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0.1. Overview. These are the notes for the 2024-25 version of the course C3.10 Additive Combi-
natorics, taught at the University of Oxford.

Additive combinatorics is the study of additive questions about finite sets of integers.
We will begin by proving a famous theorem of Roth: every set of integers with positive density

contains three distinct elements in arithmetic progression. This proof uses some basic ideas from
Fourier analysis, which we will develop from scratch. Then, we will turn to the corresponding
question in the group (Z/3Z)n, where much stronger bounds are known using algebraic methods.

Next we will look at the structure of finite sets A of integers which are almost closed under
addition in the sense that their sumset A + A := {a1 + a2 : a1, a2 ∈ A} is relatively small. The
highlight here is Freiman’s theorem, which states that any such set has a precise combinatorial
structure known as a generalised progression. The proof once again uses some Fourier analysis as
well as a host of other ingredients such as the geometry of numbers, which we will develop from
first principles.

After that, we will turn to the corresponding question in vector spaces over finite fields. We will
introduce entropy methods and describe how they may be used to prove a rather precise description
of sets with small sumset in this setting.

Finally, we will look at instances of the sum-product phenomenon, which says that it is impossible
for a finite set of integers to be simultaneously additively- and multiplicatively structured. This
section draws from a particularly rich set of other mathematical areas, including graph theory,
geometry and analysis, as well as previous sections of the course. Nonetheless, prerequisites will be
minimal and we will develop what we need from scratch.
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A particular aim of the course will be to give a taster of the very large number of different
methods which have been brought to bear on these topics: Fourier analysis, algebraic methods,
methods from information theory, graph theory and geometric combinatorics.

0.2. Synopsis. Arithmetic progressions. Basic properties of Fourier transforms. Roth’s theorem
that every subset of {1, . . . , N} of size at least δN contains three elements in arithmetic progression,
provided N is sufficiently large in terms of δ. The Croot-Lev-Pach method and strong bounds for
arithmetic progressions in (Z/3Z)n.

Sumsets and Freiman’s theorem. Basic sumset estimates. Additive energy and its relation to
sumsets: statement (but not proof) of the Balog-Szemerédi-Gowers theorem. Bohr sets and Bo-
golyubov’s theorem. Minkowski’s second theorem (statement only). Freiman’s theorem on sets
with small doubling constant. Freiman’s lemma on the dimension of sets with small doubling.

Entropy methods and polynomial Freiman-Ruzsa. Basic notions of entropy and entropy ana-
logues of sumset inequalities. The fibring inequality for entropy doubling. Marton’s conjecture in
characteristic 2. Deduction of the weak polynomial Freiman-Ruzsa conjecture over Z.

Sum-product theorems. The crossing number inequality for graphs. The Szemerédi-Trotter the-
orem on point-line incidences, and application to prove that either |A + A| or |A · A| has size at

least c|A|5/4. Proof of Bourgain and Chang’s result that either the m-fold sumset A+A+ · · ·+A

or the m-fold product set A ·A · · · ·A has size at least |A|f(m), where f(m) → ∞.

If time allows the course will conclude with a brief non-examinable discussion of Gowers’s work
on Szemerédi’s theorem for progressions of length 4 and longer, which ties together several earlier
strands in the course.

0.3. Further reading. M. Nathanson’s two books [6, 7] have historically been a significant inspi-
ration for the choice of topics in this course. They are a little out of date now, but [7] is still a
useful resource for the topics in Sections 3 and 4.

The book of T. Tao and V. Vu [8] is similarly influential and also very useful, though again this
book does not cover the more recent developments.

Probably the best external resource for this course is the very new book [9] by Yufei Zhao, which
I highly recommend.

The material in Sections 5 to 7 is for the most part very recent. The notes are essentially
self-contained, but the reader may also want to consult the original papers, particularly [3, 4].

In Section 5, we will state basic properties of entropy, but will not give the proofs. The proofs
of all these statements may be found in the notes for the Oxford undergraduate course B8.4:
Information Theory (Chapter 1). A very succinct resource for this material is [1, Section 14.6].

0.4. Notation. Asymptotic notation. Throughout the course we will be using asymptotic notation.
This is vital in handling the many inequalities and rough estimates we will encounter. Here is a
summary of the notation we will see. We suggest the reader not worry too much about this now;
we will gain plenty of practice with this notation. See also the first question on Sheet 0.

• A ≪ B means that there is an absolute constant C > 0 such that |A| ⩽ CB. In this
notation, A and B will typically be variable quantities, depending on some other parameter.
For example, x + 1 ≪ x for x ⩾ 1, because |x + 1| ⩽ 2x in this range. It is important to
note that the constant C may be different in different instances of the notation.

• A = O(B) means the same thing.
• A≪ B is the same as B ≫ A.
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• O(A) means some quantity bounded in magnitude by CA for some absolute constant
C > 0. In particular, O(1) simply means a quantity bounded by an absolute positive
constant. For example, 5x

1+x = O(1) for x ⩾ 0.

We shall adopt the very standard notation

e(t) := e2πit.

One may think of this either as a function on R, periodic with period 1, or as a function on R/Z;
we shall not be careful in making the distinction.

For θ ∈ R/Z we write ∥θ∥R/Z for the distance of θ from 0. Thus, for example, ∥2/3∥R/Z = 1/3.
Write [N ] := {1, . . . , N}. Often, we will state that N is ‘sufficiently large’ by which we mean

larger than some absolute constant that could be specified if desired (but we will generally not do
so).

Quantities. In understanding additive and analytic number theory, it is important to develop a
robust intuitive feeling for the rough size of certain quantities. For example, you should try and
become familiar with facts such as

log10X ≪ e
√
logX ≪ X0.01.

1. Roth’s theorem on progressions of length 3

In this section our aim is to prove the following theorem of Roth from 1953. In doing so, we
introduce a key tool: the Fourier transform.

Theorem 1.1 (Roth’s theorem). Let N be sufficiently large. There is an absolute constant C such
that any subset A ⊂ [N ] with cardinality at least CN/ log logN contains a nontrivial three-term
arithmetic progression (that is to say, a triple x, x+ d, x+ 2d with d ̸= 0).

Note, in particular, that 1/ log logN is eventually smaller than any fixed positive constant.

1.1. The density increment strategy. Roth’s theorem proceeds via the so-called density incre-
ment strategy, and the key proposition which drives this is the following.

Proposition 1.2. Let N be sufficiently large. Suppose that 0 < α < 1 and that N ⩾ (8/α)10.
Suppose that P ⊂ Z is an arithmetic progression of length N and that A ⊂ P is a set with
cardinality at least αN . Then one of the following two alternatives holds:

(i) A contains a nontrivial 3-term progression;

(ii) There is an arithmetic progression P ′ of length N ′ ⩾ N1/5 such that, writing A′ := A∩P ′

and α′ := |A′|/|P ′|, we have α′ ⩾ α+ α2

112 .

Theorem 1.1 follows by iterating this proposition.

Proof of Theorem 1.1, assuming Proposition 1.2. In this proof c, C,C ′ denote absolute constants
with 0 < c < 1 < C,C ′. Set P0 := {1, . . . , N} and let us suppose that we have a set A ⊂ P0 with
|A| = αN and containing no nontrivial 3-term progression. Then we attempt to use Proposition 1.2
repeatedly to obtain a sequence P0, P1, P2, . . . of progressions together with sets Ai := A∩Pi. The

length of Pi will be Ni ⩾ N (1/5)i and the densities αi := |Ai|/|Pi| will satisfy αi+1 > αi + cα2
i .

(Here we could take c = 1
112 .)

Now this iteration cannot last too long: after C/α steps the density has already doubled, after
a further C/2α steps it has doubled again, and so on. Since no set can have density greater
than one, there can be no more than 2C/α steps in total. We conclude that our applications of
Proposition 1.2 must have been invalid, which means that either Ni is not sufficiently large, or
Ni < (8/αi)

10. Either way, since αi ⩾ α, we have Ni < Cα−C for some absolute C. Since

Ni > N (1/5)i ⩾ N (1/5)2C/α
,

6



we infer the bound
N (1/5)2C/α

⩽ Cα−C .

Rearranging gives

log logN ⩽ log log(Cα−C) +
2C

α
log 5 ⩽

C ′

α
,

which immediately gives the claimed bound. □

Remark. The most important parameter by far is the number of times we performed the iteration,
which was roughly O(1/α).

1.2. Fourier transform on Z. Let f : Z → C be a compactly-supported function (that is,

f(n) = 0 outside of some finite interval). Then we define the Fourier transform f̂(θ) by

f̂(θ) :=
∑
n

f(n)e(−nθ).

Since f is compactly-supported, there is no issue of convergence. A crucial fact we will need is the
Parseval identity.

Lemma 1.3. We have ∑
n

f(n)g(n) =

∫
R/Z

f̂(θ)ĝ(θ)dθ.

Proof. This is an easy check using the definitions, as well as the fact that∫
R/Z

e(mθ)dθ =

∫ 1

0
e(mθ)dθ =

{
1 m = 0
0 m ∈ Z \ {0}, (1.1)

that is to say the orthogonality relation for characters. □

Remark. Taking f = g gives ∑
n

|f(n)|2 =
∫
R/Z

|f̂(θ)|2dθ.

1.3. A large Fourier coefficient. We turn now to the details of the density increment strategy.
We begin with a very simple observation, which is that we may assume without loss of generality
that P = [N ] = {1, . . . , N}. We may always reduce to this case by an affine rescaling.

We will first establish the following alternative version of Proposition 1.2, in which the conclusion
of part (ii) is different, asserting the existence of a large Fourier coefficient of the function

fA := 1A − α1[N ],

the so-called balanced function of A. In the next section, we will show that a large Fourier coefficient
implies a density increment as in the original formulation of Proposition 1.2.

Lemma 1.4. Suppose that 0 < α < 1 and that N ⩾ 4/α2. Suppose that A ⊂ [N ] is a set with
cardinality at least αN . Then one of the following two alternatives holds:

(i) A contains a nontrivial 3-term progression;
(ii) The balanced function fA has a large Fourier coefficient: specifically, there is some θ ∈ R/Z

such that |f̂A(θ)| ⩾ α2N/28.

Proof. If f1, f2, f3 : Z → R are three finitely-supported functions then we introduce the operator

T (f1, f2, f3) :=
∑
x,d

f1(x)f2(x+ d)f3(x+ 2d).

This counts the number of 3-term progressions weighted by the functions fi. In particular,

T (1A, 1A, 1A) = #{number of 3-term progressions in A}. (1.2)
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Note carefully that this count includes “trivial” progressions with d = 0. However, A has precisely
αN trivial progressions, so if option (i) does not hold then

T (1A, 1A, 1A) = αN ⩽ α3N2/4. (1.3)

For the inequality on the right we used the assumption that N ⩾ 4/α2.
Note that T is a trilinear operator. Thus we may write 1A = fA+α1[N ] and expand T (1A, 1A, 1A)

as a sum of eight terms,

T (1A, 1A, 1A) = α3T (1[N ], 1[N ], 1[N ]) + · · ·+ T (fA, fA, fA). (1.4)

Each of the seven “error terms” denoted by the ellipsis · · · contains at least one copy of fA. Let us
look at the first term α3T (1[N ], 1[N ], 1[N ]). It is quite simple to evaluate this exactly: the number
of (x, d) with x, x + d, x + 2d ∈ [N ] is precisely the number of pairs (n1, n2) ∈ [N ] × [N ] with
n1, n2 having the same parity, since we then have, uniquely, x = n1 and d = 1

2(n2 − n1), and x+ d

automatically lies in [N ]. This is N2/2 if N is even, and (N2+1)/2 if N is odd, thus at least N2/2
in all cases. Thus

α3T (1[N ], 1[N ], 1[N ]) ⩾ α3N2/2.

It follows that if option (i) does not hold (and hence we have (1.3)) then the sum of the seven
error terms in (1.4) is at least α3N2/4. Thus one of these terms is at least α3N2/28, that is to say

|T (f1, f2, f3)| ⩾ α3N2/28, (1.5)

where each fi is either α1[N ] or fA, and at least one of them is fA.
Now we come to the key idea: there is a formula for T (f1, f2, f3) in terms of the Fourier transform:

T (f1, f2, f3) =

∫
R/Z

f̂1(θ)f̂2(−2θ)f̂3(θ)dθ. (1.6)

Once written down, it is very easy to check this by substituting the definition of the Fourier
transforms on the right-hand side and using the orthogonality relations (1.1).

Thus if (1.5) holds then ∣∣∣ ∫
R/Z

f̂1(θ)f̂2(−2θ)f̂3(θ)dθ
∣∣∣ ⩾ α3N2/28. (1.7)

Suppose that f3 = fA; the analysis of other possibilities is very similar. Then

sup
θ∈R/Z

|f̂A(θ)|
∫
R/Z

|f̂1(θ)||f̂2(−2θ)|dθ ⩾ α3N2/28.

By the Cauchy-Schwarz inequality,

sup
θ∈R/Z

|f̂A(θ)|
(∫

R/Z
|f̂1(θ)|2dθ

)1/2(∫
R/Z

|f̂2(θ)|dθ
)1/2

⩾ α3N2/28. (1.8)

However, by Parseval’s identity we have∫
R/Z

|fi(θ)|2dθ =
∑
n

|fi(n)|2.

One may easily check that the RHS is α2N if fi = α1[N ] and α(1−α)N if fi = fA, and so certainly
at most αN in either case. Thus from (1.8) we obtain

sup
θ∈R/Z

|f̂A(θ)| ⩾ α2N/28,

which is precisely option (ii) in the proposition. □
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1.4. From a large Fourier coefficient to a density increment. In this section, we show how
option (ii) in Lemma 1.4 (the balanced function fA has a large Fourier coefficient) may be replaced
by option (ii) in Proposition 1.2 (a density increment on a progression). The crucial technical
ingredient is the following.

Here, if F : Z → C is a function and S ⊂ Z a finite set, we write diamS(F ) := supx,x′∈S |F (x)−
F (x′)|.

Lemma 1.5. Suppose that N is sufficiently large. Suppose that θ ∈ R/Z. Then we may partition

[N ] into progressions Pi, each of length at least N1/5, such that diamPi(e(θx)) ⩽ N−1/5 for all i.

Proof. Let Q := ⌊N1/2⌋. By a well-known application of the pigeonhole principle due to Dirichlet,
there is some positive d ⩽ Q such that ∥dθ∥R/Z ⩽ 1/Q. (Consider θ, 2θ, · · · , Qθ as elements of
R/Z; some two of these, say j1θ and j2θ, lie within 1/Q of one another. Take d := |j1 − j2|. )

If P is any progression with common difference d and length ⩽ 3N1/5 then, by the triangle
inequality,

diamP (e(θx)) ⩽ 3N1/5|e(θd)− 1| ⩽ 20N1/5/Q < N−1/5,

where here we used the inequality

|e(t)− 1| = 2| sinπt| ⩽ 2π∥t∥R/Z.

Now observe that [N ] can be partitioned into progressions Pi with common difference d and

lengths in the range [N1/5, 3N1/5]. To do this, first partition [N ] into progressions of common

difference d, each of length ∼ N/d≫ N1/2. Then proceed along each such progression from left to

right, partitioning into progressions of length ⌈N1/5⌉ until we have a leftover progression of length

⩽ N1/5. Amalgamate this with the preceding one. □

The following result, together with Lemma 1.4, immediately implies Proposition 1.2, and hence
completes the proof of Roth’s theorem.

Lemma 1.6. Suppose that |f̂A(θ)| ⩾ α2N/28, that N ⩾ (8/α)10, and let [N ] =
⋃

i Pi be a partition

as above. Then there is some i such that |A ∩ Pi| ⩾ (α+ α2

112)|Pi|.

Proof. Since the Pi partition [N ], we obviously have∑
i

∣∣∣ ∑
x∈Pi

fA(x)e(−θx)
∣∣∣ ⩾ α2

28
N.

By the triangle inequality and the bound |fA(x)| ⩽ 1, the left-hand side is at most∑
i

∣∣∣ ∑
x∈Pi

fA(x)
∣∣∣+∑

i

|Pi| diamPi(e(θx)) ⩽
∑
i

∣∣∣ ∑
x∈Pi

fA(x)
∣∣∣+N4/5

⩽
∑
i

∣∣∣ ∑
x∈Pi

fA(x)
∣∣∣+ α2

56
N,

the last step following from our assumption on N . It follows that∑
i

∣∣∣ ∑
x∈Pi

fA(x)
∣∣∣ ⩾ α2

56
N.

Since
∑

x∈[N ] fA(x) = 0, we have∑
i

(∣∣ ∑
x∈Pi

fA(x)
∣∣+ ∑

x∈Pi

fA(x)
)
⩾
α2

56
N =

α2

56

∑
i

|Pi|,
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so there must be some i such that∣∣∣ ∑
x∈Pi

fA(x)
∣∣∣+ ∑

x∈Pi

fA(x) ⩾
α2

56
|Pi|,

which implies that ∑
x∈Pi

fA(x) ⩾
α2

112
|Pi|,

or in other words that

|A ∩ Pi| ⩾
(
α+

α2

112

)
|Pi|.

This concludes the proof. □

2. Progressions in finite fields and the polynomial method

In this section we consider questions about 3-term arithmetic progressions in a so-called finite
field model. We will focus on the specific case of progressions in the group Fn

3 , where F3
∼= Z/3Z

is the finite field of order 3, and n is a large integer, though similar techniques may be used in Fn
p

for any odd prime p. Characteristic 3 is quite attractive because a 3-term progression is then just
a triple of points with x+ y + z = 0 (since z = −2z in characteristic 3).

Fourier analytic methods may be used to attack this problem. There are three questions on
Example Sheet 1 in which the details of this are worked out (or you are invited to work them out).

The purpose of this chapter is to give a fairly recent (2016) very different proof, which gives a
dramatically better bound for the problem in this setting. The following is a theorem of Ellenberg
and Gijswijt, who adapted a breakthrough of Croot, Lev and Pach.

Theorem 2.1. Suppose that A ⊂ Fn
3 is a set containing no three elements in arithmetic progression.

Then |A| ≪ (3− δ)n for some positive constant δ.

We will follow a presentation of the argument due to Tao. In what follows, write F = F3.

Definition 2.2. Let A ⊂ Fn, and suppose that f : A × A × A → F is a function. Then the slice
rank sr(f) of f is the smallest r for which f may be written as the sum of r functions of the form
g(x)h(y, z), g(y)h(x, z) or h(z)g(x, y).

Lemma 2.3. Suppose that f as above has support exactly equal to the diagonal x = y = z; that is,
f(x, y, z) is nonzero if and only if x = y = z. Then sr(F ) = |A|.

Before giving the proof, we isolate a (well-known) linear-algebraic lemma.

Lemma 2.4. Any k-dimensional subspace of Fn contains a point with at least k nonzero coordinates
in the standard basis.

Proof. Let V be the subspace. Write down a k × n matrix whose rows are a basis for V , in the
standard coordinate system on Fn. Since dimV = k, the row rank of this matrix is k. Therefore its
column rank is also k. By permuting coordinates, we may suppose without loss of generality that
the k×k submatrix consisting of the first k columns has full rank. The point (1, 1, . . . , 1, 0, 0, . . . , 0)
(with k 1s and (n− k) 0s) then lies in V . □

We may now prove Lemma 2.3.

Proof of Lemma 2.3. We first note that any f (regardless of support properties) has slice rank at
most |A|. This is quite obvious by writing

f(x, y, z) =
∑
a∈A

1a=xf(a, y, z).
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The main content is therefore the bound in the other direction. Suppose that f(x, y, z) is a sum of
r1 functions of the form g1,i(x)h1,i(y, z), r2 functions of the form g2,i(y)h2,i(x, z) and r3 functions
of the form g3,i(z)h3,i(x, y), with r1 + r2 + r3 = r.

We claim that there is a function ϕ : A→ F with∑
x

ϕ(x)g3,i(x) = 0, i = 1, 2, . . . , r3, (2.1)

and for which ϕ(x) is nonzero for at least |A|− r3 values of x ∈ A. Indeed, the space of ϕ satisfying
(2.1) is a vector space of dimension at least |A| − r3, and so we may apply Lemma 2.3.

Now consider
f̃(x, y) :=

∑
a∈A

f(x, y, a)ϕ(a).

Since ∑
a∈A

g3,i(a)h3,i(x, y)ϕ(a) = 0,

whilst ∑
a∈A

g2,i(y)h2,i(x, a)ϕ(a) = g2,i(y)
(∑

a∈A
h2,i(x, a)ϕ(a)

)
has the form α(x)β(y), as does ∑

a∈A
g1,i(x)h1,i(y, a)ϕ(a),

we see that f̃(x, y) is a sum of r1+ r2 functions of the form α(x)β(y), that is to say the rank of the

matrix M := (f̃(x, y))x,y∈A is at most r1 + r2.

Note, however, that M is diagonal by the assumptions on f , that is to say f̃(x, y) = 0 if x ̸= y.

Moreover, the diagonal entry f̃(x, x) is f(x, x, x)ϕ(x), which vanishes if and only if ϕ(x) does; thus
there are at least |A| − r3 nonzero diagonal entries, and so the rank of M is at least |A| − r3.

Combining these two inequalities, we see that

r1 + r2 ⩾ |A| − r3,

or in other words r ⩾ |A|, as desired. □

Now suppose that A ⊂ Fn
3 is a set with no nontrivial solution to x+y+z = 0 (that is, no 3-term

progression). Then the function f : A × A × A → F defined by f(x, y, z) = 1 if x + y + z = 0,
and 0 otherwise, has exactly the property in Lemma 2.3. Thus we conclude from Lemma 2.3 that
sr(f) = |A|. To complete the proof of Theorem 2.1, it therefore suffices to prove that sr(f) ⩽ (3−δ)n.
In fact we will prove that the similar function F : Fn × Fn × Fn → F defined by F (x, y, z) = 1 if
x+y+z = 0, and 0 otherwise (that is, the extension of f from A×A×A to Fn×Fn×Fn) has slice
rank ⩽ (3 − δ)n, which is a stronger result since clearly sr(F ) ⩾ sr(f). The following proposition
establishes a sharp form of this claim.

Proposition 2.5. Let F be as above. Then sr(F ) ⩽ 3(1 + t+ t2)nt−2n/3 for any t ∈ (0, 1].

Proof. The key idea is to observe that

F (x, y, z) =

n∏
i=1

(
1− (xi + yi + zi)

2
)
,

using here the fact that 1−u2 = 0 unless u = 0 (in F = F3). Expanding out, this is a polynomial of
degree 2n in the 3n variables xi, yi, zi. For each monomial, at least one of the total x-degree, total
y-degree or total z-degree is ⩽ 2n/3. The sum of the terms with total x-degree at most 2n/3 may

be written as a sum of terms m(x)hm(y, z), where m ranges over all monomials m(x) = xi11 · · ·xinn
11



of total degree ⩽ 2n/3, and hm(y, z) is some function. Therefore, sr(F ) is at most 3 times the
number of monomials m of degree ⩽ 2n/3.

Expand the product
n∏

i=1

(1 + xi + x2i )

as a sum of monomials, and set x1 = · · · = xn = t, for some t ∈ [0, 1]. Each monomial in the xi
(of degree at most 2 in each xi) appears, and the ones with degree d contribute td each. Thus, the
number of monomials of degree d is at most t−d(1+ t+ t2)n, and so by the preceding discussion we
see that

sr(F ) ⩽ 3t−2n/3(1 + t+ t2)n,

as required. □

Combining Proposition 2.5 with the remarks immediately preceding it, we see that if A ⊂ Fn
3

has no 3-term progression then |A| ⩽ 3t−2n/3(1 + t+ t2)n. Here, we are free to choose t ∈ (0, 1].

Setting t = 1− ε and expanding to first order, we see that t−2/3(1 + t+ t2) = 3− ε+O(ε2), so
by taking ε sufficiently small we obtain the claimed bound |A| ≪ (3− δ)n.

Alternatively, one may compute the optimal value of t using calculus; this is Sheet 1, Q4.

3. Sumset inequalities

In this section we explore the notion of adding sets. There is a huge literature on this topic,
from which we isolate a few key results. All of the results we shall state are valid for finite subsets
of arbitrary abelian groups, and for brevity it is usual to call these “additive sets”. When we
are talking about more than one additive set, we assume they are all subsets of the same group.
The particular abelian group in question will normally be clear from context (though often it does
not matter). In fact, many of the results (but not all) remain true without the assumption of
commutativity, but we shall not cover that topic in this course.

3.1. Basic notation and definitions. Let A,B be additive sets (this both A and B are finite
subsets of some abelian group). Then we write

A+B := {a+ b : a ∈ A, b ∈ B}

and

A−B := {a− b : a ∈ A, b ∈ B}.

These definitions extend in an obvious way to more than two summands, for example

A1 + · · ·+Ak := {a1 + · · ·+ ak : ai ∈ Ai}.

If A1 = · · · = Ak = A then we usually write kA for A1 + · · ·+Ak. In particular, 2A = A+A. We
also write, e.g. 2A− 2A for {a1 + a2 − a3 − a4 : a1, . . . , a4 ∈ A}.

3.2. Ruzsa’s triangle inequality and covering lemma. In this section we prove two elegant
results of Ruzsa about the size of sumsets. They are surprisingly useful despite their apparent
simplicity.

Lemma 3.1 (Ruzsa triangle inequality). Suppose that U, V,W are finite additive sets. Then

|V −W ||U | ⩽ |V − U ||U −W |.
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Proof. We will define a map ϕ : (V −W )×U → (V −U)×(U−W ), and prove that it is an injection,
which implies the result. Given d ∈ V −W select a pair vd ∈ V,wd ∈ W for which d = vd − wd

(there may be more than one such pair, but for each d we make a definite choice). Then define

ϕ(d, u) = (vd − u, u− wd)

for each d ∈ V −W and u ∈ U . To prove that ϕ is an injection, suppose that (x, y) ∈ im(ϕ) ⊂
(V −U)× (U −W ). If ϕ(d, u) = (x, y) then x+y = (vd−u)+(u−wd) = vd−wd = d, and therefore
we can determine d and hence vd and wd from (x, y). And we also determine u as u = −x + vd
(= y − wd). □

Remark. If we define

d(U, V ) := log
|U − V |

|U |1/2|V |1/2
then the Ruzsa triangle inequality may be written

d(V,W ) ⩽ d(U, V ) + d(U,W ).

This explains the term “triangle inequality”. Note that, although the triangle inequality is satisfied,
d is not a true distance. This is because d(U, V ) = 0 neither implies, nor is implied by, U = V .

Lemma 3.2 (Ruzsa’s covering lemma). Suppose that A and B are finite additive sets and that
|A+B| ⩽ K|A|. Then B may be covered by k translates of A−A, for some k ⩽ K. That is, there
is a set X, |X| ⩽ K, such that

B ⊂ (A−A) +X.

Proof. Choose X ⊂ B maximal so that {A + x : x ∈ X} are disjoint. The union of these sets
contains exactly |A||X| elements, and all of these elements lie in A+B. Therefore |X| ⩽ K. Now,
if b ∈ B then A + b intersects A + x for some x ∈ X, because of the maximality of X, and so
b ∈ A−A+ x. Hence, B ⊂ (A−A) +X. □

3.3. Petridis’s inequality. In this section and the next we develop inequalities controlling the
size of sums of three or more sets. A beautiful way to do this was discovered surprisingly recently
by Petridis. His result is stated as Corollary 3.6 below. We give an elegant rephrasing of his proof
which was given by Tao on the blog of Tim Gowers.

Let B be a set in some abelian group G. Let K be a real number, and consider the function ϕ
on subsets of G defined by

ϕ(A) := |A+B| −K|A|. (3.1)

Lemma 3.3. ϕ is submodular, that is to say it satisfies

ϕ(A ∪A′) + ϕ(A ∩A′) ⩽ ϕ(A) + ϕ(A′).

Proof. Write σ(A) := A+B. Observe that

σ(A ∪A′) = σ(A) ∪ σ(A′),

and that

σ(A ∩A′) ⊆ σ(A) ∩ σ(A′).

Therefore

|σ(A ∪A′)| = |σ(A) ∪ σ(A′)| = |σ(A)|+ |σ(A′)| − |σ(A) ∩ σ(A′)|
⩽ |σ(A)|+ |σ(A′)| − |σ(A ∩A′)|,

that is to say |σ| satisfies the submodularity property

|σ(A ∪A′)|+ |σ(A ∩A′)| ⩽ |σ(A)|+ |σ(A′)|.
13



Since the function |A| satisfies
|A ∪A′|+ |A ∩A′| = |A|+ |A′|,

the result follows immediately, since ϕ(A) = |σ(A)| −K|A|. □

Lemma 3.4. Let ϕ be any submodular function. Suppose that A1, . . . , An are sets with the following
property: ϕ(Ai) = 0, and ϕ(Zi) ⩾ 0 for every subset Zi ⊆ Ai. Then ϕ

(⋃n
i=1Ai

)
⩽ 0.

Proof. By the assumptions and submodularity, for any i and for any set S, we have

ϕ(Ai ∪ S) ⩽ ϕ(Ai ∪ S) + ϕ(Ai ∩ S) ⩽ ϕ(Ai) + ϕ(S) = ϕ(S).

The result then follows immediately by induction on n. □

Proposition 3.5 (Petridis). Let A,B be sets in some abelian group. Suppose that |A+B| = K|A|
and that |Z + B| ⩾ K|Z| for all Z ⊆ A. Then, for any further set S in the group, |A+ B + S| ⩽
K|A+ S|.

Proof. Apply Lemma 3.4 with the particular function ϕ defined in (3.1) above. Take the Ai to be
the translates A + s of A by elements of s. It is easy to check that the hypotheses of Lemma 3.4
hold. Observe that

⋃n
i=1Ai = A + S, and so the Lemma implies that ϕ(A + S) ⩽ 0, or in other

words |A+B + S| ⩽ K|A+ S|. □

It is convenient to apply Petridis’s inequality in the following form.

Corollary 3.6. Let A,B be sets in some abelian group. Suppose that |A+B| ⩽ K|A|. Let X ⊆ A
be a non-empty set for which the ratio |X+B|/|X| is minimal. Then for any further set S we have

|S +X +B| ⩽ K|S +X|.

Proof. Apply Proposition 3.5 with A replaced by X. □

3.4. The Plünnecke–Ruzsa inequality. The most widely applicable result about higher-order
sumsets is the Plünnecke–Ruzsa inequality.

Theorem 3.7 (Plünnecke–Ruzsa). Suppose that A and B are additive sets with |A+ B| ⩽ K|A|.
Let k, ℓ ⩾ 0 be integers. Then |kB − ℓB| ⩽ Kk+ℓ|A|.

The original proof was quite long and involved a fair amount of machinery from graph theory.
Nowadays, it can be deduced quickly from Petridis’s inequality.

Lemma 3.8. Suppose that A and B are finite additive sets for which |A+B| ⩽ K|A|. Then there
exists X ⊂ A for which |X + kB| ⩽ Kk|X|.

Proof. Let X be the subset of A for which the ratio |X+B|/|X| is minimal. By Petridis’s inequality
(Corollary 3.6) with S = (k − 1)B, we have

|X + kB| = |X + (k − 1)B +B| ⩽ K|X + (k − 1)B|.
The result then follows by induction on k. □

Proof of Theorem 3.7. . Suppose that A and B are finite additive sets for which |A+ B| ⩽ K|A|.
By Ruzsa’s Triangle Inequality with U, V,W replaced by X,−kB,−ℓB, respectively, and then
Lemma 3.8, we have

|kB − ℓB| |X| ⩽ |X + kB| · |X + ℓB| ⩽ Kk+ℓ|X|2.
Thus, since X ⊂ A, |kB − ℓB| ⩽ Kk+ℓ|X| ⩽ Kk+ℓ|A|. □

Let us record a corollary of this and Lemma 3.1 concerning the relationship between sums and
differences.

14



Corollary 3.9. Suppose that A,B are additive sets. Then

|A∓B| ⩽ |A±B|3

|A||B|
.

Proof. We handle the case with a minus sign on the left and a plus sign on the right; the other
case follows immediately from this by switching B to −B. Set K := |A + B|/|A|. First apply
Theorem 3.7 with k = 2 and ℓ = 0 to obtain |B+B| ⩽ K2|A|. Now, apply Lemma 3.1 with U = B,
V = −B and W = −A to get |A−B||B| ⩽ |B +B||A+B|. Combining these two estimates gives
the result. □

3.5. Additive energy and Balog–Szemerédi-Gowers. In this section we introduce the con-
cept of additive energy, which is closely related to the notion of sumset and arises naturally in
applications (such as in Section 9).

We have already seen the notion of an additive set having small doubling. The next definition
introduces some notation for this, and also introduces a kind of bipartite variant of the concept
which applies to pairs of sets.

Definition 3.10. Let A be an additive set. Then we define the doubling constant

σ[A] :=
|A+A|
|A|

.

If A,B are two additive sets, we write

σ[A,B] :=
|A+B|

|A|1/2|B|1/2
.

Note that σ[A] = σ[A,A], so one may think of the former as a shorthand for the latter. The
notion of a set having small doubling is somehow “combinatorial” in that it refers to the size of
|A+A| and does not take account, for example, of the number of representations. The notion has
some serious shortcomings, for example being highly sensitive to small changes to A.

In this subsection we explore the related notion of additive energy, which is more “analytic”,
more robust to small perturbations, and often arises in nature.

Definition 3.11. Let A be an additive set. Then we define the additive energy E(A) to be
the number of additive quadruples in A, that is to say quadruples (a1, a2, a3, a4) ∈ A4 such that
a1+ a2 = a3+ a4. We define the normalised additive energy ω[A] to be E(A)/|A|3. More generally
if A,B are two additive sets, we write

E(A,B) := #{(a, b, a′, b′) ∈ A×B ×A×B : a+ b = a′ + b′}

and

ω[A,B] := |A|−3/2|B|−3/2E(A,B).

Note that 0 ⩽ ω(A) ⩽ 1: the upper bound here follows from the fact that three elements of
an additive quadruple uniquely determine the fourth. More generally, 0 ⩽ ω[A,B] ⩽ 1. This
follows from the fact that E(A,B) ⩽ min(|A|2|B|, |A||B|2), since any three elements of a quadruple
(a, b, a′, b′) satisfying a + b = a′ + b′ determine the fourth. However, min(|A|2|B|, |A||B|2) ⩽
|A|3/2|B|3/2.

Proposition 3.12. We have σ[A,B]ω[A,B] ⩾ 1. In particular, if the doubling constant of a pair
A,B of additive sets is at most K, their normalised additive energy is at least 1/K. In particular,
specialising to the case A = B, we have σ[A]ω[A] ⩾ 1.
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Proof. For x ∈ A+B write r(x) for the number of pairs (a, b) ∈ A×B with a+ b = x. Then∑
r(x) = |A||B|,

whilst ∑
r(x)2 = E(A,B).

Moreover, r(x) is supported (that is, is nonzero) on A+B. Thus by Cauchy-Schwartz

|A|2|B|2 =
(∑

x

r(x)
)2

⩽ |A+B|
∑
x

r(x)2 = |A+B|E(A,B),

which rearranges to give the stated inequality. □

The converse to this kind of statement fails dramatically, as the following shows.

Example. Let n be a large even number. Let A1 = {1, . . . , n/2} and let A2 be some arbitrary set

of n/2 integers having no additive relation with A1, for instance A2 = {10n, 102n, . . . , 10n2/2}. Set
A = A1 ∪A2, a set of size n. Then

E(A) ⩾ E(A1) ⩾
1

10
n3,

but

|A+A| ⩾ |A2 +A2| ⩾
1

8
n2,

since the sums of pairs in A2 are distinct apart from the relations x+ y = y + x. Thus ω[A] ⩾ 1
10 ,

but σ[A] grows linearly in n.

The Balog-Szemerédi-Gowers theorem is a remarkable result which nonetheless salvages a kind
of partial converse to Proposition 3.12. We state a bipartite and a single set version of the result.
Recall that by convention C is an absolute constant which can change from line to line (but could
be written in explicitly wherever it occurs, if desired, with a bit of work).

Theorem 3.13 (Balog-Szemerédi-Gowers). We have the following statements.

(i) Suppose that A,B are additive sets and that ω[A,B] ⩾ 1/K. Then there are sets A′ ⊆ A,
B′ ⊆ B with |A′| ⩾ K−C |A|, |B′| ⩾ K−C |B| such that σ[A′, B′] ≪ KC .

(ii) Suppose that A is an additive set and that ω[A] ⩾ 1/K. Then there is a set A′ ⊂ A with
|A′| ≫ K−C |A| such that σ[A′] ≪ KC .

The proof of the Balog–Szemerédi–Gowers course is not examinable, but I will go over it in
lectures at the end if time allows. For notes, see Appendix A. The value of C we obtain there is
quite reasonable in principle, but we will not be too concerned with computing an exact value.

4. Freiman’s theorem

This section contains one of the highlights of the course, which is a fairly complete (at least
qualitatively) answer to the question of what sets with small sumset look like. Let us begin with a
little context for the question.

Recall that if A is a set of integers then

A+A := {a1 + a2 : a1, a2 ∈ A}.
Suppose A has size n. How big is A + A? Trivially, it has size at most 1

2n(n + 1), that being the
number of pairs (a1, a2), with (a1, a2) and (a2, a1) counted the same. On the other hand, it has
size at least 2n− 1. Writing a1 < · · · < an for the elements of A, we have

a1 + a1 < a1 + a2 < · · · < a1 + an < a2 + an < · · · < an + an,
16



a listing of 2n − 1 distinct elements of A. Equality can occur in both bounds. For example
if A = {1, 2, . . . , 2n−1} then all the sums a1 + a2 are distinct (except for the trivial relations
a1 + a2 = a2 + a1). If A = {1, . . . , n} then A+A = {2, . . . , 2n}, a set of size 2n− 1.

We say that A has doubling at most K if

σ[A] =
|A+A|
|A|

⩽ K.

Typically, we will have in mind that K is fixed (say K = 10) and n = |A| is very large. The basic
question to be considered in this section is that of what we can say about the structure of A if
σ[A] ⩽ K, for some small K.

4.1. Generalised progressions and Freiman’s theorem. Before stating the main result, let
us give some progressively more complicated motivating examples.

Example (Progression). Let A be any arithmetic progression of length n. Then |A+A| = 2n− 1.

Example (Subsets of progressions). Let P be a progression of length Cn, and let A ⊂ P be an
arbitrary set of size n. Then |A+A| ⩽ 2Cn.

Example (2-dimensional progression). Suppose that L1L2 = n, and consider a set A of the form

A := {x0 + ℓ1x1 + ℓ2x2 : 0 ⩽ ℓ1 < L1, 0 ⩽ ℓ2 < L2}.
If the xi are suitably widely spaced, the elements described here are all distinct and |A| = n. In
this case we say that A is proper. We have

A+A = {2x0 + ℓ′1x1 + ℓ′2x2 : 0 ⩽ ℓ′1 < 2L1 − 1, 0 ⩽ ℓ′2 < 2L2 − 1},
and so certainly

|A+A| ⩽ 4|A|.

Example (d-dimensional progression). The same as above, but with d parameters L1, . . . , Ld: thus

A = {x0 + l1x1 + · · ·+ ldxd : 0 ⩽ li < Li}. (4.1)

Now, if A is proper, we have |A+A| ⩽ 2d|A|.

Example (Subsets of multidimensional progressions). Let P be a proper d-dimensional progression
of size Cn. Let A ⊂ P be an arbitrary set of size n. Then

|A+A| ⩽ |P + P | ⩽ 2d|P | = 2dCn.

The final example gives a somewhat large class of sets with doubling constant at most K (pick
any parameters d,C with 2dC ⩽ K).

Freiman’s theorem is the result that the above examples are the only ones.

Theorem 4.1 (Freiman). Suppose that A ⊂ Z is a finite set with |A + A| ⩽ K|A|. Then A is
contained in a generalised progression P of dimension ≪K 1 and size ≪K |A|.

The size of a generalised progression as in (4.1) is defined to be L1 · · ·Ld. This is at least the
cardinality of the progression, but is strictly bigger than it if the progression fails to be proper.

Freiman’s theorem states that A is contained in a proper progression of dimension at most d(K)
and size at most C(K)|A|, where d(), C() are functions of K only. In this course we will not be
concerned with bounds, but the argument we give leads to a bound for d(K) that is exponential
in K, and a bound for C(K) that is doubly exponential in K. This is quite far from the truth;
in fact, it does not require a vast amount of further effort to remove an exponential from both of
these bounds, but we will not do so here.

Many other refinements are possible, but again we will not cover them here. For example, one
can insist that P be proper if desired.
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4.2. Freiman homomorphisms. In his remarkably insightful 1966 book, Freiman made an at-
tempt to treat additive number theory by analogy with the way Klein treated geometry: as well as
sets A,B, · · · of integers, one should study maps between them and, most particularly, properties
invariant under natural types of map. This was doubtless regarded as somewhat eccentric at the
time, but the notion of Freiman homomorphism is now quite important in additive combinatorics.

Definition 4.2. Suppose that s ⩾ 2 is an integer. Suppose that A,B are additive sets. Then we
say that a map ϕ : A→ B is a Freiman s-homomorphism if we have

ϕ(a1) + · · ·+ ϕ(as) = ϕ(a′1) + · · ·+ ϕ(a′s)

whenever
a1 + · · ·+ as = a′1 + · · ·+ a′s.

It is obvious that any group homomorphism restricts to a Freiman homomorphism (of arbitrary
order) on any subset. However, the notion is much more general. For example, any map whatsoever
from A = {1, 10, 100, 1000} to another additive set is a Freiman 2-homomorphism, simply because
A has no nontrivial relations of the form a1 + a2 = a′1 + a′2.

The map ϕ is said to be a Freiman s-isomorphism if it has an inverse ϕ−1 which is also a
Freiman s-homomorphism. We caution that, contrary to what is often expected in more algebraic
situations, a one-to-one Freiman homomorphism need not be a Freiman isomorphism. For example,
the obvious map

ϕ : {0, 1}n → (Z/2Z)n

is a Freiman homomorphism of all orders (it is induced from the natural group homomorphism
Zn → (Z/2Z)n). However, it is not a Freiman 2-isomorphism as (Z/2Z)n contains a great many
more additive relations than {0, 1}n.

The following lemma records some basic facts about Freiman isomorphisms.

Lemma 4.3. Suppose that A,B,C are additive sets. Let s ⩾ 2 be an integer. Then we have the
following.

(i) Suppose that ϕ : A → B and ψ : B → C are Freiman s-homomorphisms. Then so is the
composition ψ ◦ ϕ.

(ii) Suppose that ϕ : A → B is a Freiman s-homomorphism. Then it is also a Freiman s′-
homomorphism for every s′ satisfying 2 ⩽ s′ ⩽ s.

(iii) Suppose that ϕ : A→ B is a Freiman s-homomorphism and let k, l ⩾ 0 be integers. Then ϕ

induces a Freiman s′-homomorphism ϕ̃ : kA− lA→ kB− lB, for any integer s′ ⩽ s/(k+ l).
(iv) The above three statements also hold with “homo” replaced by “iso” throughout.
(v) Suppose that P is a generalised progression and that ϕ : P → B is a Freiman 2-homomorphism.

Then ϕ(P ) is a generalised progression of the same dimension. If ϕ is a Freiman 2-
isomorphism, and if P is proper, then so is ϕ(P ).

(vi) Let πm : Z → Z/mZ be the natural map. Then πm is a Freiman s-isomorphism when
restricted to (t, t+ m

s ] ∩ Z, for any t ∈ R.

Proof. The first four parts of this are very straightforward once one has understood the definitions,
and we will not go over them carefully in lectures. Perhaps (iii) requires some further comment:

one should define ϕ̃ : kA− lA→ kB − lB by

ϕ̃(a1 + · · ·+ ak − a′1 − · · · − a′l) = ϕ(a1) + · · ·+ ϕ(ak)− ϕ(a′1)− · · · − ϕ(a′l).

One must then check that this is well-defined and is a Freiman homomorphism of the order claimed.
To prove (v), let ϕ : P → ϕ(P ) be a Freiman 2-homomorphism. Suppose that P = {x0 +

l1x1 + · · · + ldxd : 0 ⩽ li < Li}. Set y0 = ϕ(x0), and define y1, . . . , yd by y0 + yi = ϕ(x0 + xi) for
i = 1, . . . , d; we claim that ϕ(x0+ l1x1+ · · ·+ ldxd) = y0+ l1y1+ · · ·+ ldyd for all l1, . . . , ld satisfying
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0 ⩽ li < Li. This may be established by induction on l1 + · · · + ld, noting that we have defined
the yi in such a way that it holds whenever l1 + · · · + ld = 0 or 1. To obtain the statement for
(l1, . . . , ld) = (1, 1, 0, . . . , 0), for example, one may use the relation

x0 + (x0 + x1 + x2) = (x0 + x1) + (x0 + x2)

to conclude that
ϕ(x0) + ϕ(x0 + x1 + x2) = ϕ(x0 + x1) + ϕ(x0 + x2)

and hence that ϕ(x0 + x1 + x2) = y0 + y1 + y2, as required.
Finally, we comment on (vi). Since πm is a group homomorphism, it is also a Freiman ho-

momorphism. Its restriction to any interval of length at most m is a bijection. Suppose that
x1, . . . , xs, x

′
1, . . . , x

′
s satisfy t < xi, x

′
i ⩽ t+m

s and that πm(x1)+· · ·+πm(xs) = πm(x′1)+· · ·+πm(x′s),
that is to say x1 + · · ·+ xs = x′1 + · · ·+ x′s(modm). Then, since |x1 + · · ·+ xs − x′1 − · · · − x′s| < m,
we must have x1 + · · ·+ xs = x′1 + · · ·+ x′s. □

4.3. Ruzsa’s model lemma. In this section we prove a remarkable lemma of Imre Ruzsa. It
asserts that a subset of Z with small doubling has a large piece which is Freiman isomorphic to a
dense subset of a cyclic group Z/mZ. In that setting the tools of harmonic analysis become much
more powerful, unlike for arbitrary subsets of Z (even those of small doubling) which could well be
highly “spread out”. Here is Ruzsa’s lemma.

Proposition 4.4 (Ruzsa model lemma). Suppose that A ⊂ Z is a finite set and that s ⩾ 2 is an
integer. Let m ⩾ |sA − sA| be an integer. Then there is a set A′ ⊂ A with |A′| ⩾ |A|/s which is
Freiman s-isomorphic to a subset of Z/mZ.

Proof. By translating A if necessary, we may assume that A consists of positive integers. Let q be
a very large prime number. For λ ∈ (Z/qZ)×, consider the composition ϕλ := γ ◦ β ◦ αλ of maps

Z
αλ−→ Z/qZ

β−→ {1, . . . , q} γ−→ Z/mZ

where

• αλ is reduction mod q followed by multiplication by λ;
• β inverts the reduction mod q map;
• γ is the reduction mod m map.

Now αλ and γ are Freiman homomorphisms of all orders. The map β is not, but by Lemma 4.3
(vi), it is a Freiman s-homomorphism on the reduction mod q of any interval Ij := {n ∈ Z : jq

s <

n ⩽ (j+1)q
s }. Since s such intervals (with j = 0, 1, . . . , q − 1) cover {1, . . . , q}, it follows by the

pigeonhole principle that for every λ there is a j = j(λ) such that the set

Aλ := {a ∈ A : αλ(a) ∈ Ij(λ)(mod q)}
has size at least |A|/s. By construction, ϕλ is a Freiman s-homomorphism when restricted to Aλ.

Everything we have said so far holds for arbitrary λ. To complete the proof, we now show that
there exists some λ such that ϕλ is invertible, and its inverse is a Freiman s-homomorphism. If this
fails for some λ then this means that there is

d = a1 + · · ·+ as − a′1 − · · · − a′s ̸= 0

such that
ϕλ(a1) + · · ·+ ϕλ(as) = ϕλ(a

′
1) + · · ·+ ϕλ(a

′
s). (4.2)

Here, d and the ai, a
′
i ∈ Aλ depend on λ.

Write

x :=
s∑

i=1

β(αλ(ai))−
s∑

i=1

β(αλ(a
′
i)).
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Then if (4.2) holds we have γ(x) = 0, that is to say x ≡ 0(modm).
Without loss of generality (switching the ai and the a′i if necessary) we may assume that x ⩾ 0.

Also, since the ai, a
′
i lie in Aλ, it follows that x ∈ s(Ij(λ) − Ij(λ)) ⊂ (−q, q). Therefore 0 ⩽ x < q.

Now by construction, x and λd are congruent modulo q. It therefore follows that

x = ψ(λd),

where ψ(n) is the unique integer in {0, 1, . . . , q − 1} congruent to n modulo q.
From now on we indicate the dependence of d on λ explicitly. To summarise, we have shown the

following. If ϕλ|Aλ
is not a Freiman s-isomorphism, then there must be some dλ ∈ (sA− sA) \ {0}

such that
ψ(λdλ) ≡ 0(modm).

To get a contradiction, Let us fix d ∈ (sA−sA)\{0} and ask about values of λ for which d = dλ:
lacking imagination, we call them “bad for d”. If the prime q is chosen big enough then it will not
divide any element of (sA− sA) \ {0}, so d is coprime to q.

As λ ranges over (Z/qZ)×, λd covers (Z/qZ)× uniformly, and hence the set {ψ(λd) : λ ∈
(Z/qZ)×} coincides with {1, . . . , q − 1}. The number of elements y in this interval for which
y ≡ 0(modm) is at most (q− 1)/m. Since each d lies in the set (sA− sA) \ {0}, it follows that the
number of λ which are bad for some d is at most

q − 1

m

(
|sA− sA| − 1) < q − 1,

the inequality being a consequence of the assumption that m ⩾ |sA− sA|.
This is a contradiction, since every λ is bad for some d (namely dλ). □

In our proof of Freiman’s theorem, we will use the following corollary.

Corollary 4.5. Suppose that A ⊂ Z is a finite set with doubling constant K. Then there is a
prime q ⩽ 2K16|A| and a subset A′ ⊂ A with |A′| ⩾ |A|/8 such that A′ is Freiman 8-isomorphic to
a subset of Z/qZ.

Proof. By the Plünnecke–Ruzsa inequality, Theorem 3.7, we have |8A − 8A| ⩽ K16|A|. Now by
Bertrand’s postulate there is a prime q satisfying |8A−8A| ⩽ q ⩽ 2|8A−8A|. This prime of course
satisfies the bound q ⩽ 2K16|A|, and by the Ruzsa model lemma there is a subset A′ ⊂ A with
|A′| ⩾ |A|/8 which is Freiman 8-isomorphic to a subset of Z/qZ. □

4.4. Bogolyubov’s lemma. Ruzsa’s model lemma (or, more accurately, Corollary 4.5) allows us
to switch attention from a set A ⊂ Z with small doubling to a dense subset of a cyclic group Z/qZ.
We now prove a lemma about the structure of such sets.

Definition 4.6. Suppose that R = {r1, . . . , rk} is a set of nonzero elements of Z/qZ and that ε > 0
is a parameter. Then we define the Bohr set B(R, ε) with frequency set R and width ε by

B(R, ε) := {x ∈ Z/qZ :
∥∥∥rix
q

∥∥∥
R/Z

⩽ ε for i = 1, 2, . . . , k}.

The parameter k is said to be the dimension of the Bohr set.

Proposition 4.7 (Bogolyubov’s lemma). Let S ⊂ Z/qZ be a set of size σq. Then 2S−2S contains
a Bohr set of dimension at most 4/σ2 and width at least 1

10 .

In the proof, we will use the discrete Fourier transform, specifically the Fourier transform on
Z/qZ. (The Fourier transform can in fact be developed on any locally compact abelian group, and
in this way the Fourier transform on Z which featured in Section 1, the discrete Fourier transform
on Z/qZ, and the Fourier transform on (Z/3Z)n discussed on Example Sheet 1 may be considered
as special cases of the same general concept.) Here are the relevant definitions and basic properties.
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Definition 4.8. Let f : Z/qZ → C be a function. Then for r ∈ Z/qZ we define the (discrete)
Fourier transform

f̂(r) :=
1

q

∑
x∈Z/qZ

f(x)e(−rx/q).

Proposition 4.9. In the following proposition, f, g : Z/qZ → C are two functions.

(i) We have the inversion formula

f(x) =
∑

r∈Z/qZ

f̂(r)e(rx/q).

(ii) We have the Parseval identity

1

q

∑
x∈Z/qZ

f(x)g(x) =
∑

r∈Z/qZ

f̂(r)ĝ(r).

(iii) If the convolution f ∗ g : Z/qZ → C is defined by

(f ∗ g)(x) := 1

q

∑
y∈Z/qZ

f(y)g(x− y)

then f̂ ∗ g(r) = f̂(r)ĝ(r).

Proof. Once again, all of this is an easy check using the definitions, as well as the fact that∑
r

e(rx/q) =

{
q x = 0
0 x ∈ (Z/qZ) \ {0}. □

Remark. Taking f = g in the Parseval identity gives

1

q

∑
x∈Z/qZ

|f(x)|2 =
∑

r∈Z/qZ

|f̂(r)|2.

It is worth pausing to consider what convolution “does”. If f and g are functions supported
on sets A,B ⊆ Z/qZ respectively (for instance, we could have f = 1A and g = 1B) then f ∗ g is
supported on A + B. Moreover, f ∗ g has a nice Fourier transform, which can be very convenient
for further analysis. Note carefully that 1A ∗ 1B is not the same thing as 1A+B; the latter function
puts equal weight on every element of A+B, whereas the former weights elements x according to
the number of representations as a+ b with a ∈ A, b ∈ B.

Now we turn to the proof of Bogolyubov’s lemma, Proposition 4.7.

Proof of Proposition 4.7. Consider the function f := 1S ∗ 1S ∗ 1−S ∗ 1−S . This is supported on

2S − 2S, that is to say if f(x) > 0 then x ∈ 2S − 2S. Note also that 1̂−S(r) = 1̂S(r), and so

f̂(r) = |1̂S(r)|4. By the Fourier inversion formula and the fact that f is real, we have

f(x) =
∑

r∈Z/qZ

|1̂S(r)|4e(rx/q) =
∑

r∈Z/qZ

|1̂S(r)|4 cos(2πrx/q). (4.3)

Let R be the set of all r ̸= 0 for which |1̂S(r)| ⩾ σ3/2/2. By Parseval’s identity we have

|R|σ
3

4
⩽

∑
r∈R

|1̂S(r)|2 ⩽
∑

r∈Z/qZ

|1̂S(r)|2 =
1

q

∑
x∈Z/qZ

1S(x)
2 = σ,

and so
|R| ⩽ 4/σ2. (4.4)
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We claim that B(R, 1
10) ⊂ 2S−2S, to which end it suffices to show that f(x) > 0 for x ∈ B(R, 1

10).
To do this, we will use the formula (4.3). We split the sum over r into three pieces: the term r = 0,
the terms with r ∈ R, and all other terms. Clearly

|1̂S(0)|4 = σ4.

If r ∈ R then cos(2πrx/q) ⩾ 0, so the sum of these terms is nonnegative. Finally,∑
r/∈R∪{0}

|1̂S(r)|4 cos(2πrx/q) ⩾ −
∑

r/∈R∪{0}

|1̂S(r)|4 ⩾ −σ
3

4

∑
r

|1̂S(r)|2 = −σ
4

4
,

the last step being a further application of Parseval’s identity. Combining all of this we obtain

f(x) ⩾ σ4 + 0− σ4

4
> 0,

as required. □

4.5. Generalised progressions in Bohr sets. It is by no means obvious what has been gained
in proving Proposition 4.7. The answer is that a Bohr set B(R, ε) has a great deal of structure, in
particular containing a large generalised progression. The key proposition is as follows.

Proposition 4.10. Let R ⊂ Z/qZ be a set of size k, not containing zero. Let 0 < ε < 1
2 . Then the

Bohr set B(R, ε) contains a proper generalised progression of dimension k and cardinality at least
(ε/k)kq.

In the proof, we will rely on a result from the geometry of numbers, Minkowski’s second theorem.
This is stated as Proposition 4.11 below. The proof is not examinable, but it is given in Appendix C.
To even state the theorem, we need some terminology.

A lattice Λ ⊂ Rd is a discrete and cocompact subgroup of Rd. It is a theorem that every lattice
is of the form Zv1 ⊕ Zv2 ⊕ · · · ⊕ Zvd for linearly independent v1, . . . , vd, which are then called an
integral basis for Λ. The set F := {x1v1 + · · · + xdvd : 0 ⩽ xi < 1} is then called a fundamental
region for Λ; note that translates of it by Λ precisely cover Rd. Note that the vi (and hence F) are
not uniquely determined by Λ, but it turns out that the volume of F is. The determinant det(Λ)
is the volume of a fundamental region of Λ.

The statement of Minkowski’s Second Theorem also involves a centrally symmetric convex body
K ⊂ Rd. This means a set which is convex (meaning that if x, y ∈ K then λx+ (1− λ)y ∈ K for
all λ ∈ [0, 1]) and centrally symmetric, which means that if x ∈ K then −x ∈ K.

The geometry of numbers is, to an extent, the study of how lattices Λ interact with convex bodies
K.

Suppose we have a lattice Λ and a convex body K. We define the successive minima λ1, . . . , λd
of K with respect to Λ as follows: λj is the infimum of those λ for which the dilate λK contains j
linearly independent elements of Λ. If K is compact then λjK itself contains j linearly independent
elements of Λ. (For each ε > 0, (λj + ε)K contains such elements. Since these all lie in (λj + 1)K,
there are only finitely many choices, and in particular for some sequence of ε tending to zero we
may make the same choice. Since K is compact, these elements all lie in λjK.)

Proposition 4.11 (Minkowski’s Second Theorem). We have λ1 · · ·λd vol(K) ⩽ 2d det(Λ).

We now turn to the proof of Proposition 4.10.

Proof of Proposition 4.10. Let R = {r1, . . . , rk} and consider the lattice

Λ = qZk + (r1, . . . , rk)Z.

Since q is prime, this may be written as a direct sum

qZk ⊕ {0, 1, . . . , q − 1} · (r1, . . . , rk).
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Thus qZk has index q as a subgroup of Λ, and from this and the fact that det(qZk) = qk it follows
that det(Λ) = qk−1 (see Lemma C.1).

Take K ⊂ Rk to be the box {x : ∥x∥∞ ⩽ εq}. Let λ1, . . . , λk be the successive minima of K with
respect to Λ. Since K is closed, λjK contains j linearly independent elements of Λ. We may, by

choosing each element in turn, select a basis b1, . . . ,bk for Rk with bj ∈ Λ ∩ λjK for all j. (Such
a basis is called a directional basis; we should caution that, whilst the bj are linearly independent
elements of Λ, they need not form an integral basis for Λ.) Thus bj ∈ Λ and ∥bj∥∞ ⩽ λjεq. Set
Lj := ⌈1/λjk⌉ for j = 1, . . . , k. Then if 0 ⩽ lj < Lj we have ∥ljbj∥∞ ⩽ εq/k and therefore

∥l1b1 + · · ·+ lkbk∥∞ ⩽ εq.

Now each bi lies in Λ and hence is congruent to xi(r1, . . . , rk)(mod q) for some xi, 0 ⩽ xi < q.
Abusing notation slightly, we think of these xi as lying in Z/qZ. The preceding observation implies
that ∥∥∥(l1x1 + · · ·+ lkxk)ri

q

∥∥∥
R/Z

⩽ ε

for each i, or in other words the generalised progression {l1x1+ · · ·+ lkxk : 0 ⩽ li < Li} is contained
in the Bohr set B(R, ε).

It remains to prove a lower bound on the size of this progression and also to establish its proper-
ness. The lower bound on the size is easy: it is at least k−k(λ1 · · ·λk)−1 which, by Minkowski’s
Second Theorem and the fact that det(Λ) = qk−1 and vol(K) = (2εq)k, is at least (ε/k)kq.

To establish the properness, suppose that

l1x1 + · · ·+ lkxk = l′1x1 + · · ·+ l′kxk(mod q),

where |li|, |l′i| < ⌈1/kλi⌉. Then the vector

b = (l1 − l′1)b1 + · · ·+ (lk − l′k)bk

lies in qZk and furthermore

∥b∥∞ ⩽
k∑

i=1

2
⌊ 1

λik

⌋
∥bi∥∞ ⩽ 2εq.

Since we are assuming that ε < 1/2 it follows that b = 0 and hence, due to the linear independence
of the bi, that li = l′i for all i. Therefore the progression is indeed proper. □

4.6. Freiman’s theorem: conclusion of the proof. In this section, we conclude the proof of
Freiman’s theorem.

Proof of Theorem 4.1. By Corollary 4.5, the corollary of Ruzsa’s model lemma, there is a prime
q ⩽ 2K16|A| and a subset A′ ⊂ A with |A′| ⩾ |A|/8 such that A′ is Freiman 8-isomorphic to a
subset S ⊂ Z/qZ. If σ := |S|/q then we have σ ⩾ 1

16K
−16.

By Bogolyubov’s lemma, Proposition 4.7, 2S − 2S contains a Bohr set of dimension at most
210K32 and width at least 1

10 .
By Proposition 4.10, that Bohr set (and hence 2S−2S) contains a proper generalised progression

P of dimension at most KO(1) and cardinality at least exp(−KO(1))q. (We could keep track of exact
constants, but this becomes a little tedious).

Now A′ is Freiman 8-isomorphic to S, and so by Lemma 4.3 (iii), 2A′ − 2A′ is Freiman 2-
isomorphic to 2S−2S. The inverse of this Freiman isomorphism restricts to a Freiman isomorphism
ϕ : P → ϕ(P ) ⊂ 2A′ − 2A′. By Lemma 4.3 (v), Q = ϕ(P ) is also a proper generalised progression,
of the same dimension and size as P . Therefore we have shown that 2A − 2A contains a proper
generalised progression Q of dimension KO(1) and

|Q| ⩾ exp(−KO(1))|A|. (4.5)
23



To finish the argument, we apply the covering lemma, Lemma 3.2, to the sets Q and A. Since

Q+A ⊂ (2A− 2A) +A = 3A− 2A,

the Plünnecke–Ruzsa inequality and (4.5) imply that

|Q+A| ⩽ K5|A| ⩽ exp(KO(1))|Q|.

By Lemma 3.2, there is some set Y = {y1, . . . , ym},

m ⩽ exp(KO(1)), (4.6)

such that A ⊂ (Q−Q) + Y . Suppose that

Q = {x0 + l1x1 + · · ·+ ldxd : 0 ⩽ li < Li}

and that Y = {y1, . . . , ym}. Then

(Q−Q) + Y ⊂ {x̃0 + l1x1 + · · ·+ ldxd + l′1y1 + · · ·+ l′mym, 0 ⩽ li < 2Li, 0 ⩽ l′j < 2} := Q̃

where

x̃0 = −(L1x1 + · · ·+ Ldxd).

Note that Q̃ is a generalised progression of dimension d+m and that

size(Q̃) = 2d+mL1 · · ·Ld = 2d+m|Q| ⩽ 2d+m|2A− 2A| ≪K |A|,

the penultimate step following since Q ⊂ 2A− 2A.
The dominant term in the bound is 2m, which is double exponential in K. □

4.7. Freiman’s lemma. We conclude this section with a nice geometric result (not directly related
to the earlier results of the section) about small doubling and dimension. It is known as Freiman’s
lemma.

Proposition 4.12 (Freiman’s lemma). Suppose that A ⊂ Rr is a finite set, not contained in any
affine subspace. Then we have the lower bound

|A+A| ⩾ (r + 1)|A| − 1

2
r(r + 1).

Proof. The set A+A has the same size as the set m(A) := 1
2(A+A) of midpoints of line segments

of A (note that A ⊆ m(A)). Let F (r, n) denote the minimum value of |m(A)| amongst all sets
A ⊂ Rr which are not contained in an affine subspace and for which |A| = n. Consider an extreme
point a on the convex hull of A. The set A′ := A \ {a} is either contained in an (r− 1)-dimensional
affine subspace, or it is not. In the former case we clearly have m(A) ⩾ m(A′) + n, since none
of the midpoints of the line segments [ax], x ∈ A, lies in m(A′). In the latter case we have
m(A) ⩾ m(A′) + r + 1. Indeed if S is the r-face nearest to a then none of the midpoints of the
segments [ax], x ∈ S, lie in m(A′), and nor does a.

Both of the cases here are compatible with the inequality

F (r, n) ⩾ min(F (r − 1, n− 1) + n, F (r, n− 1) + r + 1).

It follows by induction on r + n (with the base case r = 0, n = 1 being obvious) that

F (r, n) ⩾ (r + 1)n− 1

2
r(r + 1).

The result follows. □

Remark. The argument at the beginning of the section, showing that |A + A| ⩾ 2|A| − 1 when A
is a set of integers, is essentially a special case of the above proof.
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5. Entropy methods

In Sheet 2, Q5 you saw how the methods of Section 3 may be used to prove the following result
via a short (but clever) argument of Ruzsa.

Theorem 5.1. Suppose that A ⊂ Fn
2 is non-empty with |A+ A| ⩽ K|A|. Then A is contained in

a subgroup H ⩽ Fn
2 of cardinality at most K22K

4 |A|.

The main aim of the next few sections is to give the proof of the following more refined result.

Theorem 5.2. Let A ⊂ Fn
2 be non-empty with |A + A| ⩽ K|A|. Then there exists a subgroup H

of Fn
2 with |H| ⩽ |A| such that A is covered by at most 2KC translates of H, for some absolute

constant C.

This result is known as Polynomial Freiman-Ruzsa (PFR); before it was proven, it was known
as Marton’s Conjecture after Katalin Marton, who first posed the question. The conjecture was
proven in 2023 in the paper [3]. We will organise the argument slightly differently (which leads to
worse constants, but is arguably easier to understand). The reader may find it helpful to refer to
[3] (in particular the appendices) when following this part of the course, though the notes are fairly
self-contained.

One of the key ideas in the proof is the introduction of an entropy variant of the notion of sumset.
This will be the main focus of the current section.

5.1. Entropy. We begin with a very brief overview/review of the notion of entropy. For proofs,
see (the Oxford course) B8.4: Information Theory (Chapter 1) or [1, Section 14.6].

We will always be working with random variables with finite range. Let X be such a random
variable, and write pX(x) := P(X = x) for the density function of X. The range of X is defined
to be the set {x : pX(x) > 0}.

We define the entropy H[X] by

H[X] :=
∑
x

pX(x) log
1

pX(x)
.

For us, logs will always be natural logs; in theoretical computer science (and in the course B8.4),
logs are usually to base 2. It does not make an important difference to the theory.

If X takes values in a set S then

H[X] ⩽ log |S| (5.1)

with equality if and only if X is uniform on S. This is a consequence of Jensen’s inequality and
the concavity of log. Also, denoting by pX the density function of X,

H[X] =
∑
x

pX(x) log
1

pX(x)
⩾ min

x:pX(x)>0
log

1

pX(x)
,

and therefore

max
x

pX(x) ⩾ e−H[X]. (5.2)

Since entropy only depends on the values of pX(x) and not on what the x are, we have

H[X] = H[ϕ(X)] (5.3)

whenever ϕ is an injective map on the range of X.
Given a pair (X,Y ) of random variables, the conditional entropy H[X | Y ] is defined by the

formula

H[X | Y ] :=
∑
y

pY (y)H[X | Y = y]

25

https://en.wikipedia.org/wiki/Katalin_Marton


where y ranges over the support of pY , and (X | Y = y) denotes the random variable X conditioned
on the event Y = y. We have the fundamental chain rule

H[X,Y ] = H[X | Y ] +H[Y ]. (5.4)

Here we abbreviate H[(X,Y )] as H[X,Y ], and will make similar abbreviations regarding other
information-theoretic quantities in this paper without further comment; for instance, H[(X,Y ) |
(Z,W )] becomes H[X,Y | Z,W ]. Note that (5.4) implies a conditional generalization

H[X,Y | Z] = H[X | Y,Z] +H[Y | Z].

for all random variables X,Y, Z.
The mutual information I[X : Y ] is defined by the formula

I[X : Y ] = H[X] +H[Y ]−H[X,Y ]

= H[X]−H[X | Y ]

= H[Y ]−H[Y | X],

and is non-negative by another application of Jensen’s inequality, vanishing precisely when X,Y
are independent; in particular

H[X,Y ] = H[X] +H[Y ] (5.5)

if and only if X,Y are independent, and

H[X | Y ] ⩽ H[X], H[X,Y ] ⩽ H[X] +H[Y ] (5.6)

always.
Suppose now that (X,Y, Z) is a triple of random variables. Applying (5.6) to (X | Z = z) and

summing over z (weighted by pZ(z)) gives

H[X | Y, Z] ⩽ H[X | Z], (5.7)

which is known as submodularity. It may equivalently be written as

H[X,Y, Z] +H[Z] ⩽ H[X,Z] +H[Y, Z]. (5.8)

The conditional mutual information I[X : Y | Z] is defined by

I[X : Y | Z] :=
∑
z

pZ(z)I[(X | Z = z) : (Y | Z = z)]

= H[X | Z] +H[Y | Z]−H[X,Y | Z].

Submodularity is equivalent to the statement that

I[X : Y | Z] ⩾ 0, (5.9)

since, as can be seen by expanding,

I[X : Y |Z] = H[X,Z] +H[Y, Z]−H[X,Y, Z]−H[Z]

= H[X | Z]−H[X | Y,Z]. (5.10)

Equality occurs in (5.9) (and hence in (5.8)) if and only if X,Y are conditionally independent
relative to Z, which means that the random variables (X | Z = z) and (Y | Z = z) are independent
for every z in the range of Z (that is, for which pZ(z) > 0).

Finally, UA denotes the uniform distribution on a set A. Note that

H[UA] = log |A|. (5.11)
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5.2. Entropic Ruzsa distance. Let G be an abelian group (in much of what follows, we will take
G = Fn

2 , but for now take G to be arbitrary). Let X,Y be G-valued random variables. Then we
define the entropic Ruzsa distance

d[X;Y ] := H[X ′ − Y ′]− 1
2H[X]− 1

2H[Y ],

where X ′, Y ′ are independent copies of X,Y . (Note that it is convenient to define d[X;Y ] for
variables X,Y which may not themselves be independent, including in the extreme case X = Y .)
It turns out that exp(d[UA;UA]) is a kind of entropic substitute for the doubling constant of the
set A (or, more accurately, of |A−A|/|A|). For more details on this, see Sheet 3 Q9.

Entropic analogues of Ruzsa distance/doubling constant enjoy the best features of combinatorial
sumset notions and additive energy at the same time.

For the next several sections we will say ‘distance’ rather that ‘entropic Ruzsa distance’ when
discussing random variables.

Before moving on to slightly deeper results, we record the fact that distance is non-negative. In
fact, we will establish a quantitative version of this which will be useful several times later on.

Lemma 5.3. Let X,Y be G-valued random variables. Then

d[X;Y ] ⩾ 1
2 |H[X]−H[Y ]|.

Proof. We may assume that X,Y are independent, so that

d[X;Y ] = H[X − Y ]− 1
2H[X]− 1

2H[Y ].

By (5.6) we have H[X − Y ] ⩾ H[X − Y | Y ]. On the other hand,

H[X − Y | Y ] = H[X − Y, Y ]−H[Y ] = H[X,Y ]−H[Y ] = H[X].

Here, in the last step we used independence, and H[X − Y, Y ] = H[X,Y ] by (5.3) since there is an
bijection (X − Y, Y ) 7→ (X,Y ) induced by (a, b) 7→ (a+ b, b).

Combining these facts gives H[X−Y ] ⩾ 1
2(H[X]−H[Y ]), and the corresponding inequality with

the roles of X,Y reversed follows similarly. □

The first more serious result is the entropic analogue of the Ruzsa triangle inequality (which we
will call ‘the triangle inequality’ in the next few sections).

Lemma 5.4. Let A,B,C be G-valued random variables.

d[A;B] ⩽ d[A;C] + d[C;B].

Proof. This is equivalent to establishing

H[A−B] ⩽ H[A− C] +H[C −B]−H[C] (5.12)

whenever A,B,C are independent. To prove this, the key step is to apply (5.7) in the form

H[B − C | A−B] ⩾ H[B − C | A−B,B] = H[C | A,B] = H[C]

where in the last step we used independence. Moreover,

H[B − C | A−B] = H[B − C,A−B]−H[A−B]

= H[A− C,B − C]−H[A−B]

⩽ H[A− C] +H[B − C]−H[A−B]

by (5.6). Combining these gives (5.12). □
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One may observe that, in the above proof, we did not fully use the assumption that A,B,C
are independent: all that was used is that C is independent of (A,B). Thus we may upgrade
Lemma 5.4 to the statement that

H[A−B]− 1
2H[A]− 1

2H[B] ⩽ d[A;C] + d[C;B], (5.13)

where here A,B need not be independent. We will use this inequality in one place in Section 7.
The following inequality of Madiman/Kaimanovich–Vershik is the entropy analogue of Petridis’s

inequality.

Lemma 5.5. Let A,B,C be independent G-valued random variables. Then we have

H[A+B + C]−H[A+B] ⩽ H[B + C]−H[B].

Proof. By (5.10) we have

I[A : C | A+B+C] = H[A,A+B+C] +H[C,A+B+C]−H[A,C,A+B+C]−H[A+B+C].

However, using (5.5) three times we have H[A,A + B + C] = H[A,B + C] = H[A] + H[B + C],
H[C,A + B + C] = H[C,A + B] = H[C] + H[A + B] and H[A,C,A + B + C] = H[A,B,C] =
H[A] +H[B] +H[C].

After a short calculation, we see that the claimed inequality is equivalent to the assertion that
I[A : C | A+B + C] ⩾ 0, which is an instance of submodularity in the form (5.9). □

The other key advantage of the entropic notions is that they behave well under projections in a
way that combinatorial notions do not. The key result here is a result we call the fibring identity.

Here, and in several places in what follows, we need conditioned notions of distance. If (X,Z)
and (Y,W ) are random variables (where X and Y are G-valued) we define

d[X | Z;Y |W ] :=
∑
z,w

pZ(z)pW (w)d[(X | Z = z); (Y |W = w)]. (5.14)

Alternatively, if (X ′, Z ′), (Y ′,W ′) are independent copies of the variables (X,Z), (Y,W ),

d[X | Z;Y |W ] = H[X ′ − Y ′ | Z ′,W ′]− 1
2H[X ′ | Z ′]− 1

2H[Y ′ |W ′]. (5.15)

If one of the conditionings is trivial (for example, if W takes just one value) then we omit that
variable and write, for instance, d[X | Z;Y ].

Proposition 5.6. Let π : G→ H be a homomorphism. Then for any independent G-valued random
variables X,Y , one has

d[X;Y ] = d[π(X);π(Y )] + d[X | π(X);Y | π(Y )] + I[X − Y : π(X), π(Y ) | π(X)− π(Y )].

In particular, distance contracts under homomorphisms:

d[π(X);π(Y )] ⩽ d[X;Y ] (5.16)

Proof. Expanding the definition of distance, and using the conditional entropy chain rule

H[X] = H[π(X)] +H[X | π(X)]

and

H[Y ] = H[π(Y )] +H[Y | π(Y )],

it suffices to establish the identity

H[X − Y ] = H[π(X)− π(Y )] +H[X − Y | π(X), π(Y )] + I[X − Y : π(X), π(Y ) | π(X)− π(Y )],

But from the chain rule again we have

H[X − Y ] = H[π(X)− π(Y )] +H[X − Y | π(X)− π(Y )],
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which reduces matters to proving that

H[X − Y | π(X)− π(Y )]−H[X − Y | π(X), π(Y )] = I[X − Y : π(X), π(Y ) | π(X)− π(Y )].

This is an instance of I[A : B | C] = H[A | C]−H[A | B,C], taking A = X − Y , B = π(X)− π(Y )
and C = (π(X), π(Y )), and noting that H[A | B,C] = H[A | C] since C determines B. □

5.3. Entropic analogue of PFR. In this subsection, we state an entropic analogue of Theorem 5.2
and deduce Theorem 5.2 from it.

Theorem 5.7 (Entropic PFR). There is an absolute constant C with the following property. Let
X,Y be Fn

2 -valued random variables. Then there is some subgroup H ⩽ Fn
2 such that d[X;UH ] ⩽

Cd[X;Y ].

Proof of Theorem 5.2, assuming Theorem 5.7. Let A,K be as in the statement of Theorem 5.2,
that is to say A ⊂ Fn

2 and |A + A| ⩽ K|A|. Let UA be the uniform distribution on A, thus
H[UA] = log |A|. By (5.1) and the fact that UA+UA is supported on A+A, H[UA+UA] ⩽ log |A+A|.
The doubling condition |A+A| ⩽ K|A| therefore gives

d[UA;UA] ⩽ logK. (5.17)

By Entropic PFR (Theorem 5.7), we may thus find a subspace H of Fn
2 such that

d[UA;UH ] ⩽ C logK. (5.18)

By Lemma 5.3 we conclude that | log |H| − log |A|| ⩽ 2C logK, and so

K−2C |A| ⩽ |H| ⩽ K2C |A|. (5.19)

From the definition of distance, and since H[UA] = log |A| and H[UH ] = log |H|, (5.18) is equivalent
to

H[UA − UH ] ⩽ log(|A|1/2|H|1/2) + C logK.

By (5.2) we conclude the existence of a point x0 ∈ Fn
2 such that

pUA−UH
(x0) ⩾ K−C |A|−1/2|H|−1/2,

or equivalently

|A ∩ (H + x0)| ⩾ K−C |A|1/2|H|1/2.
Applying the Ruzsa covering lemma Lemma 3.2, we may thus cover A by at most

|A+ (A ∩ (H + x0))|
|A ∩ (H + x0)|

⩽
K|A|

K−C |A|1/2|H|1/2
= KC+1 |A|1/2

|H|1/2

translates of
(
A ∩ (H + x0)

)
−

(
A ∩ (H + x0)

)
, which is contained in H. If |H| ⩽ |A| then we are

already done thanks to (5.19). If |H| > |A| then we can cover H by at most 2|H|/|A| translates of
a subspace H ′ of H with |H ′| ⩽ |A|. We can thus cover A by at most

2KC+1 |H|1/2

|A|1/2

translates of H ′, and the claim again follows from (5.19). □

Remark. As usual the letter C may denote different absolute constants; the constant in Theorem 5.2
will be larger than the one in Theorem 5.7.

6. Proof of Polynomial Freiman-Ruzsa

In this section we prove the entropic form of Polynomial Freiman-Ruzsa (PFR), that is to say
Theorem 5.7. As shown at the end of the last section, Theorem 5.2 then follows.
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6.1. An iterative strategy. The general strategy will be to proceed by induction on d[X;Y ]. We
will outline in more detail how such a strategy works in Proposition 6.2 below.

The ‘base-case’ for the induction is the case d[X;Y ] = 0.

Lemma 6.1. Let X,Y be Fn
2 -valued random variables and suppose that d[X;Y ] = 0. Then there

is a subgroup H ⩽ Fn
2 such that d[X;UH ] = d[Y ;UH ] = 0.

Proof. By the triangle inequality Lemma 5.4 we have d[X;X] = 0. Define H to be the set of all h
such that pX(x) = pX(x+h) for all x ∈ X. One can check immediately that H is a subgroup of G.

We claim that if pX(t), pX(t′) > 0 then t − t′ ∈ H. For this, we first observe that if X1, X2 are
independent copies of X then X1 − X2 and X1 are independent. Indeed, from the definition of
distance H[X1 −X2] = H[X1] = H[X2], and therefore

I[X1 −X2 : X1] = H[X1 −X2] +H[X1]−H[X1 −X2, X1]

= H[X1 −X2] +H[X1]−H[X2, X1] = 0

since X1, X2 are independent. Here, in the middle step we used the fact that (X1 − X2, X1)
and X1, X2) bijectively determine each other and hence have the same entropy. Since mutual
information vanishes only for independent variables, it follows thatX1−X2 andX1 are independent.

Returning to the proof of the claim, let x be an arbitrary element in the range of X. Then

pX(t)pX(x) = P(X1 = t,X2 = x)

= P(X1 −X2 = t− x,X1 = t) = P(X1 −X2 = t− x)pX(t),

and so (since pX(t) > 0)

pX(x) = P(X1 −X2 = t− x).

Similarly

pX(x) = P(X1 −X2 = t′ − x).

Comparing the last two equations gives pX(x) = pX(x+ t− t′), and so t− t′ ∈ H as claimed.
Now fix some x0 with pX(x0) > 0. Then if x is any other point with pX(x) > 0, since x−x0 ∈ H

we have pX(x) = pX(x0 + (x − x0)) = pX(x0). Conversely, if x − x0 ∈ H then pX(x) = pX(x0 +
(x−x0)) > 0 and so pX(x) = pX(x0). It follows that X has the uniform distribution on H +x0, or
equivalently X − x0 is uniformly distributed on H. Thus 0 = d[X;X] = d[X − x0;X] = d[UH ;X].

By the same argument applied to Y , there is a subgroup H ′ such that d[Y ;UH′ ] = 0. By the
triangle inequality we have d[UH ;UH′ ] = 0. From this it follows (Sheet 3, Q9) that H = H ′. The
proof of the lemma is complete. □

Now we state the key property that will make the induction work. The following proposition
encodes the idea that there is a pair (X ′, Y ′) which at the same time (i) enjoys a ‘distance decrement’
meaning that d[X ′;Y ′] is appreciably less than d[X;Y ] and (ii) is ‘related to’ (X,Y ) in the sense
that the distance from X to X ′ is somewhat bounded, and similarly for the distance from Y to Y ′.

Proposition 6.2. There is an absolute constant η > 0 such that the following holds. If X,Y are
Fn
2 -valued random variables, then one can find Fn

2 -valued random variables X ′, Y ′ such that

d[X ′;Y ′] + η(d[X ′;X] + d[Y ′;Y ]) ⩽ (1− η)d[X;Y ]. (6.1)

It is useful to note that the conclusion (6.1) implies

d[X ′;Y ′] ⩽ (1− η)d[X;Y ] and d[X ′;X], d[Y ′;Y ] ⩽ η−1d[X;Y ]. (6.2)

The proof of Proposition 6.2 will be the main business of the section. Let us first see how it implies
the entropic PFR, Theorem 5.7.
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Proof of Theorem 5.7, assuming Proposition 6.2. Suppose, as in the statement of Theorem 5.7,
that we have Fn

2 -valued random variables X,Y . By iterated application of Proposition 6.2, one can
then find sequences of random variables Xn, Yn with X0 = X, Y = Y0 and satisfying

d[Xn;Yn] ⩽ (1− η)nd[X;Y ],

and

d[Xn+1;Xn],d[Yn+1;Yn] ⩽ η−1(1− η)nd[X;Y ].

In particular, from the triangle inequality and geometric series

d[Xn;X], d[Yn;Y ] ⩽ η−2d[X;Y ].

The space of probability measures/random variables on Fn
2 is compact, and so (passing to a subse-

quence of theXn, Yn) we may find limiting random variablesX∞, Y∞ with pX∞(x) = limn→∞ pXn(x)
for all x and pY∞(y) = limn→∞ pYn(y) (with the limits being along a subsequence). It is clear by
inspection that the Ruzsa distance is continuous as a function on the space of probability measures,
and so

d[X∞;Y∞] = 0

and

d[X∞;X], d[Y∞;Y ] ⩽ η−2d[X;Y ]. (6.3)

By Lemma 6.1, there is some subgroupH such that d[X∞;UH ] = d[Y∞;UH ] = 0. From (6.3) and the
triangle inequality we then have d[X;UH ],d[Y ;UH ] ⩽ η−2d[X;Y ], and the proof is complete. □

The remainder of the work to prove Theorem 5.7 is therefore in establishing Proposition 6.2.

6.2. Using sums and fibres. Let X,Y be Fn
2 -valued random variables, as in Proposition 6.2. We

may assume without loss of generality that X,Y are independent. Let X̃, Ỹ be further independent
copies. The idea now is to attempt to locateX ′, Y ′ satisfying (6.1) from among the following choices:

• sums X ′
∗ = X + Ỹ , Y ′

∗ = Y + X̃;

• fibres X ′
t = (X | X + Ỹ = t), Y ′

u = (Y | Y + X̃ = u) for some t, u.

The crucial lemma is Lemma 6.4 below. This depends on the following corollary of the fibring
identity, Proposition 5.6.

Corollary 6.3. Let Z1, Z2, Z3 and Z4 be independent random variables taking values in Fn
2 . Then

d[Z1 + Z3;Z2 + Z4] + d[Z1 | Z1 + Z3;Z2 | Z2 + Z4]

+ I[Z1 + Z2 : Z2 + Z4 | Z1 + Z2 + Z3 + Z4] = d[Z1;Z2] + d[Z3;Z4].

Proof. We apply Proposition 5.6 with G := Fn
2 ×Fn

2 , H := Fn
2 , and π the homomorphism π(x, y) :=

x + y, and with the random variables X := (Z1, Z3) and Y := (Z2, Z4). (Note here that X,Y are
dummy variables inside Proposition 5.6, and not the ones in Proposition 6.2). Then by independence
we easily calculate

d[X;Y ] = d[Z1;Z2] + d[Z3;Z4]

while by definition

d[π(X);π(Y )] = d[Z1 + Z3;Z2 + Z4].

Furthermore,

d[X | π(X);Y | π(Y )] = d[Z1 | Z1 + Z3;Z2 | Z2 + Z4],
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since X = (Z1, Z3) and Z1 are linked by an invertible affine transformation once π(X) = Z1 + Z3

is fixed, and similarly for Y and Z2. Finally, we have

I[X + Y : (π(X), π(Y )) | π(X) + π(Y )]

= I[(Z1 + Z2, Z3 + Z4) : (Z1 + Z3, Z2 + Z4) | Z1 + Z2 + Z3 + Z4]

= I[Z1 + Z2 : Z2 + Z4 | Z1 + Z2 + Z3 + Z4]

where in the last line we used the fact that (Z1+Z2, Z1+Z2+Z3+Z4) uniquely determine Z3+Z4

and similarly (Z2 + Z4, Z1 + Z2 + Z3 + Z4) uniquely determine Z1 + Z3. □

For the remainder of the section, the following notation will be in place. X,Y are independent
Fn
2 -valued random variables with d[X;Y ] = k, and X̃, Ỹ are further independent copies of them.

Let η > 0 be a suitably small absolute constant as in the statement of Proposition 6.2. Recall the
definition of sums and fibres from the start of Section 6.2.

Lemma 6.4. Either the sums or the fibres (for some t, u) give a pair (X ′, Y ′) satisfying (6.1), or
else we have the mutual information bound

I[X + Y : X̃ + Y | X + Y + X̃ + Ỹ ] = O(ηk). (6.4)

Proof. We apply Corollary 6.3 with the choice

(Z1, Z2, Z3, Z4) := (X,Y, Ỹ , X̃).

It gives (recalling that we are in characteristic 2!) that

d[X + Ỹ ;Y + X̃] + d[X | X + Ỹ ;Y | Y + X̃] = 2k − I, (6.5)

where I is the mutual information quantity on the LHS of (6.4). Recalling the definition of condi-
tional distance, we can write this as

d[X ′
∗;Y

′
∗ ] +

∑
t,u

pX+Ỹ (t)pY+X̃(u)d[X ′
t;Y

′
u] = 2k − I. (6.6)

We claim that

d[X ′
∗;X], d[Y ′

∗ ;Y ] = O(k) (6.7)

and ∑
t,u

pX+Ỹ (t)pY+X̃(u)d[X ′
t;X] = O(k), (6.8)

and similarly ∑
t,u

pX+Ỹ (t)pY+X̃(u)d[Y ′
u;Y ] = O(k), (6.9)

Assuming (6.7) to (6.9), it is easy to see using (6.6) that either the sums (X ′, Y ′) = (X ′
∗, Y

′
∗) or

the fibres (X ′, Y ′) = (X ′
t, Y

′
u) (for some t, u) satisfy (6.1), or else I = O(ηk), which is the desired

conclusion.
It remains to prove the three claims (6.7) to (6.9). These are exercises in ‘entropic Ruzsa calculus’.

We will prove the bound for d[X ′
∗;X] and (6.8) in detail, leaving the others (which are very similar)

to the reader.

Proof of (6.7). We will in fact show that d[X ′
∗;X] = d[X + Ỹ ;X] ⩽ 2k. The key to this is the

Madiman/Kaimanovich-Vershik inequality Lemma 5.5.
Writing X1, X2 for independent copies of X,

d[X;X + Ỹ ] = H[X1 + Y +X2]− 1
2H[X1 + Y ]− 1

2H[X].
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By Lemma 5.5 we thus have

d[X;X + Ỹ ] ⩽ H[X1 + Y ] +H[X2 + Y ]−H[Y ]− 1
2H[X1 + Y ]− 1

2H[X]

= 3
2H[X + Y ]−H[Y ]− 1

2H[X]

= 3
2d[X;Y ] + 1

4(H[X]−H[Y ]).

By Lemma 5.3 and the definition of distance, this is bounded by 2k, as desired.

Proof of (6.8). Recalling the definition of conditional distance, the left-hand size is d[X | X + Ỹ ;X],
and we will show that this is at most 3k. We will use the following inequality, which is Sheet 4, Q1.

d[A | Z;B |W ] ⩽ d[A;B] + 1
2(I[A : Z] + I[B :W ]) (6.10)

Applying this with W trivial gives

d[A | Z;B] ⩽ d[A;B] + 1
2I[A : Z] (6.11)

Taking A = B = X and Z = X + Y , we obtain

d[X | X + Ỹ ;X] ⩽ d[X;X] + 1
2I[X,X + Y ]. (6.12)

By the triangle inequality, d[X;X] ⩽ 2k. Finally,

I[X,X + Y ] = H[X] +H[X + Y ]−H[X,X + Y ]

= H[X] +H[X + Y ]−H[X,Y ]

= H[X + Y ]−H[X]

= d[X;Y ] + 1
2(H[Y ]−H[X]).

By another application of Lemma 5.3, this is ⩽ 2k. Combining with (6.12), we obtain the desired
result. □

We in fact need two slight variants of Lemma 6.4, proven using slight variants of the sums and
fibres as described above. The following is the only result we will need going forwards.

Lemma 6.5. Either there is a pair (X ′, Y ′) satisfying (6.1), or else we have, writing S := X +

Y + X̃ + Ỹ :

I[X + Y : X̃ + Y | S] = O(ηk). (6.13)

I[X + Y : X + X̃ | S] = O(ηk). (6.14)

I[X̃ + Y : X + X̃ | S] = O(ηk), (6.15)

Proof. We have already proven (6.13) in Lemma 6.4 above. (6.14) and (6.15) are equivalent after
swapping tildes. Thus it remains to establish (6.14). This is done via a mild variant of Lemma 6.4,

in which we instead apply Corollary 6.3 with the choice (Z1, Z2, Z3, Z4) = (Y,X, Ỹ , X̃). The rest
of the proof is a minor variant of that of Lemma 6.4, with differences in the details of the proofs
of the analogues (6.7) to (6.9). One or two of these details are on Sheet 4; the rest are left to the
interested reader. □

6.3. Finishing the argument: entropic BSG. The aim in this section is to complete the proof
of PFR by locating an appropriate pair (X ′, Y ′) of random variables satisfying (6.1), assuming that
the three conditions (6.13) to (6.15) all hold. Write

U := X + Y, V := X̃ + Y, W := X + X̃

and recall that

S := X + Y + X̃ + Ỹ .
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Then the aforementioned three conditions may be written (respectively) as

I[U : V | S], I[U :W | S], I[V :W | S] = O(ηk). (6.16)

At this point we make the only critical use of characteristic 2 in the proof, noting the crucial relation

U + V +W = 0.

(Whilst we did make an earlier appeal to characteristic 2 in order to replaced some minus signs by
plusses, this was not critical to the argument.)

Let us ignore for a moment the conditioning upon S, and let us also suppose that (6.16) is
replaced by the stronger (but similar) statement that U, V,W are independent. Then we have
(remembering we are in characteristic 2)

d[U ;V ] = H[U + V ]− 1
2H[U ]− 1

2H[V ] = H[W ]− 1
2H[U ]− 1

2H[V ]

and similar relations cyclically. Adding these relations gives

d[U ;V ] + d[V ;W ] + d[W ;U ] = 0,

so all the three distance are zero, which means U, V,W are uniform on cosets of a subgroup by
Lemma 6.1. This would (in this idealised situation) put us in a very strong position to conclude
the proof of PFR.

To make this rigorous we need to do three things:

• Take account of the conditioning by S;
• Deal with the fact that (6.16) does not give true independence of the variables U, V,W
(conditioned on S);

• Show that appropriate variables are reasonably close in distance to X,Y .

To handle the conditioning we use the inequality

max(H[U | S],H[V | S])− I[U : V | S] ⩽ H[U + V | S].

The unconditioned version of this was Sheet 3, Q3; the conditioned version follows from it by
applying Sheet 3, Q3 to (U | S = s) and (V | S = s) and summing over s, weighted by pS(s). Since
U + V =W , it follows from this and (6.16) that

H[U | S],H[V | S] ⩽ H[W | S] +O(ηk).

The same holds for cyclic permutations of the variables, so all three of H[U | S],H[V | S],H[W | S]
differ by O(ηk) at most. In particular, since U + V =W we have

H[U + V | S]− 1
2H[U | S]− 1

2H[V | S] ⩽ O(ηk). (6.17)

Writing Us := (U | S = s) (and similarly) for brevity, this expands as∑
s

pS(s)
(
H[Us + Vs]− 1

2H[Us]− 1
2H[Vs]

)
= O(ηk). (6.18)

Note carefully that we do not write d[Us;Vs] for the bracketed expression, since Us, Vs are not
independent (though the bound (6.16) implies that they are nearly so in an average sense). The
bound I[U : V |S] = O(ηk) expands as∑

s

pS(s)I[Us : Vs] = O(ηk). (6.19)

To deal with the lack of independence of Us, Vs we invoke a tool called the Entropic Balog-
Szemerédi-Gowers theorem. We give the statement only, outsourcing the proof (together with the
explanation of the name) to Appendix B.
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Lemma 6.6 (Entropic BSG). Let A,B be (not necessarily independent) G-valued random variables.
Then ∑

z

pZ(z)d[A
′
z;B

′
z] ⩽ 3I[A : B] + 2

(
H[A+B]− 1

2H[A]− 1
2H[B]

)
,

where A′
z := (A | A+B = z), B′

z := (B | A+B = z).

The point here is that we can take an assumption on H[A + B] − 1
2H[A] − 1

2H[B] being small
and, provided A,B are almost independent, convert it to random variables A′, B′ at small distance.

We may apply Lemma 6.6 in our situation with A = Us, B = Vs, so A + B = Ws. Write
X ′

s,w := (Us | Ws = w) and Y ′
s,w := (Vs | Ws = w). By Lemma 6.6, (6.18), and (6.19) we have

(weighting by pS(s) and summing),∑
s,w

pS(s)pWs(w)d[X
′
s,w;Y

′
s,w] = O(ηk). (6.20)

If η is small, we have produced some variables at distance significantly smaller than k = d[X;Y ].
To conclude the argument, we need to show that they are (on average) not too distant from X and
Y . Indeed, suppose we can show∑

s,w

pS(s)pWs(w)d[X
′
s,w;X] = O(k) (6.21)

and ∑
s,w

pS(s)pWs(w)d[Y
′
s,w;Y ] = O(k). (6.22)

Then ∑
s,w

pS(s)pWs(w)
(
d[X ′

s,w;Y
′
s,w] + ηd[X ′

s,w;X] + ηd[Y ′
s,w;Y ]

)
= O(ηk),

so (provided η is a sufficiently small absolute constant) the LHS is ⩽ (1− η)k. In particular, there
is some choice of X ′ = X ′

s,w and Y ′ = Y ′
s,w such that (6.1) holds, thereby concluding the proof of

Proposition 6.2.
It remains to establish (6.21) and (6.22). The proofs are similar so we handle only (6.21). By

(6.11) (which follows immediately from (6.10), which was an exercise on Sheet 4) we have∑
w

pWs(w)d[X;X ′
s,w] = d[X;Us |Ws] ⩽ d[X;Us] +

1
2I[Us :Ws].

Summing over s we obtain∑
s

pS(s)
∑
w

pWs(w)d[X
′
s,w;X] ⩽ d[X;U | S] + 1

2I[U :W | S].

By (6.16), it remains only to show that

d[X;U | S] = O(k).

This is an exercise in entropic Ruzsa calculus and is covered in Sheet 4, Q2.

7. The weak PFR in the integers

In this section we use Theorem 5.7 to prove a result about the integers called the weak PFR.

Theorem 7.1 (Weak PFR in Z). There is an absolute constant C2 such that the following is true.
Suppose that A ⊆ ZD is a finite set with σ[A] ⩽ K. Then there is A′ ⊆ A with |A′| ⩾ K−C2 |A| and
dimA′ ⩽ C2 logK.

Remark. The term ‘weak’ comes from the fact that we only control the dimension of A, and not
anything more precise (for instance putting A inside a progression).
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7.1. Projections modulo 2. A key idea is that a set A ⊆ ZD with small doubling must look
rather singular under the projection map ϕ : ZD → FD

2 . In Lemma 7.3 below, we give an entropic
formulation of this principle (followed by an attempt to explain why we expect it to hold). We
isolate the following lemma from the proof.

Lemma 7.2. Let G be torsion-free, and let X,Y be G-valued random variables. Then d[X; 2Y ] ⩽
5d[X;Y ].

Proof. The proof is a little tricky. We may assume X,Y are independent. At this point we use the
slightly stronger version of the triangle inequality, (5.13), taking A = X − Y , B = C = Y in that
inequality. This gives

H[X − 2Y ] = H[(X − Y )− Y ] ⩽ d[Y ;Y ] + d[X − Y ;Y ] +
1

2
H[X − Y ] +

1

2
H[Y ]

⩽ 2d[X;Y ] + d[X − Y ;Y ] +
1

2
H[X − Y ] +

1

2
H[Y ], (7.1)

where in the final step we used the triangle inequality again.
Let Y1, Y2 be independent copies of Y (which are also independent of X). Then we have

d[X − Y ;Y ] = H[X − Y1 − Y2]−
1

2
H[X − Y ]− 1

2
H[Y ]. (7.2)

Writing A := Y1, B := Y2 and C := X − Y1 − Y2, we have

H[A,B,C] = H[X,Y1, Y2] = H[X] + 2H[Y ],

and

H[A,C] = H[A,C +A] = H[Y1, X − Y2] = H[Y ] +H[X − Y2] = H[Y ] +H[X − Y ],

H[B,C] = H[B,C +B] = H[Y2, X − Y1] = H[Y ] +H[X − Y1] = H[Y ] +H[X − Y ]

so applying the submodularity inequality (5.8) gives

H[X − Y1 − Y2] ⩽ 2H[X − Y ]−H[X].

Combining this with (7.2) gives

d[X − Y ;Y ] ⩽
3

2
H[X − Y ]−H[X]− 1

2
H[Y ].

From (7.1) it follows that

H[X − 2Y ] ⩽ 2d[X;Y ] + 2H[X − Y ]−H[X] = 4d[X;Y ] +H[Y ].

Finally, we obtain

d[X; 2Y ] ⩽ 4d[X;Y ] +
1

2
(H[Y ]−H[X]) ⩽ 5d[X;Y ]

where we used Lemma 5.3 in the last step. □

Lemma 7.3. Let X,Y be ZD-valued random variables for some D ⩾ 0. Denote by ϕ : ZD → FD
2

the natural homomorphism. Then

H[ϕ(X)],H[ϕ(Y )] ⩽ 10d[X;Y ].

Proof. By the contraction of distance under homomorphisms (5.16) and Lemma 7.2,

d[ϕ(X);ϕ(2Y )] ⩽ d[X; 2Y ] ⩽ 5d[X;Y ]. (7.3)

However, ϕ(2Y ) is identically zero and so

d[ϕ(X);ϕ(2Y )] = d[ϕ(X); 0] =
1

2
H[ϕ(X)].
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Combining this with (7.3) gives the stated bound for H[ϕ(X)]. The bound for H[ϕ(Y )] follows in
the same way. □

Remark. It is perhaps worth remarking on the meaning and proof of this statement. Supposing
that A ⊂ ZD is a set with small (combinatorial) doubling K, it follows that the dilate 2 ·A, which
is contained in A+A, is commensurate (up to polynomial factors in K) with A. Projecting mod 2,
one therefore expects the projection π(A) to be commensurate with the projection π(2 ·A) = {0}.
In the entropy setting, Lemma 7.2 acts as a replacement for the trivial observation that 2 · A is
contained in A+A.

7.2. Projections and iterated PFR. The main result of this subsection is the slightly technical
Lemma 7.5 below, which is obtained by iterated application of PFR. It states that if X,Y are
Fn
2 -valued random variables with small distance, then in some sense we may ‘capture most of the

entropy’ of X,Y by projecting out a reasonably small subspace H.
During the proof we will need a basic fact about the behaviour of entropy under group homo-

morphism, which we detail now.

Lemma 7.4. Let X be a G-valued random variable, and let H be a finite subgroup of G. Denote
by π : G→ G/H the quotient map. Let UH be a uniform random variable on H. Then H[π(X)] ⩽
2d[X;UH ].

Proof. We first observe that

H[X − UH ] = H[X + UH ] = H[π(X)] +H[UH ] = H[π(X)] + log |H|. (7.4)

The first equality follows from the fact that H = −H, and the third is immediate. Only the middle
equality needs further explanation. For this, pick a ‘section’ of G over π, that is to say a choice of
elements (gt)t∈G/H with π(gt) = t for all t. Now define a random variable Y by sampling t from
π(X) and setting Y = gt. By (5.3) we have H[Y ] = H[π(X)]. Also, if UH is a uniform random on
H, independent of Y , we see that Y + UH and X + UH have the same distribution. Moreover, the
natural map (Y, UH) 7→ Y + UH is injective. Therefore

H[X + UH ] = H[Y + UH ] = H[Y,UH ] = H[Y ] +H[UH ] = H[π(X)] +H[UH ],

as stated.
It follows from (7.4) that

d[X;UH ] = H[π(X)] +
1

2
(log |H| −H[X]), (7.5)

and the lemma then follows using Lemma 5.3. □

Now we state the main result of this subsection. Let C be the implied constant in PFR (Theo-
rem 5.7).

Lemma 7.5. Suppose that X and Y are FD
2 -valued random variables. Then there is a subgroup H ⩽

FD
2 such that, denoting by ψ : FD

2 → FD
2 /H the natural projection, and setting k := d[ψ(X);ψ(Y )],

we have

log |H| ⩽ 2(H[X] +H[Y ]) (7.6)

and

H[ψ(X)] +H[ψ(Y )] ⩽ 8Ck. (7.7)

We isolate the following (sub-) lemma from the proof. This results from a direct application of
PFR, together with understanding the behaviour of entropy under projections.
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Lemma 7.6. Let n ∈ N. Let X,Y be Fn
2 -valued random variables. Set k := d[X;Y ], and suppose

that

H[X] +H[Y ] > 8Ck. (7.8)

Then there is a nontrivial subgroup H ⩽ Fn
2 such that

log |H| ⩽ H[X] +H[Y ] (7.9)

and (writing ψ : Fn
2 → Fn

2/H for the natural projection)

H[ψ(X)] +H[ψ(Y )] ⩽
1

2

(
H[X] +H[Y ]

)
. (7.10)

Proof. Set k := d[X;Y ]. Applying PFR (Theorem 5.7), we obtain a subgroup H such that
d[X;UH ],d[Y ;UH ] ⩽ Ck. By Lemma 7.4 and (7.8), it follows that

H[ψ(X)] +H[ψ(Y )] ⩽ 4Ck <
1

2
(H[X] +H[Y ]),

which is (7.10). To prove (7.9), first note that an application of Lemma 5.3 yields

log |H| −H[X] ⩽ 2d[X;UH ] ⩽ 2Ck,

and similarly for Y . Therefore using (7.8) we have

log |H| ⩽ 1

2
(H[X] +H[Y ]) + 2Ck < H[X] +H[Y ],

which gives the required bound (7.9).
Finally, we need to prove thatH is not trivial. IfH were trivial we would have ψ(X) = X, ψ(Y ) =

Y and so (7.10) would imply H[X] +H[Y ] = 0, which is contrary to the assumption (7.8). □

Proof of Lemma 7.5. We iteratively define a sequence {0} = H0 < H1 < · · · of subgroups of FD
2 .

Denote by ψi : F
D
2 → FD

2 /Hi the ith associated projection operator, and set ki := d[ψi(X);ψi(Y )].
We stop the iteration at the ith stage if we have

H[ψi(X)] +H[ψi(Y )] ⩽ 8Cki. (7.11)

Otherwise, we apply Lemma 7.6 to ψi(X), ψi(Y ), obtaining a nontrivial subgroup Hi+1/Hi ⩽
FD
2 /Hi such that

log
|Hi+1|
|Hi|

⩽ H[ψi(X)] +H[ψi(Y )] (7.12)

and

H[ψi+1(X)] +H[ψi+1(Y )] ⩽
1

2

(
H[ψi(X)] +H[ψi(Y )]

)
. (7.13)

Clearly from iterated application of (7.13) we obtain

H[ψi(X)] +H[ψi(Y )] ⩽ 2−i(H[X] +H[Y ]).

Then, from a telescoping application of (7.12) we get

log |Hi| ⩽ 2(H[X] +H[Y ]). (7.14)

Since the groups Hi form a strictly increasing sequence, the iteration does terminate at some time
i. At this time we have both (7.11) and (7.14) and so, setting ψ = ψi, the proof of Lemma 7.5 is
concluded. □
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7.3. Proof of weak PFR in the integers. Now we turn our attention to the weak PFR itself,
Theorem 7.1. It is a consequence of the following bipartite statement. The bipartite statement is
amenable to a proof by induction, as we shall see. Passing to a bipartite statement in something
this manner is often helpful, and is an example of a situation where it is easier to prove a stronger
statement by induction.

Theorem 7.7. There is an absolute constant C1 such that the following is true. Let D ∈ N, and
suppose A,B ⊆ ZD are finite non-empty sets, and set k := d[UA;UB]. Then there exist nonempty
A′ ⊆ A, B′ ⊆ B with

log
|A|
|A′|

+ log
|B|
|B′|

⩽ C1k

and such that dimA′, dimB′ ⩽ C1k.

Before giving the proof, let us see how Theorem 7.1 follows from it. Suppose that A ⊂ ZD is a
set with σ[A] ⩽ K. By the Ruzsa triangle inequality for sets (Lemma 3.1) with V = W = A and
U = −A we have |A−A| ⩽ K2|A|. By Sheet 3, Q9 (see also the analysis leading up to (5.17), with
suitable minus signs) d[UA;UA] ⩽ 2 logK. Apply Theorem 7.7 with A = B and k = 2 logK; we
then obtain A′, A′′ ⊂ A with

log
|A|
|A′|

+ log
|A|
|A′′|

⩽ 2C1 logK

such that dimA′, dimA′′ ⩽ 2C1 logK. In particular, |A′| ⩾ K−2C1 |A| and the conclusion of Theo-
rem 7.1 follows (with C2 = 2C1).

We isolate a lemma from the proof of Theorem 7.7. The lemma is a consequence of the fibring
identity for (entropic) distance, Proposition 5.6.

Lemma 7.8. Let ϕ : G → H be a homomorphism, and A,B ⊆ G finite subsets. For x, y ∈ H

write Ax = A ∩ ϕ−1(x) and By = B ∩ ϕ−1(y) for the fibres of A and B, and write αx := |Ax|
|A| and

βy :=
|By |
|B| . Then there exist x, y ∈ H such that Ax, By are non-empty and with

log
1

αxβy
⩽

H[ϕ(UA)] +H[ϕ(UB)]

d[ϕ(UA);ϕ(UB)]

(
d[UA;UB]− d[UAx ;UBy ]

)
, (7.15)

provided the denominator on the RHS is not zero.

Proof. For brevity, write k := d[UA;UB], k := d[ϕ(UA);ϕ(UB)] andM = H[ϕ(UA)]+H[ϕ(UB)]. By
Proposition 5.6 (ignoring the nonnegative I[ ]-term) we have

k − k ⩾ d[UA|ϕ(UA);UB|ϕ(UB)]. (7.16)

The random variables (UA|ϕ(UA) = x) and (UB|ϕ(UB) = y) are equal in distribution to UAx , UBy

respectively, that is to say the uniform distributions on the fibres. Hence, writing out the right
hand side of (7.16) gives ∑

x,y∈H
αxβyd[UAx ;UBy ] ⩽ k − k.

By definition, M =
∑

x,y αxβy log
1

αxβy
and hence∑

x,y∈H
αxβy

(
Md[UAx ;UBy ] + k log

1

αxβy

)
⩽Mk.

It follows by the pigeonhole principle that there is at least one choice of x, y such that αx, βy > 0
and

Md[UAx ;UBy ] + k log
1

αxβy
⩽Mk.
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Rearranging gives (7.15). □

Proof of Theorem 7.7. Take C1 := max( 40
log 2 , 20C). We will proceed by induction on |A|+ |B|. We

may also assume that A,B do not sit inside cosets of a proper subgroup of ZD, else we may replace
ZD by that subgroup (which is still isomorphic to some ZD′

).
Let ϕ : ZD → FD

2 be the natural homomorphism. By Lemma 7.3 we have

H[ϕ(UA)],H[ϕ(UB)] ⩽ 10k. (7.17)

Applying Lemma 7.5 to ϕ(UA), ϕ(UB), we find a subgroup H ⩽ FD
2 and associated projection

ψ : FD
2 → FD

2 /H such that, denoting by ϕ̃ = ψ ◦ ϕ : ZD → FD
2 /H the natural (composite)

projection, we have

log |H| ⩽ 2(H[ϕ(UA)] +H[ϕ(UB))] ⩽ 40k (7.18)

and

H[ϕ̃(UA)] +H[ϕ̃(UB)] ⩽ 8Cd[ϕ̃(UA); ϕ̃(UB)]. (7.19)

Now if H is all of FD
2 then it follows from (7.18) that D ⩽ 40

log 2k, and so Theorem 7.7 is true

simply by taking A′ = A, B′ = B, by the choice of C1.
Suppose, then, that H is not all of FD

2 . For x, y ∈ FD
2 /H, denote by Ax := A ∩ ϕ̃−1(x) and

By := B ∩ ϕ̃−1(y) the fibres of A,B above x, y respectively. Since we are assuming that A,B do

not sit inside cosets of a proper subgroup of ZD, we may assume that at least one of ϕ̃(A), ϕ̃(B) is
not a singleton, and so

|Ax|+ |By| < |A|+ |B| (7.20)

and H[ϕ̃(UA)] +H[ϕ̃(UB)] > 0, whereby d[ϕ̃(UA); ϕ̃(UB)] > 0 by (7.19). By Lemma 7.8 and (7.19)
it follows that there are x, y ∈ FD

2 /H such that

log
|A|
|Ax|

+
|B|
|By|

⩽ 20C
(
k − d[UAx ;UBy ]

)
(7.21)

Set k′ = d[UAx ;UBy ]. It follows from (7.21) that k′ ⩽ k. By induction (and (7.20)) we may find
A′ ⊆ Ax and B′ ⊆ By such that dimA′, dimB′ ⩽ C1k

′ ⩽ C1k and

log
|Ax|
|A′|

+ log
|By|
|B′|

⩽ C1k
′.

Adding this to (7.21) yields

log
|A|
|A′|

+ log
|B|
|B′|

⩽ C1k
′ + 20C(k − k′) ⩽ C1k (7.22)

since C1 ⩾ 20C. This closes the induction and the proof is complete. □

8. Combinatorial geometry and sum-product

Let A be a set of n integers. We have already discussed the sumset A + A at some length. We
may also introduce the product set A · A := {aa′ : a, a′ ∈ A}. A famous conjecture of Erdős and
Szemerédi is that

|A+A|+ |A ·A| ⩾ n2−o(1).

This is far from being proven, but the final result of this chapter is the non-trivial result

|A+A|+ |A ·A| ≫ n5/4,

which is due to Elekes. The main input in establishing this is the so-called Szemerédi-Trotter
theorem, a result in combinatorial geometry of substantial independent interest.
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Theorem 8.1 (Szemerédi-Trotter). Let r ⩾ 2. Let L be a set of m lines. Then the number of

points which lie on at least r lines in L is O(mr + m2

r3
).

There are various slightly different ways to state this theorem, a matter we discuss on the
example sheets. The proof we shall give of this uses a lemma about crossing numbers which is also
of independent interest.

8.1. Crossing number inequality. This section assumes that you are familiar with the basic
language of graph theory; if not, it should be easy to read up on the relevant definitions.

Definition 8.2. A drawing of a graph G is a representation of G in the plane R2 where the vertices
of G are points and the edges are “nice” simple curves between pairs of vertices, not passing through
any other vertex of the graph. A crossing is an intersection of two edge-curves, other than at a
vertex. The crossing number cross(G) of a graph G is the least number of crossings in any drawing
of G in the plane. A graph is said to be planar if cross(G) = 0.

Remark. We will not bother to set up what “nice” means rigorously, and it does not really matter;
for example, we could take the curves to be polygonal. Note also that crossings are counted as
pairs of edge-curves which intersect, not as the actual points of intersection. Thus, for example,
three edge-curves all intersecting at the same point counts as three crossings.

We begin by recalling Euler’s formula. If G is a connected planar graph then

V − E + F = 2, (8.1)

where V,E, F denote the numbers of vertices, edges and faces respectively. Now if V ⩾ 3 then
every face has at least three edges, and no edge belongs to more than two faces. Therefore, double
counting edges,

3F ⩽ 2E.

Substituting into Euler’s formula (8.1) gives E − 3V ⩽ −6. Considering the cases where V = 1 or
2, one sees that certainly

E ⩽ 3V (8.2)

in all cases. By splitting into connected components, we see that (8.2) holds for all planar graphs,
connected or not.

Remark. Formalising the details here (even defining exactly what is meant by a face, especially
in degenerate cases such as when G is a tree) is slightly subtle and not the domain of this course.
For a much fuller discussion, see the graph theory course.

If we have a graph G then consider a drawing of G with cross(G) crossings. For each such
crossing, remove one of the edges in it. Continuing in this fashion gives a planar graph G′ with the
same vertex set as G and with E′ ⩾ E − cross(G) edges. It follows from (8.2) that E′ ⩽ 3V and so

cross(G) ⩾ E − 3V. (8.3)

It turns out that by a random sampling trick we can bootstrap this to the following inequality,
which is much stronger when E is relatively large in terms of V .

Proposition 8.3. Suppose that E ⩾ 4V . Then cross(G) ⩾ E3

64V 2 .

Proof. Take a drawing of G with the minimal number cross(G) of crossings. Then all crossings
involve four distinct vertices: if there is some crossing involving edges vx, vy then there is an easy
procedure to reduce the number of crossings, best described by a picture (see the figure below).

Let p, 0 ⩽ p ⩽ 1, be a parameter to be specified later. Consider a random subgraph G′ of G,
formed by picking a random set S of vertices by selecting each v in the vertex set of G to lie in S
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Figure 1. Removing a crossing

independently at random with probability p, and then taking G′ to be the subgraph of G induced
by S: that is, include all the edges in G between two vertices in S. Let the number of vertices and
edges in G′ be V′, E′ respectively; these are of course random variables. Also, let ˜cross(G′) be the
number of crossings in G′ in the drawing we have, that is to say in the drawing induced from that
on G. Note that ˜cross(G′) ⩾ cross(G′), but we do not necessarily have equality since there might
be a different drawing of G′ with fewer crossings.

For each instance of this random selection we have the inequality (8.3), that is to say

cross(G′) ⩾ E′ − 3V′.

Certainly, then
˜cross(G′) ⩾ E′ − 3V′.

We may take expectations of the three random variables appearing here and deduce, using linearity
of expectation, that

E ˜cross(G′) ⩾ EE′ − 3EV′. (8.4)

However, it is easy to see that

EV′ = pV and EE′ = p2E

(since, for each edge in G, both endpoint vertices must be selected in order for it to be an edge in
G′), and

E ˜cross(G′) = p4 cross(G)

(since, for each crossing in G, all four endpoint vertices of the two edges involved must be selected
in order for it to be a crossing in G′).

Substituting into (8.4) gives

p4 cross(G) ⩾ p2E − 3pV.

We are free to choose any parameter p ∈ [0, 1] that we like. Choosing p = 4V/E (noting that, by
the hypothesis, p ⩽ 1) gives the desired bound after rearranging the terms. □

8.2. The Szemerédi-Trotter theorem. In this section we prove Theorem 8.1.

Proof of Theorem 8.1. First of all, note that Theorem 8.1 is trivial if r ⩽ 7 (say) since there are at
most

(
m
2

)
points lying on two or more lines.

Suppose henceforth that r ⩾ 8. Draw a graph G as follows. The vertices of G are the points
P lying on at least r lines in L. Two vertices x, y are joined by an edge if and only if x, y are
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consecutive points of P on the same line in L. Denote by n = |P | the number of vertices in this
graph; this is the quantity we wish to bound.

Now observe that G comes with a natural drawing, that is to say the one induced by the lines
in L; in this drawing, every edge is in fact represented by a straight line segment. Since two lines
intersect in at most one point, the number of crossings in this drawing is at most

(
m
2

)
. Therefore

cross(G) ⩽

(
m

2

)
< m2. (8.5)

The number of edges E is at least rn −m. To see why, count the number of edges starting at
v. Usually, v is adjacent to at least 2r other vertices. The exception is when v is one of the two
endmost points (in either direction) on one of the lines in L, in which case we lose one adjacency.
Summing over v gives at least 2rn−2m pairs (v, w) with vw an edge, which of course double-counts
the number of edges.

Now consider Proposition 8.3. Either we are in a position to apply this proposition, or we are
not. If not, then E < 4n, so rn − m < 4n. Since r ⩾ 8, this implies that rn/2 ⩽ m, and so
Theorem 8.1 holds in this case. Otherwise, E ⩾ 4n and we may apply Proposition 8.3. This gives

m2 ⩾
(rn−m)3

64n2
. (8.6)

If n ⩽ 2m/r then again Theorem 8.1 holds. Otherwise, rn−m ⩾ rn/2 and so (8.6) becomes

m2 ⩾
(rn/2)3

64n2
,

which immediately rearranges to n ≪ m2/r3, and once again Theorem 8.1 holds. This concludes
the proof. □

8.3. Sum-product. In this section we give Elekes’s bound for the sum-product problem.

Theorem 8.4. Suppose that A ⊂ R is a finite set of size n. Then |A + A||A · A| ≫ n5/2. In

particular, at least one of A+A,A ·A has cardinality ≫ n5/4.

Proof. It clearly suffices to handle the case 0 /∈ A (otherwise remove 0 and apply the bound to the
resulting set). Consider the set of points

P := {( 1
a′
,− 1

aa′
) : a, a′ ∈ A},

and the set of lines

L := {{(x, y) ∈ R2 : ux+ vy = 1} : u ∈ A+A, v ∈ A ·A}.

Observe that |P | = n2, whilst the number m = |L| of lines is |A+A||A ·A|.
The crucial observation is now that every point of P lies on at least n of these lines. Indeed, the

point ( 1
a′ ,−

1
aa′ ) lies on the line ux+ vy = 1 when u = a′ + t and v = at, for every t ∈ A.

It follows from Szemerédi-Trotter that

n2 ≪ m

n
+
m2

n3
,

which implies that m≫ n5/2. This is the desired result. □
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9. Higher sum-product theorems

In this chapter, we will be considering higher-order sumsets and product sets of sets of integers.
If A ⊂ Z is finite, and if m ⩾ 1 is an integer, we have already defined

mA := {a1 + · · ·+ am : ai ∈ A}.
We now further define

A(m) := {a1 · · · am : ai ∈ A}.
Note that 2A = A+A and A(2) = A ·A.

We showed in Theorem 8.4 that if A ⊂ R then either 2A or A(2) has size appreciably bigger than
that of A, in fact size at least roughly |A|5/4. In this section we will prove a more difficult result

due to Bourgain and Chang, which asserts that if A ⊂ Z then either mA or A(m) is much bigger
than A, for large values of m. Here is the result we will prove.

Theorem 9.1. Let A ⊂ Z. Then for any m either the m-fold sumset |mA| or the m-fold product

set A(m) has cardinality at least |A|b(m), where b(m) ⩾ c logm/ log logm.

Note that it is important that A ⊂ Z; recently a corresponding result was shown for A ⊂ R
by Mudgal [5] using the techniques of this course and additional deep inputs from diophantine
analysis (the Subspace Theorem). Theorem 9.1 is due to Pálvölgyi and Zhelezov [10]; their proof is
much easier than the original argument of Bourgain and Chang [2], and leads to a stronger bound.
We will give a variant of the argument of [10] here using PFR, which was not available when the
authors of [10] wrote their paper.

Remark. The original bound of Bourgain and Chang is on the order b(m) ≫ log1/4m. The main
point of these results is that b(m) → ∞, which is a highly-nontrivial fact.

9.1. Higher-order additive energies. We begin by generalising the notion of additive energy,
which we introduced in Section 3.

Definition 9.2. Let k ⩾ 2 be an integer. Given an additive set X, its additive (2k)-energy E2k(X)
is the number of (2k)-tuples (x1, . . . , x2k) ∈ X2k such that x1 + · · · + xk = xk+1 + · · · + x2k.
More generally, if X1, . . . , X2k are additive sets then we define E(X1, . . . , X2k) to be the number of
solutions to x1 + · · ·+ xk = xk+1 + · · ·+ x2k with xi ∈ Xi for all i.

Thus E4(X) is the number of quadruples (x1, x2, x3, x4) such that x1 + x2 = x3 + x4, which is
what we called simply the additive energy in Section 3, where we denoted it by E(X).

We will need the following inequality.

Lemma 9.3. Let X1, . . . , X2k ⊂ Z be finite sets. Then we have

E(X1, . . . , X2k) ⩽
2k∏
i=1

E2k(Xi)
1/2k.

Proof. A quick proof of this may be given using the Fourier transform and Hölder’s inequality. For
this, observe that

E(X1, . . . , X2k) =

∫ 1

0
1̂X1(θ) · · · 1̂Xk

(θ)1̂Xk+1
(θ) · · · 1̂X2k

(θ)dθ,

where for any set

1̂X(θ) :=
∑
n

1X(n)e(−nθ),

as in Section 1. The proof involves simply substituting the definition of the Fourier transform and
using orthogonality, exactly as for the proof of (1.6).
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Similarly (in fact, consequently) we have

E2k(Xi) =

∫ 1

0
|1̂Xi(θ)|2kdθ.

The stated inequality is now a consequence of Hölder’s inequality on the Fourier side, that is to
say the inequality ∫ 1

0
f1 · · · f2k ⩽

2k∏
i=1

(

∫ 1

0
|fi|2k)1/2k.

This concludes the proof. □

We will also need the following, which is essentially the higher-order version of Proposition 3.12,
proved in the same way.

Lemma 9.4. Let X be an additive set, and let k ⩾ 2 be an integer. Then

|kX| ⩾ |X|2k

E2k(X)
.

Proof. Write rk(n) for the number of tuples (x1, . . . , xk) ∈ Xk with x1 + · · · + xk = n. Then we
have, by the Cauchy-Schwarz inequality,

|X|2k =
( ∑
n∈kX

rk(n)
)2

⩽ |kX|
∑
n

rk(n)
2 = |kX|E2k(X).

This concludes the proof. □

9.2. A lemma of Chang. If p is a prime and m ∈ N, write vp(m) for the p-adic valuation of m,
that is to say the exponent of the largest power of p dividing m. We have the following lemma of
Mei-Chu Chang.

Lemma 9.5. Let p be a prime, and suppose that A ⊂ Z is a finite set. Let Ai := {n ∈ A : vp(n) =
i}. Then

E2k(A)
1/k ⩽

(
2k

2

)∑
i

E2k(Ai)
1/k.

Proof. Since A is the disjoint union of the Ai, we have

E2k(A) =
∑

j1,...,j2k

E(Aj1 , . . . , Aj2k).

However, not all of the terms here make any contribution. For a nonzero contribution we must
have

pj1n1 + · · ·+ pjknk = pjk+1nk+1 + · · ·+ pj2kn2k

for some ni coprime to p. Let j = min(j1, . . . , j2k). Dividing through by pj and considering
congruences mod p, we see that there must be two i, i′ with ji = ji′ = j. Let us estimate the
contribution in the case {i, i′} = {1, 2}; the other cases are essentially identical. This contribution
is ∑

j,j3,j4,...,j2k

E(Aj , Aj , Aj3 , . . . , Aj2k) =
∑
j

E(Aj , Aj , A, . . . , A)

⩽
∑
j

E2k(Aj)
1/kE2k(A)

(k−1)/k,
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where in the last step we used Lemma 9.3. Summing over the
(
2k
2

)
choices of the pair {i, i′} now

gives

E2k(A) ⩽

(
2k

2

)
E2k(A)

(k−1)/k
∑
j

E2k(Aj)
1/k,

from which the lemma follows immediately. □

9.3. The Bourgain-Chang theorem. Suppose that A ⊂ N is a finite set. By the multiplicative
dimension of A, we mean the dimension of the image of A under the map v := (vp)p prime : N →∏

p Z ⊂
∏

pQ. By dimension, we mean the dimension of the smallest affine subspace (translate

of a vector subspace) of
∏

pQ. Note that since A is a finite set, only finitely many primes are
relevant here, so we can assume the image of v is finite-dimensional. We denote the multiplicative
dimension by dim×(A).

Proposition 9.6. Suppose that A ⊂ N is a set with multiplicative dimension at most D. Then

E2k(A)
1/k ⩽

(
2k

2

)D

|A|.

Proof. The result is almost immediate using Lemma 9.5 and induction on D, the result being trivial
when D = 0 (in which case A is a singleton and E2k(A) = 1). Otherwise, there is some prime p
such that the image of the “coordinate map” vp : A → Z has size at least 2, and hence dimension
1; then the fibres this map all have dimension D− 1. These fibres, however, are precisely the Ai in
the statement of Lemma 9.5. □

Now we turn to the main result, Theorem 9.1.

Proof of Theorem 9.1. At the expense of reducing c slightly, it suffices to handle the case when
m = 2t is a sufficiently large power of two. Set k := ⌊ t

log t⌋ and b := εt
log t with ε > 0 some absolute

constant to be specified later.
Suppose that

|A(2t)| ⩽ |A|b. (9.1)

Our aim is to show that
|2tA| ⩾ |A|b, (9.2)

which will conclude the proof. The assumption (9.1) implies that

t−1∏
i=0

|A(2i+1)|
|A(2i)|

⩽ |A|b,

so there is some i ⩽ t− 1 such that

|A(2i+1)| ⩽ K|A(2i)| (9.3)

where K = |A|b/t.
By the weak PFR over Z, Theorem 7.1, there is a set S ⊂ A(2i), |S| ⩾ K−C2 |A(2i)|, with

dim×(S) ⩽ C2 logK. Here, as before, dim× denotes the multiplicative dimension.
In the following argument, we will use the fact that if X ⊂ N has |X · X| ⩽ K|X| then

|X ·X−1| ⩽ K2|X|, where X−1 := {x−1 : x ∈ X}. This follows from the Ruzsa triangle inequality
Lemma 3.1 written multiplicatively, with V = W = X and U = X−1. (Note that N (with
multiplication) is contained in the abelian group Q×.)

Now we have
∑

x |A ∩ xS| = |A||S|, and the sum is supported on x ∈ AS−1. By the fact in the

previous paragraph, the containment S ⊂ A(2i) and (9.3), we have

|AS−1| ⩽ |A(2i)(A(2i))−1| ⩽ K2|A(2i)|.
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Therefore there is some x such that

|A ∩ xS| ⩾ |A||S|
|AS−1|

⩾ K−C2−2|A|.

Setting A′ := A ∩ xS, we therefore have

|A′| ⩾ K−C2−2|A| (9.4)

and

dim×(A′) ⩽ dim×(xS) = dim×(S) ⩽ C2 logK,

since multiplicative dimension is invariant under (multiplicative) translation.

By Proposition 9.6, E2k(A
′) ⩽

(
2k
2

)(C2+2)k logK |A|k. Using the crude bound
(
2k
2

)
⩽ 2k2, we may

put this in the tidier form

E2k(A
′) ⩽ KC3k log k|A|k (9.5)

for some absolute C3. We can assume C3 ⩾ C2 + 2.
Finally, applying Lemma 9.4 and using (9.4), (9.5) gives

|2tA| ⩾ |kA| ⩾ |kA′| ⩾ K−3C3k log k|A|k = |A|k−
3C3bk log k

t ⩾ |A|k/2 > |A|b

by the choice of b and k (if ε < min(12 ,
1

6C3
)). This is (9.2), the bound we aimed to prove, so the

proof is finished. □

Appendix A. Proof of Balog–Szemerédi–Gowers

A.1. Paths of length 2. The proof of the Balog-Szemerédi-Gowers theorem proceeds via the lan-
guage of graph theory, establishing two lemmas of interest in their own right. The first, concerning
paths of length 2, has the cleverer proof.

Lemma A.1. Suppose that G is a bipartite graph on vertex set V ∪W , where |V | = |W | = n, and
with αn2 edges all of which join a vertex in V to one in W . Let η > 0 be a further parameter.
Then there is a subset V ′ ⊆ V with |V ′| ⩾ αn/2 such that between (1− η)|V ′|2 of the ordered pairs
of points (v1, v2) ∈ V ′ × V ′ there are at least ηα2n/2 paths of length 2.

Proof. If x ∈ G, write N(x) for the neighbourhood of x in G, or in other words the set of vertices
in G which are joined to x by an edge. Note that, since G is bipartite, N(v) ⊆W whenever v ∈ V
and N(w) ⊆ V whenever w ∈W .

Now by a double-counting argument, we have∑
w∈W

∑
v∈V

1vw∈E(G) = αn2,

where E(G) is of course the set of edges of G. Applying Cauchy-Schwarz to this gives∑
w∈W

∑
v,v′∈V

1vw∈E(G)1v′w∈E(G) ⩾ α2n3,

or in other words

Ev,v′∈V |N(v) ∩N(v′)| ⩾ α2n. (A.1)

This constitutes the rather basic observation that, on average, pairs (v, v′) have many common
neighbours. Now say that two vertices v and v′ are extremely unfriendly if |N(v)∩N(v′)| < ηα2n/2,
or in other words if there are fewer than ηα2n/2 paths of length two between v and v′. Write
S ⊆ V × V for the set of extremely unfriendly pairs. Manifestly, from (A.1), we have

Ev,v′∈V (η − 1(v,v′)∈S)|N(v) ∩N(v′)| ⩾ ηα2n/2.
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This may be rewritten as

Ev,v′∈V (η − 1(v,v′)∈S)
∑
w∈W

1vw∈E(G)1v′w∈E(G) ⩾ ηα2n/2.

Turning the sum over W into an expectation (by dividing by |W | = n) and swapping the order of
summation, this implies that

Ew∈WEv,v′∈V (η − 1(v,v′)∈S)1v,v′∈N(w) ⩾ ηα2/2.

In particular there is a choice of w such that

Ev,v′∈V (η − 1(v,v′)∈S)1v,v′∈N(w) ⩾ ηα2/2.

Simply the fact that this expectation is greater than zero tells us that at most a proportion η
of the pairs v, v′ ∈ N(w) are extremely unfriendly. Furthermore (ignoring the term involving S
completely) we have

Ev,v′∈V 1v,v′∈N(w) ⩾ α2/2,

which implies that |N(w)| ⩾ α/
√
2. Taking V ′ := N(w), this proves the result. □

Remarks. This proof looks extremely slick at first sight. However when faced with the task
of proving Lemma A.1 it is not hard to develop the feeling that one must somehow select a very
“connected” subset of V . The way we have done this is essentially by picking a random vertex
w ∈W , and taking V ′ to be the neighbourhood N(w) of w in V , though this was easier to manage
by using expectations rather than starting with “pick w ∈ W uniformly at random and consider
N(w)”. This kind of technique seems to have been pioneered in this context by Gowers, and it is
called “dependent random selection”: one chooses something random (w in this case), then makes
a deterministic choice based on it (N(w)).

A.2. Paths of length 3.

Lemma A.2. Suppose that G is a bipartite graph on vertex set V ∪W , where |V | = |W | = n, and
with αn2 edges all of which join a vertex in V to one in W . Then there are subsets V ′ ⊆ V and
W ′ ⊆ W with |V ′|, |W ′| ⩾ cαCn such that between every pair v′ ∈ V ′ and w′ ∈ W ′ there are at
least cαCn2 paths of length 3 in G.

Proof. Delete all edges emanating from vertices in V with degree less than αn/2; this causes the
deletion of at most αn2/2 edges in total, so at least αn2/2 remain. From now on if we speak of an
edge we mean one of these edges. Let η > 0 be a parameter to be chosen later. Using the preceding
lemma, we may select a set V ′ ⊆ V with |V ′| ⩾ αn/4 such that a proportion 1− η of the pairs of
vertices in V ′ have at least ηα2n/8 common neighbours in W .

All vertices in V ′ have degree 0 or else degree at least αn/2, but it is conceivably the case that
some do have degree 0. However if η < 1/4 then clearly no more than half of them do. Thus we
may pass to a set V ′′ ⊆ V ′, |V ′′| ⩾ αn/8, such that every vertex in V ′′ has degree at least αn/2
and still such that a proportion 1− η of the pairs of vertices in V ′′ have at least ηα2n/8 common
neighbours in W .

Now let us focus on W . Look at all the edges from V ′′ into W : since each vertex in V ′′ has
degree at least αn/2, and |V ′′| ⩾ αn/8, there are at least α2n2/16 of these. It follows that there is
some set W ′ ⊆W , |W ′| ⩾ α2n/32, such that each w ∈W ′ has at least α2n/32 neighbours in V ′′.

Before concluding, let us jump back over to the other side and effect one final refinement of V ′′.
Say that a vertex v ∈ V ′′ is sociable if there is a proportion at least 1 − 2η of the other vertices
v′ ∈ V ′′ are such that v and v′ have at least ηα2n/8 common neighbours. Then at least half the
vertices of V ′′ are sociable: call this set V ′′′, so that |V ′′′| ⩾ αn/16.

We now claim that for any x ∈ V ′′′ and y ∈W ′ there are many paths of length three between x
and y (in the original graph G). Indeed by the choice of W ′ there must be at least α2n/32 elements
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of V ′′ adjacent to y. There must also be at least (1 − 2η)|V ′′| vertices of V ′′ which have at least
ηα2n/8 common neighbours with x. Provided that α2n/32 ⩾ 3η|V ′′|, which will be the case if

η ⩽ α2/96, these two sets intersect in a set Ṽ ⊆ V ′′ of size at least η|V ′′|. Thus each element z

of Ṽ is adjacent to y, and has ηα2n/8 common neighbours with x. This clearly leads to at least
η2α2|V ′′|n/8 paths of length three between x and y.

The only constraints on η were that η ⩽ 1/4 and that η ⩽ α2/96. The latter is clearly the more
severe constraint, so set η := α2/96. The lemma is proven. □

A.3. Proof of Balog-Szemerédi-Gowers. In this section we deduce Theorem 3.13 from the
paths of length 3 lemma, Lemma A.2. It is particularly important to remember during this proof
that the constant C may change from line to line.

Proof of Theorem 3.13. For the majority of the proof we handle the two-sets case (i) and the one-set
case (ii) at the same time, taking A = B in the latter case.

Suppose then that A,B are two sets in some abelian group G and that ω[A,B] ⩾ 1/K. This

means that there are at least |A|3/2|B|3/2/K solutions to a1 − b1 = a2 − b2. Note that the number
of solutions to this equation is at most |A|2|B|, since once a1, b1 and a2 are specified b2 is uniquely
determined. Therefore |B| ⩽ K2|A|, and similarly |A| ⩽ K2|B|.

Write s(x) for the number of pairs (a, b) ∈ A×B with a− b = x. Thus we have∑
x

s(x)2 ⩾ |A|3/2|B|3/2/K,

whilst by double-counting pairs (a, b) ∈ A×B we have∑
x

s(x) = |A||B|.

We claim there are at least |A|1/2|B|1/2/2K “popular” values of x for which s(x) ⩾ |A|1/2|B|1/2/2K.
To see this, let ∆ denote the set of these popular x. Then∑

x/∈∆

s(x)2 ⩽
1

2K
|A|1/2|B|1/2

∑
x

s(x) = |A|3/2|B|3/2/2K,

so ∑
x∈∆

s(x)2 ⩾ |A|3/2|B|3/2/2K.

However, since s(x) ⩽ min(|A|, |B|) ⩽ |A|1/2|B|1/2 for every x,∑
x∈∆

s(x)2 ⩽ |∆||A||B|.

The claim follows.
Note also, for use below, that

|∆| ⩽ 2K|A|1/2|B|1/2, (A.2)

a bound which follows straightforwardly by double-counting pairs (a, b) ∈ A×B.
Define a bipartite graph G on vertex set A∪B by joining a ∈ A to b ∈ B by an edge if a− b is a

popular difference in the above sense, that is to say if and only if a− b ∈ ∆. Then G has at least
|A||B|/4K2 edges. Let n = max(|A|, |B|), and “pad out” the smaller vertex class of G to obtain a
new graph having n vertices in each class. Recalling that K−2 ⩽ |A|/|B| ⩽ K2, this graph has at
least n2/4K4 edges.

Applying Lemma A.2, we may locate sets A′ ⊆ A and B′ ⊆ B with |A′| ≫ K−C |A|, |B′| ≫
K−C |B| and such that for every a′ ∈ A′ and b′ ∈ B′ there are ≫ K−Cn2 paths of length 3 in G
between a′ and b′. This, of course, means that there ≫ K−Cn2 choices of a′′ ∈ A and b′′ ∈ B such
that all three of a′ − b′′, a′′ − b′′ and a′′ − b′ lie in ∆.
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Noting that a′− b′ = (a′− b′′)− (a′′− b′′)+(a′′− b′), it follows that for all a′ ∈ A′ and b′ ∈ B′ the
difference a′−b′ can be written in≫ K−Cn2 ways as x−y+z, where x, y, z ∈ ∆. These are genuinely
distinct representations, since it is easy to recover a′′ and b′′ from knowledge of a′, b′, x, y and z.
However, by (A.2), the number of popular differences is bounded above by 2K|A|1/2|B|1/2 ≪ Kn.
It follows that

|A′ −B′| ·K−Cn2 ≪ (Kn)3,

which of course implies that

|A′ −B′| ≪ KCn. (A.3)

To finish the argument, we consider parts (i) and (ii) of Theorem 3.13 separately.
In case (i), applying (A.3) and Corollary 3.9 together with the lower bounds |A′|, |B′| ⩾ K−2n

gives the desired upper bound |A′ +B′| ≪ KCn≪ KC |A′|1/2|B′|1/2.
In case (ii), we first apply the Ruzsa triangle inequality with U = B′, V = W = A′ to conclude

from (A.3) that |A′ −A′| ≪ KCn. From this, it follows using Corollary 3.9 that |A′ +A′| ≪ KCn.
□

Appendix B. Entropic Balog-Szemerédi-Gowers

The material in this appendix is not examinable.

Lemma B.1 (Entropic BSG). Let (A,B) be a G2-valued random variable, and set Z := A + B.
Then ∑

z

pZ(z)d[(A|Z = z); (B|Z = z)] ⩽ 3I[A : B] + 2H[Z]−H[A]−H[B]. (B.1)

We stress that the quantity 2H[Z] −H[A] −H[B] is not the same as 2d[A;B], because (A,B)
are given a joint distribution which may not be independent. In particular, H[Z] = H[A+B] may
not match the entropy of a sum of independent copies of A and B.

Proof. In the proof we will need the notion of conditionally independent trials of a pair of random
variables (X,Y ) (not necessarily independent). We say that X1, X2 are conditionally independent
trials of X relative to Y by declaring (X1|Y = y) and (X2|Y = y) to be independent copies of
(X|Y = y) for all y in the range of Y . We then have

H[(X1|Y = y), (X2|Y = y)] = 2H[X|Y = y]

for all y, which upon summing over y (weighted by pY (y)) gives

H[X1, X2|Y ] = 2H[X|Y ]

and hence

H[X1, X2, Y ] = H[X1, X2|Y ] +H[Y ] = 2H[X|Y ] +H[Y ]

= 2H[X,Y ]−H[Y ]. (B.2)

Note also that the marginal distributions of (X1, Y ) and (X2, Y ) each match the original distribution
(X,Y ).

Turning to the proof of Lemma B.1 itself, let (A1, B1) and (A2, B2) be conditionally independent
trials of (A,B) relative to Z, thus (A1, B1) and (A2, B2) are coupled through the random variable
A1 +B1 = A2 +B2, which by abuse of notation we shall also call Z.

Observe that the left-hand side of (B.1) is

H[A1 −B2|Z]− 1
2H[A1|Z]− 1

2H[B2|Z]. (B.3)

since, crucially, (A1|Z = z) and (B2|Z = z) are independent for all z.
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Applying submodularity (5.8) gives

H[A1 −B2] +H[A1 −B2, A1, B1]

⩽ H[A1 −B2, A1] +H[A1 −B2, B1].
(B.4)

We estimate the second, third and fourth terms appearing here. First note that, by (B.2) (noting
that the tuple (A1 −B2, A1, B1) determines the tuple (A1, A2, B1, B2) since A1 +B1 = A2 +B2)

H[A1 −B2, A1, B1] = H[A1, B1, A2, B2] = 2H[A,B]−H[Z]. (B.5)

Next observe that
H[A1 −B2, A1] = H[A1, B2] ⩽ H[A] +H[B]. (B.6)

Finally, we have

H[A1 −B2, B1] = H[A2 −B1, B1] = H[A2, B1] ⩽ H[A]−H[B]. (B.7)

Substituting (B.5), (B.6) and (B.7) into (B.4) yields

H[A1 −B2] ⩽ 2I[A : B] +H[Z]

and so by (5.6)
H[A1 −B2|Z] ⩽ 2I[A : B] +H[Z].

Since

H[A1|Z] = H[A1, A1 +B1]−H[Z]

= H[A,B]−H[Z]

= H[A] +H[B]− I[A : B]−H[Z]

and similarly for H[B2|Z], we see that (B.3) is bounded by 3I[A : B] + 2H[Z] −H[A] −H[B] as
claimed. □

Appendix C. Geometry of numbers

The material in this appendix is not examinable.
The main goal of this section is to prove Minkowski’s second theorem. First we briefly go over

some standard properties of the determinant of a lattice.

Lemma C.1. If q ∈ N then det(qZd) = qd. If Λ,Λ′ are two lattices with Λ′ ⊂ Λ, then det(Λ′)/ det(Λ) =
[Λ : Λ′], where the latter quantity is the index of Λ′ as a subgroup of Λ, that is to say the number
of cosets of Λ′ needed to cover Λ.

Now let us recall the statement of Minkowski’s Second theorem, and let us also state Minkowski’s
first theorem. In both of these results, K ⊂ Rd is a centrally symmetric convex body, and Λ ⊂ Rd

a lattice. The successive minima of K with respect to Λ are λ1, . . . , λd.

Theorem C.2 (Minkowski I). Suppose that vol(K) > 2d det(Λ). Then K contains a nonzero point
of Λ.

Theorem C.3 (Minkowski II). We have λ1 · · ·λd vol(K) ⩽ 2d det(Λ).

Let us remark that Minkwoski I is a consequence of Minkowski II. To see this, note that if
vol(K) > 2d det(Λ) then Minkowski II implies that λ1 · · ·λd < 1. Since λ1 ⩽ · · ·λd, this implies
that λ1 < 1. By the definition of λ1, it follows that K contains at least one nonzero point of Λ.

Minkowski I is a very straightforward consequence of the following result, Blichfeldt’s lemma,
which is also an ingredient in the proof of Minkowski II.

Lemma C.4 (Blichfeldt’s lemma). Suppose that K ⊂ Rd, and suppose that vol(K) > det(Λ).
Then there are two distinct points x,y ∈ K with x− y ∈ Λ.
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Remark. Note that here K is not required to be either centrally symmetric or convex.

Proof. By considering the sets K ∩B(0, R), as R→ ∞, whose volumes tend to that of K, we may
assume that K lies inside some ball B(0, R). Now let us suppose that the conclusion is false: then
no translate of K contains two points of Λ, or in other words∑

x

1K(x− t)1Λ(x) ⩽ 1

for all t ∈ Rd. Let R′ be much bigger than R, and average this last inequality over t lying in the
ball B(0, R′) to obtain ∑

x

1Λ(x)
( 1

vol(B(0, R′))

∫
B(0,R′)

1K(x− t)dt
)
⩽ 1.

Since K ⊂ B(0, R), the inner integral equals vol(K) if ∥x∥ ⩽ R′ −R, and therefore∑
x

1Λ(x)1B(0,R′−R)(x)dx ⩽
vol(B(0, R′)

vol(K)
,

and hence

1

vol(B(0, R′ −R))

∑
x

1Λ(x)1B(0,R′−R)(x)dx ⩽
vol(B(0, R′)

vol(B(0, R′ −R))
· 1

vol(K)
. (C.1)

However it is “clear” by tiling with fundamental parallelepipeds that

lim
r→∞

1

vol(B(0, r))

∑
x

1Λ(x)1B(0,r)(x) =
1

det(Λ)
,

and moreover

lim
R′→∞

vol(B(0, R′)

vol(B(0, R′ −R))
= 1.

Comparing with (C.1) immediately leads to

1

det(Λ)
⩽

1

vol(K)
,

contrary to assumption. □

Although we will not formally need it in what follows, let us pause to give the simple deduction
of Minkowski I.

Proof of Minkowski I. By Blichfeldt’s lemma, the set 1
2K = {1

2x : x ∈ Rd} contains two distinct

points of Λ; thus there are x,y ∈ K with 1
2(x− y) ∈ Λ. However, since K is convex and centrally

symmetric we have 1
2(x− y) ∈ K. □

Now we turn to the proof of Minkowski II.

Proof of Minkowski II. It is technically convenient to assume that K is open; this we may do by
passing from K to the interior K◦. Take a directional basis b1, . . . ,bd for Λ with respect to K.
Since K is open, λkK ∩ Λ is spanned (over R) by the vectors b1, . . . ,bk−1. Indeed if it were not
then we could choose some further linearly independent vector b ∈ λkK ∩ Λ, and by the openness
of K this would in fact lie in (λk − ε)K ∩ Λ for some ε > 0, contrary to the definition of λk.

Write each given x in coordinates relative to the basis vectors bi as x1b1 + · · ·+ xdbd. We now
define some rather unusual maps ϕj : K → K, by mapping x ∈ K to the centre of gravity of the
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slice of K which contains x and is parallel to the subspace spanned by b1, · · · ,bj−1 (for j = 1,

ϕ1(x) = x). Next, we define a map ϕ : K → Rd by

ϕ(x) :=
d∑

j=1

(λj − λj−1)ϕj(x),

where we are operating with the convention that λ0 = 0. Let us make a few further observations
concerning the ϕj and ϕ. In coordinates we have ϕj(x) =

∑
i cij(x)bi, where cij(x) = xi for i ⩾ j,

and cij(x) depends only on xj , · · · , xd for i < j. It follows that

ϕ(x) =

d∑
i=1

bi(λixi + ψj(xi+1, · · · , xd))

for certain continuous functions ψj . It follows easily that

vol(ϕ(K)) = λ1 · · ·λd vol(K), (C.2)

the Jacobian of the transformation x′i = λixi + ψi(xi+1, . . . , xd) being λ1 · · ·λd.
Suppose, as a hypothesis for contradiction, that λ1 · · ·λd vol(K) > 2d det(Λ). By Blichfeldt’s

lemma and (C.2), this means that ϕ(K) contains two elements ϕ(x) and ϕ(y) which differ by an
element of 2 · Λ = {2λ : λ ∈ Λ}, and this means that 1

2(ϕ(x)− ϕ(y)) ∈ Λ. Write x =
∑

i xibi and
y =

∑
i yibi, and suppose that k is the largest index such that xk ̸= yk. Then we have ϕi(x) = ϕi(y)

for i > k, so that

ϕ(x)− ϕ(y)

2
=

d∑
j=1

(λj − λj−1)
(ϕj(x)− ϕj(y)

2

)
=

k∑
j=1

(λj − λj−1)
(ϕj(x)− ϕj(y)

2

)
.

This has two consequences. First of all the convexity of K implies that 1
2(ϕj(x) − ϕj(y)) ∈ K for

all j, and hence (again by convexity) 1
2(ϕ(x) − ϕ(y)) ∈ λkK. Secondly we may easily evaluate

the coefficient of bk when 1
2(ϕ(x)− ϕ(y)) is written in terms of our directional basis: it is exactly

λk(xk − yk)/2. In particular this is nonzero, which means that 1
2(ϕ(x)− ϕ(y)) lies in Λ and λkK,

but not in the span of b1, · · · ,bk−1. This is contrary to the observation made at the start of the
proof. □
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