C3.8 Analytic Number Theory
Sheet 2 — MT24

Section A

1. Evaluate the sum ), %

Solution: We use the fact, established in lectures, that Dyu(s) = > pu(n)n™° = ﬁ
Thus the sum in question is 1/{(2). But it is well-known that ((2) = n 2= %2, SO

the answer is 6/72.

2. Give a simple description of the function ¢ x 1.

Solution: By definition

dxln) = (%),

dln
Now ¢(n/d) is precisely the number of m < n whose highest common factor with n is
precisely d. Thus the sum here is simply counting the number of m < n, or in other

words ¢ x 1(n) = n.
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Section B

3. Establish the following Dirichlet series:
(i
(ii

(iii

o, T(n)n= = ((s)* for Rs > 1;
Y on)n = C(S 1) for Rs > 2;
2 o(n)n” @%—U

(iv) If A(n) is the Liouville function, that is to say the unique completely multiplicative
function equal to —1 on the primes, then ) A(n)n™° = C 25 ) for Rs > 1.

n O\

)
)
)
)

Solution: (i) We have 7 = 1x 1. Thus from the link between Dirichlet convolution and
Dirchlet series we have D, = (D;)>.

(ii)) We have ¢ x 1 = ¢, where «(n) = n. Noting that D,(s) = ((s — 1) when $s > 2, the

result follows.
(iii) This follows from the fact that, by definition, 0 = 1 x ¢.
(iv) This is probably most easily done via Euler products. We have
1 1 1,1
Dis)=]J-=+=5--)=][0+=)""

- p p » b

However,

1

1+]_7 p25
s 1 L°

p 1=

Alternatively, one may note that A = px 1g, where S is the set of squares, then observe
that Dy (s) = ((2s).

4. Obtain an asymptotic for ) _\ 7(n).

Solution: We have

X

}:Tm%=}:1:§:{§J:22344xxyzxmgx+degxy

n<X ab<X a<X a<X

5. True or false? There is a constant C' such that 7(n) < log® n for all sufficiently large n.

Justify your answer.
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Solution: This is false. Let p;1 < py < ..., < p, be the first r primes, and consider
n = (pr---p-)". We have 7(n) = (m + 1)" > m’. However, logn = ym where
v = log(p1...pr) is independent of m. (One could consider n of the form n = [[ . p.

o(x).

Then, as we showed in lectures, n < e However, 7(n) = 27(X) " which is vastly

bigger than X©.)
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6. Show that

ZA L J Zlogn

By considering Y = X and Y = X/2, use this to prove that

> A <X,

X/2<n<X

Solution: We have |X] = 3" <vnle 1. Therefore
Samlp]=3 3 am
n<Y n<X z<Yn|z

Swapping the order of summation, this is

ZZA(n)zZl*A Zlogm

<Y n:n|z <Y <Y
which is the result stated.

We showed on Sheet 1 (Q8) that >y logz =Y logY —Y +o(Y). Thus
ZA { J XlogX — X +o(X)

and
;A(n) L%J = %Xlog (%) - % + o(X).

Subtracting twice the second expression from the first yields

X X
A Q—J —2{—J> = Xlog2 + o(X).
S am([5] - 2[5]) = X1es o)
Note, however, that the bracketed expression is 1 when X/2 < n < X. Therefore

Z An) < X.

X/2<n<X
Remark. This is very closely related to the proof we gave in lectures that m(X) < &.
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7. Write L(X) == x A(n) and M(X) :=}_ _x p(n). Establish the relations
L(X)= ) M(X/d)
d<vX
and
M(X)= Y w(d)LX/d),
d<v'X
and hence conclude that the statements L(X) = o(X) and M (X) = o(X) are equivalent.

Solution: The first statement is easier. We have A = 1g x i, where 1g is the character-

istic function of the squares, so

LEO) =D A =D n(z) = 2o D0 wlm) = Y Mx/d).

n<X n<X d?|n d<VX m< 55 d<v'X

The second statement is a bit trickier and requires us to invert the relation A = 1g * p.
The key to this is to note that “Mobius inversion works on the squares” and in fact
lg*1g = 0, where 1g(n) = u(y/n) if n is a square and 0 otherwise. This may be verified
directly. It follows that © = 1g« A\. With this in hand, the argument is essentially the

same as before:

MX) =3 uln) = 323 u@A () = D2 wld) 32 Am) = 7 u(d)L(X/d?).

n<X n<X d2|n d<v'X mgd% d<v'X
(1)

The equivalence of M (X) = o(X) and L(X) = o(X) is slightly subtle. We show that
L(X) = o(X) implies M(X) = o(X); the argument for the other direction is almost
identical. The trick is to first discard the large values of d in (1), say those with d > X /4
(there is a lot of flexibility here). These are bounded trivially by

X
Y. =X
XVi<dsvVX

For d < X4, we have |L(X/d?)| < eX/d? provided that X is sufficiently large in terms

of X. Thus the contribution from these terms is at most
X
Z Eﬁ < (CeX.
d<X1/4
Since € was arbitrary, this is o(X).

Remark. In fact, both statements are equivalent to PNT. We will see one direction of

this in Question 9.
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8. Give an asymptotic for me ¢(n). (Hint. Using the answer to Question 2, or otherwise,
first establish that the expression to be estimated is »;x p(d) 3=,y /g ™)

Solution: By Question 2 we have ¢ x 1(n) = n. Hence, by Mébius inversion, we have

dn
Thus ()
n 2
IOEDS Zu(d)g =2 n=> pd Y m (2)
n<X n<X d‘n d<X n<X d‘n d<X m<X/d
Now ) %
> m=35+0(7): 3)
m<X/d

by the standard formula for triangular numbers. We substitute this into (2). The

contribution from the error term in (3) to (2) is

1
<X D) < XlogX.

d<X

This will turn out to be tiny in comparison to contribution of the main term. The
contribution of the main term X?/2d% in (3) to (2) is

1X2 (d)

2 az

d<X

Now we saw in Q1 that

p(d) 6
%: 2 w2
1 > dt 1
& S /)(_lt?:()(f)v

Since

‘ Z M(d)

d>X d>X

the main term is % X? + O(X).

Thus an asymptotic for Y-, _ ¢(n) is 5 X2.

Remark. An interpretation of this is as follows: the probability that a random pair of

integers < X are coprime is asymptotic to 6/m2.
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Section C

9. The aim of this question is to show that the prime number theorem implies that M (X) =
o(X), where M(X) := 3 _ u(n).

(i) Prove that if n # 1 then

~pn)logn = 3 p(a)(A ~ 1)),

ab=n

(ii) Deduce that

M logXZa:‘ Z ‘+O<X)

b<X/a

(iii) Assuming the prime number theorem, show that indeed M (X) = o(X).

Solution: (i) First note that we may replace A — 1 with A away from n = 1, since

> b t(a) = 0 unless n = 1.

The stated formula is then equivalent to plog = —A % u. By Mobius inversion, this is

equivalent to A = —plogx1. But we know that A = u xlog; thus indeed

Z/J ) log(n/d)

din

—logn Y p(d) = > p(d)logd
dln dln
=—> p(d)logd.

d|n

(ii) We claim that

By the triangle inequality it suffices to show that
logn
1 50| = o(X).
> ) (1= 035 )| = o)
n<X

We bound this, crudely, by

Z (1_ logn>
= log X/

We showed in lectures that » _\ logn = Xlog X +O(X), from which (4) follows. The

bound asked for in (ii) is then immediate from the triangle inequality, using the crude

bound |u(a)| < 1.
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(iii) This is quite similar to the last part of the preceding question. Divide the sum over
a into a < Y and the other values. Take Y = X/log X (again, there is some latitude
in this choice). If X is large enough then, because X/Y — oo, the PNT tells us that
| 2 pexsa(A = 1)(b)] < e=. Thus we have

1 1 X
log X Z‘ Z (A— 1)@)‘ < “Tog X Z; < eX.

asY b<X/a asyY

On the range Y < a < X we have, since ¢(X/a) < X/a, the bound

v 2 S aenm] ety 3 0= prgliosX oy 00,

IOgX Y<a<X b<X/a IOgX Y<a<X a lOgX

This is o(X) by the choice of Y (we need Y = X'7°() here).

By considering the Euler product of ¢ and taking logs, show that
1
ZE = —log(t—1)+ O(1)
P
uniformly for ¢t € R,t > 1. Deduce (a weak form of Mertens’ estimate) that

1
Z - K loglog X.
p

p<X

Solution: Start from

Taking logs gives, using —log(1 — z) = z + O(x?) uniformly for z < 1,

1 1 1 1
logg(t):—zp:log(l—ﬁ):ZE—FZP:O(]@):%:1?4-0(1). (5)

p

(since Zp Z% <>, # forall t > 1). Now

C(t) = Zn_t = /100 e+ O(1) = L + O(1).

t—1

Taking logs, we get

log C(t) = log (t_% +0(1)) = ~log(t ~ 1) + O(1), (6)

since log is uniformly Lipschitz on [1,00). Comparing (5) and (6) gives the required

statement.
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Now take t =1+ log + - and observe that
R W LD
1+lo X
p P s p<X p<X

Remark. This last argument is known as ‘Rankin’s trick’.
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