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Overview. These are notes for a first course in analytic number theory,
most recently taught in Michaelmas 2024 as C3.8 at the University of Oxford.
They have evolved over around 20 years from various courses I have given
at Oxford and Cambridge.

The main aim is to give a proof of the prime number theorem, together
with background on complex analysis, the Riemann ζ-function, and Fourier
analysis.

A particular feature of the notes is the use of smooth cutoff functions
throughout. This has many advantages: most particularly, one can state a
very clean ‘explicit formula’, and the handling of the error terms in the prime
number theorem is arguably clearer. The main disadvantage is perhaps that
proceeding in this way requires a little more mathematical maturity on the
part of the reader.

Students should note that in recent years the course C3.8 has been taught
by Prof. Maynard, who takes a slightly different approach. Therefore, ques-
tions on past exam papers from 2019–2023 may have parts which are not
quite accessible using only these notes. The course and questions in 2017
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and 2018 were set by me and are relevant to this version of the course. Fi-
nally, in 2016 and earlier the course was taught by Prof. Heath–Brown, and
at that time the syllabus was rather different.

0.1. Notation. As with any course, a certain amount of notation will be
introduced as we go along.

One very important point to be made at the outset is that log x always
means the natural logarithm of x. Some people consider the notation lnx,
which can be found in some books, tasteless. logC x is the same as (log x)C .

We will very often use the notation ⌊t⌋, which means the greatest integer
less than or equal to t.

Throughout the course we will be using asymptotic notation. This is vital
in handling the many inequalities and rough estimates we will encounter.
Here is a summary of the notation we will see. We suggest the reader not
worry too much about this now; we will gain plenty of practice with this
notation.

• A ≪ B means that there is an absolute constant C > 0 such that
|A| ⩽ CB. In this notation, A and B will typically be variable
quantities, depending on some other parameter. For example, x +
1 ≪ x for x ⩾ 1, because |x+1| ⩽ 2x in this range. It is important
to note that the constant C may be different in different instances
of the notation.

• A = O(B) means the same thing.
• B ≫ A means the same thing.

The three pieces of notation above are the crucial ones to get used to for
now, but in due course we will also see the following:

• A≪k,l,m B means that |A| ⩽ CB, but now C is allowed to depend
on some other parameters k, l,m. For example, kx≪k x, k+l+m =
Ok,l,m(1).

• A≪ B is the same as B ≫ A.
• O(A) means some quantity bounded in magnitude by CA for some
absolute constant C > 0. In particular, O(1) simply means a
quantity bounded by an absolute positive constant. For example,
5x
1+x = O(1) for x ⩾ 0.

• A = o(B) means that |A| ⩽ εB as some other parameter becomes
large enough. The other parameter will usually be clear from con-
text. For example, 1

log x = o(1) (as x→ ∞).

• A = ok,l,m(B) means that |A| ⩽ εB as some other parameter be-
comes large enough, but how large it needs to be may depend on
the other parameters k, l,m. For example, k

log x = ok(1).

• A ∼ B, which we read as “A is asymptotic to B” means that
A = (1 + o(1))B.

0.2. Quantities. In understanding analytic number theory, it is important
to develop a robust intuitive feeling for the rough size of certain quantities.
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For example, if X is large, (logX)10 is much smaller than X1/10. The

quantity e
√
logX (which will appear again later) lies in between the two.

0.3. Further reading. The notes are self-contained, but anyone with a
wider interest in the subject will want to read other sources. Here are a few
suggestions. Davenport’s book [1] is the classic reference, and it is still an
excellent read. Kowalski’s book [2] (in French) uses smooth weights rather
more like the presentation here. The treatise of Iwaniec and Kowalski [3] is
essential for anyone seriously committed to analytic number theory, but it
contains an order of magnitude more material than this course, and presents
at a high level. Finally, the relatively recent book of Koukoulopoulos [4] is
a good read (again covering a lot more material than we do).

1. Basic facts about the primes

1.1. Euclid’s proof. This course is largely about the prime numbers 2, 3,
5, 7, . . . . The most basic fact about them is the following, proven by Euclid
over 2000 years ago.

Theorem 1.1. There are infinitely many primes.

Proof. Suppose not, and that p1, . . . , pN is a complete list of the primes.
Consider the number M = p1 · · · pN + 1. It must have a prime factor q.
However, M is manifestly not divisible by any of p1, . . . , pN , and so q /∈
{p1, . . . , pN}. This is a contradiction.

Of course, it is possible to ask more refined questions. Does the se-
quence of prime numbers grow extremely rapidly (like the powers of two
1, 2, 22, 23, . . . ), or slowly like the odd numbers 1, 3, 5, 7, . . . , or somewhere
in between? This is the question that will occupy us in this course.

1.2. Elementary bounds. If X > 1 is a real number then we write π(X)
for the number of primes less than or equal to X. Rather elementary meth-
ods suffice to get the correct order of magnitude for π(X).

Theorem 1.2. There are constants 0 < c1 < 1 < c2 such that, for all
sufficiently large X,

c1
X

logX
⩽ π(X) ⩽ c2

X

logX
.

Remarks. In asymptotic notation, we may thus assert that X
logX ≪ π(X) ≪

X
logX , and the upper bound is saying that π(X) = O(X/ logX). The lower

bound immediately implies the infinitude of primes (and with a much better
bound than Euclid’s proof). The upper bound implies, in particular, that
the density of the primes up to X, that is to say π(X)/X, tends to zero as
X → ∞.



ANALYTIC NUMBER THEORY 7

Proof. We begin with the lower bound. We look at the prime factorisation
of

(
2n
n

)
, which we write as (

2n

n

)
=

∏
p⩽2n

pap(n).

Now recall (or look up) Legendre’s formula, that is to say the fact that the
power of p dividing m! is

∑∞
i=1⌊m/pi⌋, this sum being composed of ⌊m/p⌋

multiples of p, ⌊m/p2⌋ multiples of p2, and so on. (We remark that the sum
is actually finite, since ⌊m/pi⌋ = 0 when pi > m.)

It follows from Legendre’s formula and the definition of binomial coeffi-
cients that

ap(n) =
∞∑
i=1

⌊2n
pi

⌋
− 2

⌊ n
pi

⌋
. (1.1)

Now each term in (1.1) is at most 1, since ⌊2x⌋−2⌊x⌋ ∈ {0, 1} for all real x.
Moreover, the terms can only be non-zero for i ⩽ log(2n)/ log p. It follows
that

pap(n) ⩽ plog(2n)/ log p = 2n.

Taking products over p (noting that all primes dividing
(
2n
n

)
are ⩽ 2n) we

obtain (
2n

n

)
⩽ (2n)π(2n). (1.2)

Now
(
2n
n

)
is almost as big as 4n; note that

∑2n
r=0

(
2n
r

)
= 4n and, in this sum,

the middle term
(
2n
n

)
is the largest one. It follows from this observation and

(1.2) that, for n sufficiently large,

2n <
4n

2n+ 1
⩽

(
2n

n

)
⩽ (2n)π(2n).

Taking logs gives

π(2n) ⩾
n log 2

log(2n)
.

This is the lower bound in Theorem 1.2 in the case X = 2n an even inte-
ger (with c1 = 1

2 log 2). The general case follows easily by considering the
greatest even integer ⩽ X, and reducing c1 slightly. We leave the details as
an exercise.

We turn now to the upper bound in Theorem 1.2. We again consider the
binomial coefficient

(
2n
n

)
, noting now that if n is an integer and if p > n then

p divides
(
2n
n

)
precisely once. Therefore

nπ(2n)−π(n) ⩽
∏

n<p⩽2n

p ⩽

(
2n

n

)
⩽ 4n,

and so, taking logs,

π(2n)− π(n) ⩽
n log 4

log n
.

https://en.wikipedia.org/wiki/Legendre's_formula
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Applying this with n = 2, 22, 23 . . . , 2k−1 and summing gives

π(2k) ⩽ 2k
( 1

k − 1
+

1

2(k − 2)
+

1

22(k − 3)
+ · · ·+ 1

2k−2

)
.

We claim that the bracketed expression is ≪ 1/k. There are many ways
to see this. For instance, the ratio between the terms 1/2i−1(k − i) and
1/2i(k − i− 1) is 2(k − i− 1)/(k − i), which is ⩾ 4/3 for i ⩽ k − 3, so

k−1∑
i=2

1

2i−1(k − i)
⩽

1

k − 1

(
1 +

3

4
+
(3
4

)2
+ . . .

)
+

1

2k−2
≪ 1

k
.

Therefore π(2k) ⩽ C2k/k for some C.
If now X is arbitrary, let 2k be the smallest power of two which is greater

than or equal to X. Then

π(X) ⩽ π(2k) ⩽
C2k

k
⩽

2CX

log2X
⩽ c2

X

logX
,

where c2 = 2C log 2.

Remark. Euclid’s proof of the infinitude of primes can be modified to give
an explicit lower bound on π(X), but it is very weak: we leave it as an
exercise to show that π(X) ≫ log logX by this method.

1.3. The prime number theorem. The main aim of this course will be
to prove the prime number theorem, which states that c1 and c2 in Theorem
1.2 can be taken arbitrarily close to 1.

Theorem 1.3 (Prime number theorem). Suppose that 0 < c1 < 1 < c2.
Then, if X is sufficiently large, we have

c1
X

logX
⩽ π(X) ⩽ c2

X

logX
.

Equivalently, π(X) = (1 + o(1)) X
logX , or π(X) ∼ X

logX .

We now give a reformulation of the prime number theorem using a weight
function, which turns out to me much more natural than simply counting
the primes for reasons we will see later.

The weight function in question is the von Mangoldt function. It is defined
by

Λ(n) :=

{
log p if n = pk, p a prime;
0 otherwise.

One should think of Λ as being roughly a function that assigns weight log p
to the prime p; the contribution of the genuine prime powers pk, k ⩾ 2, is
negligible.

The reason this is a natural definition will become gradually apparent. For
now, however, let us note that the prime number theorem has an equivalent
formulation in terms of the von Mangoldt function.
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We define
ψ(X) :=

∑
n⩽X

Λ(n).

Proposition 1.4. The prime number theorem is equivalent to the statement
that ψ(X) ∼ X, that is to say that the average value of Λ(n) over n ⩽ X is
asymptotically 1.

Proof. Write

a(X) :=
π(X)

X/ logX
, b(X) := ψ(X)/X.

Thus the task is to show that a(X) → 1 if and only if b(X) → 1.
We first obtain an upper bound for b(X) in terms of a(X). For a given

prime p, the maximum k for which pk ⩽ X is k = ⌊logX/ log p⌋. The
contribution of this prime p to ψ(X),

∑
k:pk⩽X log p, is therefore at most

log p
⌊ logX
log p

⌋
⩽ logX.

Only those primes p with p ⩽ X contribute at all, and so we have the
inequality

ψ(X) ⩽ π(X) logX,

and thus
b(X) ⩽ a(X). (1.3)

Now we obtain a bound in the other direction. Assume throughout this
argument that X is sufficiently large. Now note that

a(X)− b(X) ⩽
1

X

∑
p⩽X

(logX − log p), (1.4)

the contribution of the proper prime powers pk, k ⩾ 2, to −b(X) being
negative. We split the sum over p into two ranges p ⩽ X(logX)−2 and
X(logX)−2 < p ⩽ X (there is a certain amount of flexibility in these
choices). We bound the contribution from the first range using a trivial
bound and then the lower bound in Theorem 1.2, obtaining

1

X

∑
p⩽X(logX)−2

(logX − log p) <
1

logX
⩽

1

c1 logX
a(X). (1.5)

On the second range, we have

logX − log p ⩽ log
(
(logX)2

)
⩽ 2 log logX. (1.6)

Thus
1

X

∑
X(logX)−2<p⩽X

(logX − log p) ⩽
2 log logX

X
#{p : X(logX)−2 < p ⩽ X}

⩽
2 log logX

logX
a(X).
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Combining this with (1.4) and (1.5) gives

a(X)− b(X) ⩽
( 1

c1 logX
+

2 log logX

logX

)
a(X).

This last inequality implies that b(X) ⩾ (1 − ε)a(X) provided that X is
large enough in terms of ε. Combined with (1.3), this immediately implies
the result.

To conclude this chapter, let us record an immediate consequence of (1.3)
and Theorem 1.2.

Proposition 1.5. We have the bound∑
n⩽X

Λ(n) = O(X).

2. Arithmetic functions

An arithmetic function is simply a function f from N to C. The most
important arithmetic function in this course is the von Mangoldt function Λ,
introduced in the last section. However, this is far from the only interesting
arithmetic function. Here are some other commonly occurring arithmetical
functions:

• The von Mangoldt function Λ;
• The Möbius function µ is defined by µ(n) = (−1)k if n = p1 · · · pk
for distinct primes p1, . . . , pk, and µ(n) = 0 otherwise;

• Euler’s ϕ-function ϕ(n) is defined to be the number of integers x ⩽ n
which are coprime to n, which is the same thing as the order of the
multiplicative group (Z/nZ)×, the group of invertible elements in
Z/nZ;

• The divisor function τ(n) (sometimes written d(n)) is defined to be
the number of positive integer divisors of n, including 1 and n itself;

• The sum-of-divisors function σ(n) is defined to be
∑

d|n d.

Dirichlet convolution. If f, g : N → C are two arithmetical functions then
we define

f ⋆ g(n) :=
∑
d|n

f(d)g(n/d) =
∑
ab=n

f(a)g(b).

Multiplicativity. We say that an arithmetic function f is multiplicative if
f(mn) = f(m)f(n) whenever m,n are coprime. (Note carefully that we do
not require f(mn) = f(m)f(n) for all m,n.) For example, the Möbius func-
tion µ is multiplicative, as may be checked immediately from the definition.

2.1. Möbius inversion. Some of the material of this section is not really
necessary for the main development of the course, and in particular for
proving the prime number theorem. However, it is certainly part of the
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general culture of analytic number theory, and helps us place Λ in a more
general context.

The following result is known as Möbius inversion.

Proposition 2.1. Let f, g : N → C be two arithmetical functions. Then
g = f ⋆ 1 if and only if f = g ⋆ µ.

Proof. Observe that Dirichlet convolution is commutative and associative.
Note that µ ⋆ 1 = δ, where δ(n) = 1 if n = 1 and 0 otherwise. This is a
routine check: if n = pα1

1 . . . pakk with k ⩾ 1 (and the pi primes) then∑
d|n

µ(d) =
∑

εi∈{0,1}

µ(pε11 . . . pεkk )

=
∑

εi∈{0,1}

µ(pε11 ) · · ·µ(pεkk ) = (1− 1) · · · (1− 1) = 0.

Here we used the multiplicativity of µ. Now if g = f ⋆ 1 then

g ⋆ µ = (f ⋆ 1) ⋆ µ = f ⋆ (1 ⋆ µ) = f ⋆ δ = f.

Conversely if f = g ⋆ µ then

f ⋆ 1 = (g ⋆ µ) ⋆ 1 = g ⋆ (µ ⋆ 1) = g ⋆ δ = g.

This concludes the proof.

This leads to an important link between the von Mangoldt function and
the Möbius function.

Lemma 2.2. We have Λ = µ⋆log, that is to say Λ(n) =
∑

d|n µ(d) log(n/d).

Proof. Considering the prime factorization of n, we see that

Λ ⋆ 1(n) =
∑
d|n

Λ(d) = logn.

Indeed, the only divisors of n which make a nontrivial contribution are the
prime powers, and each contributes k log p where pk is the exact power of p
dividing n.

The result then follows from Möbius inversion.

3. Introducing the Riemann ζ function

3.1. Dirichlet series. An important tool for working with arithmetical
functions – particularly when they arise from considerations that are some-
how multiplicative – is that of Dirichlet series.

Let f : N → C be an arithmetical function. Then the Dirichlet Series of
f is

Df (s) :=
∑
n

f(n)n−s.
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At the moment this is just a “formal” Dirichlet series; if f grows extremely
rapidly, the series may not make sense as an actual number for any value
of s at all. In practice, f will have reasonable growth. Commonly, for
example, |f(n)| = no(1): this is the case when f is the constant function 1,
the Möbius function µ, the von Mangoldt function Λ, or the divisor function
τ (by contrast to the first three, this last one is not completely obvious). In
this case the series for Df (s) converges, and defines a holomorphic function
of s, in the domain Re s > 1.

Indeed if Re s ⩾ 1 + δ then for N > N0(δ) sufficiently large we have∣∣∣ ∞∑
n=N+1

f(n)n−s
∣∣∣ ⩽ ∞∑

n=N+1

nδ/2n−1−δ ≪ N−δ/2.

Thus if we set

D
(N)
f (s) :=

N∑
n=1

f(n)n−s

then D
(N)
f (s) → Df (s) uniformly in Re s ⩾ 1 + δ, which implies that Df is

holomorphic on the interior of any such domain.

3.2. The ζ-function. Perhaps the most basic arithmetical function is the
constant function f = 1. The Dirichlet series of this function is called the
Riemann ζ-function. Thus

ζ(s) =

∞∑
n=1

n−s.

As just noted, the series converges and defines a holomorphic function in
the domain Re s > 1.

Euler product. Unique factorization into primes convinces us of the iden-
tity

ζ(s) = 1 +
1

2s
+

1

3s
+ · · · =

(
1 +

1

2s
+

1

22s
+ . . .

)(
1 +

1

3s
+

1

32s
+ . . .

)
· · · ,

where there is one product for each prime p = 2, 3, 5, . . . . Summing each of
the geometric series suggests then that

ζ(s) =
∏
p

(1− p−s)−1. (3.1)

Let us pause to justify this formally. Let s, Re s > 1, be fixed. Suppose
Re s = 1 + δ. Fix an N , and suppose that m > log2N . Then the product

P (m,N) :=
∏
p⩽N

( m∑
j=0

p−js
)
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may be expanded, and it equals 1+2−s+ · · ·+N−s plus a number of further,
distinct, terms n−s with n > N . Thus

|P (m,N)− ζ(s)| ⩽
∞∑

n=N+1

|n−s| ≪ N−δ

uniformly in m. Letting m→ ∞, we thus obtain∣∣∣ ∏
p⩽N

(1− p−s)−1 − ζ(s)
∣∣∣ ≪ N−δ.

Finally, letting N → ∞, we confirm the equality (3.1).
Equation (3.1) is called the Euler product for ζ and it is valid for Re s > 1.
An amusing consequence of the above is yet another proof (our third)

that there are infinitely many primes. Suppose not. Then, letting s → 1+

in (3.1) we see that lims→1+ ζ(s) <∞. However this is not the case, since

lim
s→1+

N∑
n=1

n−s =

N∑
n=1

n−1,

and the harmonic series diverges.
It turns out that the Dirichlet series of many of the basic arithmetical

functions can be expressed in terms of ζ. In the following proposition we
detail the most basic such relations; others may be found on the exercise
sheet.

Proposition 3.1. We have the following facts about Dirichlet series.

(i) If the Dirichlet series of f is F (s), and that of g is G(s), then the
Dirichlet series of the convolution f ⋆ g is FG.

(ii) If Re s > 1 then
∑

n µ(n)n
−s = 1/ζ(s);

(iii) If Re s > 1 then
∑

n Λ(n)n
−s = −ζ ′(s)/ζ(s).

Proof. For (i), note that the Dirichlet Series of f ⋆ g is∑
n

( ∑
ab=n

f(a)g(b)
)
n−s =

∑
a,b

f(a)g(b)(ab)−s.

This proves the result.
For (ii), write D(s) for the Dirichlet series of the Möbius function. Since

µ ∗ 1 = δ, it follows from (i) that D(s)ζ(s) = 1, which is the stated result.
For (iii), we use without detailed proof the fact that the Dirichlet series

for ζ(s) may be differentiated term by term in the domain Re s > 1. This
gives

ζ ′(s) = −
∑
n

log n · n−s;

that is, the Dirichlet series of log is −ζ. Since Λ = µ ⋆ log, it follows from
this and (i), (ii) that the Dirichlet series of Λ is indeed −ζ ′/ζ, as claimed.
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Remark. *To justify differentiating the series, it would probably be best to
define FN (s) :=

∑N
n=1 n

−s, so F ′
N (s) = −

∑N
n=1 log n · n−s. Then, note that

F ′
N (s) converges uniformly on Re s ⩾ 1 + δ to some holomorphic function
g(s), which is given by the series −

∑∞
n=1 log n · n−s. Now define F (s) :=∫

[2→s] g(w)dw, where [2 → s] means the straight line segment from 2 to s.

By the fundamental theorem of calculus, F ′(s) = g(s). On the other hand,∫
[2→s] F

′
N (w)dw = FN (s)− FN (2), so by the uniform convergence we have

ζ(s)− ζ(2) = lim
N→∞

(FN (s)− FN (2)) = lim
N→∞

∫
[2→s]

F ′
N (w)dw

=

∫
[2→s]

lim
N→∞

F ′
N (w)dw = F (s).

Differentiating gives ζ ′(s) = F ′(s) = g(s). For more details on this kind
of argument in the real-variable case, you can consult my undergraduate
analysis notes, Proposition 5.1.*

Corollary 3.2. We have ζ(s) ̸= 0 when Re s > 1.

Proof. This follows immediately from (ii).

3.3. Looking forward. One of the central results of the course is the fact
that ζ, though it is currently defined only for Re s > 1, extends to a mero-
morphic function on the complex plane, holomorphic except for a simple
pole at s = 1. The function (s − 1)ζ(s) is then entire (holomorphic on the
whole complex plane). It has zeros ρ, and we shall show that they are of
two types: the trivial zeros −2,−4,−6, . . . and the nontrivial zeros, which
all lie in the region 0 ⩽ Re s ⩽ 1. To understand ζ in terms of its zeros, it
is natural (in the light of ones experience with polynomials) to ask to what
extent (s−1)ζ(s) is related to

∏
ρ(s−ρ), or even if we can make sense of the

latter quantity. Though it is not quite possible to do this, a slight variant
of it does hold.

Here, then, is a summary of the main facts about ζ we will establish in
this course that will be important for the later theory.

Theorem 3.3. The Riemann ζ-function extends to a meromorphic func-
tion, analytic except for a simple pole at s = 1. It has “trivial” zeros at
s = −2,−4,−6, . . . , all simple, and “nontrivial zeros” in the critical strip
0 ⩽ Re s ⩽ 1. Finally, we have the Weierstrass product expansion

(s− 1)ζ(s) = eAs+B
∏
ρ

(
1− s

ρ

)
es/ρ,

where the product is over all zeros of ζ and A,B are some constants (which
can be evaluated explicitly).

Let us remark that at least one of the facts used in the proof of this
theorem – the functional equation, Theorem 5.2 – is of great importance in

https://people.maths.ox.ac.uk/greenbj/papers/AnalysisIII-2019-notes.pdf
https://people.maths.ox.ac.uk/greenbj/papers/AnalysisIII-2019-notes.pdf
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its own right. As a further remark, we will not actually show in the main
part of the course that there are any nontrivial zeros, but the existence of at
least one is shown on Sheet 4. In fact, sharp asymptotics are known for the
number of such zeros with imaginary part ⩽ T ; see for instance Davenport’s
book.

3.4. Meromorphic continuation to Re s > 0. To conclude this intro-
ductory discussion of the ζ-function, we give a quick proof that it may be
meromorphically continued a little to the left of its current domain of defi-
nition.

Proposition 3.4. The Riemann zeta function ζ(s) has a meromorphic con-
tinuation to the right half-plane Re(s) > 0, holomorphic except for a simple
pole at s = 1.

Proof. For Re s > 1 we have

ζ(s) =
∞∑
n=1

n−s =
∞∑
n=1

n(n−s − (n+ 1)−s)

= s

∞∑
n=1

n

∫ n+1

n
x−s−1 dx

= s

∫ ∞

1
⌊x⌋x−s−1 dx

=
s

s− 1
− s

∫ ∞

1
{x}x−s−1 dx.

(Here, {x} := x−⌊x⌋.) The integral here defines a holomorphic function on
Re s > 0 by differentiating under the integral; see Proposition A.3 for more
details.

The formula for ζ(s) found here will sometimes be useful in its own right.

4. Some Fourier analysis

A key role will be played in the rest of the course by Fourier analysis.
We take the time to develop the parts of the subject that we need in this
chapter.

4.1. Introduction. Many students will have met both the Fourier trans-
form and “Fourier series” at undergraduate level. It turns out that these
are just two instances of the same concept, that of a Fourier transform on
a locally compact abelian group (LCAG). We will not go into any details of
the theory in this generality – in fact there is not even any need to define a
LCAG. The reader may, however, benefit from seeing the unified context at
least in vague outline.

If G is a LCAG then we associate to G its dual Ĝ, which consists of
all continuous homomorphisms (characters) from G to S1, the unit circle
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{z ∈ C : |z| = 1}. It is easy to see that Ĝ is a group under pointwise

multiplication. If f : G → C is a “suitably nice” function and γ ∈ Ĝ is a

character then the Fourier transform f̂(γ) is defined to be

f̂(γ) :=

∫
G
f(x)γ(x)dµG(x) = ⟨f, γ⟩,

where µG is the Haar measure on G, a certain uniquely-defined measure with
natural properties. We will not need the general theory here, and instead
illustrate with examples.

Example (G = R). It turns out that all characters have the form x 7→ eiξx,

for ξ ∈ R. Thus R̂ = R, that is R is self-dual. If f : R → C is integrable
then we define

f̂(ξ) :=

∫ ∞

−∞
f(x)e−iξx dx.

(Stricly speaking, this is an abuse of notation: the Fourier transform is really
defined “at the character x 7→ eiξx”, and not at ξ.)

Example (G = Z). It turns out that all characters have the form n 7→ e2πiθn,

where θ ∈ R/Z. Thus Ẑ = R/Z. If f : Z → C is suitably nice we define

f̂(θ) :=
∑
n∈Z

f(n)e−2πiθn.

(This is again an abuse of notation, similar to the previous one.)

Example (G = R/Z: “Fourier series”). Here all the characters have the form

θ 7→ e2πinθ, where n ∈ Z. Thus R̂/Z = Z. If f : R/Z → C is suitably nice
we define

f̂(n) :=

∫ 1

0
f(θ)e−2πiθn dθ.

The last two groups, Z and R/Z, are an example of a dual pair.

Example (G = Z/NZ: Discrete Fourier transform). Here all characters have

the form x 7→ e2πirx/N , where r ∈ Z/NZ (thus Ĝ ∼= G). In this finite setting
all functions are “suitably nice” and we define

f̂(r) := Ex∈Z/NZf(x)e
−2πirx/N =

1

N

∑
x∈Z/NZ

f(x)e−2πirx/N .

Conventionally, in analytic number theory one writes e(t) := e2πit for
t ∈ R; this makes the notation of these last three examples somewhat clearer.

Example (G = R×
>0: Mellin transform). In fact, G is isomorphic to R via

the logarithm map x 7→ log x. The characters are x 7→ xiξ for ξ ∈ R. We
have

f̂(ξ) =

∫ ∞

0
f(x)x−iξd×x,

where d×x = dx
x .
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The Mellin transform will feature prominently later on. We will need to
extend its domain of definition from iR to all of C, defining

f̃(s) :=

∫ ∞

0
f(x)xsd×x

(we recover the previous definition on taking s = −iξ). Often we will be look
at a fixed vertical contour s = σ + iR, in which case the Mellin transform
really is a Fourier transform, in fact of the function f(x)x−σ on R×

⩾0.
Much of the theory of Fourier analysis is concerned with what is meant

by “suitably nice”, and with such questions as when one can prove an in-
version formula and what the decay of Fourier coefficients tells us about the
smoothness of a function. This is a fascinating theory. However for much of
analytic number theory the deeper parts of this theory can be avoided.

In this course we will work with particularly nice classes of functions called
Schwartz functions, where most of the analytic issues can be avoided and
Fourier analysis takes on an almost “algebraic” flavour.

4.2. Fourier analysis of Schwarz functions on R. In this section, and
for the rest of the course, we use the symbol ∂ for the differentiation operator.
We also use the notation ∥f∥1 :=

∫∞
−∞ |f(x)|dx.

The Fourier transform of a smooth function decays rapidly. This funda-
mental fact will be used repeatedly in this course.

Lemma 4.1. Suppose that g : R → R is a smooth function, all of whose
derivatives lie in L1(R) (that is, are integrable) and decay at infinity. Then
for any m we have the decay estimate

|ĝ(ξ)| ⩽ |ξ|−m∥∂mg∥1.

Remark. In particular, if g is regarded as fixed then we have |ĝ(ξ)| ≪m |ξ|−m

for all m.

Proof. Recall the definition of the Fourier transform, that is to say

ĝ(ξ) :=

∫ ∞

−∞
g(x)e−iξxdx.

Repeated integration by parts gives

ĝ(ξ) =
(
− 1

iξ

)m
∫ ∞

−∞
∂mg(x)e−iξx dx.

The result then follows immediately from the triangle inequality.

We now introduce a proper notion of “sufficiently nice” function which
is appropriate to Fourier analysis on R. This is the notion of a Schwartz
function, which is a smooth function, all of whose derivatives decay rapidly
at infinity.
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Definition 4.2. Let f ∈ C∞(R), that is to say suppose that f is infinitely
differentiable. We say that f belongs to Schwartz space S(R) if

lim
|x|→∞

|x|n∂mf(x) = 0

for all integers m,n ⩾ 0.

We note in particular that, since ∂mf(x) ≪ |x|−2 for large x, every de-
rivative of a Schwartz function f lies in L1(R) and hence has well-defined
Fourier transform.

One of the main reasons for introducing this definition is that the Fourier
transform maps Schwartz functions to Schwartz functions.

Lemma 4.3. Suppose that f ∈ S(R). Then f̂ ∈ S(R).

Proof. Note first of all that if f ∈ S(R) then, for any fixed n ∈ Z⩾0,
xnf ∈ S(R) as well. This follows easily by differentiating xnf repeatedly

using the product rule; each term is of the form xn
′
∂jf for some n′ ⩽ n and

j ⩾ 0, and every such term decays quicker than any power of x.
Now differentiation under the integral in the definition of Fourier trans-

form furnishes the following relation:

∂nf̂(ξ) = (−i)n(xnf)∧(ξ).
Since xnf is a Schwarz function, all of its derivatives lie in L1(R). It follows

from Lemma 4.1 that ∂nf̂(ξ) decays quicker than any polynomial, and hence

f̂ ∈ S(R).

Using Fubini’s theorem, which is always valid when dealing with Schwartz
functions, we can deduce the following important property of the Fourier
transform.

Lemma 4.4. Suppose that f, g ∈ S(R). Then∫
R
fĝ =

∫
R
f̂g.

We will need an explicit form for the Fourier transform of Gaussian func-
tions. This is also used, in its own right, in the proof of Lemma 5.4.

Lemma 4.5. Suppose that t ∈ R+, and set f(x) = e−πx2t. Then f̂(ξ) =
1√
t
e−ξ2/4πt.

Proof. The general case follows from the case t = 1 by change of variables.

Suppose, then, that f(x) = e−πx2
. Observe that

f̂(ξ) = e−ξ2/4π

∫ ∞

−∞
e−π(x+ iξ

2π
)2 dx = e−ξ2/4π

∫
Γ1

f(z) dz, (4.1)

where Γ1 is the line contour running from ∞ + iξ/2π to −∞ + iξ/2π. To
evaluate this contour integral, integrate f (which is clearly defined on all
of C) around the box defined by contours Γ1,R = [R + iξ/2π,−R + iξ/2π],

https://en.wikipedia.org/wiki/Fubini's_theorem
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Γ2,R = [−R+iξ/2π,−R], Γ3,R = [−R,R] and Γ4,R = [R,R+iξ/2π]. Clearly∫
Γ2,R

f(z) dz and
∫
Γ4,R

f(z) dz both tend to 0 as R→ ∞, and so by Cauchy’s

theorem∫
Γ1

f(z) dz = lim
R→∞

∫
Γ1,R

f(z) dz = − lim
R→∞

∫
Γ3,R

f(z) dz =

∫ ∞

−∞
e−πx2

dx.

This last integral is well known to be exactly 1. This concludes the proof of
the lemma.

Let ϵ > 0. Taking t = ϵ2/4π2 in the preceding lemma we see that if

gϵ(x) :=
1

ϵ
e−πx2/ϵ2

then gϵ(u) = ϕ̂ϵ(u), where

ϕϵ(x) :=
1

2π
e−x2ϵ2/4π.

We are now in a position to prove one of the key results concerning Fourier
analysis on R, the Fourier inversion formula.

Proposition 4.6. Suppose that f ∈ S(R). Then

f(x) =
1

2π

∫ ∞

−∞
f̂(ξ)eixξ dξ.

Remark. The factor 2π is a manifestation of the fact that we have two copies

of R here, namely R and R̂. In our definition of the Fourier transform we

have implicitly given an isomorphism from R to R̂. Under this isomorphism
Lebesgue measure on R gets multiplied by a factor of 2π.

Proof. It suffices to establish this when x = 0, since if f is Schwartz then so
is the “translate” function g defined by g(t) = f(t+x). One may check that

ĝ(ξ) = eixξ f̂(ξ), and so by applying the inversion formula at 0 to g yields

f(x) = g(0) =

∫ ∞

−∞
ĝ(ξ)dξ =

∫ ∞

−∞
f̂(ξ)eixξdξ.

Whilst not a crucial step, this simplification affords some notational sim-
plicity.

Using Lemma 4.4 we obtain∫ ∞

−∞
f(u)gϵ(u) du =

1

2π

∫ ∞

−∞
f̂(ξ)e−ξ2ϵ2/4π dξ.

Taking limits as ϵ→ 0, we see that

1

2π

∫ ∞

−∞
f̂(ξ)e−ξ2ϵ2/4π dξ → 1

2π

∫ ∞

−∞
f̂(ξ) dξ.

(To justify this rigorously, note the bound∣∣∣ ∫ ∞

−∞
f̂(ξ)(1−e−ξ2ϵ2/4π) dξ

∣∣∣ ⩽ ∥f̂∥1 sup
|ξ|⩽M

∣∣1−e−ξ2ϵ2/4π
∣∣ dξ+2

∫
|ξ|>M

|f̂(ξ)| dξ

https://en.wikipedia.org/wiki/Gaussian_integral
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for any M . The second integral tends to 0 as M → ∞. For fixed M ,

sup|ξ|⩽M

∣∣1− e−ξ2ϵ2/4π| → 0 as ε→ 0.)
It suffices, then, to show that

f(0) = lim
ϵ→0

∫ ∞

−∞
f(u)gϵ(u) du.

If one thinks of gε as a spike around 0 with integral 1 (which it is!) then this
seems eminently reasonable. Let us give a rigorous proof. Since

∫
gϵ = 1,

we see that it suffices to show that

lim
ϵ→0

∫ ∞

−∞
(f(u)− f(0))gϵ(u) du = 0.

Divide the integral into the two ranges |u| ⩽
√
ε and |u| ⩾

√
ε. The integral

over the first range is bounded by

sup
|u|⩽

√
ε

|f(u)− f(0)|.

The integral over the second is at most

2∥f∥∞
∫
|u|⩾

√
ε
gϵ(u)du.

Note that ∫
x⩾

√
ε
gε(x) dx =

∫
x⩾1/

√
ε
e−πx2

dx,

which clearly tends to 0 as ε → 0. Putting these two facts together we
obtain∣∣∣ ∫ ∞

−∞
(f(u)− f(0))gε(u) du

∣∣∣ ⩽ sup
|u|⩽

√
ε

|f(0)− f(u)|+ ∥f∥∞oε→0(1).

(where oε→0(1) just means some quantity tending to 0 as ε → 0, whose
exact nature or speed of decay is irrelevant). Since f is continuous at 0, this
indeed tends to zero as ε→ 0.

Remark. It is possible to axiomatize the properties of the system (gϵ) that
made this work, obtaining the notion of a sequence of “approximations to
the identity”. We shall not do so here.

A consequence of this and Lemma 4.4 is Plancherel’s formula.

Proposition 4.7. Suppose that f ∈ S(R). Then∫ ∞

−∞
|f(x)|2dx =

1

2π

∫ ∞

−∞
|f̂(ξ)|2dξ.

Proof. Take g := f̂ in Lemma 4.4, which stated that∫ ∞

−∞
fĝ =

∫ ∞

−∞
f̂g.
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The right hand side is
∫
|f̂ |2. Meanwhile

ĝ(x) =

∫
f̂(ξ)e−iξxdξ = 2πf(x),

by the inversion formula. The result follows.

4.3. Fourier analysis on Z and R/Z. In the proof of the functional equa-
tion for ζ we will make use of some Fourier analysis on the group Z and
its dual R/Z. We will only develop this theory for sufficiently smooth
“Schwartz” functions, and it parallels the theory over R – just discussed
very closely. This is an illustration of the fact that the natural place for
harmonic analysis is on a general LCAG.

Definition 4.8. We define S(R/Z) to be the same as C∞(R/Z), the space
of smooth functions on R/Z. (There is no “decay at infinity” condition for
this group, which is compact.) We define S(Z) to be the space of functions
f : Z → C with the property that lim|n|→∞ |n|k|f(n)| = 0 for all k. (There
is no “smoothness” condition for this group, which is discrete.)

Recall the definition of the Fourier transform on R/Z:

f̂(n) :=

∫ 1

0
f(θ)e−2πinθ dθ (4.2)

for n ∈ Z. Recall also the definition of the Fourier transform on Z:

f̂(θ) =
∑
n∈Z

f(n)e−2πiθn (4.3)

for θ ∈ R/Z. Although we are using the hat symbol in two rather different
contexts at once, little confusion should hopefully result so long as the reader
is careful to note which group each function under consideration is defined
upon.

Lemma 4.9. If f ∈ S(R/Z) then f̂ ∈ S(Z). If f ∈ S(Z) then f̂ ∈ S(R/Z).

Proof. The first statement is fairly immediate by integration by parts.
Specifically, we have

f̂(n) =

∫ 1

0
f(θ)e−2πinθdθ = (2πin)−k

∫ 1

0
∂kf(θ)e−2πinθdθ.

Thus (applying the preceding with k replaced by k + 1) we have

|nkf̂(n)| ≪ 1

n

∫ 1

0
|∂k+1f(θ)|dθ ≪ 1

n
,

so indeed lim|n|→∞ nkf(n) = 0.
For the second statement, let r ∈ {0, 1, 2, . . . }. We apply Corollary A.2

(or, more accurately, the comments immediately after it), taking

un(θ) = (−2πin)rf(n)e−2πiθn
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and u′n(θ) = (−2πin)r+1f(n)e−2πiθn. The conditions of that lemma are
satisfied withMn = Or(|n|−2) for |n| ⩾ 1, by the assumption that f ∈ S(Z).

The case r = 0 implies that f̂(θ) is differentiable and its derivative is
given by

∂f̂ =
∑
n∈Z

(−2πin)f(n)e−2πiθn.

Inductive applications then give that all derivatives exist and

∂rf̂ =
∑
n∈Z

(−2πin)rf(n)e−2πiθn.

This concludes the proof.

Once again an application of Fubini’s theorem (in this case an interchange
of integration and summation) allows one to conclude the following, which
is Plancherel’s formula in this setting.

Lemma 4.10. Suppose that f ∈ S(R/Z) and g ∈ S(Z). Then∑
n

f̂(n)g(n) =

∫ 1

0
f(θ)ĝ(θ) dθ.

Now it is time to prove the inversion formula. In this setting, with two
different groups Z and R/Z, there are two different inversion formulæ. One
is almost trivial:

Proposition 4.11. Suppose that f ∈ S(Z). Then

f(n) =

∫ 1

0
f̂(θ)e2πinθ dθ.

Proof. Substitute in the definition of f̂(θ) and swap the order of summation
and integration. Then use the fact that∫ 1

0
e2πimθ dθ = 0

when m ∈ Z \ {0}.

The other inversion formula is less trivial (it is also the one that we need
in establishing the Poisson summation formula). It is proved using a type
of “approximation to the identity” rather analogous to the use of gaussians
in the proof of Proposition 4.6.

Proposition 4.12. Suppose that f ∈ S(R/Z). Then

f(α) =
∑
n∈Z

f̂(n)e2πinα.
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Proof. We will use Lemma 4.10 and will deal with the case α = 0 for
notational simplicity (the general case may, as before, be deduced from this
rather easily). Define, for N ∈ N,

gN (n) :=
(
1− |n|

N

)
1|n|⩽N .

By direct computation one may see that

ĝN (θ) =
1

N

∣∣∣∣1− e−2πiθN

1− e−2πiθ

∣∣∣∣2 = sin2(πθN)

N sin2(πθ)
.

A more conceptual way to establish this is to observe that gN = NhN ∗ h◦N ,
where hN (n) := N−110⩽n⩽N−1, h

◦
N is the ‘opposite’ function to hN defined

by h◦N (x) = hN (x), and ∗ is the convolution on Z defined by

hN ∗ h◦N (x) :=
∑
y

hN (y)h◦N (x− y).

The Fourier transform of gN is then just the absolute value of the square

of ĥN . (With reference to the proof of Proposition 4.6, we note that the
gaussian gϵ is also the convolution of a function with itself, that function
being a gaussian of half the width.)

Write

KN (θ) :=
sin2(πθN)

N sin2(πθ)
.

This is called the Fejér kernel.
From Lemma 4.10 we know that∑

n∈Z
f̂(n)gN (n) =

∫ 1/2

−1/2
f(θ)KN (θ) dθ.

(Later on, it is notationally convenient to take the range of integration over
[−1/2, 1/2]; since the integrand has period 1, this is permissible.) It is quite
easy to see that

lim
N→∞

∑
n∈Z

f̂(n)gN (n) =
∑
n∈Z

f̂(n).

It remains, then, to show that

lim
N→∞

∫ 1/2

−1/2
f(θ)KN (θ) dθ = f(0). (4.4)

Since for large N the mass of KN (θ) is concentrated near θ ≈ 0, this is
intuitively reasonable in the same way the analogous statement was in the
proof of Proposition 4.6. The details are remarkably similar as well, and
depend on the following properties of the Fejér kernel, which again constitute
a notion of “approximation to the identity”:

(i) KN (θ) ⩾ 0

(ii)
∫ 1/2
−1/2KN (θ) dθ = 1

(iii)
∫
1/2⩾|θ|⩾δKN (θ) dθ ≪ 1

Nδ .
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To prove (ii), one would do best to recall the definition of KN (θ) as ĝN (θ),
rather than attempt to integrate the closed form of KN directly. Indeed,∫ 1/2

−1/2
KN (θ)dθ =

∫ 1/2

−1/2
ĝN (θ)dθ =

∫ 1/2

−1/2

∑
n

gN (n)e−2πinθdθ

=
∑
n

gN (n)

∫ 1/2

−1/2
e−2πinθdθ = gN (0) = 1.

To prove (iii) we use the fact that | sin t| ⩾ 2|t|/π for |t| ⩽ π/2. Indeed
we have ∫

1/2⩾|θ|⩾δ
KN (θ) dθ ≪ 1

N

∫ 1/2

δ

1

|θ|2
dθ ≪ 1

δN
.

Returning to the proof of (4.4), observe that from (ii) we have∫ 1/2

−1/2
f(θ)KN (θ)dθ − f(0) =

∫ 1/2

−1/2
(f(θ)− f(0))KN (θ)dθ.

Split the range of integration into two ranges, |θ| ⩽ δ and δ < |θ| ⩽ 1
2 , where

we will specify δ later. The integral over the first range is bounded by

sup
|θ|⩽δ

|f(θ)− f(0)|
∫ 1/2

−1/2
|KN (θ)|dθ

which, by (i) and (ii), is at most

sup
|θ|⩽δ

|f(θ)− f(0)|. (4.5)

The integral over the second range is bounded by

2∥f∥∞
∫
δ<|θ|⩽ 1

2

|KN (θ)|dθ

which, by (iii), is at most

≪ ∥f∥∞
1

Nδ
. (4.6)

Taking N = ⌈1/δ2⌉ (say) and letting δ → 0, we see that both (4.5) and
(4.6) tend to 0. This concludes the proof of Theorem 4.12.

We conclude this section by stating, as a corollary, the only result con-
cerning Fourier series that is actually needed in the course (in the proof
of the Poisson summation formula). This is usually called the uniqueness
principle for Fourier coefficients.

Corollary 4.13. Suppose that f1, f2 ∈ S(R/Z) are two functions with the

property that f̂1(n) = f̂2(n) for all n ∈ Z. Then f1 ≡ f2 identically.

Proof. This is immediate from Proposition 4.12.
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4.4. The Poisson summation formula. An important ingredient in the
proof of the functional equation for the ζ-function is a version of the Poisson
summation formula, which is the following statement.

Lemma 4.14. Suppose that f ∈ S(R). Then∑
n∈Z

f(n) =
∑
n∈Z

f̂(2πn).

Proof. Consider two functions F,G : R/Z → C, defined by

F (θ) :=
∑
n∈Z

f̂(2πn)e2πinθ

and
G(θ) :=

∑
k∈Z

f(θ + k).

Due to our conditions on f one may check that F and G lie in S(R/Z). In
both cases, the derivatives are given by term-by-term differentiation of the
series, thus

∂rF (θ) =
∑
n∈Z

(2πin)rf̂(2πn)e2πinθ

and
∂rG(θ) =

∑
k∈Z

(∂rf)(θ + k).

We will compute the Fourier coefficients of F and G, the aim being to
show that these are equal. On the one hand we have, for m ∈ Z,

F̂ (m) :=

∫ 1

0

(∑
n∈Z

f̂(2πn)e2πinθ
)
e−2πimθ dθ

=
∑
n∈Z

f̂(2πn)

∫ 1

0
e2πi(n−m)θ dθ

= f̂(2πm).

On the other hand, we have

Ĝ(m) :=

∫ 1

0

(∑
k∈Z

f(θ + k)
)
e−2πimθ dθ

=

∫ 1

0

(∑
k∈Z

f(θ + k)
)
e−2πim(θ+k)

=
∑
k∈Z

∫ k+1

k
f(x)e−2πimx dx,

which is also equal to f̂(2πm). Thus indeed F̂ (n) = Ĝ(n), which by Corol-
lary 4.13 implies that F = G identically. In particular F (0) = G(0), which
is exactly the Poisson summation formula.
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5. The analytic continuation and functional equation

5.1. The Γ-function. Define the Γ-function by

Γ(z) =

∫ ∞

0
e−ttz−1 dt. (5.1)

for Re z > 0. Observe that if Re z > 0 then, since |tz−1| = tRe z−1, the
integral converges.

In Proposition 5.1 below, we establish the basic facts about Γ. Before
doing this we record a result from complex analysis connected with “Weier-
strass products”. For a proof (not examinable) of this result, see Appendix
C.

Proposition C.2 (Weierstrass product). Suppose that Ω is such that 0 /∈ Ω
and

∑
ρ∈Ω |ρ|−2 < ∞ (where the sum over Ω is taken with multiplicity).

Then the function

EΩ(z) :=
∏
ρ∈Ω

(
1− z

ρ

)
ez/ρ

is well-defined, entire (i.e. holomorphic on the whole complex plane), and
has zeros at Ω with the correct multiplicities and nowhere else.

Of course, the proposition seems eminently reasonable and if Ω were finite
it would be trivial. The factors of ez/ρ ensure that the product converges;

note that (1−w)ew ≈ 1−w2 ≈ e−w2
for small w, and so one may guess that

convergence of the product is intimately tied to convergence of
∑

|ρ|−2.

Proposition 5.1. We have the following basic facts about the Γ-function.

(i) Γ(z), as defined by (5.1), is holomorphic in Re z > 0.
(ii) Γ(z) extends to a meromorphic function on all of C, satisfying the

functional equation zΓ(z) = Γ(z + 1). It has simple poles at z =
0,−1,−2, . . . and no other poles.

(iii) Set Ω = {−1,−2,−3, . . . }. Then we have the Weierstrass formula

1

Γ(z)
= zeγzEΩ(z) = zeγz

∞∏
n=1

(1 + z/n)e−z/n

for all complex z, where

γ := lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
is Euler’s constant. In particular, Γ(z) is never 0.

Remark. One can easily establish that γ exists by comparing the sum
∑n

j=1
1
j

with the integral
∫ n
1 dx/x. We have γ = 0.577215665... Euler’s constant γ

is rather mysterious, and in fact it is not even known to be irrational.
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Proof. (i) For this we ‘differentiate under the integral’. A rigorous for-
mulation of what we need is Proposition A.3. This should be applied with
T = (c,∞) for c > 0. The required condition (A.1) is then that∫ ∞

0
e−ttRe z−1dt <∞

for all z with Re z > c. This is easily established by considering the integrals
between 0 ⩽ t ⩽ 1 and 1 ⩽ t <∞ separately. It follows from Proposition A.3
that Γ(z) is differentiable on Re z > c (with derivative

∫∞
0 e−ttz−1 log tdt).

Since c was arbitrary, the same holds in Re z > 0.
(ii) Suppose first that Re z > 0. Integrating by parts we have, provided

Re z > 0,

Γ(z + 1) = [−tze−t]∞0 + z

∫ ∞

0
e−ttz−1dt

= zΓ(z).

This relation may be used to extend Γ meromorphically to the entire complex
plane. One begins by extending it to the domain Re z > −1 via the formula
Γ(z) := Γ(z+1)/z. One can then iterate, extending in turn to the domains
Re z > −n, n = 2, 3, . . . . Note that in the process of extending to Re z > −1
we introduce a pole at z = 0. This propagates along so that we get simple
poles at all negative integers n = −1,−2, . . . as well. Γ(z) is meromorphic,
and the poles just described are the only ones.

(iii) Define the function Γ̃ by

1

Γ̃(z)
:= zeγz

∞∏
n=1

(1 + z/n)e−z/n. (5.2)

By Proposition C.2, 1
Γ̃
is entire and has zeros only at 0,−1,−2, . . . . There-

fore Γ̃ is meromorphic on C (with poles at 0,−1,−2, . . . ).

Our aim, of course, is to show that Γ(z) = Γ̃(z) for all z ∈ C. By the

identity principle and the fact that both Γ and Γ̃ are meromorphic, it suffices
to establish this when Re z > 0.

Consider, for positive integer m and for t ∈ R⩾0, the function

fm(t) := (1− t/m)m1[0,m](t).

Note that fm(t) ⩽ e−t for all m (since 1 − x ⩽ e−x when x ⩾ 0) and that
limm→∞ fm(t) = e−t for every t. By the dominated convergence theorem it
follows that if Re z > 0 then

lim
m→∞

∫ ∞

0
fm(t)tz−1dt =

∫ ∞

0
e−ttz−1dt = Γ(z). (5.3)

We claim that the formula∫ ∞

0
fm(t)tz−1 dt =

mzm!

z(z + 1) . . . (z +m)
(5.4)
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holds. To see this, first make the substitution t = mu to write the integral
as mzI(m, z), where

I(m, z) :=

∫ 1

0
(1− u)muz−1 du.

Integration by parts gives

I(m, z) =
m

z
I(m− 1, z + 1).

Applying this repeatedly yields

I(m, z) =
m

z
· m− 1

z + 1
· · · 1

z +m− 1
I(0, z +m),

and the claim (5.4) follows upon noting that I(0, z +m) = 1
z+m .

From (5.2) and some rearrangement we have∫ ∞

0
fm(t)tz−1 dt = Γ̃(z)e(γ−1− 1

2
−···− 1

m
+logm)z

∞∏
n=m+1

(1 + z/n)e−z/n.

Since the infinite product converges for every z, it follows from this and the
definition of γ that

lim
m→∞

∫ ∞

0
fm(t)tz−1 dt = Γ̃(z).

Comparing this with (5.3) tells us that indeed Γ(z) = Γ̃(z) for Re z > 0.

We note that, as an easy deduction from (ii), we have Γ(k + 1) = k! for
all positive integers k.

5.2. The functional equation for zeta. Define the completed ζ-function
by

Ξ(s) = γ(s)ζ(s),

where the gamma factor γ(s) is defined to equal π−s/2Γ(s/2). Our objective
in this section is to prove the following theorem, the functional equation for
ζ.

Theorem 5.2. The completed ζ-function Ξ is meromorphic in C, and its
only poles are simple ones at s = 0 and 1. It satisfies the functional equation

Ξ(s) = Ξ(1− s).

As a corollary we obtain a the first part of Theorem 3.3, the main result
of this chapter about the ζ-function.

Corollary 5.3. The ζ-function has a meromorphic continuation to all of
C. It has a simple pole at s = 1 and no other poles. It has zeros at s =
−2,−4,−6, . . . and no other zeros outside of the critical strip 0 ⩽ Re s ⩽ 1.
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Proof. The meromorphic continuation is obvious, since

ζ(s) = πs/2(Γ(s/2))−1Ξ(s)

and the three functions here are all meromorphic. The statements about
zeros and poles are a consequence of the following information, which we
have assembled at various earlier points of the course:

• Ξ(s) = Ξ(1 − s) and the only poles of Ξ are simple ones at s = 0
and s = 1;

• Γ has no zeros and simple poles at 0,−1,−2, . . . ;
• ζ has no zeros with Re s > 1.

This completes the proof.

The set of all zeros of ζ will be denoted by Z. We further divide this
set into the set of trivial zeros Ztriv, by which we mean −2,−4,−6, . . . , and
nontrivial zeros Znontriv, by which we mean all the other zeros. By the above
corollary every zero in Znontriv lies in the critical strip 0 ⩽ Re s ⩽ 1.

Note that, with our knowledge at this point, Znontriv could be empty. In
fact it is infinite and one can obtain quite good control on the number of
nontrivial zeros with imaginary part at most T . We will return to this later.

5.3. Proof of the functional equation. We turn now to the proof of
Theorem 5.2. A key tool here will be the θ-function.
We will apply Lemma 4.14 to derive a functional equation for the θ-function.
Let us now define that function. For z in the upper half-plane H := {z :
Im z > 0} set

θ(z) :=
∑
n∈Z

eiπn
2z.

It is quite easy to see that θ is analytic in H.

Lemma 5.4. Suppose that t ∈ R+. Then θ(it) = 1√
t
θ(i/t).

Remark. (may be of interest to some) Then this functional equation for θ
may be analytically extended to all of H to give something like θ(−1/z) =√
zθ(z). We have been deliberately vague about the branch of square root to

be taken here. In conjunction with the easily verified relation θ(z+2) = θ(z),
this means that the function θ(2z) is a modular form of weight 1/2 for the

group Γ0(4) of matrices

(
a b
c d

)
with a, b, c, d ∈ Z, ad− bc = 1 and 4|c.

Proof. Suppose that t ∈ R+, and set f(x) = e−πx2t. We calculated (by

direct calculation) the Fourier transform f̂(λ) in Lemma 4.5; indeed

f̂(ξ) =
1√
t
e−ξ2/4πt.

Lemma 5.4 is simply a matter of applying the Poisson summation formula
in this case.



30 BEN GREEN

The next lemma relates the ζ-function to the θ-function. It turns out that
the ζ-function is, roughly speaking, the Mellin transform of θ (we will see
Mellin transforms again later).

Lemma 5.5. Suppose that Re s > 1. Then

Ξ(s) =

∫ ∞

0

(θ(ix)− 1

2

)
xs/2

dx

x
.

Proof. Observe that∫ ∞

0
e−πn2xxs/2

dx

x
= π−s/2n−s

∫ ∞

0
e−uus/2

du

u
= π−s/2Γ(s/2)n−s.

Now simply sum over n ∈ N.

Proof of Theorem 5.2. Suppose that Re s > 1. We split the integral in
Lemma 5.5 into the ranges [0, 1] and [1,∞), and then apply Lemma 5.4 to
the first of these. We have∫ 1

0

(θ(ix)− 1

2

)
xs/2

dx

x
=

1

2

∫ 1

0
θ(ix)xs/2

dx

x
− 1

s

=
1

2

∫ 1

0
θ(
i

x
)x(s−1)/2 dx

x
− 1

s

=
1

2

∫ ∞

1
θ(iu)u(1−s)/2 du

u
− 1

s

=

∫ ∞

1

(θ(iu)− 1

2

)
u(1−s)/2 du

u
− 1

s
− 1

1− s
.

Thus ∫ ∞

0

(θ(ix)− 1

2

)
xs/2

dx

x

=

∫ ∞

1

(θ(ix)− 1

2

)
(xs/2 + x(1−s)/2)

dx

x
− 1

s
− 1

1− s
,

which implies that

Ξ(s) =

∫ ∞

1

(θ(ix)− 1

2

)
(xs/2 + x(1−s)/2)

dx

x
− 1

s
− 1

1− s
.

A priori this formula is valid only for Re s > 1. Note, however, that the
right-hand side defines a function which is meromorphic in the whole com-
plex plane, with simple poles at s = 0 and 1, and which manifestly satisfies
the claimed relation Ξ(s) = Ξ(1− s).

6. The partial fraction expansion

6.1. Statement. In prime number theory, the ζ-function itself is less im-
portant than the logarithmic derivative ζ ′/ζ. This is, of course, because
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ζ ′/ζ is the Dirichlet series of the von Mangoldt function Λ, that is to say
ζ ′(s)/ζ(s) =

∑
n Λ(n)n

−s.
The heart of the link between primes and zeros of ζ is the partial fraction

expansion of ζ ′/ζ.

Proposition 6.1. There is a constant C such that

ζ ′(s)

ζ(s)
= C − 1

s− 1
+

∑
ρ∈Z

( 1

s− ρ
+

1

ρ

)
.

Here sum is over all zeros Z = Ztriv∪Znontriv of ζ: the trivial zeros Ztriv :=
{−2,−4,−6, . . . } and the nontrivial zeros Znontriv in the critical strip 0 ⩽
Re s ⩽ 1 (with multiplicity). Moreover,

∑
ρ∈Z |ρ|−2 <∞.

The fact that
∑

ρ∈Z |ρ|−2 < ∞ means that the sum over ρ converges for

s /∈ Z and defines a meromorphic function on C; this is an exercise on Sheet
3.

The constant C can be computed explicitly, but this is not important for
most applications; in fact eC = π

√
2/e.

Proposition 6.1 is a consequence of a product expansion (Theorem 6.2)
and repeated use of the fact that

(fg)′

fg
=
f ′

f
+
g′

g
.

In fact, we need some version of this for infinite products; the justification
of this is an exercise on sheet 4.

Theorem 6.2 (Hadamard Product for ζ). There are constants A and B
(which can be evaluated explicitly) such that

(s− 1)ζ(s) = eAs+B
∏
ρ∈Z

(
1− s

ρ

)
es/ρ,

where again Z denotes both trivial and nontrivial zeros of ζ. We have∑
ρ∈Z |ρ|−2 < ∞, so the product here is a Weierstrass product and con-

verges as described in Proposition C.2.

Theorem 6.2 is quite reminiscent of the well-known fact that if f : C → C
is a polynomial then f(z) = C

∏
ρ(z − ρ), where the product is over the

(finite) collection of zeros of f . Of course, (s − 1)ζ(s) is not a polynomial.
However, Theorem 6.2 may still be obtained as a consequence of a quite
general theorem about entire functions, rather than any particular specific
properties of ζ. We state such a theorem now.

Definition 6.3. Suppose that f : C → C is an entire function satisfying a

growth condition |f(z)| ≪ε e
Cε|z|1+ε

for all ε > 0. Then we say that f is an
integral function of order 1.

Proposition 6.4. Suppose that f is an integral function of order 1. Suppose
that f has a zero of order r at 0, and write Ω for the set of other zeros of
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f . Then
∑

ρ∈Ω |ρ|−1−ε < ∞ for every ε > 0 and there are constants A and

B (depending on f of course) such that

f(z) = zreAz+B
∏
ρ

(
1− z

ρ

)
ez/ρ.

Proposition 6.4 is, as we said, a result of complex analysis and has no
arithmetic content. The proof is given in Sections 6.3 and 6.4.

6.2. The product formula for ζ. In this section we will deduce Theo-
rem 6.2, the Hadamard product for ζ, from Proposition 6.4, the product
expansion for integral functions of order one.

Rather than prove that (s− 1)ζ(s) is an integral function of order one, it
is convenient to first include some Γ- and other factors.

Lemma 6.5. The function f(s) = s(1 − s)π−s/2Γ(s/2)ζ(s) = s(1 − s)Ξ(s)
is an integral function of order one.

Proof. We have already noted that Ξ is meromorphic except for simple
poles at s = 0, 1, so f is entire. Therefore we need only establish a growth
condition of the form

|f(s)| ≪ eCε|s|1+ε
(6.1)

for all ε > 0. In fact we will establish the stronger bound

|f(s)| ≪ exp(O(|s| log |s|))
for |s| ⩾ 3, which is easily seen to imply (6.1). Moreover, from the functional
equation we have f(s) = f(1 − s), and so it is enough to prove this when
Re s ⩾ 1

2 . (Here, we note that

|f(1− s)| = |f(s)| ≪ exp
(
O(|s| log |s|

)
≪ exp

(
O(|1− s| log |1− s|)

)
,

since |s| log |s| ≪ |1− s| log |1− s| for |1− s| ⩾ 3.) When Re s ⩾ 1
2 we have

the integral representation

ζ(s) =
s

s− 1
− s

∫ ∞

1
{x}x−s−1 dx.

that we found in Proposition 3.4. This in fact implies (writing σ := Re s)
that

|(s− 1)ζ(s)| ⩽ |s|+ |s(s− 1)|
∫ ∞

1
x−σ−1dx

= |s|+ |s(s− 1)| 1
σ
≪ |s|2

in this domain. For the Γ-factor we also have the integral representation

Γ(s/2) =

∫ ∞

0
e−tts/2−1dt,

so

|Γ(s/2)| ⩽ Γ(
1

2
Re s) ⩽ ⌊1

2
Re s⌋! = exp(O(|s| log |s|))
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This final bound follows from the fact that (for integer k) k! ⩽ kk =
exp(k log k).

It follows from Proposition 6.4 that

f(s) = eAs+B
∏
ρ

(
1− s

ρ

)
es/ρ, (6.2)

where the product is over the zeros ρ of f . In making this claim we have
observed that f(0) ̸= 0; the simple zero of s cancels the simple pole of
Γ(s/2), and ζ(0) ̸= 0 (the calculation of its exact value being an exercise
on sheet 3). The zeros ρ satisfy

∑
ρ |ρ|−2 <∞. Note that these zeros ρ are

precisely the nontrivial zeros Znontriv of ζ(s), namely those in the critical
strip 0 ⩽ Re s ⩽ 1, because the factor of Γ(12s) cancels out the trivial zeros of

ζ at −2,−4,−6, . . . . It is clear that
∑

ρ∈Ztriv
|ρ|−2 <∞, so

∑
ρ∈Z |ρ|−2 <∞.

Of course,

(s− 1)ζ(s) = −π
s/2

s

1

Γ(s/2)
f(s).

We may now recover the claimed product formula (with different constants
A,B) for (s − 1)ζ(s) from (6.2) and the Weierstrass product for 1/Γ, that
is to say Proposition 5.1 (iii).

6.3. The size of a holomorphic function and its zeros. To prove
Proposition 6.4 we need various facts about the relation between the size of
a holomorphic function and the number of its zeros. We collect the facts we
need in this section.

Write BR for the domain |z| < R.

Theorem 6.6 (Jensen’s formula). Let R, ϵ > 0. Suppose that f is holo-
morphic on BR+ϵ, and that f(z) ̸= 0 for R ⩽ |z| < R + ϵ and for z = 0.
Then ∫ 1

0
log |f(Re2πiθ)| dθ = log |f(0)|+

∑
ρ

log
R

|ρ|
, (6.3)

where the sum is over zeros ρ of f in BR, counted with multiplicity.

Proof. Observe that if the identity is true for functions f1 and f2 then it is
also true for f1f2. Write

gρ(z) =
R(z − ρ)

R2 − ρz

and define a meromorphic function F by

f(z) = CF (z)
∏
ρ

gρ(z),

where C is chosen so that F (0) = 1. If ϵ is chosen so small that the poles
z = R2/ρ lie outside of BR+ϵ then F has no zeros in BR+ϵ. Jensen’s formula
being manifestly true for constant functions, it suffices to check it for F
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and for the functions gρ. Now we may define a single-valued, holomorphic
logarithm of F in BR+ϵ by the formula

logF (z) :=

∫
[0→z]

F ′(w)

F (w)
dw.

Since F (0) = 1 the function z−1 logF (z) is also holomorphic in BR+ϵ. Hence
by Cauchy’s theorem we have∫

∂BR

logF (z)

z
dz = 0.

Parametrising the circle ∂BR by z = Re2πiθ, 0 ⩽ θ < 1 we get∫ 1

0
logF (Re2πiθ) dθ = 0.

Taking real parts gives ∫ 1

0
log |F (Re2πiθ)| dθ = 0.

This is one side of (6.3); the other side is clearly zero. Thus we have verified
the formula for F .

Turning our attention to the functions gρ, note that if |z| = R then

|gρ(z)| =
∣∣∣∣z(z − ρ)

R2 − ρz

∣∣∣∣ = 1.

Thus the left-hand side of (6.3) equals 0. As for the right-hand side, note
that |gρ(0)| = |ρ|/R. Thus the right-hand side is zero as well.

The next result applies Jensen’s formula to get a fairly tight relation
between the size of a holomorphic function and the number of its zeros.

Corollary 6.7. Let f be an entire function with f(0) = 1. Then for any R
the number of zeros ρ of f with |ρ| < R is at most 2 sup|z|⩽3R log |f(z)|.

Proof. Pick a radius R0 ∈ [2R, 3R] such that f(z) ̸= 0 whenever |z| = R0.
This is possible since otherwise f would have infinitely many zeros in the
compact set |z| ⩽ 3R, contrary to the identity principle. Jensen’s formula
immediately gives∑

ρ

log
R0

|ρ|
=

∫ 1

0
log |f(R0e

2πiθ)|dθ ⩽ sup
|z|=R0

log |f(z)| ⩽ sup
|z|⩽3R

log |f(z)|,

where the sum is over all zeros ρ inside BR0 . Each term log R0
|ρ| is positive,

and the terms corresponding to zeros ρ with |ρ| < R contribute at least
log 2 > 1

2 .

A corollary of this and some of our earlier estimates is a bound for the
number of zeros of ζ.



ANALYTIC NUMBER THEORY 35

Proposition 6.8. Let T ⩾ 2. The number of nontrivial zeros of ρ of the
Riemann ζ-function with imaginary part at most T is O(T log T ).

Proof. Consider the function f(s) = s(1 − s)π−s/2Γ(s/2)ζ(s), which van-
ishes at all nontrivial zeros of ζ. We showed earlier in the chapter that f
is entire and satisfies the growth condition |f(s)| ≪ eO(|s| log |s|). It follows
from Corollary 6.7 that the number of nontrivial zeros of ζ with |ρ| ⩽ T +1
is O(T log T ). If ρ is nontrivial and | Im ρ| ⩽ T then |ρ| ⩽ T + 1, and so the
result follows.

The next result does not use Jensen’s formula. It tells us the structure of
entire functions of moderate growth with no zeros.

Lemma 6.9. Suppose that g is an entire function with no zeros which satis-
fies the bound |g(z)| = exp(O(|z|3/2)) whenever |z| = Rj, j = 1, 2, . . . , where
Rj → ∞ as j → ∞. Then g(z) = eAz+B for some constants A,B.

Proof. Multiplying through by a constant, we may assume that g(0) = 1.
Since g is nonvanishing, it has a holomorphic branch of logarithm h(z) :=
log g(z) with h(0) = 0, exactly as in the proof of Jensen’s formula. We

cannot immediately conclude that |h(z)| ≪ |z|3/2 = R
3/2
j for |z| = Rj , but

it does at least follow that Reh(z) = log |g(z)| ⩽ CR
3/2
j for some absolute

constant C, and hence

|Reh(z)| ⩽ 2CR
3/2
j − Reh(z)

(consider the cases Reh(z) ⩾ 0 and Reh(z) ⩽ 0 separately). It follows that∫ 1

0
|Reh(Rje

2πiθ)|dθ ⩽ 2CR
3/2
j −

∫ 1

0
Reh(Rje

2πiθ)dθ ≪ R
3/2
j , (6.4)

using the fact that h(z)
z is holomorphic, as in the proof of Jensen’s formula.

Now if the Taylor expansion of h(z) is
∑∞

n=0 cnz
n then we have

2Re(h(Rje
2πiθ)) =

∑
n⩾0

cnR
n
j e

2πinθ +
∑
n⩾0

cnR
n
j e

−2πinθ.

By orthogonality it follows that

cm =
1

2
R−m

j

∫ 1

0
Re(h(Rje

2πiθ))e−2πimθdθ,

and so by the triangle inequality

|cm| ⩽ R−m
j

1

2

∫ 1

0
|Reh(Rje

2πiθ)|dθ.

By (6.4) it follows that

|cm| ≪ R
3/2−m
j .

Letting j → ∞, this implies that c2 = c3 = · · · = 0, and so h(z) = c0 + c1z
is linear. This concludes the proof.
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6.4. Weierstrass products: proof. The aim of this section is to give a
detailed proof of Proposition 6.4.

The reader should start by recall the statement of Proposition C.2, which
describes the convergence properties of Weierstrass products EΩ(z).

From the growth condition on f and Corollary 6.7 it follows very easily
that

#{ρ : R ⩽ |ρ| ⩽ 2R} ≪ε R
1+ε, (6.5)

for every ε > 0. In particular (taking any ε < 1) we see that
∑

ρ ̸=0 |ρ|−2 <
∞. Therefore we may apply Proposition C.2 with Ω being the set of zeros
of f other than 0, obtaining an entire function EΩ(z) which vanishes (with
the correct multiplicity) precisely at Ω. If f has a zero of order r at z = 0,
then we define

g(z) :=
f(z)

zrEΩ(z)
.

By construction, g is an entire function of z with no zeros. To complete the
proof of Proposition 6.4, we need only show that g(z) = eAz+B. Moreover
we already have a tool for doing precisely this, namely Lemma 6.9. Applying
this lemma, we see that all we need do is establish an upper bound

|g(z)| ⩽ eCR
3/2
j

for |z| = Rj , for some sequence of radii Rj → ∞.
Since we already have a bound on f (by assumption) and z−r decays

quickly, it is enough to establish the lower bound

|EΩ(z)| ⩾ e−C′R
3/2
j (6.6)

for |z| = Rj . This is slightly delicate, and must involve a careful choice
of the Rj , since EΩ(z) vanishes at the points of Ω. In the light of this, it
obviously makes sense to choose the radii Rj to lie away from any of the
zeros ρ.

We will show that for every j we can choose an Rj ∈ [2j , 2j+1] such that
(6.6) is satisfied. Write Sj for the set of zeros with 2j ⩽ |ρ| ⩽ 2j+1. Then,
by (6.5) with ε = 1, |Sj | ≪ 22j . It follows easily that Rj may be chosen in
such a way that

|z − ρ| ≫ 2−j (6.7)

whenever |z| = Rj , for all zeros ρ. Suppose from now on that |z| = Rj .
To get a lower bound on EΩ(z), we divide the product into dyadic sub-

products

E
(j′)
Ω (z) :=

∏
ρ∈Sj′

(1− z/ρ)ez/ρ,

j′ = 0, 1, 2, . . . . The contribution from |ρ| ⩽ 1 is clearly bounded below,
independently of R, by some constant (which may depend on f).
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Now if j′ < j − 10 (say) then, for any zero ρ occurring in the product

E
(j′)
Ω (z), we have |1− z/ρ| ⩾ 1. Furthermore |ez/ρ| ⩾ e−2j−j′

, and so

|E(j′)
Ω (z)| ⩾ (e−2j−j′

)|S2j
′ | ⩾ e−C2j2j

′/10

(say), the last bound here being a consequence of (6.5) with ε := 1/10.
If j − 10 < j′ < j + 10 then we employ the bound |1 − z/ρ| ⩾ c2−2j , a

consequence of (6.7). For any such j′ we have |ez/ρ| ≫ 1, and so

|E(j′)
Ω (z)| ≫ (c2−2j)|S2j

′ | ≫ e−C23j/2 ,

this last bound following from (6.5) with any value of ε < 1
2 .

Finally, suppose that j′ ⩾ j+10. By a crude Taylor series expansion one

has |(1− w)ew| > e−10|w|2 for |w| < 1/10. Thus, for these values of j,

|E(j′)
Ω (z)| > (e−10·22j−2j′

)|S2j
′ | ⩾ e−C22j2−j′/2

,

applying (6.5) with ε = 1
2 .

It is a simple matter to check that the product of all these estimates for

E
(j′)
Ω (z), over all j′, is bounded below by e−C23j/2 , for some absolute constant

C. This concludes the proof.

7. Mellin transforms and the explicit formula

In this section we will take steps towards clarifying the relationship be-
tween primes and the zeros of the Riemann ζ-function, by proving the so-
called explicit formula.

7.1. Definitions and statement of the formula. Recall that the von
Mangoldt function Λ and it is defined by

Λ(n) :=

{
log p if n = pm is a prime power
0 otherwise.

The fact that Λ(n) ̸= 0 for prime powers pm as well as for the primes
themselves is almost never more than a slight annoyance, since the prime
powers are so sparse.

The prime number theorem asserts the ψ(X) ∼ X, where

ψ(X) :=
∑
n⩽X

Λ(n).

Another way of writing this is

ψ(X) =
∑
n

Λ(n)W
( n
X

)
,

whereW : R → R is 1[0,1], the function defined to equal 1 on [0, 1], and zero
elsewhere. The explicit formula is a formula for sums like this in terms of
the zeros of ζ. However, we will only prove the formula when W is smooth,
that is to say infinitely differentiable, and also compactly supported (that
is, zero outside some closed interval). This means that in order to apply
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it to the prime number theorem we must approximate 1[0,1] by smooth,
compactly supported functions. This is not especially difficult, but also not
entirely straightforward – indeed, even the existence of a smooth compactly
supported function other than 0 is not immediately obvious.

The explicit formula involves the Mellin transform. This was discussed
briefly in Chapter 4. We reintroduce it now: it is convenient to denote it
with a tilde rather than a hat, as we will require the Fourier transform on R
in our arguments. Moreover, the Mellin transform as defined earlier had, as
its domain, the imaginary axis {it : t ∈ C}. Now we will extend the domain
of definition to the whole complex plane, which takes us a little outside the
scope of the discussion in Chapter 4.

Definition 7.1. Suppose that W : R → R is has compact support con-
tained in (0,∞). For any complex number s we define the Mellin transform

W̃ by

W̃ (s) :=

∫ ∞

0
W (x)xs

dx

x
.

The assumption thatW has compact support bounded away from 0 means
that W is well-defined and entire, the derivative of W being obtained by
differentiating under the integral.

Theorem 7.2 (Explicit formula). Let W be a smooth, compactly supported
function, supported on [1,∞). Suppose that X > 1. Then∑

n

Λ(n)W
( n
X

)
= X

( ∫
R
W

)
−

∑
ρ∈Z

XρW̃ (ρ).

The sum here is over the set Z = Ztriv ∪ Znontriv of all zeros of ζ.

Remarks. Since W̃ (1) =
∫
W , one could if desired write the right-hand side

as

−
∑
w∈C

ordζ(w)X
wW̃ (w),

where ordζ(w) is the order of ζ at w, that is to say r if w is a zero of order
r, and −r if w is a pole of order r.

The assumption thatW be compactly supported is very convenient for the
proof, for instance because in this case it is clear that W̃ (s) is holomorphic.
However, Theorem 7.2 does hold under weaker conditions. We will not
discuss this here.

In some ways, W is most naturally thought of as a function on the
multiplicative positive real line R+. To this end, we associate a function
w : R+ → R via w :=W ◦ exp, that is to say

w(u) :=W (eu).

Saying Supp(W ) is a compact subset of (0,∞) is then equivalent to saying
that w is compactly supported, whilst the condition Supp(W ) ⊂ [1,∞) is
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equivalent to Supp(w) ⊂ [0,∞). One may note that

W̃ (s) =

∫ ∞

0
W (x)xs

dx

x
= ŵ(is),

where ŵ denotes the Fourier transform of w (but allowed to take arguments
in C, not just in R). The explicit formula can be written in terms of w as∑

n

Λ(n)w(log n− logX) = X

∫ ∞

0
w(log x)dx−

∑
ρ∈Z

Xρŵ(iρ).

Before turning to the proof of the explicit formula, let is make some
remarks about its form. The term X(

∫
W ) is the “main term”; one would

expect the sum on the left to equal roughly this, at least if one assumes
the prime number theorem, since Λ has average value 1 and

∑
nW ( n

X ) ≈
X(

∫
W ). The remaining terms

∑
ρ∈Z W̃ (ρ) are, therefore, to be thought

of as “error terms”. It turns out that the contribution from ρ ∈ Ztriv is
negligible, leaving the sum

∑
ρ∈Znontriv

XRe ρW̃ (ρ). Let us imagine, for the

moment (and we will prove various rigorous assertions about this in the next

section) that W̃ (ρ) is on the order of 1. The contribution of this term rather
depends on what we know about the location of the nontrivial zeros Znontriv;
at the moment, all we know is that they lie in 0 ⩽ Re ρ ⩽ 1. For all we
know, it could be that some zero ρ lies on the line Re s = 1, in which case
one would expect the term XRe ρW̃ (ρ) to have the same order of magnitude,
O(X), as the main term. Thus, once one has the explicit formula, further
progress on the prime number theorem depends on pinning down further
information about the nontrivial zeros.

7.2. Proof of the explicit formula – overview. In this section we outline
the proof of the explicit formula, leaving some technical details to the next
section.

A key ingredient is the inversion formula for the Mellin transform, which
is basically equivalent to the Fourier inversion formula.

Proposition 7.3. Let W : R → R be a smooth function with compact sup-
port contained in (0,∞). Then for any σ ∈ R we have the Mellin inversion
formula

W (x) =
1

2πi

∫ σ+i∞

σ−i∞
W̃ (s)x−s ds.

Proof. Suppose that s = σ + it. Then

W̃ (s) = ŵ expσ(−t), (7.1)

where w is defined as before, and now the Fourier transform takes a real
argument −t. Here, exp is the exponential function, so expσ(x) := eσx. The
function w expσ is of course compactly supported and smooth, so we may
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apply the Fourier inversion formula to get

w(u) = e−σu 1

2π

∫ ∞

−∞
ŵ expσ(−t)e−itudt = e−σu 1

2π

∫ ∞

−∞
W̃ (s)e−itudt,

which is equivalent to the stated formula if one substitutes u = log x.

Let us recall that we know how to obtain decay estimates for the Fourier
transform of smooth functions: see for example Lemma 4.1. It is therefore
not surprising that (7.1) will be useful in its own right for obtaining corre-
sponding estimates for the Mellin transform. See Proposition 7.4 below for
details.

Now we can outline the proof of the explicit formula as stated in Theorem
7.2. The proof begins with the Dirichlet series∑

n

Λ(n)n−s = −ζ
′(s)

ζ(s)
,

valid for Re s > 1. We established this earlier in the course.
By the Mellin inversion formula, Proposition 7.3 and this Dirichlet series

expansion we have∑
n

Λ(n)W
( n
X

)
=

∑
n

Λ(n)
1

2πi

∫ 2+i∞

2−i∞
W̃ (s)(n/X)−s ds

=
1

2πi

∫ 2+i∞

2−i∞

(∑
n

Λ(n)n−s
)
XsW̃ (s) ds

=
1

2πi

∫ 2+i∞

2−i∞
−ζ

′(s)

ζ(s)
XsW̃ (s) ds. (7.2)

We will rigorously justify this calculation in the course of our proofs.
We now reach the heart of the argument. The idea is to start with (7.2)

and to move the contour of integration far to the left, picking up residues
due to the poles of ζ ′/ζ at s = 1, at the non-trivial zeros ρ ∈ Znontriv in the
critical strip, and at the trivial zeros Ztriv = {−2,−4,−6, . . . }. To this end
we note that

Ress=1
ζ ′

ζ
= −1,

Ress=−2k
ζ ′

ζ
= 1,

and Ress=ρ
ζ′

ζ is equal to the multiplicity of the zero ρ.

To perform this contour integration rigorously we employ a rectangular

contour Ck,T = C
(1)
T ∪ C

(2)
k,T ∪ C

(3)
k,T ∪ C

(4)
k,T , where C

(1)
T = [2 − iT, 2 + iT ],

C
(2)
k,T = [2 + iT,−2k − 1 + iT ], C

(3)
k,T = [−2k − 1 + iT,−2k − 1 − iT ] and

C
(4)
k,T = [−2k−1− iT, 2+ iT ], and then choose suitable values of k, T tending

to infinity. Here k is an integer; with this choice, C
(3)
k,T avoids the poles of
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ζ ′/ζ at the trivial zeros Ztriv. The choice of T is rather more delicate and in

particular we need to make sure that neither C
(2)
k,T nor C

(4)
k,T pass close to any

of the poles of ζ ′/ζ at the nontrivial zeros Znontriv. Later on, we will choose
a sequence T1, T2, . . . of “good” values of T and corresponding integers kj

such that, in particular, neither C
(2)
kj ,Tj

nor C
(4)
kj ,Tj

contain any zeros of ζ, and

such that kj , Tj → ∞.
For ℓ = 1, 2, 3, 4 and for some choice of k, T define

I
(ℓ)
k,T := − 1

2πi

∫
C

(ℓ)
k,T

ζ ′(s)

ζ(s)
XsW̃ (s) ds. (7.3)

To calculate
∑4

ℓ=1 I
(ℓ)
k,T we apply the residue theorem and the preceding

remarks, obtaining

4∑
ℓ=1

I
(ℓ)
k,T = XW̃ (1)−

∑
ρ∈Znontriv

|ρ|<T

XρW̃ (ρ)−
k∑

m=1

X−2mW̃ (−2m). (7.4)

Note that

W̃ (1) =

∫
R
W.

Therefore as k, T tend to infinity along any subsequence, the right-hand
side of (7.4) tends towards the right hand side of the explicit formula. To
conclude the proof of the explicit formula it therefore suffices to show that

lim
j→∞

I
(1)
kj ,Tj

=
∑
n

Λ(n)W
( n
X

)
(7.5)

(which also gives a rigorous justification of (7.2)) as well as

lim
j→∞

I
(2)
kj ,Tj

, I
(4)
kj ,Tj

= 0 (7.6)

and

lim
j→∞

I
(3)
kj ,Tj

= 0. (7.7)

We will prove these statements (as well as define the sequences kj , Tj) in
the next section.

7.3. Estimates for the Mellin transforms. The following lemma gives
a decay estimate for the Mellin transform of a smooth function. In this
lemma, we have obeyed the usual cultural norm, which is that s = σ + it
denotes a general element of the complex plane, while ρ denotes a zero of ζ
which, if ρ is nontrivial, we write as β + iγ.

Lemma 7.4. Suppose that W : R+ → R is smooth and has compact support
contained in [1,∞). Then
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(i) Suppose that −∞ < σ ⩽ 2. Then we have

|W̃ (σ + it)| ≪W 1 (7.8)

and, for any integer m ⩾ 0,

|W̃ (σ + it)| ≪m,W (1 + |σ|)m|t|−m (7.9)

uniformly for |t| ⩾ 1.
(ii) Suppose that SuppW ⊆ [1, 10]. We have the bounds

|W̃ (ρ)| ≪m sup
0⩽j⩽m

∥∂jW∥1|ρ|−m (7.10)

whenever ρ ∈ Znontriv, |ρ| ⩾ 2, and

|W̃ (ρ)| ≪ ∥W∥1 (7.11)

uniformly for all ρ ∈ Z = Ztriv ∪ Znontriv.

Remark. We remark that we have explicitly formulated this result in parts
with future applications in mind. Part (i) is the bound we will use in proving
the explicit formula, whereas (ii) are the bounds we will use in applying the
explicit formula, where it is important to understand the penalty one must
pay when approximating a rough cutoff by a smooth function W .

Note that the bounds are of two types, namely ‘trivial’ bounds (7.8),
(7.11) giving what are essentially very crude constant bounds, and the more
sophisticated bounds (7.9), (7.10) which give decay of the Mellin transform
in the vertical direction.

Proof. The proof of all parts uses (7.1), that is to say

W̃ (σ + it) = ŵ expσ(−t), (7.12)

where w :=W ◦ exp. We also use Lemma 4.1, which states that

|f̂(t)| ⩽ |t|−m∥∂mf∥1 (7.13)

for any f ∈ S(R). For (7.8) and (7.11), we use the case m = 0 of (7.13), or

in other words the simple bound |f̂(t)| ⩽ ∥f∥1. This gives∣∣W̃ (σ + it)
∣∣ ⩽ ∫ ∞

0
|w(u)|eσudu ⩽

(
max(Supp(W ))

)σ∥w∥1.
The bound (7.8) follows immediately from this. The bound (7.11) follows
from this and the additional observations that

∥w∥1 =
∫ ∞

0
|w(u)|du =

∫ ∞

0
|W (eu)|du =

∫ ∞

1

|W (x)|
x

dx ⩽ ∥W∥1,

as well as the fact that (
max(Supp(W ))

)σ
⩽ 10

if ρ = σ + it is a zero of ζ, since Supp(W ) ⊆ [1, 10].
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For the other statements, we use (7.13) with m ⩾ 1, which requires us to
estimate the derivatives. By Leibniz’s rule and the triangle inequality,∥∥∂m(w expσ)

∥∥
1
≪m sup

0⩽j⩽m

∥∥(∂jw)(∂m−j expσ)
∥∥
1

= sup
0⩽j⩽m

∥∥(∂jw)σm−j expσ
∥∥
1

⩽ E1E2E3,

where

E1 := sup
0⩽j⩽m

|σ|m−j , E2 := sup
u∈Suppw

eσu, E3 := sup
0⩽j⩽m

∥∂jw∥1.

For (7.9), we use the bounds E1 ≪ (1+ |σ|)m, E2 ≪W 1 and E3 ≪W,m 1.
For (7.10), set ρ = β + iγ, where 0 ⩽ β ⩽ 1, and note that |ρ| ≪ |γ|;

therefore it suffices to get bounds in terms of |γ|−m (which is what (7.13)
gives) rather than |ρ|−m. In the definition of E1, E2, E3, σ must be replaced
by β. We have the bounds E1 ≪m 1, which holds uniformly for 0 ⩽ β ⩽ 1,
and E2 ≪ 1, which again holds uniformly for 0 ⩽ β ⩽ 1 since Supp(w) ⊂
[0, 3]. To complete the proof, we must bound E3 by showing that

sup
0⩽j⩽m

∥∂jw∥1 ≪m sup
0⩽j⩽m

∥∂jW∥1. (7.14)

To see this, observe that by Leibniz’s rule ∂jw(u) is a sum of terms of the

form ej
′u∂j

′
W (eu) for j′ ⩽ j. But∫ log 10

0
ej

′u∂j
′
W (eu)du =

∫ 10

1
xj

′−1∂j
′
W (x)dx≪j′ ∥∂j

′
W∥1,

so the result follows.

7.4. Bounds for ζ ′/ζ at judicuously chosen points. Now it is time to
start thinking about how to choose the ordinates Tj and the corresponding kj
in such a way that the poles of ζ ′(s)/ζ(s) do not interfere with the horizontal

contours C
(2)
kj ,Tj

, C
(4)
kj ,Tj

. Very crude estimates suffice, ultimately because we

are dealing with smooth functions W which enjoy very advantageous Mellin
decay properties.

We isolate a sublemma from the proof (I called this ‘an application of the
pigeonhole principle’ in lectures).

Lemma 7.5. Let S ⊂ R be a sequence and let I be an interval. Suppose
that |S ∩ I| = n. Then there is some x ∈ I with dist(x, S) ⩾ |I|/2(n+ 2).

Proof. By translating and rescaling, we may assume without loss of gener-
ality that I = [0, 1]. Consider the n + 1 disjoint open intervals centred on
j/(n+2), j = 1, . . . , n+1 and with length 1/(n+2). These are all contained
in I. By the pigeonhole principle and the assumption, one of these intervals
contains no point of S. One may then take x to be the midpoint of this
interval.
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Lemma 7.6. There is a sequence of T tending to infinity such that

dist(s, Z) ⩾ 1/T

uniformly for all s with Im s = T .

Proof. Let U be a sufficiently large real parameter. We will show that
it is possible to find T ∈ [U, 2U ] with the stated property. Certainly, for
any s with Im s ⩾ U we have (provided U ⩾ 1) that dist(s, Ztriv) ⩾ 1
and so it suffices to handle the nontrivial zeros. We showed earlier that∑

ρ |ρ|−3/2 <∞, which certainly implies that the number of nontrivial zeros

ρ = β + iγ in the critical strip (thus with 0 ⩽ β ⩽ 1) with U ⩽ γ ⩽ 2U

is O(U3/2). (In fact, in Proposition 6.8 we obtained the stronger bound
O(U logU).) By Lemma 7.5, applied with S being the sequence of imaginary

parts of the nontrivial zeros of ζ, I = [U, 2U ] and n ≪ U3/2, we see that

there is some T ∈ [U, 2U ] such that |T − γ| ≫ U−1/2, and hence such that
|T − γ| ⩾ 1/T provided U is sufficiently large, for the ordinate γ of any
nontrivial zero. Finally, note that if ρ = β + iγ and if Im s = T then
|s− ρ| ⩾ |T − γ|.

We call a value of T for which the conclusion of Lemma 7.6 holds good.
If T is good then certainly there are no elements of Znontriv, and hence no
poles of ζ ′/ζ, on the horizontal lines Im s = ±T , and hence in particular no

such poles on the contours C
(2)
k,T , C

(4)
k,T . We actually need rather more than

this, namely a reasonable upper bound for ζ ′/ζ on these contours. That
said, a fairly crude bound will do, and we provide such a bound in the next
proposition.

Proposition 7.7. Suppose that |s| ⩾ 3. Then

ζ ′(s)

ζ(s)
≪ |s|3 dist(s, Z)−1,

where Z is the set of all zeros of ζ.

Remark. This is a crude bound, and stronger ones could be obtained. For
our purposes, however, any bound of the form |s|C dist(s, Z)−C′

would be
sufficient.

Proof. We use the partial fraction expansion

ζ ′(s)

ζ(s)
= B′ − 1

s− 1
+

∑
ρ∈Z

(
1

s− ρ
+

1

ρ

)
.

The first two terms are clearly O(1) in the domain |s| ⩾ 3. Note that the
right-hand side is ≫ 1, since dist(s, Z) ⩾ dist(s,−2) ⩾ 1.

To bound the sum over the zeros in the partial fraction expansion, our
main ingredient will be the estimate∑

ρ∈Z
|ρ|−2 <∞. (7.15)
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We will split into the sum into two parts. Suppose first that |ρ| ⩾ 2|s|. Then
|s/ρ| ⩽ 1

2 , and hence | sρ − 1| ⩾ 1
2 and hence |s− ρ| ⩾ 1

2 |ρ|. Hence∑
|ρ|⩾2|s|

(
1

s− ρ
+

1

ρ

)
⩽ |s|

∑
|ρ|⩾2|s|

1

|s− ρ||ρ|
⩽ 2|s|

∑
|ρ|⩾2|s|

1

|ρ|2
≪ |s|, (7.16)

the last step of course following from (7.15). To estimate the contribu-
tion from the remaining zeros, those with |ρ| < 2|s|, we proceed extremely
crudely. By (7.15) it follows immediately that the number of such zeros is
O(|s|2). The contribution from a given one is

|s|
|s− ρ||ρ|

≪ |s| dist(s, Z)−1,

where here we used the fact that 1
|ρ| ≪ 1, which follows simply from the

fact that 0 is not a zero of ζ. (Evaluating ζ(0) is a question on Sheet 3.)
Therefore ∑

|ρ|<2|s|

(
1

s− ρ
+

1

ρ

)
≪ |s|3 dist(s, Z)−1,

and the proposition follows.

Choose our sequences of kj , Tj as follows. Let Tj be any sequence of good

values of T with limj→∞ Tj = ∞. Set kj := ⌈T 1/4
j ⌉. Now we complete the

proof of the explicit formula by verifying (7.5), (7.6) and (7.7) with these
choices. For brevity we omit the subscript j, writing (k, T ) = (kj , Tj), and
when we talk about the limit we mean as j → ∞.

Proof of (7.5). We begin by recalling the first step of the calculation
leading to (7.2), namely

∑
n

Λ(n)W
( n
X

)
=

∑
n

Λ(n)
1

2πi

∫ 2+i∞

2−i∞
W̃ (s)(n/X)−s ds.

(This is rigorous, being an application of the Mellin inversion formula; note
also that the sum over n is effectively a finite sum since W is compactly
supported). Now we truncate the integral to 2 ± iT , or in other words

to the contour C
(1)
k,T . Recall from (7.9) that we have the decay estimate

|W̃ (2 + it)| ≪W |t|−2, so the error in doing this is bounded above by

≪W

∑
n

Λ(n)(n/X)−2

∫ ∞

T
|t|−2dt≪ X2

T

∑
n

Λ(n)n−2 ≪ X2

T
,

which clearly tends to 0 as T → ∞.
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For the integral from 2−iT to 2+iT we interchange summation, obtaining∑
n

Λ(n)
1

2πi

∫ 2+iT

2−iT
W̃ (s)(n/X)−sds =

1

2πi

∫ 2+iT

2−iT

(∑
n

Λ(n)n−s
)
XsW̃ (s)

=
1

2πi

∫ 2+iT

2−iT
−ζ

′(s)

ζ(s)
XsW̃ (s)ds = I

(1)
k,T .

Note here that
∑

n Λ(n)n
−s = −ζ ′(s)/ζ(s) is uniformly bounded on the

contour by ζ(2). The statement (7.5) now follows.

Proof of (7.6). If s ∈ C
(2)
k,T ∪ C(4)

k,T then, since T is good, dist(s, Z) ≫ 1
T .

It follows from Proposition 7.7 that, uniformly for s ∈ C
(2)
k,T ∪C(4)

k,T , we have

ζ ′(s)

ζ(s)
≪ |s|3T ≪ k3T 4.

It follows that

I
(2)
k,T , I

(4)
k,T ≪ k3T 4

∫ 2

−2k−1
Xσ|W̃ (σ + iT )| dσ.

The bound (7.9) with m = 5 tells is that

|W̃ (σ + iT )| ≪W (1 + |σ|)5T−5

uniformly for −∞ < σ ⩽ 2. Therefore we obtain

I
(2)
k,T , I

(4)
k,T ≪W k3T−1

∫ 2

−2k−1
(1 + |σ|)5Xσdσ ≪W,X k3T−1,

where here we used the fact that X > 1. Thus

I
(2)
k,T , I

(4)
k,T ≪W,X k3T−1.

Since k = ⌈T 1/4⌉, statement (7.6) follows.

Proof of (7.7). If s ∈ C
(3)
k,T then dist(s, Z) ⩾ 1 and so Proposition 7.7

furnishes the bound ζ′(s)
ζ(s) ≪ |s|3. If s = −2k − 1 + it then (crudely) this is

≪ k3max(1, |t|)3.
From (7.9) with m = 5 we have

|W̃ (−2k − 1 + it)| ≪W k5max(1, |t|)−5.

Thus
ζ ′(s)

ζ(s)
XsW̃ (s) ≪W k8max(1, |t|)−2X−2k−1,

which implies that

I
(3)
k,T =

∫ −2k−1+iT

−2k−1−iT

ζ ′(s)

ζ(s)
XsW̃ (s)ds≪W k8X−2k−1.

From this and the fact that X > 1 we immediately conclude (7.7), that is
to say that indeed

lim
k,T→∞

I
(3)
k,T = 0
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Note that for the estimation of I(3) there was no need to restrict to T good.

8. The prime number theorem

In the last section we established the explicit formula, which provides a
relationship between the distribution of prime numbers and the nontrivial
zeros ρ of the ζ-function. To make use of this result, and in particular to
prove the prime number theorem, it is important to have some information
about the location of those zeros.

The prime number theorem turns out to be more-or-less equivalent to the
following statement.

Proposition 8.1. There are no zeros of ζ on the line Re s = 1.

Proof. Consider the Euler product identity

ζ(s) =
∏
p

(1− p−s)−1,

valid for Re s > 1. Set s = σ + it; we will let σ → 1. Taking logs*, we have

log ζ(s) = −
∑
p

log(1− p−s) =
∑
p

∞∑
m=1

1

mpms
=

∑
p

∞∑
m=1

1

mpmσ
e−imt log p.

(8.1)
Now we invoke the inequality

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ⩾ 0. (8.2)

Applying this with θ = mt log p and comparing with (8.1), we get

3 log ζ(σ) + 4Re log ζ(σ + it) + Re log ζ(σ + 2it) ⩾ 0,

and thus
ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ⩾ 1.

Now suppose that ζ(1+ it) = 0, and let σ → 1 in the inequality just proved.
We have ζ(σ) ∼ (σ− 1)−1, but |ζ(σ+ it)|4 ≪ (σ− 1)4 (by Taylor exapnsion
about the putative zero at 1 + it). Since ζ(σ + 2it) remains bounded as
σ → 1, we have

ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| → 0,

a contradiction.

Remark. *There is a bit of subtlety about what is meant by taking logs
here. Note that complex logs are only defined up to an ambiguity in 2πiZ.
In the above, the − log(1−p−s) terms are defined using the series expansion
− log(1 − z) =

∑
j⩾1 z

j/j, which converges for |z| < 1, and so is certainly

valid with z = p−s. It is a known fact from complex analysis that, with
this definition, e− log(1−z) = (1 − z)−1. The logarithm of

∏
p(1 − p−s)−1 is

defined to be −
∑

p log(1 − p−s). What we used in the proof is that the

exponential of this is
∏

p(1 − p−s)−1, which follows from e
∑

p ap =
∏

p e
ap
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(where ap := (1−p−s)−1). Note that we should not expect log
∏

p(1−p−s)−1

to be given by a series expansion, but we never used any such statement in
the argument.*

We are now in a position to prove the following ‘smoothed’ version of the
prime number theorem, from which the theorem itself will be a relatively
easy deduction.

Proposition 8.2. Suppose that W : R → R is smooth and that Supp(W ) ⊂
[1, 10]. Then

lim
X→∞

1

X

∑
n

Λ(n)W
( n
X

)
=

∫
W.

Proof. We regard W as fixed throughout the proof and do not indicate
dependencies on W . By the explicit formula it suffices to show that

lim
X→∞

∑
ρ

Xρ−1W̃ (ρ) = 0.

We handle the contribution from the trivial zeros and the nontrivial ones
separately. By (7.11) we have W̃ (ρ) ≪ 1 uniformly for ρ ∈ Ztriv, and so∑

ρ∈Ztriv

Xρ−1W̃ (ρ) ≪W

∞∑
j=1

X−2j−1.

This certainly tends to 0 as X → ∞.
Turning now to the contribution from the nontrivial zeros, we use (7.10)

with m = 2, which tells us that W̃ (ρ) ≪ |ρ|−2 uniformly for ρ ∈ Znontriv.
Noting also that |Xρ−1| ⩽ 1 (since Re ρ ⩽ 1) and recalling that

∑
ρ |ρ|−2 <

∞, it follows that for some K = K(ε) we have∣∣∣ ∑
ρ∈Znontriv:|ρ|⩾K

Xρ−1W̃ (ρ)
∣∣∣ ⩽ ε

2
.

For the nontrivial zeros with |ρ| ⩽ K it follows from (7.9) and the fact
that there are only finitely many such zeros that we have∑

ρ∈Znontriv:|ρ|<K

Xρ−1W̃ (ρ) ≪K Xβ(K)−1,

where β(K) = supρ∈Znontriv:|ρ|⩽K Re ρ. By Proposition 8.1, we have β(K) <

1. If X is big enough, this contribution is less than ε/2. It follows that if X
is large enough in terms of ε then∣∣∣ ∑

ρ∈Znontriv

Xρ−1W̃ (ρ)
∣∣∣ < ε,

which is what we wanted to prove.

Proposition 8.2 is a kind of “smoothed” prime number theorem. Now we
show how the prime number theorem itself follows from it. As shown earlier
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in the course, the prime number theorem is equivalent to the asymptotic∑
n⩽X

Λ(n) = (1 + o(1))X.

Here, we will show that if X is big enough in terms of ε then∑
n⩽X

Λ(n) ⩽ (1 + ε)X. (8.3)

A corresponding lower bound may be established in exactly the same way.
Take a smooth function W : R+ → R such that Supp(W ) ⊂ [2− ε, 4+ ε],

0 ⩽ W (x) ⩽ 1 for all x, and W (x) = 1 for 2 ⩽ x ⩽ 4. A construction of
such a function is given on Example Sheet 3 (Q4 and a slight modification of
Q8). A construction that I regard as more ‘conceptual’ is given in Appendix
B. Applying the explicit formula to W tells us that if Y is sufficiently large
in terms of ε then∑

2Y <n⩽4Y

Λ(n) ⩽
∑
n

Λ(n)W
( n
Y

)
⩽

(ε
3
+

∫
W

)
Y ⩽

(
1 +

2ε

3

)
2Y.

Applying this with Y = X/4, X/8, . . . , X/2m+1 and summing, we see that
if X is sufficiently large in terms of ε and m then∑

X/2m<n⩽X

Λ(n) ⩽
(
1 +

2ε

3

)
X.

Combining this with the result of Proposition 1.5 gives∑
n⩽X

Λ(n) ⩽
(
1 +

2ε

3

)
X +O

( X
2m

)
,

provided X is sufficiently large in terms of ε and m. By choosing m suffi-
ciently large in terms of ε, we can ensure that the second term is ⩽ εX/3.
Therefore, if X is big enough in terms of ε, we have∑

n⩽X

Λ(n) ⩽ (1 + ε)X,

as required.

9. The zero-free region. Error terms.

9.1. The classical zero-free region. In the last section we showed that
ζ has no zeros on the line Re s = 1, and we saw that this implies the prime
number theorem.

In this section we obtain, using a related argument, a region to the left
of Re s = 1 in which there are no zeros of ζ. This may be used to prove a
stronger version of the prime number theorem, with a good error term: we
provide details of this in the next section.

The following is known as the “classical zero-free region”.
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Theorem 9.1. There is an absolute constant c > 0 such that any zero
ρ = β + iγ with |γ| ⩾ 2 satisfies

β < 1− c

log |γ|
.

Remark. Since there are no zeros on the line Re s = 1, one can if desired
state a zero-free region of the form

β < 1− c′

log(|γ|+ 2)

for all γ.

Proof. We may assume that |γ| ⩾ 2, since for small γ the result is a conse-
quence of the fact that there are no zeros on the line Re s = 1 (established
in the last chapter) and a compactness argument.

Of course, for Re s > 1 we have

ζ ′(s)

ζ(s)
= −

∞∑
n=1

Λ(n)n−s.

Taking real parts gives, provided σ > 1,

−Re
ζ ′(σ + it)

ζ(σ + it)
=

∞∑
n=1

Λ(n)n−σ cos(t log n).

Using the inequality

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ⩾ 0

(exactly as in the last section) it follows that

−3Re
ζ ′(σ)

ζ(σ)
− 4Re

ζ ′(σ + it)

ζ(σ + it)
− Re

ζ ′(σ + 2it)

ζ(σ + 2it)
⩾ 0 (9.1)

for any σ > 1 and for any t ∈ R.

Now we assemble some further inequalities. Since ζ′(s)
ζ(s) + 1

s−1 is holomor-

phic, and hence continuous, it is bounded on the compact interval [1, 2].
That is, if 1 < σ ⩽ 2 then

−3Re
ζ ′(σ)

ζ(σ)
⩽

3

σ − 1
+ C1, (9.2)

for some absolute constant C1. To get bounds for the other two terms in
(9.1), we use the partial fraction expansion

ζ ′(σ + it)

ζ(σ + it)
= B − 1

σ + it− 1
+

∑
ρ∈Z

( 1

σ + it− ρ
+

1

ρ

)
.

From now on, suppose 1 ⩽ σ ⩽ 2 and that |t| ⩾ 2. Then the first two terms
are bounded by O(1). To bound the sum over ρ, we treat the trivial zeros
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separately. If 1 ⩽ σ ⩽ 2 and |t| ⩾ 2, the contribution from the trivial zeros
is ∑

k

∑
ρ=−2k

σ + it

ρ(σ + it− ρ)
≪

∑
k⩾1

|t|
k
√
k2 + t2

.

To estimate this sum, we split it into k ⩽ |t| and k ⩾ |t|. On the first range
the summand is ≪ 1

k , so we get a contribution of O(log |t|). On the second

range the summand is ≪ |t|
k2
, and so we get a contribution of O(1). It follows

that

−4Re
ζ ′(σ + it)

ζ(σ + it)
= O(log |t|)− 4Re

∑
ρ∈Znontriv

( 1

σ + it− ρ
+

1

ρ

)
.

By an essentially identical analysis we also have

−Re
ζ ′(σ + 2it)

ζ(σ + 2it)
= O(log |t|)− Re

∑
ρ∈Znontriv

( 1

σ + 2it− ρ
+

1

ρ

)
.

Combining all this information, we obtain

4Re
∑

ρ∈Znontriv

( 1

σ + it− ρ
+

1

ρ

)
+Re

∑
ρ∈Znontriv

( 1

σ + 2it− ρ
+

1

ρ

)
⩽ C2 log |t|+

3

σ − 1
(9.3)

for some C2.
Since Re 1

a+ib = a
a2+b2

and σ > 1 > Re ρ > 0 for every ρ ∈ Znontriv,
every term on the left here is non-negative. Ignoring all terms except the
contribution of the zero ρ = β + iγ to the leftmost sum, and setting t = γ,
we obtain

4

σ − β
⩽ C2 log |γ|+

3

σ − 1
.

Setting σ = 1 + 1/2C2 log |γ| and rearranging then gives

β ⩽ 1− 1

14C2 log |γ|
.

This has been proved whenever |γ| ⩾ 2, and this completes the proof.

We remark that the classical zero-free region is not the largest one known.
In fact, the stronger inequality

β < 1− c

log2/3+ε |γ|

is known to hold for any ε > 0, a result of Vinogradov and Korobov. The
methods necessary to prove this lie considerably deeper.
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9.2. The prime number theorem with classical error term. In this
section we examine the implications of the classical zero-free region for the
prime number theorem.

The main result is the following.

Theorem 9.2. We have ψ(X) = X +O(Xe−c
√
logX).

Here, ψ(X) =
∑

n⩽X Λ(n), as usual. The letter c denotes a positive
absolute constant, but it may vary from line to line.

The proof is very closely related to that in Chapter 8, except now we must
be a little more precise in how we approximate 1[2,4] by smooth functions.

Let ε > 0. We claim that there is a smooth function Wε : R+ → R
with Supp(Wε) ⊂ [2− ε, 4 + ε], 0 ⩽ Wε(x) ⩽ 1 for all x and Wε(x) = 1 for
2 ⩽ x ⩽ 4, satisfying the derivative bounds

∥∂Wε∥1 ≪ 1, ∥∂2Wε∥1 ≪
1

ε
, (9.4)

This is reasonably “clear by picture”. One way to proceed more rigorously
is to first define W1/2 and then to set

Wε(2 + t) =W1/2(2 +
t
2ε) |t| < ε,

Wε(4 + t) =W1/2(4 +
t
2ε) |t| < ε,

Wε(x) = 1 2 + ε ⩽ x ⩽ 4− ε.

That is, Wε is a kind of contracted version of W1/2. We leave the proof of
the bounds (9.4) to the reader.

In what follows let Y be a sufficiently large parameter. By the explicit
formula and the properties of Wε we have

ψ(4Y )− ψ(2Y ) ⩽
∑
n

Λ(n)Wε(
n

Y
) = Y

∫
W −

∑
ρ

Y ρW̃ε(ρ)

⩽ 2Y (1 + ε)−
∑
ρ

Y ρW̃ε(ρ)

⩽ 2Y (1 + ε) +
∑
ρ

|Y ρ||W̃ε(ρ)|. (9.5)

As in the last chapter, the contribution from the trivial zeros is ≪ Y −2

and can be ignored. To estimate the sum over ρ ∈ Znontriv, we split into
exponential ranges. For j ⩾ 1, define Zj to be the set of zeros ρ ∈ Znontriv

with ej ⩽ |ρ| < ej+1. Define Z0 to be the set of zeros with |ρ| < e; there
are only finitely many such zeros (in fact, though we have not proven this,
there are none).

Consider first the ranges Zj with j ⩾ 1. The number of zeros in such a
range is ≪ jej by Proposition 6.8. If ρ = β + iγ is such a zero then, by the
classical zero-free region, β ⩽ 1− c/j, and hence |Y ρ| ⩽ Y 1−c/j .

Applying (7.10) with m = 2 gives
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W̃ε(ρ) ≪
1

ε
|ρ|−2 ≪ 1

ε
e−2j . (9.6)

It follows that∑
j⩾1

∑
ρ∈Zj

|Y ρ||W̃ε(ρ)| ≪
1

ε

∑
j⩾1

je−jY 1−c/j

≪ 1

ε
sup
j⩾1

(
e−j/2Y 1−c/j

)∑
j⩾1

je−j/2

≪ 1

ε
sup
j⩾1

(
e−j/2Y 1−c/j

)
. (9.7)

Now since (by the AM-GM inequality)

c

j
+

j

2 log Y
⩾ 2

( c

2 log Y

)1/2
,

we have

sup
j⩾1

(
e−j/2Y 1−c/j

)
⩽ Y e−c′

√
log Y (9.8)

where c′ :=
√
2c. Finally∑

ρ∈Z0

|Y ρ||W̃ε(ρ)| ≪ Y 1−c′′ . (9.9)

where c′′ = 1−maxρ∈Z0 Re ρ > 0, using here the trivial estimate |W̃ε(ρ)| ≪ 1.
Combining (9.7) to (9.9) together in (9.5) yields

ψ(4Y )− ψ(2Y ) ⩽ 2Y +O(εY ) +O
(1
ε
Y e−c′

√
log Y

)
.

Now we must choose a good value of ε. With the choice ε = e−
1
2
c′
√
log Y we

obtain

ψ(4Y )− ψ(2Y ) ⩽ 2Y +O(Y e−
1
2
c′
√
log Y ).

By a telescoping sum argument, using the above with X/4, X/8, . . . , we
see that

ψ(X) ⩽ X +O(Xe−
1
2
c′
√
logX).

(We leave the precise details of this telescoping sum argument to the reader.)
By entirely analogous arguments, only using a minorant to the interval

1[2,4] rather than the majorants Wε, we may obtain the corresponding lower
bound

ψ(X) ⩾ X −O(Xe−
1
2
c′
√
logX).

This completes the proof of the prime number theorem with classical error
term.
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9.3. The Riemann hypothesis and its implications for primes. The
Riemann hypothesis is the assertion that all the nontrivial zeros Znontriv lie
on the line Re s = 1

2 .
If the Riemann hypothesis holds then we can, of course, improve the

estimate |Y ρ| ⩽ Y 1−c/j in the above argument to |Y ρ| ⩽ Y 1/2, and (9.7)

is replaced by the bound ≪ 1
εY

1/2. This leads to somewhat suboptimal
bounds, and to recover the situation we should supplement (9.6) with the
bound

Ŵε(ρ) ≪ e−j , (9.10)

which comes from the case m = 1 of (7.10) and the derivative bounds (9.4).
We then have ∑

j⩾1

∑
ρ∈Zj

|Y ρ||W̃ε(ρ)| ≪ Y 1/2
∑
j⩾1

jmin(1,
1

ε
e−j).

Set J := 10 log(1/ε). Using the first bound in the min(, ) for j ⩽ J and the
second for j > J gives∑

j⩾1

∑
ρ∈Zj

|Y ρ||W̃ε(ρ)| ≪ Y 1/2J2.

(Note here that the sum of je−j over j > J is ≪ Je−J < ε9, say, with each
successive term being at most half the previous one.) The contribution from

ρ ∈ Z0 is simply ≪ Y 1/2.
Analogously to before, we obtain

ψ(4Y )− ψ(2Y ) ⩽ 2Y +O(εY ) +O(Y 1/2 log2(1/ε)).

Choosing ε = Y −2/3 (say) yields

ψ(4Y )− ψ(2Y ) ⩽ 2Y +O(Y 1/2 log2 Y ).

Telescoping the sum in the usual manner gives

ψ(X) ⩽ X +O(X1/2 log2X).

Once again, a corresponding lower bound may be obtained using an analo-
gous argument.

10. *An introduction to sieve theory

10.1. Introduction. In this chapter we introduce a different kind of method
in the study of prime numbers, the sieve. Sieve theory is an enormous topic,
but we will only consider one very particular problem: that of bounding
from above the quantity π(X + Y ) − π(X), the number of primes between
X and X + Y .

We note to begin with that, at least if X is much larger than Y , the prime
number theorem is totally useless. Moreover, we certainly do not expect any
kind of asymptotic formula for this quantity, since there could be no primes
at all in such an interval.
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It is instructive to consider the efficacy of the most naive sieve method,
the sieve of Erathosthenes (a.k.a. inclusion-exclusion). Writing f(d) :=
#{n : X < n ⩽ X + Y, d | n}, an upper bound for π(X + Y )− π(X) is

f(1)− f(2)− f(3)− · · ·+ f(6) + f(10) + · · · =
∑
I⊂[k]

(−1)|I|f(
∏
i∈I

pi),

where p1, . . . , pk are the first k primes.
We have

f(d) =
Y

d
+O(1),

and in general it is not possible to say anything useful about the O(1) term.
Therefore these error terms of O(1) add up to something that cannot be
bounded by better than O(2k), and we have

π(X + Y )− π(X) ⩽ Y
∑
I⊂[k]

(−1)|I|
∏
i∈I

1

pi
+O(2k)

= Y

k∏
i=1

(
1− 1

pi

)
+O(2k).

Clearly we cannot take k larger than a multiple of log Y and hope to get a

useful result. However,
∏k

i=1(1 −
1
pi
) is of size roughly 1/ log k, and so the

best bound this method can give is

π(X + Y )− π(Y ) ≪ Y

log log Y
.

The main aim of this section is to prove the following result, giving the best
possible order of magnitude.

Theorem 10.1. π(X + Y ) − π(X), the number of primes between X and
X + Y is at most (2 + o(1)) Y

log Y (with the o(1) being as Y → ∞).

Remark. It is in fact known that the number of primes in this range is at
most 2π(Y ). The argument we give here can be used, with a little more care,
to prove a result almost as good as this, namely that π(X + Y )− π(X) ≪
(2 + o(1))Y/ log Y . It is a major unsolved problem to improve the constant
2, though it is conjecture that it can be replaced by 1. However, Hensley and
Richards have shown that one should not expect that π(X + Y )− π(X) ⩽
π(Y ), in the sense that they have proved that this inequality fails if one
assumes some widely-believed conjectures about configurations of primes.

10.2. Selberg’s weights. To get an upper bound on π(X + Y )− π(X) we
use an idea of Selberg which, in retrospect, is very simple. Let (λd)d⩾1 be
an sequence of real numbers with λ1 = 1, let R < Y be a threshold to be
specified later (we will choose it to be Y c for c slightly less than 1

2), and
consider the weight function

ν(n) :=
( ∑

d|n:d⩽R

λd

)2
.
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Evdiently ν(n) ⩾ 0 for all n. Moreover, if n is a prime > R, then the sum∑
d|n:d⩽R λd collapses to simply λ1 = 1, and therefore ν(n) = 1. In other

words, ν(n) is a majorant for the characteristic function of the primes, and
hence

π(X + Y )− π(X) ⩽
∑

X<n⩽X+Y

ν(n) +R. (10.1)

(The +R term comes from the possibility that some primes ⩽ R may lie
in the interval [X,X + Y ]; we have used the very crude bound R for the
number of these.) What has been gained? It turns out that the sum on the
right is relatively tractable. Expanding out the square, we have∑

X⩽n⩽X+Y

ν(n) =
∑

X⩽n<X+Y

( ∑
d|n;d⩽R

λd

)2
=

∑
d1,d2⩽R

λd1λd2
∑

X⩽n⩽X+Y
d1,d2|n

1.

The inner sum, that is to say the number of n ∈ (X,X + Y ] divisible by d1
and d2, is

Y
[d1,d2]

+ O(1) (where here [a, b] means the l.c.m. of a and b) and
so

π(X + Y )− π(Y ) ⩽
∑

X⩽n⩽X+Y

ν(n) +R

= Y
∑

d1,d2⩽R

λd1λd2
[d1, d2]

+O(1)
∑

d1,d2⩽R

|λd1 ||λd2 |+R. (10.2)

At this point the λd are still completely arbitrary, subject only to λ1 = 1.
The strategy henceforth is to choose them to minimise the quadratic form

Q(λ⃗) :=
∑

d1,d2⩽R

λd1λd2
[d1, d2]

=
∑

d1,d2⩽R

λd1λd2
d1d2

(d1, d2),

which forms the main term above, and hope that the error term looks after
itself. Under what conditions can the error term be “expected to look after
itself?” If we assume that the λd are “reasonably bounded” in the sense
that

λd ≪ do(1), (10.3)

then the error term here is ≪ R2+o(1). If we choose R = Y c for some c < 1/2
then this will, if we take ε sufficiently small, be much smaller than Y/ log Y ,
the main term in our result.

To carry out this strategy, we need to diagonalise the form Q. To do this,
we note that

(d1, d2) =
∑

δ|(d1,d2)

ϕ(δ),
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where ϕ is Euler’s ϕ-function. We showed this earlier in the course. Substi-
tuting in to the definition of Q yields

Q(λ⃗) =
∑
δ⩽R

ϕ(δ)
(∑

δ|d
d⩽R

λd
d

)2
=

∑
δ⩽R

ϕ(δ)u2δ , (10.4)

where

uδ :=
∑
δ|d
d⩽R

λd
d
.

We claim that the change of variables is invertible, or in other words that
we can express λd in terms of the uδ. This is a slight twist of the Möbius
inversion formula; indeed we claim that

λd
d

=
∑
d|δ
δ⩽R

µ
(δ
d

)
uδ. (10.5)

This is easily verified: the right-hand side is∑
d′⩽R

λd′

d′

( ∑
d|δ|d′

µ
(δ
d

))
,

and the inner sum vanishes except when d′ = d.
Note in particular that the constraint λ1 = 1 becomes

1 =
∑
δ⩽R

µ(δ)uδ. (10.6)

Minimising Q(λ⃗), as given in (10.4), subject to (10.6), is a standard task.
Indeed by Cauchy-Schwarz we have

1 =
∑
δ⩽R

µ(δ)uδ ⩽
(∑

δ⩽R

ϕ(δ)u2δ

)1/2(∑
δ⩽R

µ2(δ)

ϕ(δ)

)1/2
,

and moreover equality can occur by taking uδ ∝ µ(δ)
ϕ(δ) . Thus the minimum

value of Q(λ⃗) subject to (10.6) is 1/D, where

D :=
∑
δ⩽R

µ2(δ)

ϕ(δ)
=

∑
δ⩽R:δ squarefree

1

ϕ(δ)
,

this being attained when

uδ =
µ(δ)

Dϕ(δ)
.

To complete the proof, it is enough to show that

D ⩾ logR, (10.7)
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as well as the fact that, with this choice of the uδ, the λd as specified in
(10.5) satisfy (10.3), that is to say |λd| ≪ε d

ε. We handle these tasks in
turn.

Proof of (10.7). By definition we have

D =
∑

d⩽R:d squarefree

1

ϕ(d)
.

If d is squarefree then ϕ(d) =
∏

p|d(1−
1
p) and therefore this can be written

as ∑
d⩽R:d squarefree

1

d

∏
p|d

(1 +
1

p
+

1

p2
· · · ).

Now every m ⩽ R can be written as a product dpα1
1 · · · pαk

k , where d is
squarefree and pi|d (simply take d = p1 · · · pk, where the pi are the primes
dividing m). Therefore

D ⩾
∑
m⩽R

1

m
⩾ logR,

which is what we wanted to prove.
Proof of (10.3). By the choice of uδ and (10.5) we have

λd =
d

D

∑
d|δ,δ⩽R

µ(δ/d)µ(δ)

ϕ(δ)
.

Note that the sum is supported where δ is squarefree. Thus, writing δ′ :=
δ/d, we have ϕ(δ) = ϕ(δ′)ϕ(d). The sum is therefore bounded above by

d

Dϕ(d)

∑
δ′⩽R,δ′ squarefree

1

ϕ(δ′)
=

d

ϕ(d)
.

(Note that if µ(δ) ̸= 0 then δ′, d are coprime and hence ϕ(δ) = ϕ(d)ϕ(δ′),
and certainly δ′ must be squarefree.) Thus we only need prove that

ϕ(d) ≫ε d
1−ε (10.8)

when d is squarefree. This is clear if we factor d as a product of primes: if
p > p0(ε) is a sufficiently large prime then ϕ(p) = p − 1 ⩾ p1−ε, whilst the
contribution from the smaller primes is just a constant.

Appendix A. Some analysis results

In this section we collect some results from analysis which are necessary
for the rigorous justification of some of the results of the course.

We begin with some results on differentiation and limits. The next result
is Proposition 5.1 in my notes from the Oxford first-year course Analysis
III: Integration.

https://people.maths.ox.ac.uk/greenbj/papers/AnalysisIII-2019-notes.pdf
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Proposition A.1. Suppose that fn : [a, b] → C, n = 1, 2, . . . is a se-
quence of functions with the property that fn is continuously differentiable
on (a, b), that fn converges pointwise to some function f on [a, b], and that
f ′n converges uniformly to some bounded function g on (a, b). Then f is
differentiable and f ′ = g.

Remark. In my notes, the result was stated for functions with values in
R, but it applies to complex-valued functions by taking real and imaginary
parts.

Corollary A.2. Suppose that un : [a, b] → C is a sequence of functions with
the property that un is continuously differentiable on (a, b), and such that
|un(x)|, |u′n(x)| ⩽Mn with

∑∞
n=1Mn <∞. Then

∑∞
n=1 un is differentiable,

with derivative
∑∞

n=1 u
′
n.

Proof. Follows by applying the above with fn = u1 + · · · + un and the
Weierstrass M -test.

We note that the result also holds if n ranges over Z (with
∑

n∈Z un
defined to be

∑∞
n=−∞ un = limN→∞

∑N
n=−N un). It also holds for functions

from R/Z to C, as can be seen by lifting such a function to [0, 2] (say).

Results of the following kind were used several times in the course to
argue that a function defined by an integral is holomorphic by ‘differentiating
under the integral’.

Proposition A.3. Let I ⊆ [0,∞) be a (possibly infinite) interval. Let
f : I → R be a function such that∫

I
|f(x)|xtdx <∞ (A.1)

for all t in some (possibly infinite) open interval T ⊂ R. For z with Re z ∈
T , define

F (z) :=

∫
I
f(x)xzdx.

Then F (z) is holomorphic in the domain D := {z : Re z ∈ T} and

F ′(z) =

∫
I
f(x)xz log x dx.

Proof. We verify the definition of derivative directly. Let z ∈ D, and let δ
be small enough that the ball Bδ(z) is contained within D. Thus, the task
is to show that

lim
h→0

∫
I
f(x)xz

(xh − 1

h
− log x

)
dx = 0.

Since the derivative of xh = eh log x at h = 0 is log x, we do have

lim
h→0

xh − 1

h
= log x

https://en.wikipedia.org/wiki/Weierstrass_M-test
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pointwise. Therefore, by the dominated convergence theorem, it is enough
to show that ∫

I
|f(x)xz| sup

|h|⩽δ

∣∣∣xh − 1

h
− log x

∣∣∣dx <∞. (A.2)

Now (xz−1)/h is a holomorphic function of h (it has a removable singularity
at h = 0) and so by the maximum modulus principle we have

sup
|h|⩽δ

∣∣∣xh − 1

h

∣∣∣ = sup
|h|=δ

∣∣∣xh − 1

h

∣∣∣ ≪δ 1 + xδ,

here assuming x ⩾ 0. It follows that the LHS of (A.2) is bounded by

≪δ

∫
I
|f(x)xz|(1 + xδ + | log x|)dx≪

∫
I
|f(x)xz|(1 + xδ + x−δ)dx.

(For this last step, note that | log x| is either ≪ xδ (for x ⩾ 1) or ≪ x−δ

(for 0 < x ⩽ 1). This is finite by the assumption (A.1) and the fact that
z ± δ ∈ D.

Appendix B. *Some smooth bump functions

In this appendix we discuss some smooth functions – for example, smooth
approximations to the interval [−1, 1]. Traditionally a “trick” is used to
construct these involving the function

f(t) :=

{
e1/(1−t2) |t| < 1;
0 |t| > 1,

which can be shown (a standard undergraduate exercise) to lie in C∞(R).
I dislike this because it is a “trick”. Furthermore, though we know from

Lemma 4.1 that the Fourier transform f̂ satisfies the estimate |f̂(ξ)| ⩽
Cm|ξ|−m for |ξ| ⩾ 1, it is surprisingly difficult to get any effective bound for
Cm.

In this appendix we present a more natural construction. This is no
doubt “classical”, but I learned of it in connection with (the easy direction
of) something called the Denjoy-Carleman theorem.

The idea is to construct a function f as an infinite convolution of nor-
malised characteristic functions of intervals. If δ > 0, write

νδ(x) :=
1

2δ
1|x|⩽δ.

Thus ∥νδ∥1 = 1.
It is extremely easy to compute the Fourier transform of νδ: we have

ν̂δ(ξ) =
1

2δ

∫ δ

−δ
e−ixξ dx =

sin δξ

δξ
.

In particular we have the trivial bound

|ν̂δ(ξ)| ⩽
2

δ|ξ|
. (B.1)

https://en.wikipedia.org/wiki/Dominated_convergence_theorem
https://en.wikipedia.org/wiki/Removable_singularity
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Recall that the convolution of two functions f and g, f ∗ g, is defined by

(f ∗ g)(x) :=
∫
f(x− y)g(y)dy.

Suppose that f : R → [0, 1] is a function with f(x) = 1 for |x| ⩽ 1− η and
f(x) = 0 for |x| ⩾ 1 + η. Then it is easy to see that f ∗ νδ takes values in
[0, 1], has f(x) = 1 for |x| ⩽ 1− η− δ, and f(x) = 0 for |x| ⩾ 1+ η+ δ. This
observation leads quickly to the following lemma.

Lemma B.1. Let ε > 0, and let n ∈ N . Then there is a function f = fn,ε :
R → [0, 1] such that f(x) = 1 for |x| ⩽ 1− ε, f(x) = 0 for |x| ⩾ 1 + ε, and

|f̂(ξ)| ⩽ C(n, ε)|ξ|−n−1. We may take C(n, ε) = 22n+1(n!)2ε−n.

Proof. Define
f := ν1 ∗ νδ1 ∗ · · · ∗ νδn ,

where δj := ε/2j2. (There is considerable flexibility here; the important
feature of the sequence 1/j2 is that it is summable but slowly.) Since∑
j−2 < 2, this has the support properties claimed.

We have f̂ = ν̂1ν̂δ1 . . . ν̂δn , and so from the trivial bound (B.1) we obtain

|f̂(ξ)| ⩽ 2n+1

δ1 . . . δn
|ξ|−n−1.

The result follows.

A slightly more refined analysis allows one to show that, for fixed ε > 0,
the sequence fn,ε converges as n → ∞. This gives a version of Lemma B.1
in which f depends only on ε, and not on n.

Lemma B.2. Let ε > 0 be fixed. Let (δj)
∞
j=1 be a sequence of positive

real numbers with
∑

j δj ⩽ ε. Set fn = fn,ε := ν1 ∗ νδ1 ∗ · · · ∗ νδn. Then fn
converges uniformly to a function f : R → [0, 1] with f(x) = 1 for |x| ⩽ 1−ε
and f(x) = 0 for |x| ⩾ 1 + ε. The Fourier transform f̂(ξ) satisfies

|f̂(ξ)| ⩽ inf
n

2n+1

δ1 . . . δn
|ξ|−n−1.

Proof. Since ε is fixed throughout the argument, we write fn instead of
fn,ε. First note that f1 = ν1 ∗ νδ1 satisfies the Lipschitz property

|f1(x)− f1(x
′)| ⩽ 2

δ1
|x− x′|.

Indeed

|f1(x)− f1(x
′)| =

∫
ν1(y)(νδ1(x− y)− νδ1(x

′ − y)) dy

⩽
1

2

∫
|νδ1(x− y)− νδ1(x

′ − y)|dy,

which can easily be computed to be at most the claimed bound. Next
note that any such Lipschitz bound is preserved under convolution with an
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arbitrary non-negative function ν with integral 1; indeed if |f(x)− f(x′)| ⩽
C|x− x′| for all x, x′ then

|f ∗ ν(x)− f ∗ ν(x′)| =
∣∣∣ ∫ ν(y)(f(x− y)− f(x′ − y))dy

∣∣∣
⩽

∫
ν(y)

∣∣f(x− y)− f(x′ − y)
∣∣dy

⩽ C|x− x′|.
It follows that each of the functions fn satisfies the same Lipschitz bound
as f1.

Now suppose that f satisfies the Lipschitz bound |f(x)−f(x′)| ⩽ C|x−x′|,
and that ϕ is a non-negative function with integral 1, supported on [−δ, δ].
Then

∥f − f ∗ ϕ∥∞ = sup
x

∣∣∣ ∫ (f(x)− f(x− y))ϕ(y)dy
∣∣∣

⩽ sup
|y|⩽δ

|f(x)− f(x− y)|
∫
ϕ(y)dy ⩽ Cδ.

It follows from these observations that

∥fm − fn∥∞ ⩽
2

δ1

n∑
j=m+1

δj .

In particular, (fn) is Cauchy in the uniform norm and hence fn tends to
some continuous function f .

To obtain the stated bound on the Fourier transform, first note that
f̂(ξ) = limn→∞ f̂n(ξ). This follows immediately from the fact that fn → f
uniformly, and the support of fn is contained in [−2, 2] for all n. Note also
that if ∥ν∥1 = 1 then

|(fn ∗ ν)∧(ξ)| = |f̂n(ξ)||ν̂(ξ)| ⩽ |f̂n(ξ)|.

This means that |f̂n(ξ)| is a non-increasing function of n. The claimed bound
now follows using (B.1).

Corollary B.3. Let ε > 0. Then for any κ > 0 there is a continuous
function f = fε,κ : R → [0, 1] such that f(x) = 1 for |x| ⩽ 1 − ε, f(x) = 0
for |x| ⩾ 1 + ε and

|f̂(ξ)| ⩽ e−Cε,κ|ξ|1−κ
.

Remark. Taking κ = 1/2 is certainly sufficient for any application I know

of, and usually the bound |f̂(ξ)| ≪A |ξ|−A, with no explicit dependence of
the implied constant on A, is enough.

Proof. Apply the preceding lemma with δj := c/j1+κ/2 for an appropriately
small c = c(ε, κ). For every n we have the bound

|f̂(ξ)| ⩽ Cn(n!)1+κ/2|ξ|−n.
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Choosing n ∼ |ξ|1−κ/2 gives the claimed bound.

We have said nothing about the smoothness (or otherwise) of the func-
tions fn and f . One could examine this using the definition in terms of
convolution. However, now that we have bounds on Fourier transforms, we
may as well use the following lemma.

Lemma B.4. Suppose that f is continuous, that f ∈ L1(R) and that

|f̂(ξ)| ≪ |ξ|−n. Then f is (n− 2)-times differentiable.

Proof. (Sketch) One first needs to know that the inversion formula Propo-
sition 4.6 holds for this f ; this is not automatic, since we only proved it for
Schwartz functions. However, the same proof works here with minor modi-
fications. In particular, applying our bound on the Fourier transform with
n = 2 means that all of the functions in the application of Lemma 4.4 are
absolutely integrable, and so the use of Fubini is permissible here too.

Once one has the inversion formula, one may obtain the derivatives of f
by repeated differentiation under the integral.

Appendix C. Infinite products

In this section we supply the proofs of some very basic results on infinite
products from the course. The following key inequality underlies everything.

Lemma C.1. Let (zn)
N
n=1 be a sequence of complex numbers. Then∣∣∣ N∏

n=1

(1 + zn)− 1
∣∣∣ ⩽ e

∑N
n=1 |zn| − 1.

Proof. Expanding out the product gives∣∣∣ N∏
n=1

(1 + zn)− 1
∣∣∣ = ∣∣∣∑

i1

zi +
∑
i1<i2

zi1zi2 +
∑

i1<i2<i3

zi1zi2zi3 . . .
∣∣∣

⩽
∑
i1

|zi|+
∑
i1<i2

|zi1 ||zi2 |+
∑

i1<i2<i3

|zi1 ||zi2 ||zi3 | . . .

⩽
∑
i

|zi|+
1

2

(∑
i

|zi|
)2

+
1

6

(∑
i

|zi|
)3

+ . . .

= e
∑

i |zi| − 1.

This concludes the proof.

The following result concerns what are known as Weierstrass Products

Proposition C.2. Suppose that Ω ⊂ C is a countable multiset, not con-
taining 0, and such that

∑
ρ∈Ω |ρ|−2 <∞. Then the function

EΩ(z) :=
∏
ρ∈Ω

(
1− z

ρ

)
ez/ρ
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is well-defined, entire, and has zeros with the correct multiplicities and
nowhere else.

Proof. For each pair of positive integers M,N with M < N , define the
truncated products

E
(M,N)
Ω (z) :=

∏
ρ∈Ω

M<|ρ|⩽N

(
1− z

ρ

)
ez/ρ.

Write

E
(N)
Ω = E

(0,N)
Ω =

∏
ρ∈Ω
|ρ|⩽N

(
1− z

ρ

)
ez/ρ.

for short. To make sense of EΩ, it suffices to show that the sequence

(E
(N)
Ω (z))∞N=1 is uniformly Cauchy “on compacta”, that is to say on compact

subsets of C. If this can be shown, it then follows from standard results in

complex analysis that EΩ(z) := limN→∞E
(N)
Ω (z) exists and is holomorphic.

A first step is to show that the E
(N)
Ω (z) are uniformly bounded on com-

pacta. To establish this, note first that the z/ρ are uniformly bounded by
some quantityK = K(R) as z ranges over |z| ⩽ R, because some ball about 0

contains none of the ρ. By Taylor expansion, the function F (w) := (1−w)ew−1
w2

has a removable singularity at 0, and hence is bounded on |w| ⩽ K; let us
say that |F (w)| ⩽ CK for |w| ⩽ K, thus∣∣∣(1− z

ρ
)ez/ρ − 1

∣∣∣ ⩽ CK
|z|2

|ρ|2
⩽ CKR

2|ρ|−2 (C.1)

for all |z| ⩽ R. It now follows from Lemma C.1 that the E
(N)
Ω (z) are indeed

uniformly bounded on compacta.
Now we show the Cauchy property. We start with the observation that∣∣E(N)

Ω (z)− E
(M)
Ω (z)

∣∣ = |E(M)
Ω (z)| ·

∣∣∣ ∏
M<|ρ|⩽N

(1− z

ρ
)ez/ρ − 1

∣∣∣
≪R

∣∣∣ ∏
M<|ρ|⩽N

(1− z

ρ
)ez/ρ − 1

∣∣∣
uniformly for |z| ⩽ R. By Lemma C.1 and (C.1), it follows that∣∣E(N)

Ω (z)− E
(M)
Ω (z)

∣∣ ≪R eOR(
∑

M<|ρ|⩽N |ρ|−2) − 1.

The Cauchy property is now immediate from the convergence of
∑

ρ |ρ|−2.

We have now established that EΩ(z) is well-defined as a holomorphic
function. It remains to show that it has zeros with the correct multiplicity
at the points ρ and at no other points. To this end it is enough to show that∏

ρ∈Ω

(
1− z

ρ

)
ez/ρ ̸= 0 when z /∈ Ω. (C.2)
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Indeed, this obviously implies that EΩ(z) ̸= 0 when z /∈ Ω, but it also implies
that EΩ(z) has a zero of exactly the right multiplicity m(ρ) at ρ by writing

EΩ(z) =
(
(1− z/ρ)ez/ρ

)m(ρ)
EΩ\{ρ}(z).

To establish (C.2), fix z. We need only consider the product over |ρ| > R,
for large enough R, the remaining part of the product being finite. Here we
use Lemma C.1 once again, together with the estimate

|(1− z/ρ)ez/ρ − 1| ≪ |z|2

|ρ|2
,

which follows from the same argument used to prove (C.1), noting that we

can assume that |w| = |z|
|ρ| ⩽ 1 by taking R large enough. This gives∣∣∣ ∏

R<|ρ|⩽N

(1 +
z

ρ
)ez/ρ − 1

∣∣∣ ⩽ eO(z2
∑

|ρ|>R |ρ|−2) ⩽
1

2

provided that R is big enough. Thus, in this range,∣∣∣ ∏
R<|ρ|⩽N

(1 +
z

ρ
)ez/ρ

∣∣∣ ⩾ 1

2
.

Note that this bound does not depend on the choice of N in any way, so we
may let N → ∞ to conclude the proof.
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