C3.8 Analytic Number Theory
Sheet 1 — MT24

This sheet covers asymptotic notation and elementary estimates on primes, and is aligned

with the notes up to and including Section 2.

Section A

1. Prove the following.

(i) (log X)* < X'/10 for all sufficiently large X;
(ii) ev'eX = O.(X®) foralle > 0 and X > 1
(iif) X(1+eVIEX) + X34sin X ~ X,

Solution: (i) By substituting X = Y it is enough to show 10*log*Y < Y for suffi-
ciently large Y. Setting further Y = e, it is sufficient yo show that 10*Z* < e for
sufficiently large Z. However by Taylor expansion, ignoring all terms except the fifth,

we have eZ > Z5/5! for positive Z. The claim now follows.

(ii) We have evlee X = X1/vVIes X and 5o certainly eV'8 X < X< if X > X, (¢) is sufficiently

large.

(iii) First note that |X3/*sin X| < X3/ = o(X), so it suffices to show that X (1 +
e~VleX) ~ X, Since e"Ve* — 0 as X — oo, this is immediate from the definition of

~Y,

2. In the following exercise, a(X),b(X) are positive functions tending to oo as X — oc.
Say whether each of the following is true or false.
(i) If a(X) — b(X) — 0 then a(X) ~ b(X).
(ii) If a(X) ~ b(X) then a(X) — b(X) — 0.
(iif)
)

If a(X) ~ b(X) and ¢/ (X) := Zy@( a(y), V'(X) = Zygx b(y) then a/(X) ~ V/(X).

(iv) The converse to (iii).
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Solution: (i) is true since |4 — 1 < |2(X) —b(X)| < = for sufficiently large X, and
b(X) b(X) b(X)

this tends to 0.

(i) is false, as the example a(X) = X, b(X) = X + 1 shows.

(iii) Let € > 0. Then, by the definition of what it means that a(X) ~ b(X), there is
some Xy = Xy(¢) such that a(y) > (1 —¢)b(y) for all y > Xy. It follows that if X > X
then

= y; a(y) + X;X a(y)

> y;ZXO a(y) + (;\i) X;X b(y)
> Zl —0 €) X;X b(y) -

> (1 —e)b’E;)\— ; b(y)

If X is big enough, this is > (1 — 2¢)d/(X). We have a similar inequality the other way

around, and ¢ is arbitrary, so the result follows.

(iv) This is false; an example is to take a(X) = X for all X, and b(X) = X for all X
except when X is a power of two, in which case take b(X) = 2X. (Remark: one may

care to think about what happens if, additionally, a(X) and b(X) are monotonic).
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Section B
3. Prove the following.

(i) There are infinitely many primes of the form 4k + 3.

(ii) There are infinitely many primes of the form 4k + 1. (Hint: you may wish to prove

that —1 is not a quadratic residue modulo any prime 3(mod4).)

Solution: (i) Basically the same as Euclid’s proof. If py,...,py is all these primes

except 3, consider 4p; - - - py + 3.

(i) If —1 = 22(modp) then (—1)"z = 27~! = 1(modp) (Fermat’s Little Theorem)
and so p = 1(mod4). Now let py,---,py be the complete list of primes 1(mod4) and
consider (2p; -+ py)? + 1.

4. We say that an arithmetic function is multiplicative if f(ab) = f(a)f(b) whenever
(a,b) = 1, and completely multiplicative if this holds without the coprimality restric-
tion. For each of the functions A, p, ¢, 7,0, say with proof whether or not it is (a)

multiplicative or (b) completely multiplicative.

Solution: The function A is not multiplicative (and hence certainly not completely
multiplicative). For example, A(6) = 0 # A(2)A(3).

The Mobius function g is multiplicative (easy check from the definition). It is not

completely multiplicative as, for example, u(4) # u(2)2.

The ¢ function is multiplicative. This follows from the Chinese remainder theorem: z
is coprime to ab iff it is coprime to both a and b. It is not completely multiplicative
since, for example, ¢(4) = 2, ¢(2)? = 1.

The 7 function is multiplicative, since if n = ab and if d | n then d = ef with e | a and
f | b, and vice versa. It is not completely multiplicative since, for example, 7(4) = 3
whilst 7(2)? = 4.

The o function is multiplicative. One could observe, in fact, that if f is multiplicative

then so is g(n) := de f(d), and apply this fact to f(d) = d.

(Remark: none of the functions is completely multiplicative. This illustrates the point
that being merely multiplicative is a very natural condition on a function. One can
mention the Liouville function as one of the more natural completely multiplicative

functions.
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5. Show that there are arbitrarily large gaps between consecutive primes by

(i) utilising the bounds on m(x) shown in the course;

(ii) considering the numbers n! +2,... n!+n.

Which of the two approaches gives the better bound?

Solution: The upper bound in the weak prime number theorem evidently implies that
there are gaps of size > logn amongst the primes less than n. The construction implies
that, among the primes less than X = n!, there are gaps of length ~ n. However,

n = o(log X); indeed n! > (n/2)"/? > 198" for large n, so n < log)igX'

6. Assuming the prime number theorem, show that p,, ~ nlogn, where p, denotes the nth

prime.

Solution: Let § > 0 be small. By the prime number theorem and the fact that there

are infinitely many primes, we have

0\ Pn
=n(py) > (1— =
n=m(p) > (1 5)n
when n is sufficiently large, thus
. DPn
lim sup <144 (1)

<
nooo nlogp, 1-3

Suppose that p, > (1 + d)nlogn for an infinite sequence of n. Then, since ¢/logt is an

increasing function of ¢, we have

Pn_ (14+4)logn
nlogp, ~ log(1+ d) +logn + loglogn’

Dividing top and bottom by logn we get

Pn_ (1+9)

Z Tlog(1+9 :
nlog py, %—Fl-i-bﬁ)l%”

As n — oo along any subsequence, the denominator tends to 1. Therefore by standard

facts about limits we have

Pn

> 149,

lim sup
n—oo 1 10Z Pp

contrary to (1).

The other direction is similar and is omitted.
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7. Denote by 7 the divisor function.

8.

(i) Show that 7(n) < 2y/n.
(ii) Find a formula for 7 in terms of the prime factorisation of n.

(iii) Using your formula from (ii), show that for any ¢ > 0 we have 7(n) < n® for

sufficiently large n.

Solution: (i) If d | n then n/d divides n, and at least one of these numbers is < y/n.

(ii) If n = p{*---pi* then we have 7(n) = (a; + 1) -+ (ar + 1). (The set of divisors is
precisely those plfl e pZ’“ with 0 < b; < a; for all 4.

(iii) If p > 2'/¢ then we have a + 1 < 2 < p® for all a. For smaller values of p we
have a + 1 < p* provided that a > r, where r = r(g) is the smallest integer such that
2" > r + 1. Therefore

7(n) < nf H (a; +1) < Con®,

impi<2l/e
a;<r

where C. = (r + 1)™@"%)_ For sufficiently large n, this is < n2. Redefining ¢ to £/2

gives the result.

Remark. Item (iii) here is a very useful and important bound in number theory called

the divisor bound.

(i) Let X be an integer. Show that

Zlogn = Xlog X — X 4+ O(log X).

n<X

(ii) Show that if X is an integer then
X X
Stogp([= | + |5+ ) = Xloa X — X + Oftog ).
<X p p

(iii) Show that the contribution from the terms L%J with k > 2 is O(X).

(iv) Deduce Mertens’ estimate

1
3 in —log X + O(1).

p<X

Explain why this remains valid even if X is not necessarily an integer.
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Solution: (i) The idea is to compare the sum ) _ logn with the integral flx log tdt —
X log X — X. Drawing a picture, and using the fact that log is monotonic and bounded
by log X on the interval, the result follows. (We remark that this is a primitive form of

Stirling’s formula, since the LHS is log X!.)

(ii) We claim that the LHS is log X!, which suffices by part (i). If X! = []p*) then
log X! = 3 v,(X)logp, so it suffices to show that v,(X) = |X/p] + [X/p*| +....
This is Legendre’s formula, as mentioned in lectures. It follows by taking the number
of n < X divisible by p (namely |X/p]), adding the number divisible by p?, etc.
(iii) For fixed p,
X X X

ZLTJ <27: (»—1)

2 p 2 p pp
by summing the GP. Hence

X log p logm
;M&UZLEJ < sz——l) < X;m = 0(X).

= —~ p(p

(iv) From what we have said so far we have
X
ZlogpL—J = Xlog X + O(X).
p<X p
The error in removing the [-] is
> logp{X/p} <D logp
p<X p<X
which, by the basic bounds on primes proved in the course, is O(X).

Finally, if X is now allowed to be an arbitrary positive real number then replace X with

| X | and apply the estimate. The sum Zpg X 087 i5 unchanged, while the right hand

side is log| X | + O(1) = log X + log(1 + L;(—J) +0(1) =log X + O(1).

Remark. One may use more sophisticated tools such as the Euler-Maclaurin summation
formula to get better approximations to ) _ logn, and this leads to the more precise

forms of Stirling’s formula.
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Section C

9. Prove the second Mertens estimate: we have

> L loglog X + O(1).

p<X

(Hint: Write F'(y) = >_ ., 10%’ and consider [ F(y)w(y)dy for an appropriate weight

function w.)

Deduce that there are constants ¢, ¢y > 0 such that

C1 1 Co
log X S H <1_}_9) S log X~

p<X

Solution: We take the hint (this technique is called “partial summation”). By ex-

changing the order of summation we have

/2”” Z logp

Pz

We wish to chose w(y) so that the 1ntegral is é Differentiating both sides suggests
Then

—w(p) = ——25—, 50 we set w(y) =

~ plog?p y log Y’

v 1 1
w(y)dy = — :
/p logp logx

Therefore we obtain

1 1 lo X F
L $ gp+/ (@JZ) dy.
P logX = p 2 ylog™y

By the previous exercise, the first term on the rlght is 1+ O( +)- Also by the prev1ous
ylogy f2 log ), which is O( plus f2 This
integral is, by substituting y = €’, seen to be log logX +O(1).

exercise, the second term is f2

ylogy'

Proof of the last part: this follows quickly from the observation that 1 — i = exp(—zl7 +
O(#)) and the previous part.

Remark. In both cases more precise results are available via a more careful analysis

(involving the prime number theorem). Specifically

1
Z — =loglog X + ¢y + o(1)
p

p<X

for some ¢y and
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10. Let p,, denote the nth prime.

(i) Is it the case that, for sufficiently large n, the sequence p, 1 — p, is strictly increas-
ing?

(i) Is it the case that, for sufficiently large n, the sequence p,, .1 — p, is nondecreasing?

Solution: (i) Answer: no. If the sequence is strictly speaking then p, 1 —p, >n —c¢
for sufficiently large n, which means that p, grows quadratically. This is contrary to

the asymptotic p, ~ nlogn obtained in an earlier question.

(ii)) Answer: also no. Suppose that this is so. Suppose that p, i1 — ppys = m for
i=20,1,...,m — 1. If m > 3 then there is an integer m, 1 < m’ < m, coprime to m.
The numbers p,y; then run through a complete set of residue classes modulo m’ and
so in particular at least one of these numbers is composite, contrary to assumption. It
follows that

M
2
Pusssiym = Pt D,
m=3

i.e. poycarz = py + C'M3, much bigger that the actual growth of p,,.
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