral over R[x]. Suppose for a contradiction that $Q(x) \notin R[x]$, and take Q(x) of smallest possible degree. Clearly Q(x) is not the zero polynomial.

Then Q(x) is in particular integral over K[x] and we saw in the solution of Question 4, sheet 2, that K[x] is integrally closed, since it is a PID. So we deduce that $Q(x) \in K[x]$. Now let

$$Q^{n} + P_{n-1}Q^{n-1} + \dots + P_{0} = 0$$

be a non trivial integral equation for Q with $P_i \in R[x]$ for all n. Evaluating at x = 0 shows that the constant term of Q(x) is integral over R, and hence lies in R. Since the integral closure of R[x] is a ring, we may subtract the constant term, and assume that the constant term of Q is zero. But then we can also divide by a power of x, and decrease the degree of Q. Contradiction.