
C3.8 Analytic Number Theory

Sheet 3 — MT24

Section A

1. Evaluate ζ(0) and ζ(−1). (You may want to use the facts that
∫∞
0

e−x2
dx = 1

2

√
π and

that
∑∞

n=1
1
n2 = π2

6
.)

Solution: We have Ξ(s) = Ξ(1− s), where Ξ(s) = π−s/2Γ(s/2)ζ(s). We cannot simply

substitute s = 1, as ζ has a pole there. Instead, set s = 1+ ε for some positive ε. Then

ζ(0) = lim
ε→0

π−(1+ε)/2Γ(1
2
+ 1

2
ε)ζ(1 + ε)

Γ(−1
2
ε)

= −π−1/2Γ(
1

2
) lim
ε→0

εζ(1 + ε)

2Γ(1− 1
2
ε)

= −1

2
π−1/2Γ(

1

2
).

However,

Γ(
1

2
) =

∫ ∞

0

e−tt−1/2dt = 2

∫ ∞

0

e−x2

dx = π1/2.

Therefore ζ(0) = −1
2
.

Turning to ζ(−1), the functional equation tells us that

ζ(−1) =
π−3/2Γ(1)ζ(2)

Γ(−1
2
)

.

Now Γ(1) = 1, ζ(2) = π2

6
, and −1

2
Γ(−1

2
) = Γ(1

2
) = π1/2. Putting all this together gives

ζ(−1) = − 1
12
.

Remark. It is obligatory to remark that this is the famous ‘formula’

1 + 2 + 3 + · · · = −1

2
.

Of course this is nonsensical as written since the expression ζ(s) =
∑∞

n=1 n
−s is only

valid for ℜs > 1 (and in particular not for s = −1).
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Section B

2. (i) Assume ℜs > 0. Calculate the Mellin transform W̃ (s), where W (x) = 1 for

0 < x < 1 and W (x) = 0 for x ⩾ 1.

(ii) Define

W∗(x) :=
1

2πi

∫ 2+i∞

2−i∞
W̃ (s)xsds,

where the integral is defined to be

lim
T→∞

1

2πi

∫ 2+iT

2−iT

W̃ (s)xsds

(that is, the ‘Cauchy principal value’ of the indefinite integral). By considering

x = 1, show that W∗ is not identically equal to W .

Solution: (i) W̃ (s) =
∫ 1

0
xs dx

x
=

[
1
s
xs
]1
0
= 1

s
.

(ii) Parametrising the contour by 2 + it, we have

W∗(1) =
1

2π

∫ T

−T

1

2 + it
dt =

1

2π

∫ T

−T

2− it

4 + t2
dt.

The contribution from the imaginary part is, by symmetry, 0. The real part of the

integral is
1

π

∫ T

−T

dt

4 + t2
=

1

π

[1
2
tan−1(x/2)

]T
−T

→ 1

2
.

Remark. In fact, as it happens W∗ = W everywhere except x = 1. This (or rather

finite truncations to large values of T ) is Perron’s formula. It can be used to give a

“non-smooth” treatment of the PNT but one must contend with the fact that 1
s
does

not decay very rapidly.

3. Prove directly from the Euler product that ζ(s) ̸= 0 for ℜs > 1.

Solution: We use the Euler Product ζ(s) =
∏

p(1−p−s)−1. One must not be tempted to

conclude that an infinite product of nonzero quantities is nonzero! To proceed rigorously,

we use some standard techniques from the theory of infinite products. Note that by

Taylor expansion we have, for t ⩾ 0 sufficiently small, e−2t(1 + t) ⩽ 1. It follows that if

w ∈ C with |w| sufficiently small then

e−2|w||1− w| ⩽ e−2|w|(1 + |w|) ⩽ 1,

and hence

|(1− w)−1| ⩾ e−2|w|.
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Applying this with w = p−s tells us that if p > p0 is sufficiently large then

|(1− p−s)−1| ⩾ e−2|p−s|.

Taking products over p, and noting that the finite product
∏

p⩽p0
(1 − p−s)−1 is never

zero, we see that it suffices to show that
∑

p |p−s| < ∞. But∑
p

|p−s| =
∑
p

p−ℜs <
∑
n

n−ℜs < ∞

when ℜs > 1.

4. Define a function W : R → R by

W (x) =

{
exp

(
1

x2−1

)
|x| < 1

0 |x| ⩾ 1,

Show that W is smooth.

Solution: EvidentlyW is smooth away from −1 and 1. By the chain rule, it is sufficient

to show that the function f : R → R defined by f(t) = e1/t for t < 0 and f(t) = 0

for t ⩾ 0 is differentiable at 0. By explicit differentiation, f (m)(t) = Pm

(
1
t

)
e1/t for some

polynomial Pm, for t < 0. Thus

lim
h→0−

f (m)(h)− f (m)(0)

h
= lim

h→0−

1

h
Pm

(1
h

)
e1/h = 0.

In other words, f is infinitely differentiable at 0 and its derivative is 0 there.

5. Define functions F1, F2 : R → R by setting F1(x) = 1 if |x| ⩽ 1, and 0 otherwise; and

F2(x) = 1 − |x| if |x| ⩽ 1, and 0 otherwise. Show that
∫
|F̂1(ξ)|dξ is infinite, but that∫

|F̂2(ξ)|dξ is finite.

Solution: We can compute the Fourier transform F̂1(ξ) quite explicitly, and compute

that

|F̂1(ξ)| =
1

|ξ|
|e2iξ − 1|.

If ξ is within 1
10

of 2π(Z+ 1
2
) then |e2iξ − 1| > 1

2
, so∫

|F̂1(ξ)|dξ ⩾
1

2

∫
ξ∈2π(Z+ 1

2
)+B1/10(0)

dξ

|ξ|
.

⩾
1

2

∑
n

∫ 2π(n+ 1
2
)+ 1

10

2π(n+ 1
2
)− 1

10

dξ

|ξ|
.
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This is infinite by comparing with the harmonic series.

We can also compute the Fourier transform F̂2(ξ) explicitly. More conceptually, it is a

rescaling of F1 ∗F1, which has Fourier transform bound by O(|ξ|−2), which is integrable.
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6. Let χ : N → {−1, 0, 1} be the function defined by χ(n) = 0 if 2 | n, χ(n) = 1 if n ≡ 1

(mod 4) and χ(n) = −1 if n ≡ 3 (mod 4).

(i) Show that χ is completely multiplicative.

(ii) Define L(s, χ) :=
∏

p

(
1− χ(p)p−s

)−1
. Evaluate lims→1+ L(s, χ).

(iii) Deduce that lims→1+
∑

p χ(p)p
−s converges.

(iv) Conclude that there are infinitely many primes congruent to 1 mod 4, and also

infinitely many primes congruent to 3 mod 4.

Solution: (i) is easily checked by looking at cases modulo 4. (What is really going on

here is that χ is induced from a homomorphism on (Z/4Z)×.)

(ii) The product is∏
p

(
1 + χ(p)p−s + χ(p2)p−2s + . . .

)
=

∑
n

χ(n)n−s,

since χ is completely multiplicative. Taking limits as s → 1+ gives

lim
s→1+

L(s, χ) = 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
.

(iii) We have 1 − χ(p)p−s = e(−χ(p)p−s) + O(p−2s). Thus, since lims→1+ L(s, χ) is

bounded and not zero, it follows that

lim
s→1+

∑
p

χ(p)p−s

is finite.

(iv) We have

lim
s→1+

∑
p≡1(mod 4)

p−s =
1

2
lim
s→1+

∑
p

1 + χ(p)

ps
,

which is infinite since lims→1+
∑

1
ps

is (this follow from Sheet 2, Q10). Similarly

lim
s→1+

∑
p≡3(mod 4)

1

ps
=

1

2
lim
s→1+

∑
p

1− χ(p)

ps

is infinite.

7. Show that ζ(s) does not vanish for real s in the interval [0, 1].
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Solution: From lectures,

ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx.

Hence if s > 0 and ζ(s) = 0 then

1

s− 1
=

∫ ∞

1

{x}
xs+1

dx.

However, the LHS is negative, whilst the RHS is positive. This is a contradiction.

We showed that ζ(0) ̸= 0 in the first question.
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Section C

8. Construct a smooth function F : R → R such that F (x) = 1 when |x| ⩽ 1, 0 ⩽ F (x) ⩽ 1

when 1 ⩽ |x| ⩽ 2, and F (x) = 0 when |x| ⩾ 2.

Solution: By Question 4 and a rescaling, there is a nonnegative smooth function g

supported on |x| ⩽ 1
2
and with

∫
g = 1. Define

F (x) :=

∫ 3/2

−3/2

g(x+ t)dt

(thus F is basically the convolution of 1[−3/2,3/2] with g.) It is easy to see that F has all

the stated support properties. For example, if |x| ⩽ 1 then F (x) =
∫∞
−∞ g(x + t)dt =∫

g = 1, since the portions of the integral with |t| > 3
2
contribute nothing.

Moreover, F is smooth. This follows from standard results about differentiating under

integrals; it is also not hard to reproduce an argument directly, which we shall now do.

It suffices (by induction) to show that

F̃ (x) =

∫ 3/2

−3/2

g′(x+ t)dt

is a derivative of F . We have

F (x+ h)− F (x)− hF̃ (x) =

∫ 3/2

−3/2

(
g(x+ h+ t)− g(x+ t)− hg′(x+ t))dt.

However by MVT

g(x+ h+ t)− g(x+ t)− hg′(x+ t) = h
(
g′(x+ t+ θx,t,h)− g′(x+ t)

)
,

where 0 ⩽ θx,t,h ⩽ h, and this is, by MVT again, bounded by O(|h|2∥g′′∥∞). It follows

that

F (x+ h)− F (x)− hF̃ (x) ≪ |h|2∥g′′∥∞ ≪ |h|2.
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9. Suppose that Ω is a countable multiset of nonzero complex numbers, and that∑
ρ∈Ω

|ρ|−2 < ∞. (1)

Explain how the infinite sum

F (s) :=
∑
ρ∈Ω

( 1

s− ρ
+

1

ρ

)
may be defined rigorously, and why it is meromorphic except for poles at the ρ.

Solution: First observe that the condition (1) implies that Ω has only finitely many

points in any open ball in C. Suppose first that s0 /∈ Ω. Then, by the property just

mentioned, there is some ball Bε(s0), ε > 0, disjoint from Ω. For s ∈ Bε(s0), and for

N > 2|s|, define
FN(s) :=

∑
ρ∈Ω,|ρ|⩽N

( 1

s− ρ
+

1

ρ

)
.

Suppose thatN ′ > N . Repeating (essentially) a computation from Chapter 7 of lectures,

we have

|FN(s)− FN ′(s)| ⩽
∑

ρ∈Ω,N<|ρ|⩽N ′

∣∣∣ 1

s− ρ
+

1

ρ

∣∣∣ = |s|
∑

ρ∈Ω,N<|ρ|⩽N ′

1

|s− ρ||ρ|

⩽ 2|s|
∑

ρ∈Ω,N<|ρ|⩽N ′

|ρ|−2.

(Here, as in lectures, we used the fact that |ρ| ⩾ 2|s|, so |s/ρ| ⩽ 1
2
, and hence | s

ρ
−1| ⩾ 1

2

and hence |s − ρ| ⩾ 1
2
|ρ|.) It follows that FN(s) is uniformly Cauchy on Bε(s0), and

hence converges uniformly to a holomorphic function on this domain. This limit is the

desired rigorous definition of F (s).

Around any s which is equal to some ρ, a very similar argument applies, first setting

aside the term k
s−ρ

, where k is the multiplicity of ρ. We leave the details as an exercise.
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