
C3.8 Analytic Number Theory

Sheet 1 — MT24

This sheet covers asymptotic notation and elementary estimates on primes, and is aligned

with the notes up to and including Section 2.

Section A

1. Prove the following.

(i) (logX)4 < X1/10 for all sufficiently large X;

(ii) e
√
logX = Oε(X

ε) for all ε > 0 and X ⩾ 1;

(iii) X(1 + e−
√
logX) +X3/4 sinX ∼ X.

Solution: (i) By substituting X = Y 10 it is enough to show 104 log4 Y < Y for suffi-

ciently large Y . Setting further Y = eZ , it is sufficient yo show that 104Z4 < eZ for

sufficiently large Z. However by Taylor expansion, ignoring all terms except the fifth,

we have eZ > Z5/5! for positive Z. The claim now follows.

(ii) We have e
√
logX = X1/

√
logX and so certainly e

√
logX < Xε ifX ⩾ X0(ε) is sufficiently

large.

(iii) First note that |X3/4 sinX| ⩽ X3/4 = o(X), so it suffices to show that X(1 +

e−
√
logX) ∼ X. Since e−

√
logX → 0 as X → ∞, this is immediate from the definition of

∼.

2. In the following exercise, a(X), b(X) are positive functions tending to ∞ as X → ∞.

Say whether each of the following is true or false.

(i) If a(X)− b(X) → 0 then a(X) ∼ b(X).

(ii) If a(X) ∼ b(X) then a(X)− b(X) → 0.

(iii) If a(X) ∼ b(X) and a′(X) :=
∑

y⩽X a(y), b′(X) :=
∑

y⩽X b(y) then a′(X) ∼ b′(X).

(iv) The converse to (iii).
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Solution: (i) is true since
∣∣a(X)
b(X)

− 1
∣∣ ⩽ |a(X)−b(X)|

b(X)
⩽ 1

b(X)
for sufficiently large X, and

this tends to 0.

(ii) is false, as the example a(X) = X, b(X) = X + 1 shows.

(iii) Let ε > 0. Then, by the definition of what it means that a(X) ∼ b(X), there is

some X0 = X0(ε) such that a(y) ⩾ (1− ε)b(y) for all y ⩾ X0. It follows that if X ⩾ X0

then

a′(X) =
∑
y⩽X

a(y)

=
∑
y⩽X0

a(y) +
∑

X0⩽y⩽X

a(y)

⩾
∑
y⩽X0

a(y) + (1− ε)
∑

X0⩽y⩽X

b(y)

⩾ (1− ε)
∑

X0⩽y⩽X

b(y)

⩾ (1− ε)b′(X)−
∑
y⩽X0

b(y)

If X is big enough, this is > (1− 2ε)b′(X). We have a similar inequality the other way

around, and ε is arbitrary, so the result follows.

(iv) This is false; an example is to take a(X) = X for all X, and b(X) = X for all X

except when X is a power of two, in which case take b(X) = 2X. (Remark: one may

care to think about what happens if, additionally, a(X) and b(X) are monotonic).
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Section B

3. Prove the following.

(i) There are infinitely many primes of the form 4k + 3.

(ii) There are infinitely many primes of the form 4k+1. (Hint: you may wish to prove

that −1 is not a quadratic residue modulo any prime 3(mod 4).)

Solution: (i) Basically the same as Euclid’s proof. If p1, . . . , pN is all these primes

except 3, consider 4p1 · · · pN + 3.

(ii) If −1 = x2(mod p) then (−1)
p−1
2 = xp−1 = 1(mod p) (Fermat’s Little Theorem)

and so p ≡ 1(mod 4). Now let p1, · · · , pN be the complete list of primes 1(mod 4) and

consider (2p1 · · · pN)2 + 1.

4. We say that an arithmetic function is multiplicative if f(ab) = f(a)f(b) whenever

(a, b) = 1, and completely multiplicative if this holds without the coprimality restric-

tion. For each of the functions Λ, µ, ϕ, τ, σ, say with proof whether or not it is (a)

multiplicative or (b) completely multiplicative.

Solution: The function Λ is not multiplicative (and hence certainly not completely

multiplicative). For example, Λ(6) = 0 ̸= Λ(2)Λ(3).

The Möbius function µ is multiplicative (easy check from the definition). It is not

completely multiplicative as, for example, µ(4) ̸= µ(2)2.

The ϕ function is multiplicative. This follows from the Chinese remainder theorem: x

is coprime to ab iff it is coprime to both a and b. It is not completely multiplicative

since, for example, ϕ(4) = 2, ϕ(2)2 = 1.

The τ function is multiplicative, since if n = ab and if d | n then d = ef with e | a and

f | b, and vice versa. It is not completely multiplicative since, for example, τ(4) = 3

whilst τ(2)2 = 4.

The σ function is multiplicative. One could observe, in fact, that if f is multiplicative

then so is g(n) :=
∑

d|n f(d), and apply this fact to f(d) = d.

(Remark: none of the functions is completely multiplicative. This illustrates the point

that being merely multiplicative is a very natural condition on a function. One can

mention the Liouville function as one of the more natural completely multiplicative

functions.
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5. Show that there are arbitrarily large gaps between consecutive primes by

(i) utilising the bounds on π(x) shown in the course;

(ii) considering the numbers n! + 2, . . . , n! + n.

Which of the two approaches gives the better bound?

Solution: The upper bound in the weak prime number theorem evidently implies that

there are gaps of size ≫ log n amongst the primes less than n. The construction implies

that, among the primes less than X = n!, there are gaps of length ∼ n. However,

n = o(logX); indeed n! > (n/2)n/2 > ecn logn for large n, so n ≪ logX
log logX

.

6. Assuming the prime number theorem, show that pn ∼ n log n, where pn denotes the nth

prime.

Solution: Let δ > 0 be small. By the prime number theorem and the fact that there

are infinitely many primes, we have

n = π(pn) > (1− δ

2
)

pn
log pn

when n is sufficiently large, thus

lim sup
n→∞

pn
n log pn

⩽
1

1− δ
2

< 1 + δ. (1)

Suppose that pn ⩾ (1 + δ)n log n for an infinite sequence of n. Then, since t/ log t is an

increasing function of t, we have

pn
n log pn

⩾
(1 + δ) log n

log(1 + δ) + log n+ log log n
.

Dividing top and bottom by log n we get

pn
n log pn

⩾
(1 + δ)

log(1+δ)
logn

+ 1 + log logn
logn

.

As n → ∞ along any subsequence, the denominator tends to 1. Therefore by standard

facts about limits we have

lim sup
n→∞

pn
n log pn

⩾ 1 + δ,

contrary to (1).

The other direction is similar and is omitted.
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7. Denote by τ the divisor function.

(i) Show that τ(n) ⩽ 2
√
n.

(ii) Find a formula for τ in terms of the prime factorisation of n.

(iii) Using your formula from (ii), show that for any ε > 0 we have τ(n) < nε for

sufficiently large n.

Solution: (i) If d | n then n/d divides n, and at least one of these numbers is ⩽
√
n.

(ii) If n = pa11 · · · pakk then we have τ(n) = (a1 + 1) · · · (ak + 1). (The set of divisors is

precisely those pb11 · · · pbkk with 0 ⩽ bi ⩽ ai for all i.

(iii) If p ⩾ 21/ε then we have a + 1 ⩽ 2a ⩽ paε for all a. For smaller values of p we

have a + 1 ⩽ paε provided that a > r, where r = r(ε) is the smallest integer such that

2rε ⩾ r + 1. Therefore

τ(n) ⩽ nε
∏

i:pi<21/ε

ai⩽r

(ai + 1) ⩽ Cεn
ε,

where Cε = (r + 1)π(2
1/ε). For sufficiently large n, this is < n2ε. Redefining ε to ε/2

gives the result.

Remark. Item (iii) here is a very useful and important bound in number theory called

the divisor bound.

8. (i) Let X be an integer. Show that∑
n⩽X

log n = X logX −X +O(logX).

(ii) Show that if X is an integer then∑
p⩽X

log p
(⌊X

p

⌋
+
⌊X
p2

⌋
+ . . .

)
= X logX −X +O(logX).

(iii) Show that the contribution from the terms
⌊
X
pk

⌋
with k ⩾ 2 is O(X).

(iv) Deduce Mertens’ estimate ∑
p⩽X

log p

p
= logX +O(1).

Explain why this remains valid even if X is not necessarily an integer.
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Solution: (i) The idea is to compare the sum
∑

n⩽X log n with the integral
∫ X

1
log tdt−

X logX −X. Drawing a picture, and using the fact that log is monotonic and bounded

by logX on the interval, the result follows. (We remark that this is a primitive form of

Stirling’s formula, since the LHS is logX!.)

(ii) We claim that the LHS is logX!, which suffices by part (i). If X! =
∏

pvp(X) then

logX! =
∑

p vp(X) log p, so it suffices to show that vp(X) = ⌊X/p⌋ + ⌊X/p2⌋ + . . . .

This is Legendre’s formula, as mentioned in lectures. It follows by taking the number

of n ⩽ X divisible by p (namely ⌊X/p⌋), adding the number divisible by p2, etc.

(iii) For fixed p, ∑
k⩾2

⌊X
pk

⌋
⩽

∑
k⩾2

X

pk
=

X

p(p− 1)

by summing the GP. Hence∑
p

log p
∑
k⩾2

⌊X
pk

⌋ ⩽ X
∑
p

log p

p(p− 1)
⩽ X

∑
m

logm

m(m− 1)
= O(X).

(iv) From what we have said so far we have∑
p⩽X

log p
⌊X
p

⌋
= X logX +O(X).

The error in removing the ⌊·⌋ is∑
p⩽X

log p{X/p} ⩽
∑
p⩽X

log p

which, by the basic bounds on primes proved in the course, is O(X).

Finally, if X is now allowed to be an arbitrary positive real number then replace X with

⌊X⌋ and apply the estimate. The sum
∑

p⩽X
log p
p

is unchanged, while the right hand

side is log⌊X⌋+O(1) = logX + log(1 + ⌊X⌋
X

) +O(1) = logX +O(1).

Remark. One may use more sophisticated tools such as the Euler-Maclaurin summation

formula to get better approximations to
∑

n⩽X log n, and this leads to the more precise

forms of Stirling’s formula.
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Section C

9. Prove the second Mertens estimate: we have∑
p⩽X

1

p
= log logX +O(1).

(Hint: Write F (y) =
∑

p⩽y
log p
p

and consider
∫ x

2
F (y)w(y)dy for an appropriate weight

function w.)

Deduce that there are constants c1, c2 > 0 such that

c1
logX

⩽
∏
p⩽X

(
1− 1

p

)
⩽

c2
logX

.

Solution: We take the hint (this technique is called “partial summation”). By ex-

changing the order of summation we have∫ x

2

F (y)w(y)dy =
∑
p⩽x

log p

p

∫ x

p

w(y)dy.

We wish to chose w(y) so that the integral is 1
log p

. Differentiating both sides suggests

−w(p) = − 1
p log2 p

, so we set w(y) = 1
y log2 y

. Then∫ x

p

w(y)dy =
1

log p
− 1

log x
.

Therefore we obtain ∑
p⩽X

1

p
=

1

logX

∑
p⩽X

log p

p
+

∫ X

2

F (y)

y log2 y
dy.

By the previous exercise, the first term on the right is 1+O( 1
logX

). Also by the previous

exercise, the second term is
∫ X

2
dy

y log y
+O(

∫ X

2
dy

y log2 y
), which is O(1) plus

∫ X

2
dy

y log y
. This

integral is, by substituting y = et, seen to be log logX +O(1).

Proof of the last part: this follows quickly from the observation that 1− 1
p
= exp(−1

p
+

O( 1
p2
)) and the previous part.

Remark. In both cases more precise results are available via a more careful analysis

(involving the prime number theorem). Specifically

∑
p⩽X

1

p
= log logX + c0 + o(1)

for some c0 and
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∏
p⩽X

(
1− 1

p

)
= (e−γ + o(1))

1

logX
.

10. Let pn denote the nth prime.

(i) Is it the case that, for sufficiently large n, the sequence pn+1−pn is strictly increas-

ing?

(ii) Is it the case that, for sufficiently large n, the sequence pn+1−pn is nondecreasing?

Solution: (i) Answer: no. If the sequence is strictly speaking then pn+1 − pn > n − c

for sufficiently large n, which means that pn grows quadratically. This is contrary to

the asymptotic pn ∼ n log n obtained in an earlier question.

(ii) Answer: also no. Suppose that this is so. Suppose that pn+i+1 − pn+i = m for

i = 0, 1, . . . ,m − 1. If m ⩾ 3 then there is an integer m, 1 < m′ < m, coprime to m.

The numbers pn+i then run through a complete set of residue classes modulo m′ and

so in particular at least one of these numbers is composite, contrary to assumption. It

follows that

pn+
∑M

m=3 m
⩾ pn +

M∑
m=3

m2,

i.e. pn+CM2 ⩾ pN + C ′M3, much bigger that the actual growth of pn.
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