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Problem Sheet 2
Section A
QUESTION 1. Mollification.

(1) Give an example of a function (that will play later the role of kernel for mollification) with the
following properties:
e ¢ € C(R") with supp(¢) = B1(0);
o ¢(z) >0 for all z € R™;
o fBl(O) ¢(z)dr = 1.
(2) Given ¢ as in point 1, for every function v € L} (R™) define

loc

wrola) = [ ulw - y)o(w)dy.

Show that ux ¢ € C°(R"™).

Hint: observe that [,, u(x —y)¢(y)dy = [z. ¢(x — y)u(y)dy.
(3) Given ¢ as in point 1, for every e € (0,1), let

() =€ "p(x/e).
Show that supp(¢.) = Be(0) and that fBE(O) be(x)dx = 1.

(4) If uw € C(R™), show that ux ¢, converges to u uniformly on compact subsets of R™.

Solution For more on mollification see the Lecture Notes of C4.3 “Functional Analytic methods for
PDEs".

(1) Define ¢(z) := 0 for |z| > 1 and ¢(x) := Cexp(m%l) for |z] < 1, with C' > 0 chosen such that
f]R" o(x)dr = 1. Tt is easily seen that such ¢ has all the desired properties.

(2) First of all we notice that, if u € L} (R™) then

loc

wrofa) = [ (o~ y)oly)dy
is well defined for all x € R™. By the change of variable z = x — y we directly see that
u* P(x) == / u(r —y)o(y)dy = /

proving the hint. Now, since ¢ is C! with compact support, we can use the Differentiation Theorem (it

u(z)é(x — 2)dz = - o(z — y)u(y)dy,

n

is a corollary of Dominated Convergence Theorem) to infer that

n

0 (ur)a) =0, ([ ota=nutan) = [ @~ vty
Rn
This shows that ux ¢ is C'. By iterating the procedure, we obtain that u x ¢ is C®.
(3) Follows directly from (1) by changing variables.

(4) If w € C(R™) then it is uniformly continuous on compact subsets. Fix a compact subset K € R".
Using that ¢ > 0, [ ¢ =1 and that supp(¢e) = B.(0), for every x € K we have that

lu(z) = ux de(2)] =

[ o) - e =)ot < [ juw) - e -l oa

< sup  fule) - u(z ).

yER™, |y|<e

Denote with K := {z € R" : there exists y € K such that |z — y| < 1}, (i.e. the set of points at distance

at most 1 from K) and notice that K7 is compact as well. From the previous estimate, we obtain

sup |u(z) — ux @ ()| < sup lu(z1) —u(zz)] -0 ase—0
zeK z1,22€K1,|x1—z2|<e

by uniform continuity of u on the compact set Kj.



HT25 C4.6 Fixed Points Methods for PDEs p. 2/4

QUESTION 2. An application of Brouwer’s fixed point Theorem: zero’s of continuous
vector fields.

Let g : R — R" be a continuous vector field. Assume that there exists R > 0 such that

g(x)-x >0, forall z with |z| = R.

Show that there exists z* € Bg(0) such that g(z*) = 0; in other words, show that the vector field g has
a zero in Bg(0).
Hint: Argue by contradiction, consider the map f(x) := —‘g(%)lg(:zr) and apply Brouwer’s fized point

Theorem.

Solution. Assume that there exists no such z*. Then we can define

g9(z)
T =R
f is continuous and f: Br(0) — Br(0). Brouwer’s FPT implies that there exists z; € Br(0) such that
f(z1) = x1. Then |z1] = |f(x1)| = R, and thus the assumption on g implies g(x1) - 1 > 0.
On the other hand

2
g(z1) - x1 = —f(x1) 21 |g(}3;1)| _ = g(mlﬂ <0,

which is a contradiction. O
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Section C

QUESTION 6. Leray’s eigenvalue problem. Let K : [a,b] X [a,b] — (0,00) be a continuous and
positive function and consider the integral operator T : C%([a, b]) — C%([a, b]) defined by

b
(Tu)(x):/ K(z,t)u(t) dt.

Prove that T has at least one non-negative eigenvalue A whose eigenvector is a continuous non-negative

function wu, i.e. there exist A > 0 and a non-negative u so that

b
/ K(z,t)u(t)dt = lu(z).
a
Hint: consider, on an appropriate closed convexr set M, the function

1
Flu) = [P Tu(tydt

and apply one of the versions of Schauder’s Fixed Point Theorem with the help of Arzéla-Ascoli Theorem.

To find a suitable set M think about what property all functions F(u) have in common.
Solution. Since K : [a,b] X [a,b] — (0,00) is continuous, there exist ¢1,ca € (0,00) such that
c1 < K(x,t) <cy, forall (z,t) € [a,b]?.

We know from First year Analysis that if u € C%([a, b]), then the function z f; K(z,t)u(t)dt := Tu(x)

is continuous on [a, b] as well. Moreover, if u > 0 then we have

b b b
c1 / u(t)dt < / K(x,tyu(t)dt < 02/ u(t)dt, for all u > 0.

Consider now .

[P Tu(t)dt
Observe that ff(Fw)(t) dt =1 for every w > 0. Then, any fixed point of F' will satisfy u(z) = (Fu)(x)

/abu(t) dt/ab(Fu)(t) dt =1.

F(u) : Tu.

so in particular

Observe that
b
M= {u € Ca,b]) : u>0, / u(t) dt = 1,}

is convex, closed and non-empty. In order to apply Schauder Theorem version III, we need to prove that
F : M — M is continuous and that F'(M) is compact.

Claim 1: F': M — M is continuous.
We know that Tu(x) > ¢1(b—a) > 0. It easily follows that Fu(z) > 0 for all = € [a, b] as well. Moreover,
we already observed that f;(Fu)(t) dt = 1, and thus F maps M to M.
Proof that F : M — M is continuous. since the map u +— K (u) is continuous on C°([a,b]), so also the

map u — f: K (u)(t) dt is continuous. Moreover, this is bounded from below:

b
(1) 0<cl|b—a|2§/ Tu(t)dt < co|b—al*.

So claim 1 follows.
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Claim 2: F(M) is compact.
We first show that F(M) is bounded. From (1) we obtain that

C2

Cc1 < F(u)(t) < m

ca(b—a)
for all w € M and all ¢ € [a,b]. Thus F(M) is bounded.

In order to show that F'(M) is pre-compact it is then enough to show that it is equi-continuous (so the

0<

pre-compactness will follow from Arzeld-Ascoli’s Theorem).
Let § > 0, t1,2 be such that |t; —t2| < 6 and let u € M. Denote p(u) := f; K (u)(t)dt. Then

1 1
F()(t) = Plu)(t2)] < s / K(t1,2) = Kt o) @) de < oo sup 1K (1,2) = K (12, 2).

The conclusion follows by the uniform continuity of K on the compact set [a,b]? and by lower bound
p(u) > (b—a)?e; > 0. O



