B2.2 Commutative Algebra
Sheet 3 — HT25
Sections 1-10

Section A

1. Let R be a noetherian domain. Let m be a maximal ideal in R. Let » € R\{0} and
suppose that (r) is a m-primary ideal. Show that height((r)) = 1.

Solution: By assumption, the nilradical of () is m. Since the nilradical is the inter-
section of all the prime ideals containing (r), we see that every prime ideal containing
(r) also contains m. On the other hand, a prime ideal containing m must be equal to m.
We conclude that m is the only prime ideal containing (r). In particular, m is minimal
among the prime ideals containing (r) and thus height((r)) = height(m) < 1 by Krull’s
principal ideal theorem. On the other hand, height(m) = 1, since we have the chain
m D (0) (note that R is a domain).

2. Let R be a PID. Show that dim R < 1, and that dim R = 0 if and only if R is a field.

Solution: We have the prime ideal (0), since R is a domain. If R is a field, then we

have no other prime ideals, and dim R = 0.

If R is not a field, then it has at least one non-trivial proper prime ideal. Every such

ideal is maximal (see Sheet 0), and hence dim R = 1.
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Section B

3. Let A, B be integral domains and suppose that A C B. Suppose that A is integrally
closed and that B is integral over A. Let

PoOP1DO "D Pn

be a descending chain of prime ideals in A. Let & € {0,...,n — 1} and let

qo O 91 O+ Dk

be a descending chain of prime ideals in B, such that q; N A =p; for all i € {0, ..., k}.

Then there is a descending chain of prime ideals

Gk O qk+1 O " - D ln

such that ;N A =yp; forall: € {k+1,...,n}. This is the “Going-down Theorem”, see
AT, Th. 5.16, p. 64.

Let L (resp. K) be the fraction field of B (resp. A). Prove the Going-down Theorem

when L is a (finite) Galois extension of K.

Solution: One immediately reduces the question to n = 1 and & = 0. Let A be the
integral closure of A in L. Note that by assumption we have B C A and that A is integral
over B (since it is integral over A). Let qf be a prime ideal of A such that qf, N B = qq
(this exists by the Going-up Theorem). Let a be a prime ideal of A such that an A = p;
(again this exists by the Going-up Theorem). According to Q6 of sheet 2, there is a
prime ideal b in A such that b D a and such that b A = po. According to Proposition
12.10, there is an element o € Gal(L|K) such that o(b) = q;. We have o(a) N A = p;
and o(a) C o(b) = q;. Hence o(a)NB C qyNB = q¢ and (o(a)NB)NA =o(a)NA = p;.
Furthermore, we have o(a) N B C qg because o(a) N A =p; C pg = qo N A. So we may
set q1 = o(a) N B.
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4. Let R be an integrally closed domain. Let K = Frac(R). Let L|K be an algebraic field
extension. Show that an element e € L is integral over R if and only if the minimal

polynomial of e over K has coefficients in R.

Solution: Let m.(z) € Klz] be the minimal polynomial of e. If m.(z) € R[z] then
e is integral over R by the definition of integrality. On other hand, suppose that e is
integral over R and let Q(z) € R[x] be a monic polynomial such that Q(e) = 0. Then
me(z) divides Q(x) by the definition of the minimal polynomial and m.(z) € R|x] by
Q5 of sheet 2.

5. Let R be a PID. Suppose that 2 =1+ 1 is a unit in R. Let ¢y,...,¢ € R be distinct
irreducible elements with ¢ > 1, and let ¢ = ¢; - - - ¢;. Show that the ring R[z]/(z* —c) is
a Dedekind domain. Use this to show that R[x,y]/(z* + y? — 1) is a Dedekind domain.

Solution: Let K = Frac(R). Notice first that ¢ is not a square in K.

Indeed, suppose for contradiction that there is an element e € K such that e? = c.
Write e = f/g, with f,g € R and f and ¢ coprime. We then have f?/¢? = ¢ and hence
f? = g*c. In particular, ¢; divides f and thus ¢} divides g*c. Since (f,g) = 1, we deduce

that ¢? divides ¢, which contradicts our assumptions.

We deduce that the polynomial 22 — ¢ is irreducible over K, since it has no roots in
K. Let L = K[z]/(2* — ¢). Note that L is a field, since z? — ¢ is irreducible. Now
let ¢: R[z] — L be the obvious homomorphism of R-algebras. We have ¢(Q(x)) = 0
if and only if 2? — ¢ divides Q(z) in K[z]. On the other hand, if 2? — ¢ divides Q(x)
in K[z], then 2? — ¢ divides Q(x) in R[z] by the unicity statement in the Euclidean
algorithm (see preamble). Hence ker(¢) = (z* — ¢). We thus see that R[z]/(z? — ¢) can
be identified with the sub-R-algebra of L generated by x. Under this identification, the
elements of R[z]/(x? — ¢) correspond to the elements of the form A + px, with A\, 4 € R,
whereas the elements of K can all be written as A + pz, with A\, p € K.

We claim that that L is the fraction field of R[x]/(2? — ¢). Note first that the fraction
field of R[z]/(x* — ¢) naturally embeds in L, since L is field containing R[z]/(x* — c).
To prove the claim, we only have to show that every element of L can be written as
a fraction in L of elements of R[x]/(x* — ¢). This simply follows from the fact that if
fyg,h,j € Rand f/g+ (h/j)x € L, then

fi+hgx

flg+(h/j)x = 7

Now to prove that R[z]/(z* — ¢) is a Dedekind domain, we have to show that it is

noetherian, that is has dimension 1 and that it is integrally closed.
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Since R contains an irreducible element ¢y, it cannot be a field.

The ring R[x]/(2* — ¢) is clearly noetherian (by the Hilbert basis theorem and stability
of noetherianity under quotients). Also, the ring R[z]/(z? — ¢) is integral over R by
construction and R has dimension one by Question 2. We deduce from Lemma 11.29

that R[z]/(z* — ¢) also has dimension 1.

To show that R[z]/(z*—c) is integrally closed, we have to show that the integral closure
of R[z]/(z* — ¢) in L is R[z]/(z* — ¢). The integral closure of R[z]/(z? —¢) in L is also
the integral closure of R in L, since R[x]/(z* — ¢) consists of elements that are integral
over R. Furthermore, by Question 4, an element A\ + px € L is integral over R if and
only if its minimal polynomial P(t) € K|t] has coefficients in R. Thus we have to show
that if A + pz € L has a minimal polynomial P(t) € R[t] then A, u € R. We prove this

statement.

If p =0 then A + px € K and thus the minimal polynomial of A + px is ¢t — A. So the

statement certainly holds in this situation.

If u # 0, we note that the polynomial
(t— N+ puz))(t — (N — px)) =12 =20 + A% — p?2? = 12 — 20t + 2\ — ¢

annihilates A + py and has coefficients in K. It must thus coincide with the minimal
polynomial P(t) of A\ + py, since we know that deg(P(t)) > 1.

Thus we have to show that if —2\ € R and A2 — cu® € R, then \,u € R. So suppose
that —2\ € R and A\? —cu? € R. We have A € R, since —2 is a unit in R by assumption.
Hence cu? € R. We claim that u € R. Indeed, let u = f/g, where f,g € R and f and
g are coprime. Then cf? = ¢?r for some r € R. Let i € {1,...,t} and suppose first
that ¢; divides g. Then ¢? divides rg* and since ¢; appears with multiplicity one in ¢ by
assumption, we thus see that ¢; divides f, which is a contradiction (because (f,g) = 1).
Hence ¢; does not divide g and thus ¢; divides r. Since all the ¢; are distinct, we thus
see that c divides r and thus (f/g)? = r/c =: d € R. Hence f? = ¢g*d. Since f and g are
coprime, we see that f? divides d and hence d/f? € R. Since ¢g*(d/f?) = 1, we conclude
that ¢ is a unit and hence u = f/g € R.

To see that Rz, y]/(z? +y* — 1) is a Dedekind domain, note that R[z,y]/(z? +y*—1) ~
(R[z])[y]/(y* — (1 — %)) and apply the first statement of the question with R = R[z]
andc=1—2>=(1—-2)1+2).
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6. Let R be a PID. Let ¢q,cs € R be two distinct irreducible elements and let ¢ = ¢4 - ¢s.
Consider ideals of R[x]/(x? — ¢). Show that (¢) = (x,¢1)? - (7, c9)? and that the ideals

(x,¢;) are prime.

Solution: Note first that (x,¢;) (i = 1,2) is indeed a prime ideal of R[x]/(z* — ¢),

because

(R[z]/(2* = 0))/(z, ;) = Rla]/(2* — ¢, 3, ¢1) = R/(—c, ;) = R/ (e2),

which is a domain, since ¢; is irreducible.
We only have to show that (c;) = (z, ¢;)*.

We first show that (c;) C (,¢;)?. For this, note that ¢? € (z,¢;)? by definition and

2

CZ'(C]‘ — CZ') =Cc— C? =X — C? € ($7Ci)27

where {i,j} = {1,2}. But gedg(c?, ci(c; — ¢;)) = ¢; (because ¢; — ¢; is coprime to ¢; in
R, since ¢; is irreducible and distinct from ¢;), and in particular ¢; € (x,¢;)?, so that
(ci) C (@, ¢)”

The inclusion (¢;) 2 (w,¢;)? is clear, since (r,c¢;)? is generated as an R-module by

2?2 = ¢, zc;, and ¢;2, and all these elements lie in (c;).
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7. Let R be a ring (not necessarily noetherian). Suppose that dim(R) < co. Show that
dim(R[z]) < 1+ 2dim(R).

Solution: Let
Qo2 g1 29g2 2 D dd
be a descending chain of prime ideals in R[x], where d > 0. By restriction, we obtain a

descending chain of prime ideals
QNRODGNRODGpNRD---DqaNR (*)

(possibly with repetitions) in R. For each i € {0,...,d}, let p(i) > 0 be the largest
integer k£ such that ¢, "R =¢q;s1 N R =+ = ¢4 N R. By Lemma 11.21, the remark
before it, and Lemma 11.19 we have p(i) < 1 for all ¢ € {0,...,d}. Now let

Gy NR=qoNRDq,NRD---Dq;; NR

be an enumeration of all the prime ideals appearing in the chain (%), in decreasing order

of inclusion. We have
d+1=(1+p(io)) + (1 + p(ir)) + -+ (1 + p(is)) <2(6 +1)

and so that d < 20 + 1. Now we have § < dim(R) and the required inequality follows.

8. Let R be a Dedekind domain. Let I be a non zero ideal in R. Show that every ideal in
R/I is principal. Deduce that every ideal in a Dedekind domain can be generated by

two elements.

Solution: We first prove the first statement. Since R is a Dedekind domain, we have

a primary decomposition
k
I=(\p
i=1

for some prime ideals p;. Using Lemma 12.2 and the Chinese remainder theorem, we

see that we have

k
R/I~ @D R/p".
=1

Now an ideal J of @le R/p;"" is of the form @le J;, where J; is an ideal of R/p;".

(2

This follows from the fact that if e € J and e = ®F_;e; then e; = e-(0,...,1,...,0) € J,

where 1 appears in the i-th place in the expression (0,...,1,...,0). Hence, if we can

m

find generators ¢; € J; for J; in R/p;", then (gi,...,gx) will be a generator of J. We

proceed to show that any ideal in R/p;"

;' can be generated by one element.
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Consider the exact sequence
0—p/" = R— R/p]" — 0.
Localising this sequence at R \ p;, we get the exact sequence of R, -modules
0= (0" )p, = Bp, = (R/9]")p, = 0.

Now the R,,-submodule (p;"),, of Ry, is the ideal generated by the image of p;" in R,,
(see the beginning of the proof of Lemma 5.6). If we let m be the maximal ideal of R,,,
this is also m™:. On the other hand, p; is contained in the nilradical of p;** and since p;
is maximal (by Lemma 12.1) it coincides with the radical of p;**. Hence R/p;"" has only
one maximal ideal, namely p; mod p;*. Since the image of R\ p; in R/p;" lies outside
p; mod p;", we see that this image consists of units. Hence (R/p;""),, >~ R/p;". All in

all, there is thus an isomorphism
Rm/mmi = R/Pznl

Now by Proposition 12.4, every ideal in R,,/m™ is principal, and so we have proven the

first statement.

For the second one, let e € I be any non-zero element. Then the ideal I mod (e) C

R/(e) is generated by one element, say g. Let ¢’ € R be a preimage of g. Then
I=1(eq).

9. Let A (resp. B) be a noetherian local ring with maximal ideal m4 (resp. mpg). Let ¢ :
A — B be a ring homomorphism and suppose that ¢(m,) C mp (such a homomorphism
is said to be ‘local’).

Suppose that

(a) B is finite over A via ¢;

(b) the map m4 — mp/m% induced by ¢ is surjective;
(c¢) the map A/my — B/mp induced by ¢ is bijective.

Prove that ¢ is surjective. [Hint: use Nakayama’s lemma twice].

Solution: By Corollary 3.6, (b) implies that the image of m4 in mp generates mp as
a B-module. In other words, ¢(m4)B = mp. On the other hand, since B is finitely
generated as an A-module, the homomorphism ¢ is surjective if and only if the induced
map A/my — B/¢(my)B is surjective, again by Corollary 3.6. Now B/¢(ma)B =
B/mp by the above, and by (c) the map A/my — B/mp is surjective. The conclusion

follows.
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Section C

10. Let R be a Dedekind domain. Show that R is a PID if and only if it is a UFD.

Solution: Every PID is a UFD.

For the converse, first note that it is enough to prove that all prime ideals are principal,

since every non-trivial proper ideal in a Dedekind domain is a product of prime ideals.

Let p be a non-trivial prime ideal in R. Since R is a UFD, there is a prime element

p € p. Hence we have the inclusions

(0) C (p) Cp,

and since dim R = 1 we must have p = (p).

Mathematical Institute, University of Oxford Page 8 of 8
Dawid Kielak: kielak@maths.ox.ac.uk



