
C3.8 Analytic Number Theory

Sheet 2 — MT24

Section A

1. Evaluate the sum
∑∞

n=1
µ(n)
n2 .

Solution: We use the fact, established in lectures, that Dµ(s) =
∑

n µ(n)n
−s = 1

ζ(s)
.

Thus the sum in question is 1/ζ(2). But it is well-known that ζ(2) =
∑

n n
−2 = π2

6
, so

the answer is 6/π2.

2. Give a simple description of the function ϕ ⋆ 1.

Solution: By definition

ϕ ⋆ 1(n) =
∑
d|n

ϕ(
n

d
).

Now ϕ(n/d) is precisely the number of m ⩽ n whose highest common factor with n is

precisely d. Thus the sum here is simply counting the number of m ⩽ n, or in other

words ϕ ⋆ 1(n) = n.
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Section B

3. Establish the following Dirichlet series:

(i)
∑

n τ(n)n
−s = ζ(s)2 for ℜs > 1;

(ii)
∑

n ϕ(n)n
−s = ζ(s−1)

ζ(s)
for ℜs > 2;

(iii)
∑

n σ(n)n
−s = ζ(s)ζ(s− 1).

(iv) If λ(n) is the Liouville function, that is to say the unique completely multiplicative

function equal to −1 on the primes, then
∑

n λ(n)n
−s = ζ(2s)

ζ(s)
for ℜs > 1.

Solution: (i) We have τ = 1 ⋆ 1. Thus from the link between Dirichlet convolution and

Dirchlet series we have Dτ = (D1)
2.

(ii) We have ϕ ⋆ 1 = ι, where ι(n) = n. Noting that Dι(s) = ζ(s− 1) when ℜs > 2, the

result follows.

(iii) This follows from the fact that, by definition, σ = 1 ⋆ ι.

(iv) This is probably most easily done via Euler products. We have

Dλ(s) =
∏
p

(
1− 1

ps
+

1

p2s
− . . .

)
=

∏
p

(
1 +

1

ps
)−1

.

However,

1 +
1

ps
=

1− 1
p2s

1− 1
ps

.

Alternatively, one may note that λ = µ ⋆ 1S, where S is the set of squares, then observe

that D1S(s) = ζ(2s).

4. Obtain an asymptotic for
∑

n⩽X τ(n).

Solution: We have∑
n⩽X

τ(n) =
∑
ab⩽X

1 =
∑
a⩽X

⌊X
a

⌋
=

∑
a⩽X

X

a
+O(X) = X logX + o(X logX).

5. True or false? There is a constant C such that τ(n) ⩽ logC n for all sufficiently large n.

Justify your answer.
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Solution: This is false. Let p1 < p2 < . . . , < pr be the first r primes, and consider

n = (p1 · · · pr)m. We have τ(n) = (m + 1)r > mr. However, log n = γm where

γ = log(p1 . . . pr) is independent of m. (One could consider n of the form n =
∏

p⩽X p.

Then, as we showed in lectures, n ⩽ eO(X). However, τ(n) = 2π(X), which is vastly

bigger than XC .)
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6. Show that ∑
n

Λ(n)
⌊Y
n

⌋
=

∑
n⩽Y

log n.

By considering Y = X and Y = X/2, use this to prove that∑
X/2<n⩽X

Λ(n) ≪ X.

Solution: We have ⌊Y
n
⌋ =

∑
x⩽Y,n|x 1. Therefore∑

n⩽Y

Λ(n)
⌊Y
n

⌋
=

∑
n⩽X

∑
x⩽Y :n|x

Λ(n).

Swapping the order of summation, this is∑
x⩽Y

∑
n:n|x

Λ(n) =
∑
x⩽Y

(1 ⋆ Λ)(x) =
∑
x⩽Y

log x,

which is the result stated.

We showed on Sheet 1 (Q8) that
∑

x⩽Y log x = Y log Y − Y + o(Y ). Thus

∑
n

Λ(n)
⌊X
n

⌋
= X logX −X + o(X)

and ∑
n

Λ(n)
⌊X
2n

⌋
=

1

2
X log

(X
2

)
− X

2
+ o(X).

Subtracting twice the second expression from the first yields∑
n

Λ(n)
(⌊X

n

⌋
− 2

⌊X
2n

⌋)
= X log 2 + o(X).

Note, however, that the bracketed expression is 1 when X/2 ⩽ n < X. Therefore∑
X/2<n⩽X

Λ(n) ≪ X.

Remark. This is very closely related to the proof we gave in lectures that π(X) ≪ X
logX

.
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7. Write L(X) :=
∑

n⩽X λ(n) and M(X) :=
∑

n⩽X µ(n). Establish the relations

L(X) =
∑
d⩽

√
X

M(X/d2)

and

M(X) =
∑
d⩽

√
X

µ(d)L(X/d2),

and hence conclude that the statements L(X) = o(X) andM(X) = o(X) are equivalent.

Solution: The first statement is easier. We have λ = 1S ⋆ µ, where 1S is the character-

istic function of the squares, so

L(X) =
∑
n⩽X

λ(n) =
∑
n⩽X

∑
d2|n

µ
( n
d2

)
=

∑
d⩽

√
X

∑
m⩽ X

d2

µ(m) =
∑
d⩽

√
X

M(X/d2).

The second statement is a bit trickier and requires us to invert the relation λ = 1S ⋆ µ.

The key to this is to note that “Möbius inversion works on the squares” and in fact

1̃S ⋆1S = δ, where 1̃S(n) = µ(
√
n) if n is a square and 0 otherwise. This may be verified

directly. It follows that µ = 1̃S ⋆ λ. With this in hand, the argument is essentially the

same as before:

M(X) =
∑
n⩽X

µ(n) =
∑
n⩽X

∑
d2|n

µ(d)λ
( n
d2

)
=

∑
d⩽

√
X

µ(d)
∑
m⩽ X

d2

λ(m) =
∑
d⩽

√
X

µ(d)L(X/d2).

(1)

The equivalence of M(X) = o(X) and L(X) = o(X) is slightly subtle. We show that

L(X) = o(X) implies M(X) = o(X); the argument for the other direction is almost

identical. The trick is to first discard the large values of d in (1), say those with d > X1/4

(there is a lot of flexibility here). These are bounded trivially by∑
X1/4<d⩽

√
X

X

d2
= o(X).

For d ⩽ X1/4, we have |L(X/d2)| ⩽ εX/d2 provided that X is sufficiently large in terms

of X. Thus the contribution from these terms is at most∑
d⩽X1/4

ε
X

d2
< CεX.

Since ε was arbitrary, this is o(X).

Remark. In fact, both statements are equivalent to PNT. We will see one direction of

this in Question 9.
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8. Give an asymptotic for
∑

n⩽X ϕ(n). (Hint. Using the answer to Question 2, or otherwise,

first establish that the expression to be estimated is
∑

d⩽X µ(d)
∑

m⩽X/dm.)

Solution: By Question 2 we have ϕ ⋆ 1(n) = n. Hence, by Möbius inversion, we have

ϕ(n) =
∑
d|n

µ(d)
n

d
.

Thus ∑
n⩽X

ϕ(n) =
∑
n⩽X

∑
d|n

µ(d)
n

d
=

∑
d⩽X

µ(d)

d

∑
n⩽X:d|n

n =
∑
d⩽X

µ(d)
∑

m⩽X/d

m. (2)

Now ∑
m⩽X/d

m =
X2

2d2
+O

(X
d

)
, (3)

by the standard formula for triangular numbers. We substitute this into (2). The

contribution from the error term in (3) to (2) is

≪ X
∑
d⩽X

1

d
≪ X logX.

This will turn out to be tiny in comparison to contribution of the main term. The

contribution of the main term X2/2d2 in (3) to (2) is

1

2
X2

∑
d⩽X

µ(d)

d2
.

Now we saw in Q1 that ∑
d

µ(d)

d2
=

6

π2
.

Since ∣∣∣∑
d>X

µ(d)

d2

∣∣∣ ⩽ ∑
d>X

1

d2
⩽

∫ ∞

X−1

dt

t2
= O

( 1

X

)
,

the main term is 3
π2X

2 +O(X).

Thus an asymptotic for
∑

n⩽X ϕ(n) is
3
π2X

2.

Remark. An interpretation of this is as follows: the probability that a random pair of

integers ⩽ X are coprime is asymptotic to 6/π2.
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Section C

9. The aim of this question is to show that the prime number theorem implies thatM(X) =

o(X), where M(X) :=
∑

n⩽X µ(n).

(i) Prove that if n ̸= 1 then

−µ(n) log n =
∑
ab=n

µ(a)(Λ− 1)(b).

(ii) Deduce that

|M(X)| ⩽ 1

logX

∑
a

∣∣∣ ∑
b⩽X/a

(Λ(b)− 1)
∣∣∣+ o(X).

(iii) Assuming the prime number theorem, show that indeed M(X) = o(X).

Solution: (i) First note that we may replace Λ − 1 with Λ away from n = 1, since∑
ab=n µ(a) = 0 unless n = 1.

The stated formula is then equivalent to µ log = −Λ ⋆ µ. By Möbius inversion, this is

equivalent to Λ = −µ log ⋆1. But we know that Λ = µ ⋆ log; thus indeed

Λ(n) =
∑
d|n

µ(d) log(n/d)

= log n
∑
d|n

µ(d)−
∑
d|n

µ(d) log d

= −
∑
d|n

µ(d) log d.

(ii) We claim that

|M(X)| ⩽ 1

logX

∣∣∣ ∑
ab⩽X

µ(a)(Λ− 1)(b)
∣∣∣+ o(X). (4)

By the triangle inequality it suffices to show that∣∣∣∑
n⩽X

µ(n)
(
1− log n

logX

)∣∣∣ = o(X).

We bound this, crudely, by ∑
n⩽X

(
1− log n

logX

)
.

We showed in lectures that
∑

n⩽X log n = X logX+O(X), from which (4) follows. The

bound asked for in (ii) is then immediate from the triangle inequality, using the crude

bound |µ(a)| ⩽ 1.
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(iii) This is quite similar to the last part of the preceding question. Divide the sum over

a into a ⩽ Y and the other values. Take Y = X/ logX (again, there is some latitude

in this choice). If X is large enough then, because X/Y → ∞, the PNT tells us that

|
∑

b⩽X/a(Λ− 1)(b)| ⩽ εX
a
. Thus we have

1

logX

∑
a⩽Y

∣∣∣ ∑
b⩽X/a

(Λ− 1)(b)
∣∣∣ ⩽ ε

1

logX

∑
a⩽Y

X

a
≪ εX.

On the range Y < a ⩽ X we have, since ψ(X/a) ≪ X/a, the bound

1

logX

∑
Y <a⩽X

∣∣∣ ∑
b⩽X/a

(Λ− 1)(b)
∣∣∣ ≪ X

logX

∑
Y <a⩽X

1

a
=

X

logX
(logX − log Y +O(1)).

This is o(X) by the choice of Y (we need Y = X1−o(1) here).

10. By considering the Euler product of ζ and taking logs, show that∑
p

1

pt
= − log(t− 1) +O(1)

uniformly for t ∈ R, t > 1. Deduce (a weak form of Mertens’ estimate) that∑
p⩽X

1

p
≪ log logX.

Solution: Start from

ζ(t) =
∏
p

(
1− 1

pt
)−1

.

Taking logs gives, using − log(1− x) = x+O(x2) uniformly for x < 1,

log ζ(t) = −
∑
p

log
(
1− 1

pt
)
=

∑
p

1

pt
+
∑
p

O
( 1

p2t

)
=

∑
p

1

pt
+O(1). (5)

(since
∑

p
1
p2t

⩽
∑

n
1
n2 for all t ⩾ 1). Now

ζ(t) =
∑
n

n−t =

∫ ∞

1

x−tdx+O(1) =
1

t− 1
+O(1).

Taking logs, we get

log ζ(t) = log
( 1

t− 1
+O(1)

)
= − log(t− 1) +O(1), (6)

since log is uniformly Lipschitz on [1,∞). Comparing (5) and (6) gives the required

statement.
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Now take t = 1 + 1
logX

, and observe that

∑
p

1

p1+
1

logX

⩾ X− 1
logX

∑
p⩽X

1

p
≫

∑
p⩽X

1

p

Remark. This last argument is known as ‘Rankin’s trick’.
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