
Computational Mathematics
Lecture 0: Introduction to Algorithms

Patrick E. Farrell

University of Oxford

1 / 7

For some mathematical problems, we can just write down the solution:

For a0, a1 ∈ R, a1 ̸= 0, find x ∈ R such that a1x+ a0 = 0.

This has solution x = −a0/a1.

For most problems, we can’t just write down the solution:

For a0, . . . , a5 ∈ R, find x ∈ C such that a5x5 + a4x
4 + · · ·+ a0 = 0.

Theorem (Abel, 1824)
There are polynomials of degree 5 and higher that cannot be solved by
radicals (addition, subtraction, multiplication, division, and nth root
extraction).

Niels Henrik Abel, 1802–1829

2 / 7

For some mathematical problems, we can just write down the solution:

For a0, a1 ∈ R, a1 ̸= 0, find x ∈ R such that a1x+ a0 = 0.

This has solution x = −a0/a1.

For most problems, we can’t just write down the solution:

For a0, . . . , a5 ∈ R, find x ∈ C such that a5x5 + a4x
4 + · · ·+ a0 = 0.

Theorem (Abel, 1824)
There are polynomials of degree 5 and higher that cannot be solved by
radicals (addition, subtraction, multiplication, division, and nth root
extraction).

Niels Henrik Abel, 1802–1829

2 / 7

For some mathematical problems, we can just write down the solution:

For a0, a1 ∈ R, a1 ̸= 0, find x ∈ R such that a1x+ a0 = 0.

This has solution x = −a0/a1.

For most problems, we can’t just write down the solution:

For a0, . . . , a5 ∈ R, find x ∈ C such that a5x5 + a4x
4 + · · ·+ a0 = 0.

Theorem (Abel, 1824)
There are polynomials of degree 5 and higher that cannot be solved by
radicals (addition, subtraction, multiplication, division, and nth root
extraction).

Niels Henrik Abel, 1802–1829

2 / 7

For some mathematical problems, we can just write down the solution:

For a0, a1 ∈ R, a1 ̸= 0, find x ∈ R such that a1x+ a0 = 0.

This has solution x = −a0/a1.

For most problems, we can’t just write down the solution:

For a0, . . . , a5 ∈ R, find x ∈ C such that a5x5 + a4x
4 + · · ·+ a0 = 0.

Theorem (Abel, 1824)
There are polynomials of degree 5 and higher that cannot be solved by
radicals (addition, subtraction, multiplication, division, and nth root
extraction).

Niels Henrik Abel, 1802–1829

2 / 7

So what do we do in this situation? We still care about the roots of polynomials!

Response A: prove things about the solutions.
We could prove that if x is a root of a polynomial with real coefficients, so is x̄. Or we could
study Vieta’s formulae, that (for example) the product of the roots of an n-th degree
polynomial is (−1)na0/an.

Response B: devise algorithms for computing the solutions.
Develop a computational procedure that approximates to arbitrary accuracy the roots of our
polynomial: compute a sequence that converges to the roots.

3 / 7

So what do we do in this situation? We still care about the roots of polynomials!

Response A: prove things about the solutions.
We could prove that if x is a root of a polynomial with real coefficients, so is x̄. Or we could
study Vieta’s formulae, that (for example) the product of the roots of an n-th degree
polynomial is (−1)na0/an.

Response B: devise algorithms for computing the solutions.
Develop a computational procedure that approximates to arbitrary accuracy the roots of our
polynomial: compute a sequence that converges to the roots.

3 / 7

So what do we do in this situation? We still care about the roots of polynomials!

Response A: prove things about the solutions.
We could prove that if x is a root of a polynomial with real coefficients, so is x̄. Or we could
study Vieta’s formulae, that (for example) the product of the roots of an n-th degree
polynomial is (−1)na0/an.

Response B: devise algorithms for computing the solutions.
Develop a computational procedure that approximates to arbitrary accuracy the roots of our
polynomial: compute a sequence that converges to the roots.

3 / 7

The central topic of computational mathematics is algorithms.

Definition (Algorithm, informal)
An algorithm is a finite set of instructions for solving a mathematical
problem. It associates to each input a sequence of elementary
computational steps to calculate some desired output.

The formalisation of this definition is studied in computer science, e.g. with
Turing machines.

Muḥammad ibn Mūsā
al-Khwārizmī, c. 780–850

4 / 7

Algorithms are of core interest to both pure and applied mathematics.

In pure mathematics, we use algorithms to (among other things) prove the existence of some
object. We will see examples in the course.

You will see another example in Part A Differential Equations: you will prove that under
certain conditions a unique solution exists to the problem

find y(t) such that dy

dt
= f(y, t), y(0) = y0,

by constructing a sequence of approximations yn that converges yn → y.

5 / 7

Algorithms are of core interest to both pure and applied mathematics.

In pure mathematics, we use algorithms to (among other things) prove the existence of some
object. We will see examples in the course.

You will see another example in Part A Differential Equations: you will prove that under
certain conditions a unique solution exists to the problem

find y(t) such that dy

dt
= f(y, t), y(0) = y0,

by constructing a sequence of approximations yn that converges yn → y.

5 / 7

Algorithms are of core interest to both pure and applied mathematics.

In pure mathematics, we use algorithms to (among other things) prove the existence of some
object. We will see examples in the course.

You will see another example in Part A Differential Equations: you will prove that under
certain conditions a unique solution exists to the problem

find y(t) such that dy

dt
= f(y, t), y(0) = y0,

by constructing a sequence of approximations yn that converges yn → y.

5 / 7

In applied mathematics, algorithms are used to solve problems arising in science and
engineering.

climate energy aerodynamics

physiology covid galaxies
6 / 7

Questions we ask:

Does our algorithm terminate?

Theorem (Halting problem, 1936)
No algorithm exists that always correctly decides if another algorithm
terminates on a given input.

Alan Turing, 1912–1954

7 / 7

Questions we ask:

Does our algorithm terminate?

Theorem (Halting problem, 1936)
No algorithm exists that always correctly decides if another algorithm
terminates on a given input.

Alan Turing, 1912–1954

7 / 7

Questions we ask:

Does our algorithm give the correct answer, and if so, when?

In later lectures we will see Newton’s method for finding a solution x of a
general rootfinding problem f(x) = 0.

This converges if we start the iteration close to x, but diverges if we start
far away.

Isaac Newton, 1643–1727

7 / 7

Questions we ask:

Does our algorithm give the correct answer, and if so, when?

In later lectures we will see Newton’s method for finding a solution x of a
general rootfinding problem f(x) = 0.

This converges if we start the iteration close to x, but diverges if we start
far away.

Isaac Newton, 1643–1727

7 / 7

Questions we ask:

How fast does the algorithm converge to the right answer?

Consider two formulae for π:

π = 4

∞∑
k=0

(−1)k

2k + 1
, π−1 =

2
√
2

992

∞∑
k=0

(4k)!

k!4
26390k + 1103

3964k
.

If we approximate the series by its partial sums, how many terms do we
require for accuracy to ten digits?

About 5 billion, vs 2!

Gottfried Leibniz,
1646–1716

Srinivasa Ramanujan,
1887–1920

7 / 7

Questions we ask:

How fast does the algorithm converge to the right answer?

Consider two formulae for π:

π = 4

∞∑
k=0

(−1)k

2k + 1
, π−1 =

2
√
2

992

∞∑
k=0

(4k)!

k!4
26390k + 1103

3964k
.

If we approximate the series by its partial sums, how many terms do we
require for accuracy to ten digits?

About 5 billion, vs 2!

Gottfried Leibniz,
1646–1716

Srinivasa Ramanujan,
1887–1920

7 / 7

Questions we ask:

How fast does the algorithm converge to the right answer?

Consider two formulae for π:

π = 4

∞∑
k=0

(−1)k

2k + 1
, π−1 =

2
√
2

992

∞∑
k=0

(4k)!

k!4
26390k + 1103

3964k
.

If we approximate the series by its partial sums, how many terms do we
require for accuracy to ten digits?

About 5 billion, vs 2!

Gottfried Leibniz,
1646–1716

Srinivasa Ramanujan,
1887–1920

7 / 7

Questions we ask:

How many operations does the algorithm take?

There are many algorithms for sorting a list of n numbers.

The number of comparisons required by a naïve algorithm called bubble
sort scales like n2, while the merge sort of von Neumann in 1945 scales like
n log n. This is much, much faster for large n.

John von Neumann, 1903–1957

7 / 7

Questions we ask:

How many operations does the algorithm take?

There are many algorithms for sorting a list of n numbers.

The number of comparisons required by a naïve algorithm called bubble
sort scales like n2, while the merge sort of von Neumann in 1945 scales like
n log n. This is much, much faster for large n.

John von Neumann, 1903–1957

7 / 7

Questions we ask:

Are the problem and algorithm stable to small perturbations in data?

Consider p(x) = (x− 1)(x− 2) · · · (x− 20). Expanding in monomials, we
have

p(x) = x20 − 210x19 + 20615x18 + · · ·+ 20!.

James H. Wilkinson, 1919–1986

7 / 7

Questions we ask:

Are the problem and algorithm stable to small perturbations in data?

Consider p(x) = (x− 1)(x− 2) · · · (x− 20). Expanding in monomials, we
have

p(x) = x20 − 210x19 + 20615x18 + · · ·+ 20!.

James H. Wilkinson, 1919–1986

7 / 7

Questions we ask:

Are the problem and algorithm stable to small perturbations in data?

Consider p(x) = (x− 1)(x− 2) · · · (x− 20). Expanding in monomials, we
have

p(x) = x20 − 210x19 + 20615x18 + · · ·+ 20!.

If we perturb -210 to -210.0000001192, then the roots become (to 5 digits)

1.00000 2.00000 3.00000 4.00000 5.00000

6.00001 6.99970 8.00727 8.91725 20.84691

10.09527± 11.79363± 13.99236± 16.73074± 19.50244±
0.64350i 1.65233i 2.51883i 2.81262i 1.94033i

James H. Wilkinson, 1919–1986

7 / 7

Questions we ask:

Are the problem and algorithm stable to small perturbations in data?

Consider p(x) = (x− 1)(x− 2) · · · (x− 20). Expanding in monomials, we
have

p(x) = x20 − 210x19 + 20615x18 + · · ·+ 20!.

If we perturb -210 to -210.0000001192, then the roots become (to 5 digits)

1.00000 2.00000 3.00000 4.00000 5.00000

6.00001 6.99970 8.00727 8.91725 20.84691

10.09527± 11.79363± 13.99236± 16.73074± 19.50244±
0.64350i 1.65233i 2.51883i 2.81262i 1.94033i

James H. Wilkinson, 1919–1986

7 / 7

Questions we ask:

Are the problem and algorithm stable to small perturbations in data?

Consider p(x) = (x− 1)(x− 2) · · · (x− 20). Expanding in monomials, we
have

p(x) = x20 − 210x19 + 20615x18 + · · ·+ 20!.

If we perturb -210 to -210.0000001192, then the roots become (to 5 digits)

1.00000 2.00000 3.00000 4.00000 5.00000

6.00001 6.99970 8.00727 8.91725 20.84691

10.09527± 11.79363± 13.99236± 16.73074± 19.50244±
0.64350i 1.65233i 2.51883i 2.81262i 1.94033i

James H. Wilkinson, 1919–1986

7 / 7

Computational Mathematics
Week 1: Euclid’s algorithm

Patrick E. Farrell

University of Oxford

1 / 34

Greatest common divisors

We start with the natural numbers

N = {0, 1, 2, 3, . . . },

and consider dividing one natural number t by another b ̸= 0:

t = qb+ r, 0 ≤ r < b.

Either b divides t evenly (r = 0), or we are allowed to divide b by r. If r ̸= 0 we can iterate:
we can see what the division of b by r is.

Take t = 80, b = 7:

80 = 11× 7 + 3 (q = 11, r = 3)

7 = 2× 3 + 1 (q = 2, r = 1)

3 = 3× 1 + 0 (q = 3, r = 0).

The game ends when r = 0.

We’re interested in the last remainder before hitting 0. This is
the greatest common divisor of the two inputs!

2 / 34

Greatest common divisors

We start with the natural numbers

N = {0, 1, 2, 3, . . . },

and consider dividing one natural number t by another b ̸= 0:

t = qb+ r, 0 ≤ r < b.

Either b divides t evenly (r = 0), or we are allowed to divide b by r. If r ̸= 0 we can iterate:
we can see what the division of b by r is.

Take t = 80, b = 7:

80 = 11× 7 + 3 (q = 11, r = 3)

7 = 2× 3 + 1 (q = 2, r = 1)

3 = 3× 1 + 0 (q = 3, r = 0).

The game ends when r = 0.

We’re interested in the last remainder before hitting 0. This is
the greatest common divisor of the two inputs!

2 / 34

Greatest common divisors

We start with the natural numbers

N = {0, 1, 2, 3, . . . },

and consider dividing one natural number t by another b ̸= 0:

t = qb+ r, 0 ≤ r < b.

Either b divides t evenly (r = 0), or we are allowed to divide b by r. If r ̸= 0 we can iterate:
we can see what the division of b by r is.

Take t = 80, b = 7:

80 = 11× 7 + 3 (q = 11, r = 3)

7 = 2× 3 + 1 (q = 2, r = 1)

3 = 3× 1 + 0 (q = 3, r = 0).

The game ends when r = 0.

We’re interested in the last remainder before hitting 0. This is
the greatest common divisor of the two inputs!

2 / 34

Greatest common divisors

We start with the natural numbers

N = {0, 1, 2, 3, . . . },

and consider dividing one natural number t by another b ̸= 0:

t = qb+ r, 0 ≤ r < b.

Either b divides t evenly (r = 0), or we are allowed to divide b by r. If r ̸= 0 we can iterate:
we can see what the division of b by r is.

Take t = 80, b = 7:

80 = 11× 7 + 3 (q = 11, r = 3)

7 = 2× 3 + 1 (q = 2, r = 1)

3 = 3× 1 + 0 (q = 3, r = 0).

The game ends when r = 0.

We’re interested in the last remainder before hitting 0. This is
the greatest common divisor of the two inputs!

2 / 34

Greatest common divisors

We start with the natural numbers

N = {0, 1, 2, 3, . . . },

and consider dividing one natural number t by another b ̸= 0:

t = qb+ r, 0 ≤ r < b.

Either b divides t evenly (r = 0), or we are allowed to divide b by r. If r ̸= 0 we can iterate:
we can see what the division of b by r is.

Take t = 80, b = 7:

80 = 11× 7 + 3 (q = 11, r = 3)

7 = 2× 3 + 1 (q = 2, r = 1)

3 = 3× 1 + 0 (q = 3, r = 0).

The game ends when r = 0.

We’re interested in the last remainder before hitting 0. This is
the greatest common divisor of the two inputs!

2 / 34

Greatest common divisors

We start with the natural numbers

N = {0, 1, 2, 3, . . . },

and consider dividing one natural number t by another b ̸= 0:

t = qb+ r, 0 ≤ r < b.

Either b divides t evenly (r = 0), or we are allowed to divide b by r. If r ̸= 0 we can iterate:
we can see what the division of b by r is.

Take t = 80, b = 7:

80 = 11× 7 + 3 (q = 11, r = 3)

7 = 2× 3 + 1 (q = 2, r = 1)

3 = 3× 1 + 0 (q = 3, r = 0).

The game ends when r = 0.

We’re interested in the last remainder before hitting 0. This is
the greatest common divisor of the two inputs!

2 / 34

Greatest common divisors

We start with the natural numbers

N = {0, 1, 2, 3, . . . },

and consider dividing one natural number t by another b ̸= 0:

t = qb+ r, 0 ≤ r < b.

Either b divides t evenly (r = 0), or we are allowed to divide b by r. If r ̸= 0 we can iterate:
we can see what the division of b by r is.

Take t = 80, b = 7:

80 = 11× 7 + 3 (q = 11, r = 3)

7 = 2× 3 + 1 (q = 2, r = 1)

3 = 3× 1 + 0 (q = 3, r = 0).

The game ends when r = 0.

We’re interested in the last remainder before hitting 0. This is
the greatest common divisor of the two inputs!

2 / 34

Greatest common divisors

We start with the natural numbers

N = {0, 1, 2, 3, . . . },

and consider dividing one natural number t by another b ̸= 0:

t = qb+ r, 0 ≤ r < b.

Either b divides t evenly (r = 0), or we are allowed to divide b by r. If r ̸= 0 we can iterate:
we can see what the division of b by r is.

Take t = 80, b = 7:

80 = 11× 7 + 3 (q = 11, r = 3)

7 = 2× 3 + 1 (q = 2, r = 1)

3 = 3× 1 + 0 (q = 3, r = 0).

The game ends when r = 0. We’re interested in the last remainder before hitting 0. This is
the greatest common divisor of the two inputs!

2 / 34

Greatest common divisors

Here is the algorithm. It computes the greatest common divisor (also called highest common
factor) of two numbers.

function gcd(t, b)
r ← t mod b
while r ̸= 0 do

t← b
b← r
r ← t mod b

end while
return b

end function

This completely and unambiguously lists the steps for a computer to take.

Note that this algorithm calls another one (the division algorithm).

3 / 34

Greatest common divisors

Here is the algorithm. It computes the greatest common divisor (also called highest common
factor) of two numbers.

function gcd(t, b)
r ← t mod b
while r ̸= 0 do

t← b
b← r
r ← t mod b

end while
return b

end function

This completely and unambiguously lists the steps for a computer to take.

Note that this algorithm calls another one (the division algorithm).

3 / 34

Greatest common divisors

Here is the algorithm. It computes the greatest common divisor (also called highest common
factor) of two numbers.

function gcd(t, b)
r ← t mod b
while r ̸= 0 do

t← b
b← r
r ← t mod b

end while
return b

end function

This completely and unambiguously lists the steps for a computer to take.

Note that this algorithm calls another one (the division algorithm).
3 / 34

Greatest common divisors

Theorem (Elements, book VII, c. 300 BCE)
Given any t, b ∈ N, 0 < b < t, Euclid’s algorithm computes the greatest
common divisor of t and b.

For convenience, let’s label each intermediate value:

t = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2
...

rj = qj+2rj+1 + rj+2

...
Also for convenience, denote

r−2 := t, r−1 := b.

Euclid of Alexandria, c. 300
BCE

4 / 34

Greatest common divisors

Theorem (Elements, book VII, c. 300 BCE)
Given any t, b ∈ N, 0 < b < t, Euclid’s algorithm computes the greatest
common divisor of t and b.

For convenience, let’s label each intermediate value:

t = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2
...

rj = qj+2rj+1 + rj+2

...

Also for convenience, denote
r−2 := t, r−1 := b.

Euclid of Alexandria, c. 300
BCE

4 / 34

Greatest common divisors

Theorem (Elements, book VII, c. 300 BCE)
Given any t, b ∈ N, 0 < b < t, Euclid’s algorithm computes the greatest
common divisor of t and b.

For convenience, let’s label each intermediate value:

t = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2
...

rj = qj+2rj+1 + rj+2

...
Also for convenience, denote

r−2 := t, r−1 := b.

Euclid of Alexandria, c. 300
BCE

4 / 34

Greatest common divisors

Claim: the algorithm terminates.
Since division yields r < b, the sequence of remainders (r−2, r−1, r0, . . .) is a strictly
decreasing sequence of natural numbers. The sequence must therefore eventually reach zero.
The algorithm therefore always terminates.

Let i be the index such that ri = 0.

5 / 34

Greatest common divisors

Claim: the algorithm terminates.
Since division yields r < b, the sequence of remainders (r−2, r−1, r0, . . .) is a strictly
decreasing sequence of natural numbers. The sequence must therefore eventually reach zero.
The algorithm therefore always terminates.

Let i be the index such that ri = 0.

5 / 34

Greatest common divisors

Claim: ri−1 divides rj, j < i− 1 (common divisor).
Since ri = 0, ri−1 divides ri−2, i.e.

ri−2 = qiri−1.

Plugging this into the previous iteration tells us that ri−1 also divides ri−3:

ri−3 = qi−1ri−2 + ri−1

= (· · ·)× ri−1

Proceeding by induction shows that ri−1 divides all remainders in the sequence. In particular,
ri−1 is a common divisor of the original t and b.

6 / 34

Greatest common divisors

Claim: ri−1 divides rj, j < i− 1 (common divisor).
Since ri = 0, ri−1 divides ri−2, i.e.

ri−2 = qiri−1.

Plugging this into the previous iteration tells us that ri−1 also divides ri−3:

ri−3 = qi−1ri−2 + ri−1

= (· · ·)× ri−1

Proceeding by induction shows that ri−1 divides all remainders in the sequence. In particular,
ri−1 is a common divisor of the original t and b.

6 / 34

Greatest common divisors

Claim: ri−1 divides rj, j < i− 1 (common divisor).
Since ri = 0, ri−1 divides ri−2, i.e.

ri−2 = qiri−1.

Plugging this into the previous iteration tells us that ri−1 also divides ri−3:

ri−3 = qi−1ri−2 + ri−1

= (· · ·)× ri−1

Proceeding by induction shows that ri−1 divides all remainders in the sequence. In particular,
ri−1 is a common divisor of the original t and b.

6 / 34

Greatest common divisors

Claim: ri−1 is the greatest common divisor.
Assume d ∈ N also divides t and b, so there exist α, β ∈ N such that

t = αd, b = βd.

Since t = q0b+ r0, we get r0 = (α− q0β)d, so d divides r0.

The next equation is b = q1r0 + r1, but since d divides both b and r0, it must also divide r1.
Proceeding by induction, d must divide all remainders, including ri−1.

Thus d ≤ ri−1, and ri−1 is the greatest common divisor of t and b.

7 / 34

Greatest common divisors

Claim: ri−1 is the greatest common divisor.
Assume d ∈ N also divides t and b, so there exist α, β ∈ N such that

t = αd, b = βd.

Since t = q0b+ r0, we get r0 = (α− q0β)d, so d divides r0.

The next equation is b = q1r0 + r1, but since d divides both b and r0, it must also divide r1.
Proceeding by induction, d must divide all remainders, including ri−1.

Thus d ≤ ri−1, and ri−1 is the greatest common divisor of t and b.

7 / 34

Greatest common divisors

Claim: ri−1 is the greatest common divisor.
Assume d ∈ N also divides t and b, so there exist α, β ∈ N such that

t = αd, b = βd.

Since t = q0b+ r0, we get r0 = (α− q0β)d, so d divides r0.

The next equation is b = q1r0 + r1, but since d divides both b and r0, it must also divide r1.
Proceeding by induction, d must divide all remainders, including ri−1.

Thus d ≤ ri−1, and ri−1 is the greatest common divisor of t and b.

7 / 34

Greatest common divisors

Claim: ri−1 is the greatest common divisor.
Assume d ∈ N also divides t and b, so there exist α, β ∈ N such that

t = αd, b = βd.

Since t = q0b+ r0, we get r0 = (α− q0β)d, so d divides r0.

The next equation is b = q1r0 + r1, but since d divides both b and r0, it must also divide r1.
Proceeding by induction, d must divide all remainders, including ri−1.

Thus d ≤ ri−1, and ri−1 is the greatest common divisor of t and b.

7 / 34

Greatest common divisors

When we know an algorithm works, our next question is usually: how fast is it? How many
operations does it take, as a function of the inputs? This is referred to as its complexity.

In this context, we ask: can we bound the number of divisions required in computing gcd(t, b)
in terms of t and b, t > b > 0?

Since the remainder decreases at each iteration, we know at least that we will do at most b
iterations, i.e. the cost grows linearly in the size of the inputs.

But it is possible to prove a tighter bound!

8 / 34

Greatest common divisors

When we know an algorithm works, our next question is usually: how fast is it? How many
operations does it take, as a function of the inputs? This is referred to as its complexity.

In this context, we ask: can we bound the number of divisions required in computing gcd(t, b)
in terms of t and b, t > b > 0?

Since the remainder decreases at each iteration, we know at least that we will do at most b
iterations, i.e. the cost grows linearly in the size of the inputs.

But it is possible to prove a tighter bound!

8 / 34

Greatest common divisors

When we know an algorithm works, our next question is usually: how fast is it? How many
operations does it take, as a function of the inputs? This is referred to as its complexity.

In this context, we ask: can we bound the number of divisions required in computing gcd(t, b)
in terms of t and b, t > b > 0?

Since the remainder decreases at each iteration, we know at least that we will do at most b
iterations, i.e. the cost grows linearly in the size of the inputs.

But it is possible to prove a tighter bound!

8 / 34

Greatest common divisors

When we know an algorithm works, our next question is usually: how fast is it? How many
operations does it take, as a function of the inputs? This is referred to as its complexity.

In this context, we ask: can we bound the number of divisions required in computing gcd(t, b)
in terms of t and b, t > b > 0?

Since the remainder decreases at each iteration, we know at least that we will do at most b
iterations, i.e. the cost grows linearly in the size of the inputs.

But it is possible to prove a tighter bound!

8 / 34

Greatest common divisors

Theorem
Let t > b > 0. The smallest values of t and b for which Euclid’s algorithm
requires N iterations are the Fibonacci numbers t = FN+2 and b = FN+1.

Theorem (Complexity of Euclid’s algorithm, 1844)
The number of steps taken in Euclid’s algorithm can never be more than
five times the number of decimal digits of b.

This result shows that the cost grows logarithmically in the size of the input
b.

Gabriel Lamé, 1795–1870

9 / 34

Greatest common divisors

Theorem
Let t > b > 0. The smallest values of t and b for which Euclid’s algorithm
requires N iterations are the Fibonacci numbers t = FN+2 and b = FN+1.

Theorem (Complexity of Euclid’s algorithm, 1844)
The number of steps taken in Euclid’s algorithm can never be more than
five times the number of decimal digits of b.

This result shows that the cost grows logarithmically in the size of the input
b.

Gabriel Lamé, 1795–1870

9 / 34

Greatest common divisors

10 / 34

Greatest common divisors

11 / 34

Diophantine equations

Section 2

Diophantine equations

12 / 34

Diophantine equations

A Diophantine equation is an algebraic equation for which solutions are sought in the integers
Z = {. . . ,−2,−1, 0, 1, 2, . . . }. They are named after Diophantus of Alexandria (c. 200–290).

Some Diophantine equations have no solutions, like 4x+ 6y = 3.

Some do, however. For example, 48x− 35y = 1 has a solution x = −8, y = −11.

Diophantus’ work was collected in his magnum opus, Arithmetica. In 1637,
Pierre de Fermat wrote in the margin of his copy of Arithmetica,

It is impossible …for any number which is a power greater than the
second to be written as the sum of two like powers. I have a truly
marvelous demonstration of this proposition which this margin is
too narrow to contain.

Pierre de Fermat, 1607–1665

13 / 34

Diophantine equations

A Diophantine equation is an algebraic equation for which solutions are sought in the integers
Z = {. . . ,−2,−1, 0, 1, 2, . . . }. They are named after Diophantus of Alexandria (c. 200–290).

Some Diophantine equations have no solutions, like 4x+ 6y = 3.

Some do, however. For example, 48x− 35y = 1 has a solution x = −8, y = −11.

Diophantus’ work was collected in his magnum opus, Arithmetica. In 1637,
Pierre de Fermat wrote in the margin of his copy of Arithmetica,

It is impossible …for any number which is a power greater than the
second to be written as the sum of two like powers. I have a truly
marvelous demonstration of this proposition which this margin is
too narrow to contain.

Pierre de Fermat, 1607–1665

13 / 34

Diophantine equations

A Diophantine equation is an algebraic equation for which solutions are sought in the integers
Z = {. . . ,−2,−1, 0, 1, 2, . . . }. They are named after Diophantus of Alexandria (c. 200–290).

Some Diophantine equations have no solutions, like 4x+ 6y = 3.

Some do, however. For example, 48x− 35y = 1 has a solution x = −8, y = −11.

Diophantus’ work was collected in his magnum opus, Arithmetica. In 1637,
Pierre de Fermat wrote in the margin of his copy of Arithmetica,

It is impossible …for any number which is a power greater than the
second to be written as the sum of two like powers. I have a truly
marvelous demonstration of this proposition which this margin is
too narrow to contain.

Pierre de Fermat, 1607–1665

13 / 34

Diophantine equations

A Diophantine equation is an algebraic equation for which solutions are sought in the integers
Z = {. . . ,−2,−1, 0, 1, 2, . . . }. They are named after Diophantus of Alexandria (c. 200–290).

Some Diophantine equations have no solutions, like 4x+ 6y = 3.

Some do, however. For example, 48x− 35y = 1 has a solution x = −8, y = −11.

Diophantus’ work was collected in his magnum opus, Arithmetica. In 1637,
Pierre de Fermat wrote in the margin of his copy of Arithmetica,

It is impossible …for any number which is a power greater than the
second to be written as the sum of two like powers. I have a truly
marvelous demonstration of this proposition which this margin is
too narrow to contain.

Pierre de Fermat, 1607–1665

13 / 34

Diophantine equations

A linear Diophantine equation (LDE) in two variables is of the form: given a, b, c ∈ Z, find
x, y ∈ Z such that

ax+ by = c.

LDEs with gcd(a, b) = 1 = c are of particular interest. If we can solve

ax+ by = 1

then we have solved the problem: find x ∈ Z such that

ax ≡ 1 (mod b),

the problem of finding modular multiplicative inverses.

In particular, this is a crucial step in RSA key generation: the private key d satisfies

de ≡ 1 (mod λ(n)),

where n, e are the public key, and λ(n) is easy to compute if you know the prime factorisation
of n and difficult otherwise.

14 / 34

Diophantine equations

A linear Diophantine equation (LDE) in two variables is of the form: given a, b, c ∈ Z, find
x, y ∈ Z such that

ax+ by = c.

LDEs with gcd(a, b) = 1 = c are of particular interest. If we can solve

ax+ by = 1

then we have solved the problem: find x ∈ Z such that

ax ≡ 1 (mod b),

the problem of finding modular multiplicative inverses.

In particular, this is a crucial step in RSA key generation: the private key d satisfies

de ≡ 1 (mod λ(n)),

where n, e are the public key, and λ(n) is easy to compute if you know the prime factorisation
of n and difficult otherwise.

14 / 34

Diophantine equations

A linear Diophantine equation (LDE) in two variables is of the form: given a, b, c ∈ Z, find
x, y ∈ Z such that

ax+ by = c.

LDEs with gcd(a, b) = 1 = c are of particular interest. If we can solve

ax+ by = 1

then we have solved the problem: find x ∈ Z such that

ax ≡ 1 (mod b),

the problem of finding modular multiplicative inverses.

In particular, this is a crucial step in RSA key generation: the private key d satisfies

de ≡ 1 (mod λ(n)),

where n, e are the public key, and λ(n) is easy to compute if you know the prime factorisation
of n and difficult otherwise.

14 / 34

Diophantine equations

Lemma (Bézout’s Lemma)
If gcd(a, b) = d, then the LDE ax+ by = d always has an integer solution.

The statement for integers was already known before Bézout, appearing in
the work of Claude Gaspard Bachet de Méziriac in 1624. Bézout’s
contribution was actually to extend it to polynomials, but his name has
stuck to the general principle.

Many other results in number theory follow from Bézout’s Lemma, such as
Euclid’s Lemma and Sunzi’s Remainder Theorem.

Étienne Bézout, 1730–1783

Claude Gaspar Bachet de
Méziriac, 1581–1638

15 / 34

Diophantine equations

Lemma (Bézout’s Lemma)
If gcd(a, b) = d, then the LDE ax+ by = d always has an integer solution.

The statement for integers was already known before Bézout, appearing in
the work of Claude Gaspard Bachet de Méziriac in 1624. Bézout’s
contribution was actually to extend it to polynomials, but his name has
stuck to the general principle.

Many other results in number theory follow from Bézout’s Lemma, such as
Euclid’s Lemma and Sunzi’s Remainder Theorem.

Étienne Bézout, 1730–1783

Claude Gaspar Bachet de
Méziriac, 1581–1638

15 / 34

Diophantine equations

Lemma (Bézout’s Lemma)
If gcd(a, b) = d, then the LDE ax+ by = d always has an integer solution.

The statement for integers was already known before Bézout, appearing in
the work of Claude Gaspard Bachet de Méziriac in 1624. Bézout’s
contribution was actually to extend it to polynomials, but his name has
stuck to the general principle.

Many other results in number theory follow from Bézout’s Lemma, such as
Euclid’s Lemma and Sunzi’s Remainder Theorem.

Étienne Bézout, 1730–1783

Claude Gaspar Bachet de
Méziriac, 1581–1638

15 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.

16 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.

16 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.

16 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.

16 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.

16 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.

16 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.

16 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.

16 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.

16 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.

16 / 34

Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example, with a = 48 and b = −35.
48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier. 16 / 34

Diophantine equations

How do we prove Bézout’s Lemma? We run Euclid’s method.

Proof.
Since gcd(a, b) = d, we know that iterated divisions of the form

a = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2
...

will eventually reach ri−3 = qi−1ri−2 + d.

17 / 34

Diophantine equations

How do we prove Bézout’s Lemma? We run Euclid’s method.

Proof.
Since gcd(a, b) = d, we know that iterated divisions of the form

a = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2
...

will eventually reach ri−3 = qi−1ri−2 + d.

17 / 34

Diophantine equations

Proof.
Let’s rewrite this as

d = ri−3 − qi−1ri−2.

We know that ri−4 = qi−2ri−3 + ri−2, so using this to eliminate ri−2 we have

d = −qi−1ri−4 + (1− qi−1qi−2)ri−3.

Proceeding by induction, we can write d as a combination of ri−5 and ri−4, then ri−6 and
ri−5, and so on until we write

d = xa+ yb.

This uses an algorithm to prove an existence result.

18 / 34

Diophantine equations

Proof.
Let’s rewrite this as

d = ri−3 − qi−1ri−2.

We know that ri−4 = qi−2ri−3 + ri−2, so using this to eliminate ri−2 we have

d = −qi−1ri−4 + (1− qi−1qi−2)ri−3.

Proceeding by induction, we can write d as a combination of ri−5 and ri−4, then ri−6 and
ri−5, and so on until we write

d = xa+ yb.

This uses an algorithm to prove an existence result.

18 / 34

Diophantine equations

Proof.
Let’s rewrite this as

d = ri−3 − qi−1ri−2.

We know that ri−4 = qi−2ri−3 + ri−2, so using this to eliminate ri−2 we have

d = −qi−1ri−4 + (1− qi−1qi−2)ri−3.

Proceeding by induction, we can write d as a combination of ri−5 and ri−4, then ri−6 and
ri−5, and so on until we write

d = xa+ yb.

This uses an algorithm to prove an existence result.

18 / 34

Diophantine equations

Proof.
Let’s rewrite this as

d = ri−3 − qi−1ri−2.

We know that ri−4 = qi−2ri−3 + ri−2, so using this to eliminate ri−2 we have

d = −qi−1ri−4 + (1− qi−1qi−2)ri−3.

Proceeding by induction, we can write d as a combination of ri−5 and ri−4, then ri−6 and
ri−5, and so on until we write

d = xa+ yb.

This uses an algorithm to prove an existence result.
18 / 34

Diophantine equations

We saw in our previous calculations that 48x− 35y = 1 had a solution (x, y) = (−8,−11).
However, there are other solutions, such as (x, y) = (−43,−59). How do we find them all?
What is the general solution?

Suppose we have a particular solution (xp, yp) satisfying axp + byp = 1. If we had (x̃, ỹ) such
that ax̃+ bỹ = 0, then

a(xp + x̃) + b(yp + ỹ) = axp + byp = 1

also. Similarly, if a(xp + x̃) + b(yp + ỹ) = 1, then ax̃+ bỹ = 0.

What are the solutions to the homogeneous equation ax̃+ bỹ = 0? Exactly (x̃, ỹ) = n(−b, a)
for n ∈ Z!

The general solution to ax+ by = c is thus

{c(xp, yp) + n(−b, a) : n ∈ Z} .

19 / 34

Diophantine equations

We saw in our previous calculations that 48x− 35y = 1 had a solution (x, y) = (−8,−11).
However, there are other solutions, such as (x, y) = (−43,−59). How do we find them all?
What is the general solution?

Suppose we have a particular solution (xp, yp) satisfying axp + byp = 1. If we had (x̃, ỹ) such
that ax̃+ bỹ = 0, then

a(xp + x̃) + b(yp + ỹ) = axp + byp = 1

also. Similarly, if a(xp + x̃) + b(yp + ỹ) = 1, then ax̃+ bỹ = 0.

What are the solutions to the homogeneous equation ax̃+ bỹ = 0? Exactly (x̃, ỹ) = n(−b, a)
for n ∈ Z!

The general solution to ax+ by = c is thus

{c(xp, yp) + n(−b, a) : n ∈ Z} .

19 / 34

Diophantine equations

We saw in our previous calculations that 48x− 35y = 1 had a solution (x, y) = (−8,−11).
However, there are other solutions, such as (x, y) = (−43,−59). How do we find them all?
What is the general solution?

Suppose we have a particular solution (xp, yp) satisfying axp + byp = 1. If we had (x̃, ỹ) such
that ax̃+ bỹ = 0, then

a(xp + x̃) + b(yp + ỹ) = axp + byp = 1

also. Similarly, if a(xp + x̃) + b(yp + ỹ) = 1, then ax̃+ bỹ = 0.

What are the solutions to the homogeneous equation ax̃+ bỹ = 0? Exactly (x̃, ỹ) = n(−b, a)
for n ∈ Z!

The general solution to ax+ by = c is thus

{c(xp, yp) + n(−b, a) : n ∈ Z} .

19 / 34

Diophantine equations

We saw in our previous calculations that 48x− 35y = 1 had a solution (x, y) = (−8,−11).
However, there are other solutions, such as (x, y) = (−43,−59). How do we find them all?
What is the general solution?

Suppose we have a particular solution (xp, yp) satisfying axp + byp = 1. If we had (x̃, ỹ) such
that ax̃+ bỹ = 0, then

a(xp + x̃) + b(yp + ỹ) = axp + byp = 1

also. Similarly, if a(xp + x̃) + b(yp + ỹ) = 1, then ax̃+ bỹ = 0.

What are the solutions to the homogeneous equation ax̃+ bỹ = 0? Exactly (x̃, ỹ) = n(−b, a)
for n ∈ Z!

The general solution to ax+ by = c is thus

{c(xp, yp) + n(−b, a) : n ∈ Z} .

19 / 34

Diophantine equations

Here is the whole algorithm for solving an LDE ax+ by = c.

Step 1 Calculate d = gcd(a, b). If d does not divide c, stop; there are no solutions.

Step 2 Divide both sides of the equation by d to get âx+ b̂y = ĉ.
Step 3 Compute a particular solution (xp, yp) of âx+ b̂y = 1.
Step 4 Set the general solution to be{

ĉ(xp, yp) + n(−b̂, â) : n ∈ Z
}
.

20 / 34

Diophantine equations

Here is the whole algorithm for solving an LDE ax+ by = c.

Step 1 Calculate d = gcd(a, b). If d does not divide c, stop; there are no solutions.
Step 2 Divide both sides of the equation by d to get âx+ b̂y = ĉ.

Step 3 Compute a particular solution (xp, yp) of âx+ b̂y = 1.
Step 4 Set the general solution to be{

ĉ(xp, yp) + n(−b̂, â) : n ∈ Z
}
.

20 / 34

Diophantine equations

Here is the whole algorithm for solving an LDE ax+ by = c.

Step 1 Calculate d = gcd(a, b). If d does not divide c, stop; there are no solutions.
Step 2 Divide both sides of the equation by d to get âx+ b̂y = ĉ.
Step 3 Compute a particular solution (xp, yp) of âx+ b̂y = 1.

Step 4 Set the general solution to be{
ĉ(xp, yp) + n(−b̂, â) : n ∈ Z

}
.

20 / 34

Diophantine equations

Here is the whole algorithm for solving an LDE ax+ by = c.

Step 1 Calculate d = gcd(a, b). If d does not divide c, stop; there are no solutions.
Step 2 Divide both sides of the equation by d to get âx+ b̂y = ĉ.
Step 3 Compute a particular solution (xp, yp) of âx+ b̂y = 1.
Step 4 Set the general solution to be{

ĉ(xp, yp) + n(−b̂, â) : n ∈ Z
}
.

20 / 34

Diophantine equations

Let’s see an example. Consider 192x− 140y = 12.

Step 1 d = gcd(192, 140) = 4.
Step 2 Dividing both sides by d, we get 48x− 35y = 3.
Step 3 Solving 48xp − 35yp = 1, we get (xp, yp) = (−8,−11).
Step 4 The general solution is thus

{3(−8,−11) + n(35, 48) : n ∈ Z}
= {(−24,−33) + n(35, 48) : n ∈ Z} .

21 / 34

Diophantine equations

Let’s see an example. Consider 192x− 140y = 12.

Step 1 d = gcd(192, 140) = 4.

Step 2 Dividing both sides by d, we get 48x− 35y = 3.
Step 3 Solving 48xp − 35yp = 1, we get (xp, yp) = (−8,−11).
Step 4 The general solution is thus

{3(−8,−11) + n(35, 48) : n ∈ Z}
= {(−24,−33) + n(35, 48) : n ∈ Z} .

21 / 34

Diophantine equations

Let’s see an example. Consider 192x− 140y = 12.

Step 1 d = gcd(192, 140) = 4.
Step 2 Dividing both sides by d, we get 48x− 35y = 3.

Step 3 Solving 48xp − 35yp = 1, we get (xp, yp) = (−8,−11).
Step 4 The general solution is thus

{3(−8,−11) + n(35, 48) : n ∈ Z}
= {(−24,−33) + n(35, 48) : n ∈ Z} .

21 / 34

Diophantine equations

Let’s see an example. Consider 192x− 140y = 12.

Step 1 d = gcd(192, 140) = 4.
Step 2 Dividing both sides by d, we get 48x− 35y = 3.
Step 3 Solving 48xp − 35yp = 1, we get (xp, yp) = (−8,−11).

Step 4 The general solution is thus

{3(−8,−11) + n(35, 48) : n ∈ Z}
= {(−24,−33) + n(35, 48) : n ∈ Z} .

21 / 34

Diophantine equations

Let’s see an example. Consider 192x− 140y = 12.

Step 1 d = gcd(192, 140) = 4.
Step 2 Dividing both sides by d, we get 48x− 35y = 3.
Step 3 Solving 48xp − 35yp = 1, we get (xp, yp) = (−8,−11).
Step 4 The general solution is thus

{3(−8,−11) + n(35, 48) : n ∈ Z}
= {(−24,−33) + n(35, 48) : n ∈ Z} .

21 / 34

The extended Euclidean algorithm

Section 3

The extended Euclidean algorithm

22 / 34

The extended Euclidean algorithm

We saw that the quotients computed during Euclid’s algorithm tell us how to solve

ax+ by = gcd(a, b).

The idea of climbing up the tower of equations backwards is intuitively useful, but it’s not so
amenable to computer implementation.

There’s a very clever modification of Euclid’s algorithm that computes a particular solution to
the LDE in one pass: the extended Euclidean algorithm.

This appears to have first been explained by Āryabhaṭa (476–550).

23 / 34

The extended Euclidean algorithm

We saw that the quotients computed during Euclid’s algorithm tell us how to solve

ax+ by = gcd(a, b).

The idea of climbing up the tower of equations backwards is intuitively useful, but it’s not so
amenable to computer implementation.

There’s a very clever modification of Euclid’s algorithm that computes a particular solution to
the LDE in one pass: the extended Euclidean algorithm.

This appears to have first been explained by Āryabhaṭa (476–550).

23 / 34

The extended Euclidean algorithm

We saw that the quotients computed during Euclid’s algorithm tell us how to solve

ax+ by = gcd(a, b).

The idea of climbing up the tower of equations backwards is intuitively useful, but it’s not so
amenable to computer implementation.

There’s a very clever modification of Euclid’s algorithm that computes a particular solution to
the LDE in one pass: the extended Euclidean algorithm.

This appears to have first been explained by Āryabhaṭa (476–550).

23 / 34

The extended Euclidean algorithm

We saw that the quotients computed during Euclid’s algorithm tell us how to solve

ax+ by = gcd(a, b).

The idea of climbing up the tower of equations backwards is intuitively useful, but it’s not so
amenable to computer implementation.

There’s a very clever modification of Euclid’s algorithm that computes a particular solution to
the LDE in one pass: the extended Euclidean algorithm.

This appears to have first been explained by Āryabhaṭa (476–550).

23 / 34

The extended Euclidean algorithm

Recall that Euclid’s algorithm constructs a sequence

r−2, r−1, r0, r1, . . . , ri−1,

where ri−1 = gcd(a, b) and again we denote r−2 = a, r−1 = b.

We introduce two new sequences

x−2, x−1, x0, x1, . . . , xi−1,

y−2, y−1, y0, y1, . . . , yi−1,

and we will enforce the property that

axj + byj = rj , j = −2, . . . , i− 1.

If we can enforce this, then we will have

axi−1 + byi−1 = ri−1 = gcd(a, b).

24 / 34

The extended Euclidean algorithm

Recall that Euclid’s algorithm constructs a sequence

r−2, r−1, r0, r1, . . . , ri−1,

where ri−1 = gcd(a, b) and again we denote r−2 = a, r−1 = b.

We introduce two new sequences

x−2, x−1, x0, x1, . . . , xi−1,

y−2, y−1, y0, y1, . . . , yi−1,

and we will enforce the property that

axj + byj = rj , j = −2, . . . , i− 1.

If we can enforce this, then we will have

axi−1 + byi−1 = ri−1 = gcd(a, b).

24 / 34

The extended Euclidean algorithm

Recall that Euclid’s algorithm constructs a sequence

r−2, r−1, r0, r1, . . . , ri−1,

where ri−1 = gcd(a, b) and again we denote r−2 = a, r−1 = b.

We introduce two new sequences

x−2, x−1, x0, x1, . . . , xi−1,

y−2, y−1, y0, y1, . . . , yi−1,

and we will enforce the property that

axj + byj = rj , j = −2, . . . , i− 1.

If we can enforce this, then we will have

axi−1 + byi−1 = ri−1 = gcd(a, b).

24 / 34

The extended Euclidean algorithm

Recall that Euclid’s algorithm constructs a sequence

r−2, r−1, r0, r1, . . . , ri−1,

where ri−1 = gcd(a, b) and again we denote r−2 = a, r−1 = b.

We introduce two new sequences

x−2, x−1, x0, x1, . . . , xi−1,

y−2, y−1, y0, y1, . . . , yi−1,

and we will enforce the property that

axj + byj = rj , j = −2, . . . , i− 1.

If we can enforce this, then we will have

axi−1 + byi−1 = ri−1 = gcd(a, b).

24 / 34

The extended Euclidean algorithm

How do we enforce
axj + byj = rj , j = −2, . . . , i− 1?

Well, to begin, we should set
(x−2, y−2) = (1, 0), (x−1, y−1) = (0, 1)

so that our property is enforced at the start.

Consider some step of Euclid’s method,
rj = qj+2rj+1 + rj+2.

If we know the expansions of rj and rj+1 in terms of our ‘basis’ a and b, then we can work out
the expansion of rj+2 too:

xj+2 = xj − qj+2xj+1,

yj+2 = yj − qj+2yj+1.

25 / 34

The extended Euclidean algorithm

How do we enforce
axj + byj = rj , j = −2, . . . , i− 1?

Well, to begin, we should set
(x−2, y−2) = (1, 0), (x−1, y−1) = (0, 1)

so that our property is enforced at the start.

Consider some step of Euclid’s method,
rj = qj+2rj+1 + rj+2.

If we know the expansions of rj and rj+1 in terms of our ‘basis’ a and b, then we can work out
the expansion of rj+2 too:

xj+2 = xj − qj+2xj+1,

yj+2 = yj − qj+2yj+1.

25 / 34

The extended Euclidean algorithm

How do we enforce
axj + byj = rj , j = −2, . . . , i− 1?

Well, to begin, we should set
(x−2, y−2) = (1, 0), (x−1, y−1) = (0, 1)

so that our property is enforced at the start.

Consider some step of Euclid’s method,
rj = qj+2rj+1 + rj+2.

If we know the expansions of rj and rj+1 in terms of our ‘basis’ a and b, then we can work out
the expansion of rj+2 too:

xj+2 = xj − qj+2xj+1,

yj+2 = yj − qj+2yj+1.

25 / 34

Euclid for polynomials

Section 4

Euclid for polynomials

26 / 34

Euclid for polynomials

So far we’ve applied Euclid’s method only to integers. It applies to other types of algebraic
objects, too.

A polynomial p in R[x] of degree d ∈ N is an expression of the form

p(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d,

where all the ai lie in the set of real numbers R.

A root of p is a number x ∈ C satisfying p(x) = 0.

Recall: dividing p(x) by q(x) writes

p(x) = c(x)q(x) + r(x)

with quotient c(x) and remainder r(x), with deg(r) < deg(q).

27 / 34

Euclid for polynomials

So far we’ve applied Euclid’s method only to integers. It applies to other types of algebraic
objects, too.

A polynomial p in R[x] of degree d ∈ N is an expression of the form

p(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d,

where all the ai lie in the set of real numbers R.

A root of p is a number x ∈ C satisfying p(x) = 0.

Recall: dividing p(x) by q(x) writes

p(x) = c(x)q(x) + r(x)

with quotient c(x) and remainder r(x), with deg(r) < deg(q).

27 / 34

Euclid for polynomials

So far we’ve applied Euclid’s method only to integers. It applies to other types of algebraic
objects, too.

A polynomial p in R[x] of degree d ∈ N is an expression of the form

p(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d,

where all the ai lie in the set of real numbers R.

A root of p is a number x ∈ C satisfying p(x) = 0.

Recall: dividing p(x) by q(x) writes

p(x) = c(x)q(x) + r(x)

with quotient c(x) and remainder r(x), with deg(r) < deg(q).

27 / 34

Euclid for polynomials

So far we’ve applied Euclid’s method only to integers. It applies to other types of algebraic
objects, too.

A polynomial p in R[x] of degree d ∈ N is an expression of the form

p(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d,

where all the ai lie in the set of real numbers R.

A root of p is a number x ∈ C satisfying p(x) = 0.

Recall: dividing p(x) by q(x) writes

p(x) = c(x)q(x) + r(x)

with quotient c(x) and remainder r(x), with deg(r) < deg(q).

27 / 34

Euclid for polynomials

The polynomials R[x] form a Euclidean domain.

This is an algebraic structure R that can be equipped with a Euclidean function

f : R \ {0} → N

which is something that strictly decreases on division: given a, b ∈ R, there exist q, r ∈ R,
such that

a = qb+ r,

and either r = 0 or f(r) < f(b).

For the polynomials, the Euclidean function is

f(r) = deg(r).

We can generalise Euclid’s method, greatest common divisors, Bézout’s Lemma, and many
other results to such domains.

28 / 34

Euclid for polynomials

The polynomials R[x] form a Euclidean domain.

This is an algebraic structure R that can be equipped with a Euclidean function

f : R \ {0} → N

which is something that strictly decreases on division: given a, b ∈ R, there exist q, r ∈ R,
such that

a = qb+ r,

and either r = 0 or f(r) < f(b).

For the polynomials, the Euclidean function is

f(r) = deg(r).

We can generalise Euclid’s method, greatest common divisors, Bézout’s Lemma, and many
other results to such domains.

28 / 34

Euclid for polynomials

The polynomials R[x] form a Euclidean domain.

This is an algebraic structure R that can be equipped with a Euclidean function

f : R \ {0} → N

which is something that strictly decreases on division: given a, b ∈ R, there exist q, r ∈ R,
such that

a = qb+ r,

and either r = 0 or f(r) < f(b).

For the polynomials, the Euclidean function is

f(r) = deg(r).

We can generalise Euclid’s method, greatest common divisors, Bézout’s Lemma, and many
other results to such domains.

28 / 34

Euclid for polynomials

The polynomials R[x] form a Euclidean domain.

This is an algebraic structure R that can be equipped with a Euclidean function

f : R \ {0} → N

which is something that strictly decreases on division: given a, b ∈ R, there exist q, r ∈ R,
such that

a = qb+ r,

and either r = 0 or f(r) < f(b).

For the polynomials, the Euclidean function is

f(r) = deg(r).

We can generalise Euclid’s method, greatest common divisors, Bézout’s Lemma, and many
other results to such domains.

28 / 34

Euclid for polynomials

We will study algorithms for finding roots of general (i.e. not necessarily polynomial) functions
in the next lectures.

For now, we focus on computing common roots of two polynomials p and q, of possibly
different degrees. The common roots are x ∈ C such that p(x) = q(x) = 0.

We do this by finding the roots of the greatest common divisor of p and q: the polynomial of
largest degree that divides both p and q.

A number a is a root of p iff (x− a) divides p, which gives the link between common roots
and common divisors.

29 / 34

Euclid for polynomials

We will study algorithms for finding roots of general (i.e. not necessarily polynomial) functions
in the next lectures.

For now, we focus on computing common roots of two polynomials p and q, of possibly
different degrees. The common roots are x ∈ C such that p(x) = q(x) = 0.

We do this by finding the roots of the greatest common divisor of p and q: the polynomial of
largest degree that divides both p and q.

A number a is a root of p iff (x− a) divides p, which gives the link between common roots
and common divisors.

29 / 34

Euclid for polynomials

We will study algorithms for finding roots of general (i.e. not necessarily polynomial) functions
in the next lectures.

For now, we focus on computing common roots of two polynomials p and q, of possibly
different degrees. The common roots are x ∈ C such that p(x) = q(x) = 0.

We do this by finding the roots of the greatest common divisor of p and q: the polynomial of
largest degree that divides both p and q.

A number a is a root of p iff (x− a) divides p, which gives the link between common roots
and common divisors.

29 / 34

Euclid for polynomials

We will study algorithms for finding roots of general (i.e. not necessarily polynomial) functions
in the next lectures.

For now, we focus on computing common roots of two polynomials p and q, of possibly
different degrees. The common roots are x ∈ C such that p(x) = q(x) = 0.

We do this by finding the roots of the greatest common divisor of p and q: the polynomial of
largest degree that divides both p and q.

A number a is a root of p iff (x− a) divides p, which gives the link between common roots
and common divisors.

29 / 34

Euclid for polynomials

Let’s see an example of applying Euclid’s method. Take

p(x) = x4 + x3 − 6x2 + 5x− 1, q(x) = x3 + x2 + 3x− 5.

We have

x4 + x3 − 6x2 + 5x− 1 = (x)(x3 + x2 + 3x− 5) + (−9x2 + 10x− 1)

x3 + x2 + 3x− 5 =

(
−1

9
x− 19

81

)(
−9x2 + 10x− 1

)
+

424

81
(x− 1)

− 9x2 + 10x− 1 = − 81

424
(9x− 1)

424

81
(x− 1) + 0.

So (x− 1) is the gcd, so x = 1 is their only common root:

p(1) = 0 = q(1)

.

30 / 34

Euclid for polynomials

Let’s see an example of applying Euclid’s method. Take

p(x) = x4 + x3 − 6x2 + 5x− 1, q(x) = x3 + x2 + 3x− 5.

We have

x4 + x3 − 6x2 + 5x− 1 = (x)(x3 + x2 + 3x− 5) + (−9x2 + 10x− 1)

x3 + x2 + 3x− 5 =

(
−1

9
x− 19

81

)(
−9x2 + 10x− 1

)
+

424

81
(x− 1)

− 9x2 + 10x− 1 = − 81

424
(9x− 1)

424

81
(x− 1) + 0.

So (x− 1) is the gcd, so x = 1 is their only common root:

p(1) = 0 = q(1)

.

30 / 34

Euclid for polynomials

Let’s see an example of applying Euclid’s method. Take

p(x) = x4 + x3 − 6x2 + 5x− 1, q(x) = x3 + x2 + 3x− 5.

We have

x4 + x3 − 6x2 + 5x− 1 = (x)(x3 + x2 + 3x− 5) + (−9x2 + 10x− 1)

x3 + x2 + 3x− 5 =

(
−1

9
x− 19

81

)(
−9x2 + 10x− 1

)
+

424

81
(x− 1)

− 9x2 + 10x− 1 = − 81

424
(9x− 1)

424

81
(x− 1) + 0.

So (x− 1) is the gcd, so x = 1 is their only common root:

p(1) = 0 = q(1)

.

30 / 34

Euclid for polynomials

Let’s see an example of applying Euclid’s method. Take

p(x) = x4 + x3 − 6x2 + 5x− 1, q(x) = x3 + x2 + 3x− 5.

We have

x4 + x3 − 6x2 + 5x− 1 = (x)(x3 + x2 + 3x− 5) + (−9x2 + 10x− 1)

x3 + x2 + 3x− 5 =

(
−1

9
x− 19

81

)(
−9x2 + 10x− 1

)
+

424

81
(x− 1)

− 9x2 + 10x− 1 = − 81

424
(9x− 1)

424

81
(x− 1) + 0.

So (x− 1) is the gcd, so x = 1 is their only common root:

p(1) = 0 = q(1)

.

30 / 34

Euclid for polynomials

Let’s see an example of applying Euclid’s method. Take

p(x) = x4 + x3 − 6x2 + 5x− 1, q(x) = x3 + x2 + 3x− 5.

We have

x4 + x3 − 6x2 + 5x− 1 = (x)(x3 + x2 + 3x− 5) + (−9x2 + 10x− 1)

x3 + x2 + 3x− 5 =

(
−1

9
x− 19

81

)(
−9x2 + 10x− 1

)
+

424

81
(x− 1)

− 9x2 + 10x− 1 = − 81

424
(9x− 1)

424

81
(x− 1) + 0.

So (x− 1) is the gcd, so x = 1 is their only common root:

p(1) = 0 = q(1)

.
30 / 34

Euclid for polynomials

We mention some interesting applications of Euclid’s method for polynomials:

1. A clever way to identify the multiple roots of a polynomial p is to compute the gcd of p and
its derivative p′.

2. The sequence of remainders yielded by Euclid’s method applied to p and
p′ can be used to compute its Sturm sequence. The number of times the
Sturm sequence changes sign can be used to calculate how many real roots
p has in any given interval (including (−∞,∞)).

Jacques Charles François Sturm,
1803–1855

31 / 34

Euclid for polynomials

We mention some interesting applications of Euclid’s method for polynomials:

1. A clever way to identify the multiple roots of a polynomial p is to compute the gcd of p and
its derivative p′.

2. The sequence of remainders yielded by Euclid’s method applied to p and
p′ can be used to compute its Sturm sequence. The number of times the
Sturm sequence changes sign can be used to calculate how many real roots
p has in any given interval (including (−∞,∞)).

Jacques Charles François Sturm,
1803–1855

31 / 34

Euclid for polynomials

We mention some interesting applications of Euclid’s method for polynomials:

1. A clever way to identify the multiple roots of a polynomial p is to compute the gcd of p and
its derivative p′.

2. The sequence of remainders yielded by Euclid’s method applied to p and
p′ can be used to compute its Sturm sequence. The number of times the
Sturm sequence changes sign can be used to calculate how many real roots
p has in any given interval (including (−∞,∞)).

Jacques Charles François Sturm,
1803–1855

31 / 34

Euclid for polynomials

Many interesting polynomials are defined via recurrence relations. Euclid’s method can be
used to deduce facts about these without calculating them.

Consider a family of polynomials pk(x) for k ∈ N given by

p0(x) = 1, p1(x) = x,

and
pk(x) = αk(x)× pk−1(x) + βk × pk−2(x),

with degαk = 1 and βk ∈ R \ {0}.

Without specifying αk or βk, we can show that pk and pk+1 have no common roots for k ≥ 1.

32 / 34

Euclid for polynomials

Many interesting polynomials are defined via recurrence relations. Euclid’s method can be
used to deduce facts about these without calculating them.

Consider a family of polynomials pk(x) for k ∈ N given by

p0(x) = 1, p1(x) = x,

and
pk(x) = αk(x)× pk−1(x) + βk × pk−2(x),

with degαk = 1 and βk ∈ R \ {0}.

Without specifying αk or βk, we can show that pk and pk+1 have no common roots for k ≥ 1.

32 / 34

Euclid for polynomials

Many interesting polynomials are defined via recurrence relations. Euclid’s method can be
used to deduce facts about these without calculating them.

Consider a family of polynomials pk(x) for k ∈ N given by

p0(x) = 1, p1(x) = x,

and
pk(x) = αk(x)× pk−1(x) + βk × pk−2(x),

with degαk = 1 and βk ∈ R \ {0}.

Without specifying αk or βk, we can show that pk and pk+1 have no common roots for k ≥ 1.

32 / 34

Euclid for polynomials

Chebyshev polynomials
The main well-conditioned basis for polynomials used in practical
computations:

T0(x) = 1, T1(x) = x,

Tk(x) = 2xTk−1(x)− Tk−2(x).

Pafnuty Chebyshev, 1821–1894

Laguerre polynomials
These describe the radial part of the solution of the Schrödinger equation
for a one-electron atom:

L0(x) = 1, L1(x) = −x+ 1,

Lk(x) =
2k + 1− x

k + 1
Lk−1(x)−

k

k + 1
Lk−2(x).

Edmond Laguerre, 1834–1886

33 / 34

Euclid for polynomials

Chebyshev polynomials
The main well-conditioned basis for polynomials used in practical
computations:

T0(x) = 1, T1(x) = x,

Tk(x) = 2xTk−1(x)− Tk−2(x).

Pafnuty Chebyshev, 1821–1894

Laguerre polynomials
These describe the radial part of the solution of the Schrödinger equation
for a one-electron atom:

L0(x) = 1, L1(x) = −x+ 1,

Lk(x) =
2k + 1− x

k + 1
Lk−1(x)−

k

k + 1
Lk−2(x).

Edmond Laguerre, 1834–1886
33 / 34

Euclid for polynomials

Proof.
First note that deg pk = k, by induction.

By the recursive formula, we have

pk+1(x) = αk+1(x)× pk(x) + βk+1 × pk−1(x).

This is exactly the division of pk+1 by pk, since βk+1 × pk−1(x) is of lower degree than pk. Up
to a nonzero scalar (which doesn’t change the roots), pk−1 is the remainder when pk+1 is
divided by pk.

Similarly, pk−2 is the remainder on division of pk by pk−1. Euclid’s algorithm thus iterates until
it terminates with

p2(x) = α2(x)× p1(x) + β2p0(x) = α2(x)× x+ β2 × 1,

so gcd(pk, pk+1) is a nonzero constant (no roots).

34 / 34

Euclid for polynomials

Proof.
First note that deg pk = k, by induction. By the recursive formula, we have

pk+1(x) = αk+1(x)× pk(x) + βk+1 × pk−1(x).

This is exactly the division of pk+1 by pk, since βk+1 × pk−1(x) is of lower degree than pk.

Up
to a nonzero scalar (which doesn’t change the roots), pk−1 is the remainder when pk+1 is
divided by pk.

Similarly, pk−2 is the remainder on division of pk by pk−1. Euclid’s algorithm thus iterates until
it terminates with

p2(x) = α2(x)× p1(x) + β2p0(x) = α2(x)× x+ β2 × 1,

so gcd(pk, pk+1) is a nonzero constant (no roots).

34 / 34

Euclid for polynomials

Proof.
First note that deg pk = k, by induction. By the recursive formula, we have

pk+1(x) = αk+1(x)× pk(x) + βk+1 × pk−1(x).

This is exactly the division of pk+1 by pk, since βk+1 × pk−1(x) is of lower degree than pk. Up
to a nonzero scalar (which doesn’t change the roots), pk−1 is the remainder when pk+1 is
divided by pk.

Similarly, pk−2 is the remainder on division of pk by pk−1. Euclid’s algorithm thus iterates until
it terminates with

p2(x) = α2(x)× p1(x) + β2p0(x) = α2(x)× x+ β2 × 1,

so gcd(pk, pk+1) is a nonzero constant (no roots).

34 / 34

Euclid for polynomials

Proof.
First note that deg pk = k, by induction. By the recursive formula, we have

pk+1(x) = αk+1(x)× pk(x) + βk+1 × pk−1(x).

This is exactly the division of pk+1 by pk, since βk+1 × pk−1(x) is of lower degree than pk. Up
to a nonzero scalar (which doesn’t change the roots), pk−1 is the remainder when pk+1 is
divided by pk.

Similarly, pk−2 is the remainder on division of pk by pk−1. Euclid’s algorithm thus iterates until
it terminates with

p2(x) = α2(x)× p1(x) + β2p0(x) = α2(x)× x+ β2 × 1,

so gcd(pk, pk+1) is a nonzero constant (no roots).

34 / 34

Computational Mathematics
Week 2: Rootfinding and fixed points

Patrick E. Farrell

University of Oxford

1 / 47

Introduction

In the previous lecture we saw that we could use Euclid’s method to compute the common
roots of two polynomials p and q.

This, however, is very limited. We will want to find roots of general (not necessarily
polynomial) functions f : R→ R.

For this, we turn to rootfinding algorithms. There are many different ones, differing in
efficiency, robustness, and applicability.

2 / 47

Introduction

In the previous lecture we saw that we could use Euclid’s method to compute the common
roots of two polynomials p and q.

This, however, is very limited. We will want to find roots of general (not necessarily
polynomial) functions f : R→ R.

For this, we turn to rootfinding algorithms. There are many different ones, differing in
efficiency, robustness, and applicability.

2 / 47

Introduction

Rootfinding problem
Given f : R→ R, find x⋆ ∈ R such that

f(x⋆) = 0.

This problem shows up everywhere. For example, to solve an equation

f1(x) = f2(x),

find a root of f(x) := f1(x)− f2(x).

Another use: if you want to calculate the decimal expansion of a number (like
√
2), set up a

suitable equation, like
x2 − 2 = 0

and apply a rootfinding algorithm.

3 / 47

Introduction

Rootfinding problem
Given f : R→ R, find x⋆ ∈ R such that

f(x⋆) = 0.

This problem shows up everywhere. For example, to solve an equation

f1(x) = f2(x),

find a root of f(x) := f1(x)− f2(x).

Another use: if you want to calculate the decimal expansion of a number (like
√
2), set up a

suitable equation, like
x2 − 2 = 0

and apply a rootfinding algorithm.

3 / 47

Introduction

Rootfinding problem
Given f : R→ R, find x⋆ ∈ R such that

f(x⋆) = 0.

This problem shows up everywhere. For example, to solve an equation

f1(x) = f2(x),

find a root of f(x) := f1(x)− f2(x).

Another use: if you want to calculate the decimal expansion of a number (like
√
2), set up a

suitable equation, like
x2 − 2 = 0

and apply a rootfinding algorithm.
3 / 47

Introduction

The algorithms we meet here will have a different flavour than Euclid’s method.

Think back to some of the questions in Lecture 0:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

Euclid’s method always terminated, always gave the exact answer, and did so in a very small
number of operations.

By contrast, rootfinding algorithms can only give sequences that converge to the root.

Different algorithms will trade off termination, convergence speed, and operation count.

4 / 47

Introduction

The algorithms we meet here will have a different flavour than Euclid’s method.

Think back to some of the questions in Lecture 0:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

Euclid’s method always terminated, always gave the exact answer, and did so in a very small
number of operations.

By contrast, rootfinding algorithms can only give sequences that converge to the root.

Different algorithms will trade off termination, convergence speed, and operation count.

4 / 47

Introduction

The algorithms we meet here will have a different flavour than Euclid’s method.

Think back to some of the questions in Lecture 0:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

Euclid’s method always terminated, always gave the exact answer, and did so in a very small
number of operations.

By contrast, rootfinding algorithms can only give sequences that converge to the root.

Different algorithms will trade off termination, convergence speed, and operation count.

4 / 47

Introduction

The algorithms we meet here will have a different flavour than Euclid’s method.

Think back to some of the questions in Lecture 0:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

Euclid’s method always terminated, always gave the exact answer, and did so in a very small
number of operations.

By contrast, rootfinding algorithms can only give sequences that converge to the root.

Different algorithms will trade off termination, convergence speed, and operation count.

4 / 47

Introduction

The algorithms we meet here will have a different flavour than Euclid’s method.

Think back to some of the questions in Lecture 0:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

Euclid’s method always terminated, always gave the exact answer, and did so in a very small
number of operations.

By contrast, rootfinding algorithms can only give sequences that converge to the root.

Different algorithms will trade off termination, convergence speed, and operation count.

4 / 47

Bisection

Section 2

Bisection

5 / 47

Bisection

The first rootfinding algorithm we will meet is called the bisection method. It is based on the
following theorem, a corollary of the Intermediate Value Theorem.

Bolzano’s theorem (1817)
If f : [a, b]→ R is continuous with f(a)f(b) < 0, then there exists
x⋆ ∈ (a, b) with f(x⋆) = 0.

The statement f(a)f(b) < 0 is just a fancy way of saying f(a) and f(b)
have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!
2. f(c) has the same sign as f(a), so there exists a root in (c, b).
3. f(c) has the same sign as f(b), so there exists a root in (a, c).

6 / 47

Bisection

The first rootfinding algorithm we will meet is called the bisection method. It is based on the
following theorem, a corollary of the Intermediate Value Theorem.

Bolzano’s theorem (1817)
If f : [a, b]→ R is continuous with f(a)f(b) < 0, then there exists
x⋆ ∈ (a, b) with f(x⋆) = 0.

The statement f(a)f(b) < 0 is just a fancy way of saying f(a) and f(b)
have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!
2. f(c) has the same sign as f(a), so there exists a root in (c, b).
3. f(c) has the same sign as f(b), so there exists a root in (a, c).

6 / 47

Bisection

The first rootfinding algorithm we will meet is called the bisection method. It is based on the
following theorem, a corollary of the Intermediate Value Theorem.

Bolzano’s theorem (1817)
If f : [a, b]→ R is continuous with f(a)f(b) < 0, then there exists
x⋆ ∈ (a, b) with f(x⋆) = 0.

The statement f(a)f(b) < 0 is just a fancy way of saying f(a) and f(b)
have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!

2. f(c) has the same sign as f(a), so there exists a root in (c, b).
3. f(c) has the same sign as f(b), so there exists a root in (a, c).

6 / 47

Bisection

The first rootfinding algorithm we will meet is called the bisection method. It is based on the
following theorem, a corollary of the Intermediate Value Theorem.

Bolzano’s theorem (1817)
If f : [a, b]→ R is continuous with f(a)f(b) < 0, then there exists
x⋆ ∈ (a, b) with f(x⋆) = 0.

The statement f(a)f(b) < 0 is just a fancy way of saying f(a) and f(b)
have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!
2. f(c) has the same sign as f(a), so there exists a root in (c, b).

3. f(c) has the same sign as f(b), so there exists a root in (a, c).

6 / 47

Bisection

The first rootfinding algorithm we will meet is called the bisection method. It is based on the
following theorem, a corollary of the Intermediate Value Theorem.

Bolzano’s theorem (1817)
If f : [a, b]→ R is continuous with f(a)f(b) < 0, then there exists
x⋆ ∈ (a, b) with f(x⋆) = 0.

The statement f(a)f(b) < 0 is just a fancy way of saying f(a) and f(b)
have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!
2. f(c) has the same sign as f(a), so there exists a root in (c, b).
3. f(c) has the same sign as f(b), so there exists a root in (a, c).

6 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0

c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1

c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1

f(c1)
a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2

c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3

c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

7 / 47

Bisection

Let’s state this as an algorithm.

Assume f : [a, b]→ R is continuous, f(a)f(b) < 0, and tol > 0.

function bisect(f , a, b, tol)
while |b− a|/2 > tol do

c← (a+ b)/2
if f(c) = 0 then return c
else if f(c)f(b) < 0 then a = c
else if f(a)f(c) < 0 then b = c
end if

end while
return (a+ b)/2

end function

Note this only uses the sign of the output of f(x).

8 / 47

Bisection

Let’s state this as an algorithm.

Assume f : [a, b]→ R is continuous, f(a)f(b) < 0, and tol > 0.

function bisect(f , a, b, tol)
while |b− a|/2 > tol do

c← (a+ b)/2

if f(c) = 0 then return c
else if f(c)f(b) < 0 then a = c
else if f(a)f(c) < 0 then b = c
end if

end while
return (a+ b)/2

end function

Note this only uses the sign of the output of f(x).

8 / 47

Bisection

Let’s state this as an algorithm.

Assume f : [a, b]→ R is continuous, f(a)f(b) < 0, and tol > 0.

function bisect(f , a, b, tol)
while |b− a|/2 > tol do

c← (a+ b)/2
if f(c) = 0 then return c

else if f(c)f(b) < 0 then a = c
else if f(a)f(c) < 0 then b = c
end if

end while
return (a+ b)/2

end function

Note this only uses the sign of the output of f(x).

8 / 47

Bisection

Let’s state this as an algorithm.

Assume f : [a, b]→ R is continuous, f(a)f(b) < 0, and tol > 0.

function bisect(f , a, b, tol)
while |b− a|/2 > tol do

c← (a+ b)/2
if f(c) = 0 then return c
else if f(c)f(b) < 0 then a = c

else if f(a)f(c) < 0 then b = c
end if

end while
return (a+ b)/2

end function

Note this only uses the sign of the output of f(x).

8 / 47

Bisection

Let’s state this as an algorithm.

Assume f : [a, b]→ R is continuous, f(a)f(b) < 0, and tol > 0.

function bisect(f , a, b, tol)
while |b− a|/2 > tol do

c← (a+ b)/2
if f(c) = 0 then return c
else if f(c)f(b) < 0 then a = c
else if f(a)f(c) < 0 then b = c

end if
end while
return (a+ b)/2

end function

Note this only uses the sign of the output of f(x).

8 / 47

Bisection

Let’s state this as an algorithm.

Assume f : [a, b]→ R is continuous, f(a)f(b) < 0, and tol > 0.

function bisect(f , a, b, tol)
while |b− a|/2 > tol do

c← (a+ b)/2
if f(c) = 0 then return c
else if f(c)f(b) < 0 then a = c
else if f(a)f(c) < 0 then b = c
end if

end while

return (a+ b)/2
end function

Note this only uses the sign of the output of f(x).

8 / 47

Bisection

Let’s state this as an algorithm.

Assume f : [a, b]→ R is continuous, f(a)f(b) < 0, and tol > 0.

function bisect(f , a, b, tol)
while |b− a|/2 > tol do

c← (a+ b)/2
if f(c) = 0 then return c
else if f(c)f(b) < 0 then a = c
else if f(a)f(c) < 0 then b = c
end if

end while
return (a+ b)/2

end function

Note this only uses the sign of the output of f(x).

8 / 47

Bisection

Let’s state this as an algorithm.

Assume f : [a, b]→ R is continuous, f(a)f(b) < 0, and tol > 0.

function bisect(f , a, b, tol)
while |b− a|/2 > tol do

c← (a+ b)/2
if f(c) = 0 then return c
else if f(c)f(b) < 0 then a = c
else if f(a)f(c) < 0 then b = c
end if

end while
return (a+ b)/2

end function

Note this only uses the sign of the output of f(x).
8 / 47

Bisection

There’s not much published information on the history of bisection. The
earliest reference Prof. Hollings could find to it was in Cauchy’s Cours
d’analyse (1821).

Lemma
The algorithm always terminates.

Augustin-Louis Cauchy FRS
1789–1857

Proof.
In the k-th iteration of the while loop, either the function returns or it shrinks the interval by a
factor of 2. For any tol > 0, there exists k ∈ N such that tol < |b− a|/2k+1, so the algorithm
must terminate.

9 / 47

Bisection

There’s not much published information on the history of bisection. The
earliest reference Prof. Hollings could find to it was in Cauchy’s Cours
d’analyse (1821).

Lemma
The algorithm always terminates.

Augustin-Louis Cauchy FRS
1789–1857

Proof.
In the k-th iteration of the while loop, either the function returns or it shrinks the interval by a
factor of 2. For any tol > 0, there exists k ∈ N such that tol < |b− a|/2k+1, so the algorithm
must terminate.

9 / 47

Bisection

Let’s do an example. Let’s try to solve x = cosx, so f(x) = x− cosx.

Let’s start with [a, b] = [−10, 10]. f(−10) ≈ −9.16, f(10) ≈ 10.83, so we’re good to go.

c f(c) [a, b]

0 -1 [0, 10]
5 4.71 [0, 5]

2.5 3.30 [0, 2.5]
1.25 0.93 [0, 1.25]
0.625 -0.185 [0.625, 1.25]

The true solution is approximately x ≈ 0.739085, so we’re getting there, slowly.

10 / 47

Bisection

Let’s do an example. Let’s try to solve x = cosx, so f(x) = x− cosx.

Let’s start with [a, b] = [−10, 10]. f(−10) ≈ −9.16, f(10) ≈ 10.83, so we’re good to go.

c f(c) [a, b]

0 -1 [0, 10]

5 4.71 [0, 5]
2.5 3.30 [0, 2.5]
1.25 0.93 [0, 1.25]
0.625 -0.185 [0.625, 1.25]

The true solution is approximately x ≈ 0.739085, so we’re getting there, slowly.

10 / 47

Bisection

Let’s do an example. Let’s try to solve x = cosx, so f(x) = x− cosx.

Let’s start with [a, b] = [−10, 10]. f(−10) ≈ −9.16, f(10) ≈ 10.83, so we’re good to go.

c f(c) [a, b]

0 -1 [0, 10]
5 4.71 [0, 5]

2.5 3.30 [0, 2.5]
1.25 0.93 [0, 1.25]
0.625 -0.185 [0.625, 1.25]

The true solution is approximately x ≈ 0.739085, so we’re getting there, slowly.

10 / 47

Bisection

Let’s do an example. Let’s try to solve x = cosx, so f(x) = x− cosx.

Let’s start with [a, b] = [−10, 10]. f(−10) ≈ −9.16, f(10) ≈ 10.83, so we’re good to go.

c f(c) [a, b]

0 -1 [0, 10]
5 4.71 [0, 5]

2.5 3.30 [0, 2.5]

1.25 0.93 [0, 1.25]
0.625 -0.185 [0.625, 1.25]

The true solution is approximately x ≈ 0.739085, so we’re getting there, slowly.

10 / 47

Bisection

Let’s do an example. Let’s try to solve x = cosx, so f(x) = x− cosx.

Let’s start with [a, b] = [−10, 10]. f(−10) ≈ −9.16, f(10) ≈ 10.83, so we’re good to go.

c f(c) [a, b]

0 -1 [0, 10]
5 4.71 [0, 5]

2.5 3.30 [0, 2.5]
1.25 0.93 [0, 1.25]

0.625 -0.185 [0.625, 1.25]

The true solution is approximately x ≈ 0.739085, so we’re getting there, slowly.

10 / 47

Bisection

Let’s do an example. Let’s try to solve x = cosx, so f(x) = x− cosx.

Let’s start with [a, b] = [−10, 10]. f(−10) ≈ −9.16, f(10) ≈ 10.83, so we’re good to go.

c f(c) [a, b]

0 -1 [0, 10]
5 4.71 [0, 5]

2.5 3.30 [0, 2.5]
1.25 0.93 [0, 1.25]
0.625 -0.185 [0.625, 1.25]

The true solution is approximately x ≈ 0.739085, so we’re getting there, slowly.

10 / 47

Bisection

Let’s do an example. Let’s try to solve x = cosx, so f(x) = x− cosx.

Let’s start with [a, b] = [−10, 10]. f(−10) ≈ −9.16, f(10) ≈ 10.83, so we’re good to go.

c f(c) [a, b]

0 -1 [0, 10]
5 4.71 [0, 5]

2.5 3.30 [0, 2.5]
1.25 0.93 [0, 1.25]
0.625 -0.185 [0.625, 1.25]

The true solution is approximately x ≈ 0.739085, so we’re getting there, slowly.

10 / 47

Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.

3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if f (n)(x⋆) = 0 for all n < k,
and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and disadvantages.

11 / 47

Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.

3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if f (n)(x⋆) = 0 for all n < k,
and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and disadvantages.

11 / 47

Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).

7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if f (n)(x⋆) = 0 for all n < k,
and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and disadvantages.

11 / 47

Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.

7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if f (n)(x⋆) = 0 for all n < k,
and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and disadvantages.

11 / 47

Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.

7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if f (n)(x⋆) = 0 for all n < k,
and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and disadvantages.

11 / 47

Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.

7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if f (n)(x⋆) = 0 for all n < k,
and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and disadvantages.

11 / 47

Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if f (n)(x⋆) = 0 for all n < k,
and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and disadvantages.

11 / 47

Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if f (n)(x⋆) = 0 for all n < k,
and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and disadvantages.

11 / 47

Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if f (n)(x⋆) = 0 for all n < k,
and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and disadvantages.
11 / 47

Rate of convergence of a sequence

Section 3

Rate of convergence of a sequence

12 / 47

Rate of convergence of a sequence

You’ve studied a great deal about whether sequences converge. Now let’s consider: how fast
do they converge?

Definition (Linear convergence of a sequence)
Suppose (xi)→ x⋆. We say the sequence converges linearly if there exists µ ∈ (0, 1) such that

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= µ.

In other words, asymptotically, moving one step along the sequence multiplies the error by a
fixed µ < 1. The µ is called the rate of convergence.

For bisection, the sequence of the midpoints of the intervals converges linearly with µ = 1/2.

13 / 47

Rate of convergence of a sequence

You’ve studied a great deal about whether sequences converge. Now let’s consider: how fast
do they converge?

Definition (Linear convergence of a sequence)
Suppose (xi)→ x⋆. We say the sequence converges linearly if there exists µ ∈ (0, 1) such that

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= µ.

In other words, asymptotically, moving one step along the sequence multiplies the error by a
fixed µ < 1. The µ is called the rate of convergence.

For bisection, the sequence of the midpoints of the intervals converges linearly with µ = 1/2.

13 / 47

Rate of convergence of a sequence

You’ve studied a great deal about whether sequences converge. Now let’s consider: how fast
do they converge?

Definition (Linear convergence of a sequence)
Suppose (xi)→ x⋆. We say the sequence converges linearly if there exists µ ∈ (0, 1) such that

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= µ.

In other words, asymptotically, moving one step along the sequence multiplies the error by a
fixed µ < 1. The µ is called the rate of convergence.

For bisection, the sequence of the midpoints of the intervals converges linearly with µ = 1/2.

13 / 47

Rate of convergence of a sequence

You’ve studied a great deal about whether sequences converge. Now let’s consider: how fast
do they converge?

Definition (Linear convergence of a sequence)
Suppose (xi)→ x⋆. We say the sequence converges linearly if there exists µ ∈ (0, 1) such that

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= µ.

In other words, asymptotically, moving one step along the sequence multiplies the error by a
fixed µ < 1. The µ is called the rate of convergence.

For bisection, the sequence of the midpoints of the intervals converges linearly with µ = 1/2.

13 / 47

Rate of convergence of a sequence

Can you go faster?

Definition (Superlinear convergence of a sequence)
Suppose (xi)→ x⋆. We say the sequence converges superlinearly if

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= 0.

In other words, the sequence converges faster than any linear rate of convergence.

For example, the sequence

(
1

22n
) = (

1

2
,
1

4
,
1

16
,

1

256
,

1

65535
, . . .)→ 0

has the ratio of successive terms going to zero too.

14 / 47

Rate of convergence of a sequence

Can you go faster?

Definition (Superlinear convergence of a sequence)
Suppose (xi)→ x⋆. We say the sequence converges superlinearly if

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= 0.

In other words, the sequence converges faster than any linear rate of convergence.

For example, the sequence

(
1

22n
) = (

1

2
,
1

4
,
1

16
,

1

256
,

1

65535
, . . .)→ 0

has the ratio of successive terms going to zero too.

14 / 47

Rate of convergence of a sequence

Can you go faster?

Definition (Superlinear convergence of a sequence)
Suppose (xi)→ x⋆. We say the sequence converges superlinearly if

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= 0.

In other words, the sequence converges faster than any linear rate of convergence.

For example, the sequence

(
1

22n
) = (

1

2
,
1

4
,
1

16
,

1

256
,

1

65535
, . . .)→ 0

has the ratio of successive terms going to zero too.

14 / 47

Rate of convergence of a sequence

Can you go faster?

Definition (Superlinear convergence of a sequence)
Suppose (xi)→ x⋆. We say the sequence converges superlinearly if

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= 0.

In other words, the sequence converges faster than any linear rate of convergence.

For example, the sequence

(
1

22n
) = (

1

2
,
1

4
,
1

16
,

1

256
,

1

65535
, . . .)→ 0

has the ratio of successive terms going to zero too.
14 / 47

Rate of convergence of a sequence

We can further classify superlinear convergence:

Definition (Order of convergence of a sequence)
Suppose (xi)→ x⋆, superlinearly. The sequence converges with order q if

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|q

= M

for some M > 0 (not necessarily M < 1).

We call q = 2 quadratic convergence, q = 3 cubic convergence, etc.

We will see rootfinding methods with orders of convergence q = 2 and q = 3. To develop
these, we must first understand fixed point iterations.

15 / 47

Rate of convergence of a sequence

We can further classify superlinear convergence:

Definition (Order of convergence of a sequence)
Suppose (xi)→ x⋆, superlinearly. The sequence converges with order q if

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|q

= M

for some M > 0 (not necessarily M < 1).

We call q = 2 quadratic convergence, q = 3 cubic convergence, etc.

We will see rootfinding methods with orders of convergence q = 2 and q = 3. To develop
these, we must first understand fixed point iterations.

15 / 47

Fixed point iterations

Section 4

Fixed point iterations

16 / 47

Fixed point iterations

So far we have considered rootfinding: find x⋆ ∈ R such that f(x⋆) = 0.

It will be very useful to consider finding fixed points: given g : [a, b]→ R, find x⋆ ∈ [a, b] such
that g(x⋆) = x⋆.

We can translate between rootfinding problems and fixed point problems. For example, if you
want to find the fixed points g(x) = x, then you can find the roots of f(x) := g(x)− x.

Vice versa, if you have a rootfinding problem f(x) = 0, you could search for fixed points of
g(x) := f(x) + x. There are other ways of transforming between them, of course.

Transforming between the two problems is useful because there are powerful theorems that
apply to finding fixed points. There’s even a whole course, C4.6 Fixed Point Methods for
Nonlinear PDEs, on this subject.

17 / 47

Fixed point iterations

So far we have considered rootfinding: find x⋆ ∈ R such that f(x⋆) = 0.

It will be very useful to consider finding fixed points: given g : [a, b]→ R, find x⋆ ∈ [a, b] such
that g(x⋆) = x⋆.

We can translate between rootfinding problems and fixed point problems. For example, if you
want to find the fixed points g(x) = x, then you can find the roots of f(x) := g(x)− x.

Vice versa, if you have a rootfinding problem f(x) = 0, you could search for fixed points of
g(x) := f(x) + x. There are other ways of transforming between them, of course.

Transforming between the two problems is useful because there are powerful theorems that
apply to finding fixed points. There’s even a whole course, C4.6 Fixed Point Methods for
Nonlinear PDEs, on this subject.

17 / 47

Fixed point iterations

So far we have considered rootfinding: find x⋆ ∈ R such that f(x⋆) = 0.

It will be very useful to consider finding fixed points: given g : [a, b]→ R, find x⋆ ∈ [a, b] such
that g(x⋆) = x⋆.

We can translate between rootfinding problems and fixed point problems. For example, if you
want to find the fixed points g(x) = x, then you can find the roots of f(x) := g(x)− x.

Vice versa, if you have a rootfinding problem f(x) = 0, you could search for fixed points of
g(x) := f(x) + x. There are other ways of transforming between them, of course.

Transforming between the two problems is useful because there are powerful theorems that
apply to finding fixed points. There’s even a whole course, C4.6 Fixed Point Methods for
Nonlinear PDEs, on this subject.

17 / 47

Fixed point iterations

So far we have considered rootfinding: find x⋆ ∈ R such that f(x⋆) = 0.

It will be very useful to consider finding fixed points: given g : [a, b]→ R, find x⋆ ∈ [a, b] such
that g(x⋆) = x⋆.

We can translate between rootfinding problems and fixed point problems. For example, if you
want to find the fixed points g(x) = x, then you can find the roots of f(x) := g(x)− x.

Vice versa, if you have a rootfinding problem f(x) = 0, you could search for fixed points of
g(x) := f(x) + x. There are other ways of transforming between them, of course.

Transforming between the two problems is useful because there are powerful theorems that
apply to finding fixed points. There’s even a whole course, C4.6 Fixed Point Methods for
Nonlinear PDEs, on this subject.

17 / 47

Fixed point iterations

So far we have considered rootfinding: find x⋆ ∈ R such that f(x⋆) = 0.

It will be very useful to consider finding fixed points: given g : [a, b]→ R, find x⋆ ∈ [a, b] such
that g(x⋆) = x⋆.

We can translate between rootfinding problems and fixed point problems. For example, if you
want to find the fixed points g(x) = x, then you can find the roots of f(x) := g(x)− x.

Vice versa, if you have a rootfinding problem f(x) = 0, you could search for fixed points of
g(x) := f(x) + x. There are other ways of transforming between them, of course.

Transforming between the two problems is useful because there are powerful theorems that
apply to finding fixed points. There’s even a whole course, C4.6 Fixed Point Methods for
Nonlinear PDEs, on this subject.

17 / 47

Fixed point iterations

When can we show fixed points exist?

Theorem (Brouwer’s fixed point theorem)
If g : [a, b]→ [a, b] is continuous, then it has a fixed point.

Luitzen Brouwer, 1881–1966

Warning (endomorphism)
Note that g must send [a, b] to [a, b], i.e. is an endomorphism. This result does not hold for
general g : [a, b]→ R, such as g(x) = x+ 1.

18 / 47

Fixed point iterations

When can we show fixed points exist?

Theorem (Brouwer’s fixed point theorem)
If g : [a, b]→ [a, b] is continuous, then it has a fixed point.

Luitzen Brouwer, 1881–1966

Warning (endomorphism)
Note that g must send [a, b] to [a, b], i.e. is an endomorphism. This result does not hold for
general g : [a, b]→ R, such as g(x) = x+ 1.

18 / 47

Fixed point iterations

Proof.
Since g(x) ∈ [a, b], we have a ≤ g(x) ≤ b for all x ∈ [a, b]. Thus f(x) := g(x)− x has
f(a) ≥ 0 and f(b) ≤ 0.

If either inequality is an equality, we have a fixed point. So assume that f(a) > 0 and
f(b) < 0.

A root x⋆ of f(x) thus exists in (a, b) by Bolzano’s Theorem, with g(x⋆) = x⋆.

19 / 47

Fixed point iterations

Proof.
Since g(x) ∈ [a, b], we have a ≤ g(x) ≤ b for all x ∈ [a, b]. Thus f(x) := g(x)− x has
f(a) ≥ 0 and f(b) ≤ 0.

If either inequality is an equality, we have a fixed point. So assume that f(a) > 0 and
f(b) < 0.

A root x⋆ of f(x) thus exists in (a, b) by Bolzano’s Theorem, with g(x⋆) = x⋆.

19 / 47

Fixed point iterations

Proof.
Since g(x) ∈ [a, b], we have a ≤ g(x) ≤ b for all x ∈ [a, b]. Thus f(x) := g(x)− x has
f(a) ≥ 0 and f(b) ≤ 0.

If either inequality is an equality, we have a fixed point. So assume that f(a) > 0 and
f(b) < 0.

A root x⋆ of f(x) thus exists in (a, b) by Bolzano’s Theorem, with g(x⋆) = x⋆.

19 / 47

Fixed point iterations

That’s not all! You can get uniqueness of the fixed point under stronger conditions.

Theorem
If g : [a, b]→ [a, b] is differentiable with |g′(x)| < 1 for every x ∈ (a, b), then g has a unique
fixed point in (a, b).

Theorem (Mean value theorem, 1823)
If g : [a, b]→ R is differentiable, then there exists some c ∈ (a, b) such that

g′(c) =
g(b)− g(a)

b− a
.

Augustin-Louis Cauchy FRS
1789–1857

20 / 47

Fixed point iterations

That’s not all! You can get uniqueness of the fixed point under stronger conditions.

Theorem
If g : [a, b]→ [a, b] is differentiable with |g′(x)| < 1 for every x ∈ (a, b), then g has a unique
fixed point in (a, b).

Theorem (Mean value theorem, 1823)
If g : [a, b]→ R is differentiable, then there exists some c ∈ (a, b) such that

g′(c) =
g(b)− g(a)

b− a
.

Augustin-Louis Cauchy FRS
1789–1857

20 / 47

Fixed point iterations

That’s not all! You can get uniqueness of the fixed point under stronger conditions.

Theorem
If g : [a, b]→ [a, b] is differentiable with |g′(x)| < 1 for every x ∈ (a, b), then g has a unique
fixed point in (a, b).

Theorem (Mean value theorem, 1823)
If g : [a, b]→ R is differentiable, then there exists some c ∈ (a, b) such that

g′(c) =
g(b)− g(a)

b− a
.

Augustin-Louis Cauchy FRS
1789–1857

20 / 47

Fixed point iterations

Proof.
There must be at least one fixed point of g, since it is continuous.

Suppose p and q are two fixed points of g in (a, b), then we have

g(p) = p, g(q) = q.

Assume without loss of generality that p < q. Applying the MVT in [p, q] ⊂ [a, b], we find that
there exists r ∈ (p, q) such that

g′(r) =
g(q)− g(p)

q − p
=

q − p

q − p
= 1.

But |g′(r)| < 1 by assumption, a contradiction.

How do we turn this into an algorithm?

Take x0 ∈ [a, b] and set xi+1 = g(xi)!

21 / 47

Fixed point iterations

Proof.
There must be at least one fixed point of g, since it is continuous.

Suppose p and q are two fixed points of g in (a, b), then we have

g(p) = p, g(q) = q.

Assume without loss of generality that p < q. Applying the MVT in [p, q] ⊂ [a, b], we find that
there exists r ∈ (p, q) such that

g′(r) =
g(q)− g(p)

q − p
=

q − p

q − p
= 1.

But |g′(r)| < 1 by assumption, a contradiction.

How do we turn this into an algorithm?

Take x0 ∈ [a, b] and set xi+1 = g(xi)!

21 / 47

Fixed point iterations

Proof.
There must be at least one fixed point of g, since it is continuous.

Suppose p and q are two fixed points of g in (a, b), then we have

g(p) = p, g(q) = q.

Assume without loss of generality that p < q. Applying the MVT in [p, q] ⊂ [a, b], we find that
there exists r ∈ (p, q) such that

g′(r) =
g(q)− g(p)

q − p
=

q − p

q − p
= 1.

But |g′(r)| < 1 by assumption, a contradiction.

How do we turn this into an algorithm?

Take x0 ∈ [a, b] and set xi+1 = g(xi)!

21 / 47

Fixed point iterations

Proof.
There must be at least one fixed point of g, since it is continuous.

Suppose p and q are two fixed points of g in (a, b), then we have

g(p) = p, g(q) = q.

Assume without loss of generality that p < q. Applying the MVT in [p, q] ⊂ [a, b], we find that
there exists r ∈ (p, q) such that

g′(r) =
g(q)− g(p)

q − p
=

q − p

q − p
= 1.

But |g′(r)| < 1 by assumption, a contradiction.

How do we turn this into an algorithm?

Take x0 ∈ [a, b] and set xi+1 = g(xi)!

21 / 47

Fixed point iterations

Proof.
There must be at least one fixed point of g, since it is continuous.

Suppose p and q are two fixed points of g in (a, b), then we have

g(p) = p, g(q) = q.

Assume without loss of generality that p < q. Applying the MVT in [p, q] ⊂ [a, b], we find that
there exists r ∈ (p, q) such that

g′(r) =
g(q)− g(p)

q − p
=

q − p

q − p
= 1.

But |g′(r)| < 1 by assumption, a contradiction.

How do we turn this into an algorithm?

Take x0 ∈ [a, b] and set xi+1 = g(xi)!
21 / 47

Fixed point iterations

Assume g : [a, b]→ [a, b], and x0 ∈ [a, b].

function fixedpoint(g, x0, tol)
x← x0
while |g(x)− x| > tol do

x← g(x)
end while
return g(x)

end function

Our goal is to investigate when this converges.

22 / 47

Fixed point iterations

Assume g : [a, b]→ [a, b], and x0 ∈ [a, b].

function fixedpoint(g, x0, tol)
x← x0
while |g(x)− x| > tol do

x← g(x)
end while

return g(x)
end function

Our goal is to investigate when this converges.

22 / 47

Fixed point iterations

Assume g : [a, b]→ [a, b], and x0 ∈ [a, b].

function fixedpoint(g, x0, tol)
x← x0
while |g(x)− x| > tol do

x← g(x)
end while
return g(x)

end function

Our goal is to investigate when this converges.

22 / 47

Fixed point iterations

Assume g : [a, b]→ [a, b], and x0 ∈ [a, b].

function fixedpoint(g, x0, tol)
x← x0
while |g(x)− x| > tol do

x← g(x)
end while
return g(x)

end function

Our goal is to investigate when this converges.

22 / 47

Fixed point iterations

23 / 47

Fixed point iterations

23 / 47

Fixed point iterations

23 / 47

Fixed point iterations

23 / 47

Fixed point iterations

23 / 47

Fixed point iterations

23 / 47

Fixed point iterations

23 / 47

Fixed point iterations

23 / 47

The contraction mapping theorem

Section 5

The contraction mapping theorem

24 / 47

The contraction mapping theorem

Let’s recall the setting. We have g : [a, b]→ [a, b] with |g′(x)| < 1 for x ∈ (a, b), and we want
to find fixed points x = g(x). We know that g has a unique fixed point x⋆.

We then proposed the iteration scheme: take any x0 ∈ [a, b], and set

xi+1 = g(xi)

until convergence.

Thus, we are checking x0, g(x0), g(g(x0)), . . . to find the unique fixed point.

This algorithm doesn’t require derivatives. Can we devise conditions for convergence that
don’t require derivatives? We’ll see this next.

25 / 47

The contraction mapping theorem

Let’s recall the setting. We have g : [a, b]→ [a, b] with |g′(x)| < 1 for x ∈ (a, b), and we want
to find fixed points x = g(x). We know that g has a unique fixed point x⋆.

We then proposed the iteration scheme: take any x0 ∈ [a, b], and set

xi+1 = g(xi)

until convergence.

Thus, we are checking x0, g(x0), g(g(x0)), . . . to find the unique fixed point.

This algorithm doesn’t require derivatives. Can we devise conditions for convergence that
don’t require derivatives? We’ll see this next.

25 / 47

The contraction mapping theorem

Let’s recall the setting. We have g : [a, b]→ [a, b] with |g′(x)| < 1 for x ∈ (a, b), and we want
to find fixed points x = g(x). We know that g has a unique fixed point x⋆.

We then proposed the iteration scheme: take any x0 ∈ [a, b], and set

xi+1 = g(xi)

until convergence.

Thus, we are checking x0, g(x0), g(g(x0)), . . . to find the unique fixed point.

This algorithm doesn’t require derivatives. Can we devise conditions for convergence that
don’t require derivatives? We’ll see this next.

25 / 47

The contraction mapping theorem

Definition (Contraction)
A function g : [a, b]→ [a, b] is called a contraction if there exists a constant 0 ≤ γ < 1 such
that

|g(x)− g(y)| ≤ γ|x− y|

for all x, y ∈ [a, b].

Example
Any differentiable g : [a, b]→ [a, b] with |g′(x)| ≤ γ < 1 for x ∈ (a, b) is a contraction. For
x, y ∈ [a, b], by the MVT there exists c ∈ (x, y) such that

|g(x)− g(y)| = |g′(c)(x− y)| ≤ γ|x− y|.

Not all contractions are differentiable. For example,
g(x) = |x|/2

is a contraction with γ = 1/2, but is not differentiable.

26 / 47

The contraction mapping theorem

Definition (Contraction)
A function g : [a, b]→ [a, b] is called a contraction if there exists a constant 0 ≤ γ < 1 such
that

|g(x)− g(y)| ≤ γ|x− y|

for all x, y ∈ [a, b].

Example
Any differentiable g : [a, b]→ [a, b] with |g′(x)| ≤ γ < 1 for x ∈ (a, b) is a contraction. For
x, y ∈ [a, b], by the MVT there exists c ∈ (x, y) such that

|g(x)− g(y)| = |g′(c)(x− y)| ≤ γ|x− y|.

Not all contractions are differentiable. For example,
g(x) = |x|/2

is a contraction with γ = 1/2, but is not differentiable.

26 / 47

The contraction mapping theorem

Definition (Contraction)
A function g : [a, b]→ [a, b] is called a contraction if there exists a constant 0 ≤ γ < 1 such
that

|g(x)− g(y)| ≤ γ|x− y|

for all x, y ∈ [a, b].

Example
Any differentiable g : [a, b]→ [a, b] with |g′(x)| ≤ γ < 1 for x ∈ (a, b) is a contraction. For
x, y ∈ [a, b], by the MVT there exists c ∈ (x, y) such that

|g(x)− g(y)| = |g′(c)(x− y)| ≤ γ|x− y|.

Not all contractions are differentiable. For example,
g(x) = |x|/2

is a contraction with γ = 1/2, but is not differentiable.
26 / 47

The contraction mapping theorem

Contraction mapping theorem (1922)
If g : [a, b]→ [a, b] is a contraction, then it has a unique fixed point x⋆, and
the iteration scheme xi+1 = g(xi) converges at least linearly to x⋆ for any
x0 ∈ [a, b].

Banach proved his theorem on more general complete metric spaces.

Banach was a Pole who spent his entire academic career in Lwów (now
Lviv).

Stefan Banach, 1892–1945

27 / 47

The contraction mapping theorem

Contraction mapping theorem (1922)
If g : [a, b]→ [a, b] is a contraction, then it has a unique fixed point x⋆, and
the iteration scheme xi+1 = g(xi) converges at least linearly to x⋆ for any
x0 ∈ [a, b].

Banach proved his theorem on more general complete metric spaces.

Banach was a Pole who spent his entire academic career in Lwów (now
Lviv).

Stefan Banach, 1892–1945

27 / 47

The contraction mapping theorem

Proof.
We prove the theorem in stages. First, we show g is continuous, and thus must have a fixed
point.

If γ = 0 then g(x) = const which is continuous, so assume γ > 0. Take arbitrary ε > 0 and
choose δ = ε/γ. Then if |x− y| < δ, we have

|x− y| < ε/γ =⇒ γ|x− y| < ε,

and since |g(x)− g(y)| ≤ γ|x− y| by assumption, |g(x)− g(y)| < ε.

We thus know by Brouwer’s theorem that g must have a fixed point.

28 / 47

The contraction mapping theorem

Proof.
We prove the theorem in stages. First, we show g is continuous, and thus must have a fixed
point.

If γ = 0 then g(x) = const which is continuous, so assume γ > 0. Take arbitrary ε > 0 and
choose δ = ε/γ. Then if |x− y| < δ, we have

|x− y| < ε/γ =⇒ γ|x− y| < ε,

and since |g(x)− g(y)| ≤ γ|x− y| by assumption, |g(x)− g(y)| < ε.

We thus know by Brouwer’s theorem that g must have a fixed point.

28 / 47

The contraction mapping theorem

Proof.
We prove the theorem in stages. First, we show g is continuous, and thus must have a fixed
point.

If γ = 0 then g(x) = const which is continuous, so assume γ > 0. Take arbitrary ε > 0 and
choose δ = ε/γ. Then if |x− y| < δ, we have

|x− y| < ε/γ =⇒ γ|x− y| < ε,

and since |g(x)− g(y)| ≤ γ|x− y| by assumption, |g(x)− g(y)| < ε.

We thus know by Brouwer’s theorem that g must have a fixed point.

28 / 47

The contraction mapping theorem

Proof.
We now show that the fixed point of g is unique. Suppose p and q are two fixed points of g.
Then g(p) = p and g(q) = q, so

|p− q| = |g(p)− g(q)| ≤ γ|p− q|

and since γ < 1, this can only be satisfied if |p− q| = 0, so p = q.

29 / 47

The contraction mapping theorem

Proof.
We now show convergence for arbitrary x0 ∈ [a, b]. Recall that xi = g(xi−1) and consider

|xi − x⋆| = |g(xi−1)− g(x⋆)| ≤ γ|xi−1 − x⋆|

≤ γ2|xi−2 − x⋆|
≤ γi|x0 − x⋆|.

Since γ < 1, γi → 0, while |x0 − x⋆| is fixed. Thus

lim
i→∞
|xi − x⋆| = 0,

i.e. xi → x⋆. Since
|xi − x⋆|
|xi−1 − x⋆|

≤ γ,

the convergence is at least linear with rate γ < 1.

30 / 47

The contraction mapping theorem

Proof.
We now show convergence for arbitrary x0 ∈ [a, b]. Recall that xi = g(xi−1) and consider

|xi − x⋆| = |g(xi−1)− g(x⋆)| ≤ γ|xi−1 − x⋆|
≤ γ2|xi−2 − x⋆|

≤ γi|x0 − x⋆|.

Since γ < 1, γi → 0, while |x0 − x⋆| is fixed. Thus

lim
i→∞
|xi − x⋆| = 0,

i.e. xi → x⋆. Since
|xi − x⋆|
|xi−1 − x⋆|

≤ γ,

the convergence is at least linear with rate γ < 1.

30 / 47

The contraction mapping theorem

Proof.
We now show convergence for arbitrary x0 ∈ [a, b]. Recall that xi = g(xi−1) and consider

|xi − x⋆| = |g(xi−1)− g(x⋆)| ≤ γ|xi−1 − x⋆|
≤ γ2|xi−2 − x⋆|
≤ γi|x0 − x⋆|.

Since γ < 1, γi → 0, while |x0 − x⋆| is fixed. Thus

lim
i→∞
|xi − x⋆| = 0,

i.e. xi → x⋆. Since
|xi − x⋆|
|xi−1 − x⋆|

≤ γ,

the convergence is at least linear with rate γ < 1.

30 / 47

The contraction mapping theorem

Proof.
We now show convergence for arbitrary x0 ∈ [a, b]. Recall that xi = g(xi−1) and consider

|xi − x⋆| = |g(xi−1)− g(x⋆)| ≤ γ|xi−1 − x⋆|
≤ γ2|xi−2 − x⋆|
≤ γi|x0 − x⋆|.

Since γ < 1, γi → 0, while |x0 − x⋆| is fixed. Thus

lim
i→∞
|xi − x⋆| = 0,

i.e. xi → x⋆.

Since
|xi − x⋆|
|xi−1 − x⋆|

≤ γ,

the convergence is at least linear with rate γ < 1.

30 / 47

The contraction mapping theorem

Proof.
We now show convergence for arbitrary x0 ∈ [a, b]. Recall that xi = g(xi−1) and consider

|xi − x⋆| = |g(xi−1)− g(x⋆)| ≤ γ|xi−1 − x⋆|
≤ γ2|xi−2 − x⋆|
≤ γi|x0 − x⋆|.

Since γ < 1, γi → 0, while |x0 − x⋆| is fixed. Thus

lim
i→∞
|xi − x⋆| = 0,

i.e. xi → x⋆. Since
|xi − x⋆|
|xi−1 − x⋆|

≤ γ,

the convergence is at least linear with rate γ < 1.
30 / 47

The contraction mapping theorem

Let’s review the conditions for our theorems.

Existence of fixed point: g : [a, b]→ [a, b] continuous.

Uniqueness of fixed point: g differentiable with |g′(x)| < 1 for all x ∈ (a, b).

Contraction mapping theorem: g a contraction, i.e. with |g′(x)| ≤ γ < 1 for all x ∈ (a, b) in
the differentiable case.

Let’s explore some examples on the edges of these results.

31 / 47

The contraction mapping theorem

Let’s review the conditions for our theorems.

Existence of fixed point: g : [a, b]→ [a, b] continuous.

Uniqueness of fixed point: g differentiable with |g′(x)| < 1 for all x ∈ (a, b).

Contraction mapping theorem: g a contraction, i.e. with |g′(x)| ≤ γ < 1 for all x ∈ (a, b) in
the differentiable case.

Let’s explore some examples on the edges of these results.

31 / 47

The contraction mapping theorem

Let’s review the conditions for our theorems.

Existence of fixed point: g : [a, b]→ [a, b] continuous.

Uniqueness of fixed point: g differentiable with |g′(x)| < 1 for all x ∈ (a, b).

Contraction mapping theorem: g a contraction, i.e. with |g′(x)| ≤ γ < 1 for all x ∈ (a, b) in
the differentiable case.

Let’s explore some examples on the edges of these results.

31 / 47

The contraction mapping theorem

Let’s review the conditions for our theorems.

Existence of fixed point: g : [a, b]→ [a, b] continuous.

Uniqueness of fixed point: g differentiable with |g′(x)| < 1 for all x ∈ (a, b).

Contraction mapping theorem: g a contraction, i.e. with |g′(x)| ≤ γ < 1 for all x ∈ (a, b) in
the differentiable case.

Let’s explore some examples on the edges of these results.

31 / 47

The contraction mapping theorem

Let’s review the conditions for our theorems.

Existence of fixed point: g : [a, b]→ [a, b] continuous.

Uniqueness of fixed point: g differentiable with |g′(x)| < 1 for all x ∈ (a, b).

Contraction mapping theorem: g a contraction, i.e. with |g′(x)| ≤ γ < 1 for all x ∈ (a, b) in
the differentiable case.

Let’s explore some examples on the edges of these results.

31 / 47

The contraction mapping theorem

First, let’s consider

g : [0, 1]→ [0, 1], g(x) = x.

This is differentiable but has |g′(x)| = 1. Clearly this has an infinite number of fixed points.

You can have a unique fixed point of a differentiable function without being a contraction. An
example is

g : [0, π]→ [0, 1] ⊂ [0, π], g : x 7→ sinx.

This has |g′(x)| < 1 for x ∈ (0, π), so has a unique fixed point x⋆ = 0. But it is not a
contraction, since g′(0) = cos (0) = 1; there is no γ < 1 such that |g′(x)| ≤ γ on (0, π). The
fixed point iteration converges, but so slowly as to be absolutely useless.

32 / 47

The contraction mapping theorem

First, let’s consider

g : [0, 1]→ [0, 1], g(x) = x.

This is differentiable but has |g′(x)| = 1. Clearly this has an infinite number of fixed points.

You can have a unique fixed point of a differentiable function without being a contraction. An
example is

g : [0, π]→ [0, 1] ⊂ [0, π], g : x 7→ sinx.

This has |g′(x)| < 1 for x ∈ (0, π), so has a unique fixed point x⋆ = 0. But it is not a
contraction, since g′(0) = cos (0) = 1; there is no γ < 1 such that |g′(x)| ≤ γ on (0, π). The
fixed point iteration converges, but so slowly as to be absolutely useless.

32 / 47

Example

Section 6

Example

33 / 47

Example

Suppose we wish to find the roots of f(x) = x2 − x− 1 = 0. (Its roots are the golden ratio
ϕ ≈ 1.61834 and its conjugate −ϕ−1 ≈ −0.618034.)

Let’s manipulate f to recast the problem as a fixed point problem. There are many ways to do
this.
Fixed point iteration A

x2 − x− 1 = 0 =⇒ x2 = x+ 1 =⇒ x = (x+ 1)/x =: gA(x)

Fixed point iteration B
x2 − x− 1 = 0 =⇒ x = x2 − 1 =: gB(x)

Fixed point iteration C
x2 − x− 1 = 0 =⇒ x(x− 1) = 1 =⇒ x = 1/(x− 1) =: gC(x)

34 / 47

Example

Suppose we wish to find the roots of f(x) = x2 − x− 1 = 0. (Its roots are the golden ratio
ϕ ≈ 1.61834 and its conjugate −ϕ−1 ≈ −0.618034.)

Let’s manipulate f to recast the problem as a fixed point problem. There are many ways to do
this.
Fixed point iteration A

x2 − x− 1 = 0

=⇒ x2 = x+ 1 =⇒ x = (x+ 1)/x =: gA(x)

Fixed point iteration B
x2 − x− 1 = 0 =⇒ x = x2 − 1 =: gB(x)

Fixed point iteration C
x2 − x− 1 = 0 =⇒ x(x− 1) = 1 =⇒ x = 1/(x− 1) =: gC(x)

34 / 47

Example

Suppose we wish to find the roots of f(x) = x2 − x− 1 = 0. (Its roots are the golden ratio
ϕ ≈ 1.61834 and its conjugate −ϕ−1 ≈ −0.618034.)

Let’s manipulate f to recast the problem as a fixed point problem. There are many ways to do
this.
Fixed point iteration A

x2 − x− 1 = 0 =⇒ x2 = x+ 1

=⇒ x = (x+ 1)/x =: gA(x)

Fixed point iteration B
x2 − x− 1 = 0 =⇒ x = x2 − 1 =: gB(x)

Fixed point iteration C
x2 − x− 1 = 0 =⇒ x(x− 1) = 1 =⇒ x = 1/(x− 1) =: gC(x)

34 / 47

Example

Suppose we wish to find the roots of f(x) = x2 − x− 1 = 0. (Its roots are the golden ratio
ϕ ≈ 1.61834 and its conjugate −ϕ−1 ≈ −0.618034.)

Let’s manipulate f to recast the problem as a fixed point problem. There are many ways to do
this.
Fixed point iteration A

x2 − x− 1 = 0 =⇒ x2 = x+ 1 =⇒ x = (x+ 1)/x =: gA(x)

Fixed point iteration B
x2 − x− 1 = 0 =⇒ x = x2 − 1 =: gB(x)

Fixed point iteration C
x2 − x− 1 = 0 =⇒ x(x− 1) = 1 =⇒ x = 1/(x− 1) =: gC(x)

34 / 47

Example

Suppose we wish to find the roots of f(x) = x2 − x− 1 = 0. (Its roots are the golden ratio
ϕ ≈ 1.61834 and its conjugate −ϕ−1 ≈ −0.618034.)

Let’s manipulate f to recast the problem as a fixed point problem. There are many ways to do
this.
Fixed point iteration A

x2 − x− 1 = 0 =⇒ x2 = x+ 1 =⇒ x = (x+ 1)/x =: gA(x)

Fixed point iteration B
x2 − x− 1 = 0

=⇒ x = x2 − 1 =: gB(x)

Fixed point iteration C
x2 − x− 1 = 0 =⇒ x(x− 1) = 1 =⇒ x = 1/(x− 1) =: gC(x)

34 / 47

Example

Suppose we wish to find the roots of f(x) = x2 − x− 1 = 0. (Its roots are the golden ratio
ϕ ≈ 1.61834 and its conjugate −ϕ−1 ≈ −0.618034.)

Let’s manipulate f to recast the problem as a fixed point problem. There are many ways to do
this.
Fixed point iteration A

x2 − x− 1 = 0 =⇒ x2 = x+ 1 =⇒ x = (x+ 1)/x =: gA(x)

Fixed point iteration B
x2 − x− 1 = 0 =⇒ x = x2 − 1 =: gB(x)

Fixed point iteration C
x2 − x− 1 = 0 =⇒ x(x− 1) = 1 =⇒ x = 1/(x− 1) =: gC(x)

34 / 47

Example

Suppose we wish to find the roots of f(x) = x2 − x− 1 = 0. (Its roots are the golden ratio
ϕ ≈ 1.61834 and its conjugate −ϕ−1 ≈ −0.618034.)

Let’s manipulate f to recast the problem as a fixed point problem. There are many ways to do
this.
Fixed point iteration A

x2 − x− 1 = 0 =⇒ x2 = x+ 1 =⇒ x = (x+ 1)/x =: gA(x)

Fixed point iteration B
x2 − x− 1 = 0 =⇒ x = x2 − 1 =: gB(x)

Fixed point iteration C
x2 − x− 1 = 0

=⇒ x(x− 1) = 1 =⇒ x = 1/(x− 1) =: gC(x)

34 / 47

Example

Suppose we wish to find the roots of f(x) = x2 − x− 1 = 0. (Its roots are the golden ratio
ϕ ≈ 1.61834 and its conjugate −ϕ−1 ≈ −0.618034.)

Let’s manipulate f to recast the problem as a fixed point problem. There are many ways to do
this.
Fixed point iteration A

x2 − x− 1 = 0 =⇒ x2 = x+ 1 =⇒ x = (x+ 1)/x =: gA(x)

Fixed point iteration B
x2 − x− 1 = 0 =⇒ x = x2 − 1 =: gB(x)

Fixed point iteration C
x2 − x− 1 = 0 =⇒ x(x− 1) = 1

=⇒ x = 1/(x− 1) =: gC(x)

34 / 47

Example

Suppose we wish to find the roots of f(x) = x2 − x− 1 = 0. (Its roots are the golden ratio
ϕ ≈ 1.61834 and its conjugate −ϕ−1 ≈ −0.618034.)

Let’s manipulate f to recast the problem as a fixed point problem. There are many ways to do
this.
Fixed point iteration A

x2 − x− 1 = 0 =⇒ x2 = x+ 1 =⇒ x = (x+ 1)/x =: gA(x)

Fixed point iteration B
x2 − x− 1 = 0 =⇒ x = x2 − 1 =: gB(x)

Fixed point iteration C
x2 − x− 1 = 0 =⇒ x(x− 1) = 1 =⇒ x = 1/(x− 1) =: gC(x)

34 / 47

Example

Comment
Rootfinding with fixed point iteration doesn’t typically rely on manual manipulation like this.

We’ll see generic ways of transforming a rootfinding problem into a fixed point problem that
work for very broad classes of functions.

35 / 47

Example

If we run the fixed point iteration with x0 = 1.1, we get

iteration gA(x) = (x+ 1)/x gB(x) = x2 − 1 gC(x) = 1/(x− 1)

1 1.909091 0.210000 10.00000
2 1.523810 -0.955900 0.111111
3 1.656250 -0.086255 -1.125000
4 1.603774 -0.992560 -0.470588
5 1.623529 -0.014825 -0.680000
6 1.615942 -0.999780 -0.595238
7 1.618834 -0.000439 -0.626866
8 1.617729 -1.000000 -0.614679
9 1.618151 -0.000000 -0.619318
10 1.617989 -1.000000 -0.617544

Can we explain this?

36 / 47

Example

If we run the fixed point iteration with x0 = 1.1, we get

iteration gA(x) = (x+ 1)/x gB(x) = x2 − 1 gC(x) = 1/(x− 1)

1 1.909091 0.210000 10.00000
2 1.523810 -0.955900 0.111111
3 1.656250 -0.086255 -1.125000
4 1.603774 -0.992560 -0.470588
5 1.623529 -0.014825 -0.680000
6 1.615942 -0.999780 -0.595238
7 1.618834 -0.000439 -0.626866
8 1.617729 -1.000000 -0.614679
9 1.618151 -0.000000 -0.619318
10 1.617989 -1.000000 -0.617544

Can we explain this?
36 / 47

Example

Let’s check if we can find γ and [a, b] such that g([a, b]) ⊂ [a, b] and |g′(x)| ≤ γ < 1 on (a, b).

Case A: g(x) = (x+ 1)/x

Its derivative is g′(x) = −1/x2. On [a, b] = [1, 2] this is increasing, but g′(1) = −1. So let’s
try [a, b] = [1.1, 2]. We then have γ = |g′(1.1)| ≈ 0.826 < 1.

We also need to check that g([a, b]) ⊂ [a, b]. g(x) = 1 + 1/x, so the function is decreasing on
[a, b]. Checking, we find g(1.1) = 1.9 and g(2) = 1.5, so this is satisfied.

Banach’s contraction mapping theorem thus applies.

37 / 47

Example

Let’s check if we can find γ and [a, b] such that g([a, b]) ⊂ [a, b] and |g′(x)| ≤ γ < 1 on (a, b).

Case A: g(x) = (x+ 1)/x

Its derivative is g′(x) = −1/x2. On [a, b] = [1, 2] this is increasing, but g′(1) = −1. So let’s
try [a, b] = [1.1, 2]. We then have γ = |g′(1.1)| ≈ 0.826 < 1.

We also need to check that g([a, b]) ⊂ [a, b]. g(x) = 1 + 1/x, so the function is decreasing on
[a, b]. Checking, we find g(1.1) = 1.9 and g(2) = 1.5, so this is satisfied.

Banach’s contraction mapping theorem thus applies.

37 / 47

Example

Let’s check if we can find γ and [a, b] such that g([a, b]) ⊂ [a, b] and |g′(x)| ≤ γ < 1 on (a, b).

Case A: g(x) = (x+ 1)/x

Its derivative is g′(x) = −1/x2. On [a, b] = [1, 2] this is increasing, but g′(1) = −1. So let’s
try [a, b] = [1.1, 2]. We then have γ = |g′(1.1)| ≈ 0.826 < 1.

We also need to check that g([a, b]) ⊂ [a, b]. g(x) = 1 + 1/x, so the function is decreasing on
[a, b]. Checking, we find g(1.1) = 1.9 and g(2) = 1.5, so this is satisfied.

Banach’s contraction mapping theorem thus applies.

37 / 47

Example

Let’s check if we can find γ and [a, b] such that g([a, b]) ⊂ [a, b] and |g′(x)| ≤ γ < 1 on (a, b).

Case B: g(x) = x2 − 1

Its derivative is g′(x) = 2x. We have g′(ϕ) ≈ 3.23 > 1 and g′(−ϕ−1) ≈ −1.23 < −1. So
there can be no interval containing the root that satisfies the criteria.

37 / 47

Example

Let’s check if we can find γ and [a, b] such that g([a, b]) ⊂ [a, b] and |g′(x)| ≤ γ < 1 on (a, b).

Case C: g(x) = 1/(x− 1)

Its derivative is g′(x) = −1/(x− 1)2, with g′(ϕ) ≈ −2.6 < −1, and g′(−ϕ−1) ≈ −0.38.
Taking [a, b] = [−0.8,−0.4], we have g′ is a decreasing function, and γ = |g′(−0.4)| ≈ 0.51.

On [−0.8,−0.4], g is a decreasing function, so we just need to check the endpoints. We have
g(−0.8) ≈ −0.555 and g(−0.4) ≈ −0.714, so g([a, b]) ⊂ [a, b].

Banach’s contraction mapping theorem thus applies.

37 / 47

Example

Let’s check if we can find γ and [a, b] such that g([a, b]) ⊂ [a, b] and |g′(x)| ≤ γ < 1 on (a, b).

Case C: g(x) = 1/(x− 1)

Its derivative is g′(x) = −1/(x− 1)2, with g′(ϕ) ≈ −2.6 < −1, and g′(−ϕ−1) ≈ −0.38.
Taking [a, b] = [−0.8,−0.4], we have g′ is a decreasing function, and γ = |g′(−0.4)| ≈ 0.51.

On [−0.8,−0.4], g is a decreasing function, so we just need to check the endpoints. We have
g(−0.8) ≈ −0.555 and g(−0.4) ≈ −0.714, so g([a, b]) ⊂ [a, b].

Banach’s contraction mapping theorem thus applies.

37 / 47

Example

Let’s check if we can find γ and [a, b] such that g([a, b]) ⊂ [a, b] and |g′(x)| ≤ γ < 1 on (a, b).

Case C: g(x) = 1/(x− 1)

Its derivative is g′(x) = −1/(x− 1)2, with g′(ϕ) ≈ −2.6 < −1, and g′(−ϕ−1) ≈ −0.38.
Taking [a, b] = [−0.8,−0.4], we have g′ is a decreasing function, and γ = |g′(−0.4)| ≈ 0.51.

On [−0.8,−0.4], g is a decreasing function, so we just need to check the endpoints. We have
g(−0.8) ≈ −0.555 and g(−0.4) ≈ −0.714, so g([a, b]) ⊂ [a, b].

Banach’s contraction mapping theorem thus applies.

37 / 47

Termination criteria

Section 7

Termination criteria

38 / 47

Termination criteria

In the statement of the algorithm we looped until |g(x)− x| ≤ tol. This does not guarantee
anything about the error |x− x⋆|! Can we do better?

In the proof, we saw that |xi − x⋆| ≤ γi|x0 − x⋆|. Since x0, x
⋆ ∈ [a, b], we can bound this by

γi|b− a|.

Thus, to achieve a tolerance tol on the error, we choose i such that γi ≤ tol/|b− a|.

This reminds us we want a contraction with a small γ: if γ ≈ 1, we will require many
iterations to converge.

This is an a priori error estimate: we can compute it before ever doing any computations, or
choosing x0. What can we do if we know more?

39 / 47

Termination criteria

In the statement of the algorithm we looped until |g(x)− x| ≤ tol. This does not guarantee
anything about the error |x− x⋆|! Can we do better?

In the proof, we saw that |xi − x⋆| ≤ γi|x0 − x⋆|. Since x0, x
⋆ ∈ [a, b], we can bound this by

γi|b− a|.

Thus, to achieve a tolerance tol on the error, we choose i such that γi ≤ tol/|b− a|.

This reminds us we want a contraction with a small γ: if γ ≈ 1, we will require many
iterations to converge.

This is an a priori error estimate: we can compute it before ever doing any computations, or
choosing x0. What can we do if we know more?

39 / 47

Termination criteria

In the statement of the algorithm we looped until |g(x)− x| ≤ tol. This does not guarantee
anything about the error |x− x⋆|! Can we do better?

In the proof, we saw that |xi − x⋆| ≤ γi|x0 − x⋆|. Since x0, x
⋆ ∈ [a, b], we can bound this by

γi|b− a|.

Thus, to achieve a tolerance tol on the error, we choose i such that γi ≤ tol/|b− a|.

This reminds us we want a contraction with a small γ: if γ ≈ 1, we will require many
iterations to converge.

This is an a priori error estimate: we can compute it before ever doing any computations, or
choosing x0. What can we do if we know more?

39 / 47

Termination criteria

In the statement of the algorithm we looped until |g(x)− x| ≤ tol. This does not guarantee
anything about the error |x− x⋆|! Can we do better?

In the proof, we saw that |xi − x⋆| ≤ γi|x0 − x⋆|. Since x0, x
⋆ ∈ [a, b], we can bound this by

γi|b− a|.

Thus, to achieve a tolerance tol on the error, we choose i such that γi ≤ tol/|b− a|.

This reminds us we want a contraction with a small γ: if γ ≈ 1, we will require many
iterations to converge.

This is an a priori error estimate: we can compute it before ever doing any computations, or
choosing x0. What can we do if we know more?

39 / 47

Termination criteria

In the statement of the algorithm we looped until |g(x)− x| ≤ tol. This does not guarantee
anything about the error |x− x⋆|! Can we do better?

In the proof, we saw that |xi − x⋆| ≤ γi|x0 − x⋆|. Since x0, x
⋆ ∈ [a, b], we can bound this by

γi|b− a|.

Thus, to achieve a tolerance tol on the error, we choose i such that γi ≤ tol/|b− a|.

This reminds us we want a contraction with a small γ: if γ ≈ 1, we will require many
iterations to converge.

This is an a priori error estimate: we can compute it before ever doing any computations, or
choosing x0. What can we do if we know more?

39 / 47

Termination criteria

From the contraction property, we know that
|xi − xi−1| ≤ γ|xi−1 − xi−2|

for i > 2. Take a fixed J > i. We can expand |xJ − xi| as

|xJ − xi| = |(xJ − xJ−1) + (xJ−1 − xJ−2) + · · ·+ (xi+1 − xi)|
≤ |xJ − xJ−1|+ |xJ−1 − xJ−2|+ · · ·+ |xi+1 − xi|
≤ γJ−1|x1 − x0|+ γJ−2|x1 − x0|+ · · ·+ γi|x1 − x0|
=

(
γJ−1 + γJ−2 + · · · γi

)
|x1 − x0|

= γi
(
γJ−i−1 + γJ−i−2 + · · ·+ γ + 1

)
|x1 − x0|.

In brackets we have the first few terms of the geometric series, which converges because
γ < 1. Taking the limit J →∞, so xJ → x⋆, we have

|xi − x⋆| ≤ γi

1− γ
|x1 − x0|.

This is an a posteriori bound: you have to do some computation to use it.

40 / 47

Termination criteria

From the contraction property, we know that
|xi − xi−1| ≤ γ|xi−1 − xi−2|

for i > 2. Take a fixed J > i. We can expand |xJ − xi| as

|xJ − xi| = |(xJ − xJ−1) + (xJ−1 − xJ−2) + · · ·+ (xi+1 − xi)|

≤ |xJ − xJ−1|+ |xJ−1 − xJ−2|+ · · ·+ |xi+1 − xi|
≤ γJ−1|x1 − x0|+ γJ−2|x1 − x0|+ · · ·+ γi|x1 − x0|
=

(
γJ−1 + γJ−2 + · · · γi

)
|x1 − x0|

= γi
(
γJ−i−1 + γJ−i−2 + · · ·+ γ + 1

)
|x1 − x0|.

In brackets we have the first few terms of the geometric series, which converges because
γ < 1. Taking the limit J →∞, so xJ → x⋆, we have

|xi − x⋆| ≤ γi

1− γ
|x1 − x0|.

This is an a posteriori bound: you have to do some computation to use it.

40 / 47

Termination criteria

From the contraction property, we know that
|xi − xi−1| ≤ γ|xi−1 − xi−2|

for i > 2. Take a fixed J > i. We can expand |xJ − xi| as

|xJ − xi| = |(xJ − xJ−1) + (xJ−1 − xJ−2) + · · ·+ (xi+1 − xi)|
≤ |xJ − xJ−1|+ |xJ−1 − xJ−2|+ · · ·+ |xi+1 − xi|

≤ γJ−1|x1 − x0|+ γJ−2|x1 − x0|+ · · ·+ γi|x1 − x0|
=

(
γJ−1 + γJ−2 + · · · γi

)
|x1 − x0|

= γi
(
γJ−i−1 + γJ−i−2 + · · ·+ γ + 1

)
|x1 − x0|.

In brackets we have the first few terms of the geometric series, which converges because
γ < 1. Taking the limit J →∞, so xJ → x⋆, we have

|xi − x⋆| ≤ γi

1− γ
|x1 − x0|.

This is an a posteriori bound: you have to do some computation to use it.

40 / 47

Termination criteria

From the contraction property, we know that
|xi − xi−1| ≤ γ|xi−1 − xi−2|

for i > 2. Take a fixed J > i. We can expand |xJ − xi| as

|xJ − xi| = |(xJ − xJ−1) + (xJ−1 − xJ−2) + · · ·+ (xi+1 − xi)|
≤ |xJ − xJ−1|+ |xJ−1 − xJ−2|+ · · ·+ |xi+1 − xi|
≤ γJ−1|x1 − x0|+ γJ−2|x1 − x0|+ · · ·+ γi|x1 − x0|

=
(
γJ−1 + γJ−2 + · · · γi

)
|x1 − x0|

= γi
(
γJ−i−1 + γJ−i−2 + · · ·+ γ + 1

)
|x1 − x0|.

In brackets we have the first few terms of the geometric series, which converges because
γ < 1. Taking the limit J →∞, so xJ → x⋆, we have

|xi − x⋆| ≤ γi

1− γ
|x1 − x0|.

This is an a posteriori bound: you have to do some computation to use it.

40 / 47

Termination criteria

From the contraction property, we know that
|xi − xi−1| ≤ γ|xi−1 − xi−2|

for i > 2. Take a fixed J > i. We can expand |xJ − xi| as

|xJ − xi| = |(xJ − xJ−1) + (xJ−1 − xJ−2) + · · ·+ (xi+1 − xi)|
≤ |xJ − xJ−1|+ |xJ−1 − xJ−2|+ · · ·+ |xi+1 − xi|
≤ γJ−1|x1 − x0|+ γJ−2|x1 − x0|+ · · ·+ γi|x1 − x0|
=

(
γJ−1 + γJ−2 + · · · γi

)
|x1 − x0|

= γi
(
γJ−i−1 + γJ−i−2 + · · ·+ γ + 1

)
|x1 − x0|.

In brackets we have the first few terms of the geometric series, which converges because
γ < 1. Taking the limit J →∞, so xJ → x⋆, we have

|xi − x⋆| ≤ γi

1− γ
|x1 − x0|.

This is an a posteriori bound: you have to do some computation to use it.

40 / 47

Termination criteria

From the contraction property, we know that
|xi − xi−1| ≤ γ|xi−1 − xi−2|

for i > 2. Take a fixed J > i. We can expand |xJ − xi| as

|xJ − xi| = |(xJ − xJ−1) + (xJ−1 − xJ−2) + · · ·+ (xi+1 − xi)|
≤ |xJ − xJ−1|+ |xJ−1 − xJ−2|+ · · ·+ |xi+1 − xi|
≤ γJ−1|x1 − x0|+ γJ−2|x1 − x0|+ · · ·+ γi|x1 − x0|
=

(
γJ−1 + γJ−2 + · · · γi

)
|x1 − x0|

= γi
(
γJ−i−1 + γJ−i−2 + · · ·+ γ + 1

)
|x1 − x0|.

In brackets we have the first few terms of the geometric series, which converges because
γ < 1. Taking the limit J →∞, so xJ → x⋆, we have

|xi − x⋆| ≤ γi

1− γ
|x1 − x0|.

This is an a posteriori bound: you have to do some computation to use it.

40 / 47

Termination criteria

From the contraction property, we know that
|xi − xi−1| ≤ γ|xi−1 − xi−2|

for i > 2. Take a fixed J > i. We can expand |xJ − xi| as

|xJ − xi| = |(xJ − xJ−1) + (xJ−1 − xJ−2) + · · ·+ (xi+1 − xi)|
≤ |xJ − xJ−1|+ |xJ−1 − xJ−2|+ · · ·+ |xi+1 − xi|
≤ γJ−1|x1 − x0|+ γJ−2|x1 − x0|+ · · ·+ γi|x1 − x0|
=

(
γJ−1 + γJ−2 + · · · γi

)
|x1 − x0|

= γi
(
γJ−i−1 + γJ−i−2 + · · ·+ γ + 1

)
|x1 − x0|.

In brackets we have the first few terms of the geometric series, which converges because
γ < 1. Taking the limit J →∞, so xJ → x⋆, we have

|xi − x⋆| ≤ γi

1− γ
|x1 − x0|.

This is an a posteriori bound: you have to do some computation to use it.

40 / 47

Termination criteria

From the contraction property, we know that
|xi − xi−1| ≤ γ|xi−1 − xi−2|

for i > 2. Take a fixed J > i. We can expand |xJ − xi| as

|xJ − xi| = |(xJ − xJ−1) + (xJ−1 − xJ−2) + · · ·+ (xi+1 − xi)|
≤ |xJ − xJ−1|+ |xJ−1 − xJ−2|+ · · ·+ |xi+1 − xi|
≤ γJ−1|x1 − x0|+ γJ−2|x1 − x0|+ · · ·+ γi|x1 − x0|
=

(
γJ−1 + γJ−2 + · · · γi

)
|x1 − x0|

= γi
(
γJ−i−1 + γJ−i−2 + · · ·+ γ + 1

)
|x1 − x0|.

In brackets we have the first few terms of the geometric series, which converges because
γ < 1. Taking the limit J →∞, so xJ → x⋆, we have

|xi − x⋆| ≤ γi

1− γ
|x1 − x0|.

This is an a posteriori bound: you have to do some computation to use it. 40 / 47

Another example

Section 8

Another example

41 / 47

Another example

Example question
Find some [a, b] so that g(x) = e−x has a unique fixed point in [a, b].

We need:
(i) g : [a, b]→ [a, b], and
(ii) |g′(x)| ≤ γ < 1 on [a, b] for some γ.

So let’s consider g′(x). Calculating, we find g′(x) = −e−x, so |g′(x)| = |e−x|. This is 1 at
x = 0 and strictly less than 1 for x > 0.

Also note that g(1) = e−1 < 1, and g(x) is decreasing, so g : [0, 1]→ [0, 1].

We could thus take an interval with a > 0 but close and b = 1. Choosing [a, b] = [1/10, 1]
works fine. (The actual fixed point is x⋆ ≈ 0.567143.)

42 / 47

Another example

Example question
Find some [a, b] so that g(x) = e−x has a unique fixed point in [a, b].

We need:
(i) g : [a, b]→ [a, b], and
(ii) |g′(x)| ≤ γ < 1 on [a, b] for some γ.

So let’s consider g′(x). Calculating, we find g′(x) = −e−x, so |g′(x)| = |e−x|. This is 1 at
x = 0 and strictly less than 1 for x > 0.

Also note that g(1) = e−1 < 1, and g(x) is decreasing, so g : [0, 1]→ [0, 1].

We could thus take an interval with a > 0 but close and b = 1. Choosing [a, b] = [1/10, 1]
works fine. (The actual fixed point is x⋆ ≈ 0.567143.)

42 / 47

Another example

Example question
Find some [a, b] so that g(x) = e−x has a unique fixed point in [a, b].

We need:
(i) g : [a, b]→ [a, b], and
(ii) |g′(x)| ≤ γ < 1 on [a, b] for some γ.

So let’s consider g′(x). Calculating, we find g′(x) = −e−x, so |g′(x)| = |e−x|. This is 1 at
x = 0 and strictly less than 1 for x > 0.

Also note that g(1) = e−1 < 1, and g(x) is decreasing, so g : [0, 1]→ [0, 1].

We could thus take an interval with a > 0 but close and b = 1. Choosing [a, b] = [1/10, 1]
works fine. (The actual fixed point is x⋆ ≈ 0.567143.)

42 / 47

Another example

Example question
Find some [a, b] so that g(x) = e−x has a unique fixed point in [a, b].

We need:
(i) g : [a, b]→ [a, b], and
(ii) |g′(x)| ≤ γ < 1 on [a, b] for some γ.

So let’s consider g′(x). Calculating, we find g′(x) = −e−x, so |g′(x)| = |e−x|. This is 1 at
x = 0 and strictly less than 1 for x > 0.

Also note that g(1) = e−1 < 1, and g(x) is decreasing, so g : [0, 1]→ [0, 1].

We could thus take an interval with a > 0 but close and b = 1. Choosing [a, b] = [1/10, 1]
works fine. (The actual fixed point is x⋆ ≈ 0.567143.)

42 / 47

Another example

Example question
Find some [a, b] so that g(x) = e−x has a unique fixed point in [a, b].

We need:
(i) g : [a, b]→ [a, b], and
(ii) |g′(x)| ≤ γ < 1 on [a, b] for some γ.

So let’s consider g′(x). Calculating, we find g′(x) = −e−x, so |g′(x)| = |e−x|. This is 1 at
x = 0 and strictly less than 1 for x > 0.

Also note that g(1) = e−1 < 1, and g(x) is decreasing, so g : [0, 1]→ [0, 1].

We could thus take an interval with a > 0 but close and b = 1. Choosing [a, b] = [1/10, 1]
works fine. (The actual fixed point is x⋆ ≈ 0.567143.)

42 / 47

Another example

Continuing with the same example, how many iterations are required to get within 10−3 of the
fixed point?

Our γ is e−1/10 ≈ 0.905.

For the a priori bound, solving γi < 0.001/0.9 yields i > 68. (To achieve a tolerance of 10−6,
i > 137 is required.)

Let’s imagine we start with a lucky guess x0 = 0.56. How does the a posteriori bound look? In
this case x1 ≈ 0.57120906, so we have

γi

1− γ
|0.57120906− 0.56| < tol,

which gives i > 47 for tol = 10−3 and i > 116 for tol = 10−6.

43 / 47

Another example

Continuing with the same example, how many iterations are required to get within 10−3 of the
fixed point?

Our γ is e−1/10 ≈ 0.905.

For the a priori bound, solving γi < 0.001/0.9 yields i > 68. (To achieve a tolerance of 10−6,
i > 137 is required.)

Let’s imagine we start with a lucky guess x0 = 0.56. How does the a posteriori bound look? In
this case x1 ≈ 0.57120906, so we have

γi

1− γ
|0.57120906− 0.56| < tol,

which gives i > 47 for tol = 10−3 and i > 116 for tol = 10−6.

43 / 47

Another example

Continuing with the same example, how many iterations are required to get within 10−3 of the
fixed point?

Our γ is e−1/10 ≈ 0.905.

For the a priori bound, solving γi < 0.001/0.9 yields i > 68. (To achieve a tolerance of 10−6,
i > 137 is required.)

Let’s imagine we start with a lucky guess x0 = 0.56. How does the a posteriori bound look? In
this case x1 ≈ 0.57120906, so we have

γi

1− γ
|0.57120906− 0.56| < tol,

which gives i > 47 for tol = 10−3 and i > 116 for tol = 10−6.

43 / 47

Another example

Continuing with the same example, how many iterations are required to get within 10−3 of the
fixed point?

Our γ is e−1/10 ≈ 0.905.

For the a priori bound, solving γi < 0.001/0.9 yields i > 68. (To achieve a tolerance of 10−6,
i > 137 is required.)

Let’s imagine we start with a lucky guess x0 = 0.56. How does the a posteriori bound look? In
this case x1 ≈ 0.57120906, so we have

γi

1− γ
|0.57120906− 0.56| < tol,

which gives i > 47 for tol = 10−3 and i > 116 for tol = 10−6.

43 / 47

Accelerating sequence convergence

Section 9

Accelerating sequence convergence

44 / 47

Accelerating sequence convergence

Suppose one has a sequence (xi) that is linearly converging:

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= µ,

with the property that for large enough i,

xi − x⋆, xi+1 − x⋆, xi+2 − x⋆

all have the same sign.

Aitken’s big idea: use the entries of (xi) to make a new sequence (x̃i) that
(hopefully) converges faster!

Alexander Aitken FRS FRSL,
1895–1967

45 / 47

Accelerating sequence convergence

Assume that the asymptotic limits hold at iterations i+ 1, i+ 2, so that

xi+1 − x⋆ ≈ µ(xi − x⋆), xi+2 − x⋆ ≈ µ(xi+1 − x⋆).

Equating the two expressions for µ and doing some algebra yields

x⋆ ≈ xi −
(xi+1 − xi)

2

xi+2 − 2xi+1 + xi

so we hope that the expression on the right gives a good approximation to the sequence limit.

Aitken thus defines
x̃i = xi −

(xi+1 − xi)
2

xi+2 − 2xi+1 + xi

to yield a new, (hopefully) faster-converging sequence.

46 / 47

Accelerating sequence convergence

Assume that the asymptotic limits hold at iterations i+ 1, i+ 2, so that

xi+1 − x⋆ ≈ µ(xi − x⋆), xi+2 − x⋆ ≈ µ(xi+1 − x⋆).

Equating the two expressions for µ and doing some algebra yields

x⋆ ≈ xi −
(xi+1 − xi)

2

xi+2 − 2xi+1 + xi

so we hope that the expression on the right gives a good approximation to the sequence limit.

Aitken thus defines
x̃i = xi −

(xi+1 − xi)
2

xi+2 − 2xi+1 + xi

to yield a new, (hopefully) faster-converging sequence.

46 / 47

Accelerating sequence convergence

Assume that the asymptotic limits hold at iterations i+ 1, i+ 2, so that

xi+1 − x⋆ ≈ µ(xi − x⋆), xi+2 − x⋆ ≈ µ(xi+1 − x⋆).

Equating the two expressions for µ and doing some algebra yields

x⋆ ≈ xi −
(xi+1 − xi)

2

xi+2 − 2xi+1 + xi

so we hope that the expression on the right gives a good approximation to the sequence limit.

Aitken thus defines
x̃i = xi −

(xi+1 − xi)
2

xi+2 − 2xi+1 + xi

to yield a new, (hopefully) faster-converging sequence.

46 / 47

Accelerating sequence convergence

Aitken’s acceleration is backed up by a theorem.

Aitken’s theorem (1926)
Suppose (xi) is linearly converging with all entries the same sign. Then

lim
i→∞

x̃i − x⋆

xi − x⋆
= 0.

Consider Leibniz’ formula for π:
π = 4

∞∑
k=0

(−1)k

2k + 1
.

Set xi to be the ith partial sum.

To get π to 10 digits, Leibniz’ formula requires about 5 billion terms; Aitken’s acceleration
(x̃i) of it requires about 1400.

If you apply Aitken acceleration again, to yield (˜̃xi), you can get away with only 70 terms!

47 / 47

Accelerating sequence convergence

Aitken’s acceleration is backed up by a theorem.

Aitken’s theorem (1926)
Suppose (xi) is linearly converging with all entries the same sign. Then

lim
i→∞

x̃i − x⋆

xi − x⋆
= 0.

Consider Leibniz’ formula for π:
π = 4

∞∑
k=0

(−1)k

2k + 1
.

Set xi to be the ith partial sum.

To get π to 10 digits, Leibniz’ formula requires about 5 billion terms; Aitken’s acceleration
(x̃i) of it requires about 1400.

If you apply Aitken acceleration again, to yield (˜̃xi), you can get away with only 70 terms!

47 / 47

Accelerating sequence convergence

Aitken’s acceleration is backed up by a theorem.

Aitken’s theorem (1926)
Suppose (xi) is linearly converging with all entries the same sign. Then

lim
i→∞

x̃i − x⋆

xi − x⋆
= 0.

Consider Leibniz’ formula for π:
π = 4

∞∑
k=0

(−1)k

2k + 1
.

Set xi to be the ith partial sum.

To get π to 10 digits, Leibniz’ formula requires about 5 billion terms; Aitken’s acceleration
(x̃i) of it requires about 1400.

If you apply Aitken acceleration again, to yield (˜̃xi), you can get away with only 70 terms!
47 / 47

Computational Mathematics
Week 3: Newton’s method

Patrick E. Farrell

University of Oxford

1 / 60

Newton’s method

Let’s consider rootfinding again:

find x⋆ ∈ R such that f(x⋆) = 0.

Since there are powerful theorems about fixed point problems, let’s try to reformulate this as a
fixed point problem:

find x⋆ ∈ R such that x⋆ = g(x⋆).

How should we construct g(x) from f(x)? One way we’ve seen is to set

g(x) = f(x) + x

but we have no reason to think this is a contraction.

2 / 60

Newton’s method

Let’s consider rootfinding again:

find x⋆ ∈ R such that f(x⋆) = 0.

Since there are powerful theorems about fixed point problems, let’s try to reformulate this as a
fixed point problem:

find x⋆ ∈ R such that x⋆ = g(x⋆).

How should we construct g(x) from f(x)? One way we’ve seen is to set

g(x) = f(x) + x

but we have no reason to think this is a contraction.

2 / 60

Newton’s method

Let’s consider rootfinding again:

find x⋆ ∈ R such that f(x⋆) = 0.

Since there are powerful theorems about fixed point problems, let’s try to reformulate this as a
fixed point problem:

find x⋆ ∈ R such that x⋆ = g(x⋆).

How should we construct g(x) from f(x)? One way we’ve seen is to set

g(x) = f(x) + x

but we have no reason to think this is a contraction.

2 / 60

Newton’s method

Here is a better way to construct g(x).

−3 −2 −1 1 2 3

2

4

6

x0 x

f(x)

Start from an initial x0.

3 / 60

Newton’s method

Here is a better way to construct g(x).

−3 −2 −1 1 2 3

2

4

6

t0

x0 x

f(x)

Build a linear model of the function.

3 / 60

Newton’s method

Here is a better way to construct g(x).

−3 −2 −1 1 2 3

2

4

6

x0

t1

x1 x

f(x)

Set x1 to be the root of the linear model.

3 / 60

Newton’s method

Here is a better way to construct g(x).

−3 −2 −1 1 2 3

2

4

6

x0x1

t2

x2 x

f(x)

Repeat.

3 / 60

Newton’s method

The tangent line joins (xi, f(xi)) and (xi+1, 0), so we can write its slope as

f ′(xi) =
f(xi)− 0

xi − xi+1

and solving for xi+1 yields
xi+1 = xi −

(
f ′(xi)

)−1
f(xi).

4 / 60

Newton’s method

The tangent line joins (xi, f(xi)) and (xi+1, 0), so we can write its slope as

f ′(xi) =
f(xi)− 0

xi − xi+1

and solving for xi+1 yields
xi+1 = xi −

(
f ′(xi)

)−1
f(xi).

4 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

This is a generic way of constructing a fixed point problem x = g(x) from a
rootfinding problem f(x) = 0. Isaac Newton FRS, 1643–1727

The special case of applying Newton’s method for calculating square roots was known to the
ancient Greeks in Alexandria (Heron’s method, 60).

Taking f(x) = x2 − c, we get

xi+1 = xi −
x2i − c

2xi
=

1

2

(
xi +

c

xi

)
.

The extension to computing p-th roots was known to Jamshīd al-Kāshī in Samarkand around
1427.

5 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

This is a generic way of constructing a fixed point problem x = g(x) from a
rootfinding problem f(x) = 0. Isaac Newton FRS, 1643–1727

The special case of applying Newton’s method for calculating square roots was known to the
ancient Greeks in Alexandria (Heron’s method, 60).

Taking f(x) = x2 − c, we get

xi+1 = xi −
x2i − c

2xi
=

1

2

(
xi +

c

xi

)
.

The extension to computing p-th roots was known to Jamshīd al-Kāshī in Samarkand around
1427.

5 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

This is a generic way of constructing a fixed point problem x = g(x) from a
rootfinding problem f(x) = 0. Isaac Newton FRS, 1643–1727

The special case of applying Newton’s method for calculating square roots was known to the
ancient Greeks in Alexandria (Heron’s method, 60).

Taking f(x) = x2 − c, we get

xi+1 = xi −
x2i − c

2xi

=
1

2

(
xi +

c

xi

)
.

The extension to computing p-th roots was known to Jamshīd al-Kāshī in Samarkand around
1427.

5 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

This is a generic way of constructing a fixed point problem x = g(x) from a
rootfinding problem f(x) = 0. Isaac Newton FRS, 1643–1727

The special case of applying Newton’s method for calculating square roots was known to the
ancient Greeks in Alexandria (Heron’s method, 60).

Taking f(x) = x2 − c, we get

xi+1 = xi −
x2i − c

2xi
=

1

2

(
xi +

c

xi

)
.

The extension to computing p-th roots was known to Jamshīd al-Kāshī in Samarkand around
1427.

5 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

This is a generic way of constructing a fixed point problem x = g(x) from a
rootfinding problem f(x) = 0. Isaac Newton FRS, 1643–1727

The special case of applying Newton’s method for calculating square roots was known to the
ancient Greeks in Alexandria (Heron’s method, 60).

Taking f(x) = x2 − c, we get

xi+1 = xi −
x2i − c

2xi
=

1

2

(
xi +

c

xi

)
.

The extension to computing p-th roots was known to Jamshīd al-Kāshī in Samarkand around
1427.

5 / 60

Newton’s method

Isaac Newton (1669, published 1711) derived a complicated version of the method, only for
polynomials. He didn’t make the connection to calculus.

John Wallis (Savilian Chair of Geometry in Oxford) published the same
method before Newton, in 1685. So we should probably call it the Wallis
method!

John Wallis, 1616–1703

Joseph Raphson (1690) simplified the method, but still only applied it to polynomials.

Thomas Simpson (1740) gave the modern description, using calculus, and applied it to general
functions.

6 / 60

Newton’s method

Isaac Newton (1669, published 1711) derived a complicated version of the method, only for
polynomials. He didn’t make the connection to calculus.

John Wallis (Savilian Chair of Geometry in Oxford) published the same
method before Newton, in 1685. So we should probably call it the Wallis
method!

John Wallis, 1616–1703

Joseph Raphson (1690) simplified the method, but still only applied it to polynomials.

Thomas Simpson (1740) gave the modern description, using calculus, and applied it to general
functions.

6 / 60

Newton’s method

Isaac Newton (1669, published 1711) derived a complicated version of the method, only for
polynomials. He didn’t make the connection to calculus.

John Wallis (Savilian Chair of Geometry in Oxford) published the same
method before Newton, in 1685. So we should probably call it the Wallis
method!

John Wallis, 1616–1703

Joseph Raphson (1690) simplified the method, but still only applied it to polynomials.

Thomas Simpson (1740) gave the modern description, using calculus, and applied it to general
functions.

6 / 60

Newton’s method

Isaac Newton (1669, published 1711) derived a complicated version of the method, only for
polynomials. He didn’t make the connection to calculus.

John Wallis (Savilian Chair of Geometry in Oxford) published the same
method before Newton, in 1685. So we should probably call it the Wallis
method!

John Wallis, 1616–1703

Joseph Raphson (1690) simplified the method, but still only applied it to polynomials.

Thomas Simpson (1740) gave the modern description, using calculus, and applied it to general
functions.

6 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

Comments:
3 If f(xi) = 0, then xi+1 = xi. So roots of f are fixed points of g.

7 Unlike bisection, we require f to be differentiable.
7 Moreover, we need f ′(xi) 6= 0 at every iterate.
3 If x0 is close to x⋆, Newton’s method usually converges very fast.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method generalises elegantly to higher dimensions.

7 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

Comments:
3 If f(xi) = 0, then xi+1 = xi. So roots of f are fixed points of g.
7 Unlike bisection, we require f to be differentiable.

7 Moreover, we need f ′(xi) 6= 0 at every iterate.
3 If x0 is close to x⋆, Newton’s method usually converges very fast.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method generalises elegantly to higher dimensions.

7 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

Comments:
3 If f(xi) = 0, then xi+1 = xi. So roots of f are fixed points of g.
7 Unlike bisection, we require f to be differentiable.
7 Moreover, we need f ′(xi) 6= 0 at every iterate.

3 If x0 is close to x⋆, Newton’s method usually converges very fast.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method generalises elegantly to higher dimensions.

7 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

Comments:
3 If f(xi) = 0, then xi+1 = xi. So roots of f are fixed points of g.
7 Unlike bisection, we require f to be differentiable.
7 Moreover, we need f ′(xi) 6= 0 at every iterate.
3 If x0 is close to x⋆, Newton’s method usually converges very fast.

7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method generalises elegantly to higher dimensions.

7 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

Comments:
3 If f(xi) = 0, then xi+1 = xi. So roots of f are fixed points of g.
7 Unlike bisection, we require f to be differentiable.
7 Moreover, we need f ′(xi) 6= 0 at every iterate.
3 If x0 is close to x⋆, Newton’s method usually converges very fast.
7 If x0 is far away, the method can diverge or get stuck in a cycle.

3 Newton’s method generalises elegantly to higher dimensions.

7 / 60

Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

Comments:
3 If f(xi) = 0, then xi+1 = xi. So roots of f are fixed points of g.
7 Unlike bisection, we require f to be differentiable.
7 Moreover, we need f ′(xi) 6= 0 at every iterate.
3 If x0 is close to x⋆, Newton’s method usually converges very fast.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method generalises elegantly to higher dimensions.

7 / 60

Newton’s method

Consider f(x) = x3 − 2x+ 2 with x0 = 0.

−3 −2 −1 1 2 3

−2

2

4

6

x0 x

f(x)

8 / 60

Newton’s method

Consider f(x) = x3 − 2x+ 2 with x0 = 0.

−3 −2 −1 1 2 3

−2

2

4

6

x0 x

f(x)

8 / 60

Newton’s method

Consider f(x) = x3 − 2x+ 2 with x0 = 0.

−3 −2 −1 1 2 3

−2

2

4

6

x0 x1 x

f(x)

8 / 60

Newton’s method

Even when it converges, Newton’s method can behave in an unstable manner.

f(x) = (x− 4)(x− 1)(x+ 3), x0 = 2.352836327.

In [14]: newton(lambda x: (x-4)*(x-1)*(x+3),
lambda x: 3*x**2 - 4*x - 11, 2.352836327, 1e-6)

Iteration 0: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 1: x = -7.829394e-01 f(x) = 1.890641e+01
Iteration 2: x = 2.352836e+00 f(x) = -1.192796e+01
Iteration 3: x = -7.829406e-01 f(x) = 1.890641e+01
...
Iteration 9: x = -8.476712e-01 f(x) = 1.927820e+01
Iteration 10: x = 2.687229e+00 f(x) = -1.259690e+01
Iteration 11: x = -1.449560e+02 f(x) = -3.086271e+06
Iteration 12: x = -9.643403e+01 f(x) = -9.143167e+05
...
Iteration 19: x = -5.622219e+00 f(x) = -1.670889e+02
Iteration 20: x = -4.050607e+00 f(x) = -4.271814e+01
Iteration 21: x = -3.265703e+00 f(x) = -8.235014e+00
Iteration 22: x = -3.023904e+00 f(x) = -6.756020e-01
Iteration 23: x = -3.000221e+00 f(x) = -6.196356e-03
Iteration 24: x = -3.000000e+00 f(x) = -5.385373e-07
Out[14]: -3.0000000192334735

9 / 60

Newton’s method

Even when it converges, Newton’s method can behave in an unstable manner.

f(x) = (x− 4)(x− 1)(x+ 3), x0 = 2.352836327.

In [14]: newton(lambda x: (x-4)*(x-1)*(x+3),
lambda x: 3*x**2 - 4*x - 11, 2.352836327, 1e-6)

Iteration 0: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 1: x = -7.829394e-01 f(x) = 1.890641e+01
Iteration 2: x = 2.352836e+00 f(x) = -1.192796e+01
Iteration 3: x = -7.829406e-01 f(x) = 1.890641e+01
...
Iteration 9: x = -8.476712e-01 f(x) = 1.927820e+01
Iteration 10: x = 2.687229e+00 f(x) = -1.259690e+01
Iteration 11: x = -1.449560e+02 f(x) = -3.086271e+06
Iteration 12: x = -9.643403e+01 f(x) = -9.143167e+05
...
Iteration 19: x = -5.622219e+00 f(x) = -1.670889e+02
Iteration 20: x = -4.050607e+00 f(x) = -4.271814e+01
Iteration 21: x = -3.265703e+00 f(x) = -8.235014e+00
Iteration 22: x = -3.023904e+00 f(x) = -6.756020e-01
Iteration 23: x = -3.000221e+00 f(x) = -6.196356e-03
Iteration 24: x = -3.000000e+00 f(x) = -5.385373e-07
Out[14]: -3.0000000192334735

9 / 60

Newton’s method

Even when it converges, Newton’s method can behave in an unstable manner.

f(x) = (x− 4)(x− 1)(x+ 3), x0 = 2.352836327.

In [14]: newton(lambda x: (x-4)*(x-1)*(x+3),
lambda x: 3*x**2 - 4*x - 11, 2.352836327, 1e-6)

Iteration 0: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 1: x = -7.829394e-01 f(x) = 1.890641e+01
Iteration 2: x = 2.352836e+00 f(x) = -1.192796e+01
Iteration 3: x = -7.829406e-01 f(x) = 1.890641e+01
...
Iteration 9: x = -8.476712e-01 f(x) = 1.927820e+01
Iteration 10: x = 2.687229e+00 f(x) = -1.259690e+01
Iteration 11: x = -1.449560e+02 f(x) = -3.086271e+06
Iteration 12: x = -9.643403e+01 f(x) = -9.143167e+05
...
Iteration 19: x = -5.622219e+00 f(x) = -1.670889e+02
Iteration 20: x = -4.050607e+00 f(x) = -4.271814e+01
Iteration 21: x = -3.265703e+00 f(x) = -8.235014e+00
Iteration 22: x = -3.023904e+00 f(x) = -6.756020e-01
Iteration 23: x = -3.000221e+00 f(x) = -6.196356e-03
Iteration 24: x = -3.000000e+00 f(x) = -5.385373e-07
Out[14]: -3.0000000192334735 9 / 60

Newton’s method

Now change from x0 = 2.352836327 to x0 = 2.352836323.

In [15]: newton(lambda x: (x-4)*(x-1)*(x+3),
lambda x: 3*x**2 - 4*x - 11, 2.352836323, 1e-6)

Iteration 0: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 1: x = -7.829394e-01 f(x) = 1.890641e+01
Iteration 2: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 3: x = -7.829393e-01 f(x) = 1.890641e+01
Iteration 4: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 5: x = -7.829361e-01 f(x) = 1.890639e+01
Iteration 6: x = 2.352822e+00 f(x) = -1.192790e+01
Iteration 7: x = -7.828166e-01 f(x) = 1.890567e+01
Iteration 8: x = 2.352281e+00 f(x) = -1.192584e+01
Iteration 9: x = -7.783146e-01 f(x) = 1.887843e+01
Iteration 10: x = 2.332103e+00 f(x) = -1.184692e+01
Iteration 11: x = -6.205467e-01 f(x) = 1.781690e+01
Iteration 12: x = 1.799380e+00 f(x) = -8.442739e+00
Iteration 13: x = 8.042685e-01 f(x) = 2.379590e+00
Iteration 14: x = 9.981010e-01 f(x) = 2.279200e-02
Iteration 15: x = 9.999997e-01 f(x) = 3.591499e-06
Iteration 16: x = 1.000000e+00 f(x) = 8.926193e-14
Out[15]: 0.9999999999999926

10 / 60

Newton’s method

Now change from x0 = 2.352836327 to x0 = 2.352836323.
In [15]: newton(lambda x: (x-4)*(x-1)*(x+3),

lambda x: 3*x**2 - 4*x - 11, 2.352836323, 1e-6)
Iteration 0: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 1: x = -7.829394e-01 f(x) = 1.890641e+01
Iteration 2: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 3: x = -7.829393e-01 f(x) = 1.890641e+01
Iteration 4: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 5: x = -7.829361e-01 f(x) = 1.890639e+01
Iteration 6: x = 2.352822e+00 f(x) = -1.192790e+01
Iteration 7: x = -7.828166e-01 f(x) = 1.890567e+01
Iteration 8: x = 2.352281e+00 f(x) = -1.192584e+01
Iteration 9: x = -7.783146e-01 f(x) = 1.887843e+01
Iteration 10: x = 2.332103e+00 f(x) = -1.184692e+01
Iteration 11: x = -6.205467e-01 f(x) = 1.781690e+01
Iteration 12: x = 1.799380e+00 f(x) = -8.442739e+00
Iteration 13: x = 8.042685e-01 f(x) = 2.379590e+00
Iteration 14: x = 9.981010e-01 f(x) = 2.279200e-02
Iteration 15: x = 9.999997e-01 f(x) = 3.591499e-06
Iteration 16: x = 1.000000e+00 f(x) = 8.926193e-14
Out[15]: 0.9999999999999926 10 / 60

Newton’s method

Let’s draw the first iterations with x0 = 2.352836327.

−4 −2 2 4

−40

−20

20

x0 x

f(x)

11 / 60

Newton’s method

Let’s draw the first iterations with x0 = 2.352836327.

−4 −2 2 4

−40

−20

20

x0 x

f(x)

11 / 60

Newton’s method

Let’s draw the first iterations with x0 = 2.352836327.

−4 −2 2 4

−40

−20

20

x0x1 x

f(x)

11 / 60

Newton’s method

Let’s draw the first iterations with x0 = 2.352836327.

−4 −2 2 4

−40

−20

20

x0x1 x2 x

f(x)

11 / 60

Newton’s method

Let’s draw the first iterations with x0 = 2.352836327.

−4 −2 2 4

−40

−20

20

x0x1 x2x3 x

f(x)

11 / 60

Newton’s method

Let’s draw the first iterations with x0 = 2.352836327.

−4 −2 2 4

−40

−20

20

x0x1 x2x3 x4 x

f(x)

11 / 60

Newton’s method

So why is Newton’s method a good idea? Let’s talk about general fixed point iterations
xi+1 = g(xi) converging to x⋆ for a moment.

For a contraction g with contraction factor γ < 1, we know
|xi+1 − x⋆| ≤ γ|xi − x⋆|,

or in other words that we have linear convergence
|xi+1 − x⋆|
|xi − x⋆|

≤ γ < 1.

But Newton’s method is special: under mild conditions, when xi is close to x⋆ it will satisfy
for some K > 0

|xi+1 − x⋆|
|xi − x⋆|2

≤ K.

Recall that we called this quadratic convergence.

This is much, much faster: roughly speaking, the number of correct digits will double at each
iteration!

12 / 60

Newton’s method

So why is Newton’s method a good idea? Let’s talk about general fixed point iterations
xi+1 = g(xi) converging to x⋆ for a moment.

For a contraction g with contraction factor γ < 1, we know
|xi+1 − x⋆| ≤ γ|xi − x⋆|,

or in other words that we have linear convergence
|xi+1 − x⋆|
|xi − x⋆|

≤ γ < 1.

But Newton’s method is special: under mild conditions, when xi is close to x⋆ it will satisfy
for some K > 0

|xi+1 − x⋆|
|xi − x⋆|2

≤ K.

Recall that we called this quadratic convergence.

This is much, much faster: roughly speaking, the number of correct digits will double at each
iteration!

12 / 60

Newton’s method

So why is Newton’s method a good idea? Let’s talk about general fixed point iterations
xi+1 = g(xi) converging to x⋆ for a moment.

For a contraction g with contraction factor γ < 1, we know
|xi+1 − x⋆| ≤ γ|xi − x⋆|,

or in other words that we have linear convergence
|xi+1 − x⋆|
|xi − x⋆|

≤ γ < 1.

But Newton’s method is special: under mild conditions, when xi is close to x⋆ it will satisfy
for some K > 0

|xi+1 − x⋆|
|xi − x⋆|2

≤ K.

Recall that we called this quadratic convergence.

This is much, much faster: roughly speaking, the number of correct digits will double at each
iteration!

12 / 60

Newton’s method

So why is Newton’s method a good idea? Let’s talk about general fixed point iterations
xi+1 = g(xi) converging to x⋆ for a moment.

For a contraction g with contraction factor γ < 1, we know
|xi+1 − x⋆| ≤ γ|xi − x⋆|,

or in other words that we have linear convergence
|xi+1 − x⋆|
|xi − x⋆|

≤ γ < 1.

But Newton’s method is special: under mild conditions, when xi is close to x⋆ it will satisfy
for some K > 0

|xi+1 − x⋆|
|xi − x⋆|2

≤ K.

Recall that we called this quadratic convergence.

This is much, much faster: roughly speaking, the number of correct digits will double at each
iteration!

12 / 60

Newton’s method

So how can Newton achieve this quadratic convergence?

Recall the Taylor expansion of g around some point a:

g(xi) = g(a) + (xi − a)g′(a) +
1

2
(xi − a)2g′′(ζi), some ζi ∈ (xi, a).

What happens if we evaluate this around a fixed point x⋆ of g?

g(xi) = g(x⋆) + (xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi), some ζi ∈ (xi, x

⋆).

But g(xi) = xi+1 and g(x⋆) = x⋆, so

|xi+1 − x⋆| = |(xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi)|

≤ |xi − x⋆||g′(x⋆)|+ 1

2
|xi − x⋆|2 max

s∈(xi,x⋆)
|g′′(s)|.

If g has g′(x⋆) = 0, we would have quadratic convergence!

13 / 60

Newton’s method

So how can Newton achieve this quadratic convergence?

Recall the Taylor expansion of g around some point a:

g(xi) = g(a) + (xi − a)g′(a) +
1

2
(xi − a)2g′′(ζi), some ζi ∈ (xi, a).

What happens if we evaluate this around a fixed point x⋆ of g?

g(xi) = g(x⋆) + (xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi), some ζi ∈ (xi, x

⋆).

But g(xi) = xi+1 and g(x⋆) = x⋆, so

|xi+1 − x⋆| = |(xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi)|

≤ |xi − x⋆||g′(x⋆)|+ 1

2
|xi − x⋆|2 max

s∈(xi,x⋆)
|g′′(s)|.

If g has g′(x⋆) = 0, we would have quadratic convergence!

13 / 60

Newton’s method

So how can Newton achieve this quadratic convergence?

Recall the Taylor expansion of g around some point a:

g(xi) = g(a) + (xi − a)g′(a) +
1

2
(xi − a)2g′′(ζi), some ζi ∈ (xi, a).

What happens if we evaluate this around a fixed point x⋆ of g?
g(xi) = g(x⋆) + (xi − x⋆)g′(x⋆) +

1

2
(xi − x⋆)2g′′(ζi), some ζi ∈ (xi, x

⋆).

But g(xi) = xi+1 and g(x⋆) = x⋆, so

|xi+1 − x⋆| = |(xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi)|

≤ |xi − x⋆||g′(x⋆)|+ 1

2
|xi − x⋆|2 max

s∈(xi,x⋆)
|g′′(s)|.

If g has g′(x⋆) = 0, we would have quadratic convergence!

13 / 60

Newton’s method

So how can Newton achieve this quadratic convergence?

Recall the Taylor expansion of g around some point a:

g(xi) = g(a) + (xi − a)g′(a) +
1

2
(xi − a)2g′′(ζi), some ζi ∈ (xi, a).

What happens if we evaluate this around a fixed point x⋆ of g?
g(xi) = g(x⋆) + (xi − x⋆)g′(x⋆) +

1

2
(xi − x⋆)2g′′(ζi), some ζi ∈ (xi, x

⋆).

But g(xi) = xi+1 and g(x⋆) = x⋆, so

|xi+1 − x⋆| = |(xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi)|

≤ |xi − x⋆||g′(x⋆)|+ 1

2
|xi − x⋆|2 max

s∈(xi,x⋆)
|g′′(s)|.

If g has g′(x⋆) = 0, we would have quadratic convergence!

13 / 60

Newton’s method

So how can Newton achieve this quadratic convergence?

Recall the Taylor expansion of g around some point a:

g(xi) = g(a) + (xi − a)g′(a) +
1

2
(xi − a)2g′′(ζi), some ζi ∈ (xi, a).

What happens if we evaluate this around a fixed point x⋆ of g?
g(xi) = g(x⋆) + (xi − x⋆)g′(x⋆) +

1

2
(xi − x⋆)2g′′(ζi), some ζi ∈ (xi, x

⋆).

But g(xi) = xi+1 and g(x⋆) = x⋆, so

|xi+1 − x⋆| = |(xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi)|

≤ |xi − x⋆||g′(x⋆)|+ 1

2
|xi − x⋆|2 max

s∈(xi,x⋆)
|g′′(s)|.

If g has g′(x⋆) = 0, we would have quadratic convergence!

13 / 60

Newton’s method

So how can Newton achieve this quadratic convergence?

Recall the Taylor expansion of g around some point a:

g(xi) = g(a) + (xi − a)g′(a) +
1

2
(xi − a)2g′′(ζi), some ζi ∈ (xi, a).

What happens if we evaluate this around a fixed point x⋆ of g?
g(xi) = g(x⋆) + (xi − x⋆)g′(x⋆) +

1

2
(xi − x⋆)2g′′(ζi), some ζi ∈ (xi, x

⋆).

But g(xi) = xi+1 and g(x⋆) = x⋆, so

|xi+1 − x⋆| = |(xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi)|

≤ |xi − x⋆||g′(x⋆)|+ 1

2
|xi − x⋆|2 max

s∈(xi,x⋆)
|g′′(s)|.

If g has g′(x⋆) = 0, we would have quadratic convergence!
13 / 60

Newton’s method

So how can Newton achieve this quadratic convergence?

Recall the Taylor expansion of g around some point a:

g(xi) = g(a) + (xi − a)g′(a) +
1

2
(xi − a)2g′′(ζi), some ζi ∈ (xi, a).

What happens if we evaluate this around a fixed point x⋆ of g?
g(xi) = g(x⋆) + (xi − x⋆)g′(x⋆) +

1

2
(xi − x⋆)2g′′(ζi), some ζi ∈ (xi, x

⋆).

But g(xi) = xi+1 and g(x⋆) = x⋆, so

|xi+1 − x⋆| = |(xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi)|

≤ |xi − x⋆||g′(x⋆)|+ 1

2
|xi − x⋆|2 max

s∈(xi,x⋆)
|g′′(s)|.

If g has g′(x⋆) = 0, we would have quadratic convergence!
13 / 60

Newton’s method

Let’s check when Newton’s method does indeed satisfy g′(x⋆) = 0.

Recall that
g(x) = x− f(x)

f ′(x)
,

so (assuming f ∈ C2(R))

g′(x) = 1−
(
[f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2

)
=

f(x)f ′′(x)

[f ′(x)]2
.

If f(x⋆) = 0 and f ′(x⋆) 6= 0, then g′(x⋆) = 0, and we do get quadratic convergence!

If f ′(x⋆) = 0, we have a multiple root, and we have to take the limit x→ x⋆ and use
L’Hôpital’s rule to evaluate the fraction.

14 / 60

Newton’s method

Let’s check when Newton’s method does indeed satisfy g′(x⋆) = 0.

Recall that
g(x) = x− f(x)

f ′(x)
,

so (assuming f ∈ C2(R))

g′(x) = 1−
(
[f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2

)

=
f(x)f ′′(x)

[f ′(x)]2
.

If f(x⋆) = 0 and f ′(x⋆) 6= 0, then g′(x⋆) = 0, and we do get quadratic convergence!

If f ′(x⋆) = 0, we have a multiple root, and we have to take the limit x→ x⋆ and use
L’Hôpital’s rule to evaluate the fraction.

14 / 60

Newton’s method

Let’s check when Newton’s method does indeed satisfy g′(x⋆) = 0.

Recall that
g(x) = x− f(x)

f ′(x)
,

so (assuming f ∈ C2(R))

g′(x) = 1−
(
[f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2

)
=

f(x)f ′′(x)

[f ′(x)]2
.

If f(x⋆) = 0 and f ′(x⋆) 6= 0, then g′(x⋆) = 0, and we do get quadratic convergence!

If f ′(x⋆) = 0, we have a multiple root, and we have to take the limit x→ x⋆ and use
L’Hôpital’s rule to evaluate the fraction.

14 / 60

Newton’s method

Let’s check when Newton’s method does indeed satisfy g′(x⋆) = 0.

Recall that
g(x) = x− f(x)

f ′(x)
,

so (assuming f ∈ C2(R))

g′(x) = 1−
(
[f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2

)
=

f(x)f ′′(x)

[f ′(x)]2
.

If f(x⋆) = 0 and f ′(x⋆) 6= 0, then g′(x⋆) = 0, and we do get quadratic convergence!

If f ′(x⋆) = 0, we have a multiple root, and we have to take the limit x→ x⋆ and use
L’Hôpital’s rule to evaluate the fraction.

14 / 60

Newton’s method

Let’s check when Newton’s method does indeed satisfy g′(x⋆) = 0.

Recall that
g(x) = x− f(x)

f ′(x)
,

so (assuming f ∈ C2(R))

g′(x) = 1−
(
[f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2

)
=

f(x)f ′′(x)

[f ′(x)]2
.

If f(x⋆) = 0 and f ′(x⋆) 6= 0, then g′(x⋆) = 0, and we do get quadratic convergence!

If f ′(x⋆) = 0, we have a multiple root, and we have to take the limit x→ x⋆ and use
L’Hôpital’s rule to evaluate the fraction.

14 / 60

Newton’s method

Take-home message
Newton’s method converges quadratically to isolated roots.

If the root is not isolated, then one generally expects linear convergence, with the exact rate
depending on details. For example, on the problem sheets you will prove that if

f ′(x⋆) = 0, f ′′(x⋆) 6= 0

then one expects linear convergence with rate 1/2.

15 / 60

Newton’s method

Take-home message
Newton’s method converges quadratically to isolated roots.

If the root is not isolated, then one generally expects linear convergence, with the exact rate
depending on details. For example, on the problem sheets you will prove that if

f ′(x⋆) = 0, f ′′(x⋆) 6= 0

then one expects linear convergence with rate 1/2.

15 / 60

Newton’s method

Let’s take an example. Let’s look for the fixed point of x = cosx. We tried this with bisection
and it was slow.

The true answer is x⋆ ≈ 0.739085133215161.

Applying Newton’s method to f(x) := cosx− x from x0 = 0, we get

x1 = 1 |x1 − x⋆| = 2.6× 10−1

x2 = 0.750363867840244 |x2 − x⋆| = 1.1× 10−2

x3 = 0.739112890911362 |x3 − x⋆| = 2.8× 10−5

x4 = 0.739085133385284 |x4 − x⋆| = 1.7× 10−10

x5 = 0.739085133215161 = x6 = · · · .

16 / 60

Newton’s method

Let’s take an example. Let’s look for the fixed point of x = cosx. We tried this with bisection
and it was slow.

The true answer is x⋆ ≈ 0.739085133215161.

Applying Newton’s method to f(x) := cosx− x from x0 = 0, we get

x1 = 1 |x1 − x⋆| = 2.6× 10−1

x2 = 0.750363867840244 |x2 − x⋆| = 1.1× 10−2

x3 = 0.739112890911362 |x3 − x⋆| = 2.8× 10−5

x4 = 0.739085133385284 |x4 − x⋆| = 1.7× 10−10

x5 = 0.739085133215161 = x6 = · · · .

16 / 60

Newton’s method

Let’s take an example. Let’s look for the fixed point of x = cosx. We tried this with bisection
and it was slow.

The true answer is x⋆ ≈ 0.739085133215161.

Applying Newton’s method to f(x) := cosx− x from x0 = 0, we get

x1 = 1 |x1 − x⋆| = 2.6× 10−1

x2 = 0.750363867840244 |x2 − x⋆| = 1.1× 10−2

x3 = 0.739112890911362 |x3 − x⋆| = 2.8× 10−5

x4 = 0.739085133385284 |x4 − x⋆| = 1.7× 10−10

x5 = 0.739085133215161 = x6 = · · · .

16 / 60

Newton’s method

Let’s take an example. Let’s look for the fixed point of x = cosx. We tried this with bisection
and it was slow.

The true answer is x⋆ ≈ 0.739085133215161.

Applying Newton’s method to f(x) := cosx− x from x0 = 0, we get

x1 = 1 |x1 − x⋆| = 2.6× 10−1

x2 = 0.750363867840244 |x2 − x⋆| = 1.1× 10−2

x3 = 0.739112890911362 |x3 − x⋆| = 2.8× 10−5

x4 = 0.739085133385284 |x4 − x⋆| = 1.7× 10−10

x5 = 0.739085133215161 = x6 = · · · .

16 / 60

Newton’s method

Let’s take an example. Let’s look for the fixed point of x = cosx. We tried this with bisection
and it was slow.

The true answer is x⋆ ≈ 0.739085133215161.

Applying Newton’s method to f(x) := cosx− x from x0 = 0, we get

x1 = 1 |x1 − x⋆| = 2.6× 10−1

x2 = 0.750363867840244 |x2 − x⋆| = 1.1× 10−2

x3 = 0.739112890911362 |x3 − x⋆| = 2.8× 10−5

x4 = 0.739085133385284 |x4 − x⋆| = 1.7× 10−10

x5 = 0.739085133215161 = x6 = · · · .

16 / 60

Newton’s method

Let’s take an example. Let’s look for the fixed point of x = cosx. We tried this with bisection
and it was slow.

The true answer is x⋆ ≈ 0.739085133215161.

Applying Newton’s method to f(x) := cosx− x from x0 = 0, we get

x1 = 1 |x1 − x⋆| = 2.6× 10−1

x2 = 0.750363867840244 |x2 − x⋆| = 1.1× 10−2

x3 = 0.739112890911362 |x3 − x⋆| = 2.8× 10−5

x4 = 0.739085133385284 |x4 − x⋆| = 1.7× 10−10

x5 = 0.739085133215161 = x6 = · · · .

16 / 60

Newton’s method

Let’s do an exam question. Consider the question from 2017, Paper IV, Q7 (b):

The function
p(x) = 27x3 − 27x2 + 4

has a root α = 2/3.

Show that Newton’s method to compute approximations to this root, with starting
guess x0, can be written as the iteration

xk+1 = g(xk),

where you should find g explicitly. Prove or disprove that the sequence generated will
converge to α for any x0 ∈ [1/3, 1].

17 / 60

Newton’s method

We write

g(x) = x− p(x)

p′(x)

= x− 27x3 − 27x2 + 4

81x2 − 54x

= x− (3x− 2)(9x2 − 3x− 2)

27x(3x− 2)

=
2x

3
+

2

27x
+

1

9
.

To check whether the Newton sequence will converge, we investigate the conditions of
Banach’s contraction mapping theorem.

18 / 60

Newton’s method

We write

g(x) = x− p(x)

p′(x)

= x− 27x3 − 27x2 + 4

81x2 − 54x

= x− (3x− 2)(9x2 − 3x− 2)

27x(3x− 2)

=
2x

3
+

2

27x
+

1

9
.

To check whether the Newton sequence will converge, we investigate the conditions of
Banach’s contraction mapping theorem.

18 / 60

Newton’s method

We write

g(x) = x− p(x)

p′(x)

= x− 27x3 − 27x2 + 4

81x2 − 54x

= x− (3x− 2)(9x2 − 3x− 2)

27x(3x− 2)

=
2x

3
+

2

27x
+

1

9
.

To check whether the Newton sequence will converge, we investigate the conditions of
Banach’s contraction mapping theorem.

18 / 60

Newton’s method

We write

g(x) = x− p(x)

p′(x)

= x− 27x3 − 27x2 + 4

81x2 − 54x

= x− (3x− 2)(9x2 − 3x− 2)

27x(3x− 2)

=
2x

3
+

2

27x
+

1

9
.

To check whether the Newton sequence will converge, we investigate the conditions of
Banach’s contraction mapping theorem.

18 / 60

Newton’s method

Let’s check the conditions. We compute

g′(x) =
2

3
− 2

27x2
, g′′(x) =

4

27x3
.

We see that g′′(x) > 0 on [1/3, 1] and hence g′(x) is increasing on [1/3, 1]. Evaluating at the
endpoints,

g′(1/3) = 0, g′(1) = 16/27 = γ.

We now check that g is an endomorphism.
Since g′(x) ≥ 0 on [1/3, 1], we know g is also increasing.

Checking at the endpoints,

g(1/3) = 5/9 ∈ [1/3, 1], g(1) = 23/27 ∈ [1/3, 1].

So the conditions of Banach’s contraction mapping theorem are satisfied.

19 / 60

Newton’s method

Let’s check the conditions. We compute

g′(x) =
2

3
− 2

27x2
, g′′(x) =

4

27x3
.

We see that g′′(x) > 0 on [1/3, 1] and hence g′(x) is increasing on [1/3, 1].

Evaluating at the
endpoints,

g′(1/3) = 0, g′(1) = 16/27 = γ.

We now check that g is an endomorphism.
Since g′(x) ≥ 0 on [1/3, 1], we know g is also increasing.

Checking at the endpoints,

g(1/3) = 5/9 ∈ [1/3, 1], g(1) = 23/27 ∈ [1/3, 1].

So the conditions of Banach’s contraction mapping theorem are satisfied.

19 / 60

Newton’s method

Let’s check the conditions. We compute

g′(x) =
2

3
− 2

27x2
, g′′(x) =

4

27x3
.

We see that g′′(x) > 0 on [1/3, 1] and hence g′(x) is increasing on [1/3, 1]. Evaluating at the
endpoints,

g′(1/3) = 0, g′(1) = 16/27 = γ.

We now check that g is an endomorphism.
Since g′(x) ≥ 0 on [1/3, 1], we know g is also increasing.

Checking at the endpoints,

g(1/3) = 5/9 ∈ [1/3, 1], g(1) = 23/27 ∈ [1/3, 1].

So the conditions of Banach’s contraction mapping theorem are satisfied.

19 / 60

Newton’s method

Let’s check the conditions. We compute

g′(x) =
2

3
− 2

27x2
, g′′(x) =

4

27x3
.

We see that g′′(x) > 0 on [1/3, 1] and hence g′(x) is increasing on [1/3, 1]. Evaluating at the
endpoints,

g′(1/3) = 0, g′(1) = 16/27 = γ.

We now check that g is an endomorphism.

Since g′(x) ≥ 0 on [1/3, 1], we know g is also increasing.

Checking at the endpoints,

g(1/3) = 5/9 ∈ [1/3, 1], g(1) = 23/27 ∈ [1/3, 1].

So the conditions of Banach’s contraction mapping theorem are satisfied.

19 / 60

Newton’s method

Let’s check the conditions. We compute

g′(x) =
2

3
− 2

27x2
, g′′(x) =

4

27x3
.

We see that g′′(x) > 0 on [1/3, 1] and hence g′(x) is increasing on [1/3, 1]. Evaluating at the
endpoints,

g′(1/3) = 0, g′(1) = 16/27 = γ.

We now check that g is an endomorphism.
Since g′(x) ≥ 0 on [1/3, 1], we know g is also increasing.

Checking at the endpoints,

g(1/3) = 5/9 ∈ [1/3, 1], g(1) = 23/27 ∈ [1/3, 1].

So the conditions of Banach’s contraction mapping theorem are satisfied.

19 / 60

Newton’s method

Let’s check the conditions. We compute

g′(x) =
2

3
− 2

27x2
, g′′(x) =

4

27x3
.

We see that g′′(x) > 0 on [1/3, 1] and hence g′(x) is increasing on [1/3, 1]. Evaluating at the
endpoints,

g′(1/3) = 0, g′(1) = 16/27 = γ.

We now check that g is an endomorphism.
Since g′(x) ≥ 0 on [1/3, 1], we know g is also increasing.

Checking at the endpoints,

g(1/3) = 5/9 ∈ [1/3, 1], g(1) = 23/27 ∈ [1/3, 1].

So the conditions of Banach’s contraction mapping theorem are satisfied.

19 / 60

Newton’s method

Let’s check the conditions. We compute

g′(x) =
2

3
− 2

27x2
, g′′(x) =

4

27x3
.

We see that g′′(x) > 0 on [1/3, 1] and hence g′(x) is increasing on [1/3, 1]. Evaluating at the
endpoints,

g′(1/3) = 0, g′(1) = 16/27 = γ.

We now check that g is an endomorphism.
Since g′(x) ≥ 0 on [1/3, 1], we know g is also increasing.

Checking at the endpoints,

g(1/3) = 5/9 ∈ [1/3, 1], g(1) = 23/27 ∈ [1/3, 1].

So the conditions of Banach’s contraction mapping theorem are satisfied.
19 / 60

Newton’s method

There are other fixed-point iterations for rootfinding.

Halley’s method (1694)

xi+1 = g(xi) := xi −
2f(xi)f

′(xi)

2[f ′(xi)]2 − f(xi)f ′′(xi)
.

Edmund Halley FRS, 1656–1742

Halley was Savilian Professor of Geometry here in Oxford, after Wallis.

In a letter in 1712, Taylor wrote
While I was thinking of these things, I fell into a general method
of applying Dr. Halley’s Extraction of roots to all Problems …And
it is comprehended in this Theorem ….

The theorem he proved was Taylor’s theorem!

Brook Taylor FRS, 1685–1731

20 / 60

Newton’s method

There are other fixed-point iterations for rootfinding.

Halley’s method (1694)

xi+1 = g(xi) := xi −
2f(xi)f

′(xi)

2[f ′(xi)]2 − f(xi)f ′′(xi)
.

Edmund Halley FRS, 1656–1742

Halley was Savilian Professor of Geometry here in Oxford, after Wallis.

In a letter in 1712, Taylor wrote
While I was thinking of these things, I fell into a general method
of applying Dr. Halley’s Extraction of roots to all Problems …And
it is comprehended in this Theorem ….

The theorem he proved was Taylor’s theorem!

Brook Taylor FRS, 1685–1731

20 / 60

Newton’s method

There are other fixed-point iterations for rootfinding.

Halley’s method (1694)

xi+1 = g(xi) := xi −
2f(xi)f

′(xi)

2[f ′(xi)]2 − f(xi)f ′′(xi)
.

Edmund Halley FRS, 1656–1742

Halley was Savilian Professor of Geometry here in Oxford, after Wallis.

In a letter in 1712, Taylor wrote
While I was thinking of these things, I fell into a general method
of applying Dr. Halley’s Extraction of roots to all Problems …And
it is comprehended in this Theorem ….

The theorem he proved was Taylor’s theorem!

Brook Taylor FRS, 1685–1731
20 / 60

The secant iteration

Section 2

The secant iteration

21 / 60

The secant iteration

Halley’s method uses more derivatives to get faster convergence.

In practice, computing derivatives of your function might be very expensive. (Think of
e.g. f(x) as the evaluation of a climate model.)

The secant iteration makes the converse trade: no derivative evaluations, for (slightly) slower
convergence.

22 / 60

The secant iteration

Halley’s method uses more derivatives to get faster convergence.

In practice, computing derivatives of your function might be very expensive. (Think of
e.g. f(x) as the evaluation of a climate model.)

The secant iteration makes the converse trade: no derivative evaluations, for (slightly) slower
convergence.

22 / 60

The secant iteration

Halley’s method uses more derivatives to get faster convergence.

In practice, computing derivatives of your function might be very expensive. (Think of
e.g. f(x) as the evaluation of a climate model.)

The secant iteration makes the converse trade: no derivative evaluations, for (slightly) slower
convergence.

22 / 60

The secant iteration

The Newton iteration uses
xi+1 = g(xi) = x−

(
f ′(xi)

)−1
f(xi)

but we don’t want to code f ′(x).

The secant method approximates

f ′(xi) ≈
f(xi)− f(xi−1)

xi − xi−1

with some previous data xi−1.

This requires the user to supply both x0 and x−1.

Newton invented the secant method around the same time, but never published it.

Both the ancient Egyptians and Babylonians used the secant method around 1800 BCE to
solve equations like

ax+ b = c

since they didn’t know how to move terms from one side to another!

23 / 60

The secant iteration

The Newton iteration uses
xi+1 = g(xi) = x−

(
f ′(xi)

)−1
f(xi)

but we don’t want to code f ′(x).

The secant method approximates

f ′(xi) ≈
f(xi)− f(xi−1)

xi − xi−1

with some previous data xi−1.

This requires the user to supply both x0 and x−1.

Newton invented the secant method around the same time, but never published it.

Both the ancient Egyptians and Babylonians used the secant method around 1800 BCE to
solve equations like

ax+ b = c

since they didn’t know how to move terms from one side to another!

23 / 60

The secant iteration

The Newton iteration uses
xi+1 = g(xi) = x−

(
f ′(xi)

)−1
f(xi)

but we don’t want to code f ′(x).

The secant method approximates

f ′(xi) ≈
f(xi)− f(xi−1)

xi − xi−1

with some previous data xi−1.

This requires the user to supply both x0 and x−1.

Newton invented the secant method around the same time, but never published it.

Both the ancient Egyptians and Babylonians used the secant method around 1800 BCE to
solve equations like

ax+ b = c

since they didn’t know how to move terms from one side to another!

23 / 60

The secant iteration

The Newton iteration uses
xi+1 = g(xi) = x−

(
f ′(xi)

)−1
f(xi)

but we don’t want to code f ′(x).

The secant method approximates

f ′(xi) ≈
f(xi)− f(xi−1)

xi − xi−1

with some previous data xi−1.

This requires the user to supply both x0 and x−1.

Newton invented the secant method around the same time, but never published it.

Both the ancient Egyptians and Babylonians used the secant method around 1800 BCE to
solve equations like

ax+ b = c

since they didn’t know how to move terms from one side to another!

23 / 60

The secant iteration

The Newton iteration uses
xi+1 = g(xi) = x−

(
f ′(xi)

)−1
f(xi)

but we don’t want to code f ′(x).

The secant method approximates

f ′(xi) ≈
f(xi)− f(xi−1)

xi − xi−1

with some previous data xi−1.

This requires the user to supply both x0 and x−1.

Newton invented the secant method around the same time, but never published it.

Both the ancient Egyptians and Babylonians used the secant method around 1800 BCE to
solve equations like

ax+ b = c

since they didn’t know how to move terms from one side to another!
23 / 60

The secant iteration

The secant iteration.

−3 −2 −1 1 2 3

2

4

6

x0x−1 x

f(x)

24 / 60

The secant iteration

The secant iteration.

−3 −2 −1 1 2 3

2

4

6

s0

x0x−1 x

f(x)

24 / 60

The secant iteration

The secant iteration.

−3 −2 −1 1 2 3

2

4

6

s1

x1 x0 x

f(x)

24 / 60

The secant iteration

The secant iteration.

−3 −2 −1 1 2 3

2

4

6

s2

x2 x1 x

f(x)

24 / 60

The secant iteration

Interestingly, the secant iteration converges with order

ϕ =
1 +
√
5

2
≈ 1.618034

so its convergence is superlinear, but not quite quadratic.

The first proof to be found of this is by Terry Allen Jeeves in 1958, 300 years after Newton
invented it!

Comments on the secant method:
7 The method requires more information to start, and depends sensitively on it.
3 In principle the method can be applied to nondifferentiable functions.
▶ The generalisation to higher dimensions is different—leading to the quasi-Newton family

of methods.

25 / 60

The secant iteration

Interestingly, the secant iteration converges with order

ϕ =
1 +
√
5

2
≈ 1.618034

so its convergence is superlinear, but not quite quadratic.

The first proof to be found of this is by Terry Allen Jeeves in 1958, 300 years after Newton
invented it!

Comments on the secant method:
7 The method requires more information to start, and depends sensitively on it.
3 In principle the method can be applied to nondifferentiable functions.
▶ The generalisation to higher dimensions is different—leading to the quasi-Newton family

of methods.

25 / 60

The secant iteration

Interestingly, the secant iteration converges with order

ϕ =
1 +
√
5

2
≈ 1.618034

so its convergence is superlinear, but not quite quadratic.

The first proof to be found of this is by Terry Allen Jeeves in 1958, 300 years after Newton
invented it!

Comments on the secant method:
7 The method requires more information to start, and depends sensitively on it.

3 In principle the method can be applied to nondifferentiable functions.
▶ The generalisation to higher dimensions is different—leading to the quasi-Newton family

of methods.

25 / 60

The secant iteration

Interestingly, the secant iteration converges with order

ϕ =
1 +
√
5

2
≈ 1.618034

so its convergence is superlinear, but not quite quadratic.

The first proof to be found of this is by Terry Allen Jeeves in 1958, 300 years after Newton
invented it!

Comments on the secant method:
7 The method requires more information to start, and depends sensitively on it.
3 In principle the method can be applied to nondifferentiable functions.

▶ The generalisation to higher dimensions is different—leading to the quasi-Newton family
of methods.

25 / 60

The secant iteration

Interestingly, the secant iteration converges with order

ϕ =
1 +
√
5

2
≈ 1.618034

so its convergence is superlinear, but not quite quadratic.

The first proof to be found of this is by Terry Allen Jeeves in 1958, 300 years after Newton
invented it!

Comments on the secant method:
7 The method requires more information to start, and depends sensitively on it.
3 In principle the method can be applied to nondifferentiable functions.
▶ The generalisation to higher dimensions is different—leading to the quasi-Newton family

of methods.

25 / 60

Aitken acceleration of fixed-point iterations

Section 3

Aitken acceleration of fixed-point iterations

26 / 60

Aitken acceleration of fixed-point iterations

Suppose our fixed-point iteration
xi+1 = g(xi)

is only converging linearly.

We could apply Aitken acceleration, constructing

x0, x1,x2, x3, x4, . . .

x̃0, x̃1,

The acceleration only goes one way: we don’t re-use the accelerated values in the fixed-point
iteration itself.

27 / 60

Aitken acceleration of fixed-point iterations

Suppose our fixed-point iteration
xi+1 = g(xi)

is only converging linearly.

We could apply Aitken acceleration, constructing

x0, x1,x2, x3, x4, . . .

x̃0, x̃1,

The acceleration only goes one way: we don’t re-use the accelerated values in the fixed-point
iteration itself.

27 / 60

Aitken acceleration of fixed-point iterations

Suppose our fixed-point iteration
xi+1 = g(xi)

is only converging linearly.

We could apply Aitken acceleration, constructing

x0, x1,x2, x3, x4, . . .

x̃0, x̃1,

The acceleration only goes one way: we don’t re-use the accelerated values in the fixed-point
iteration itself.

27 / 60

Aitken acceleration of fixed-point iterations

Steffensen’s idea
Do two steps of fixed-point iteration, apply Aitken acceleration, then
re-start the fixed-point iteration from there.

This interleaves the fixed-point iteration and acceleration.
Johan Frederik Steffensen,
1873–1961

28 / 60

Aitken acceleration of fixed-point iterations

Assume g : [a, b]→ [a, b], and x0 ∈ [a, b].

function steffensen(g, x0, tol)
x← x0
while |g(x)− x| > tol do

x0 ← x
x1 ← g(x0)
x2 ← g(x1)
x←

(
x0x2 − x21

)
/(x2 − 2x1 + x0)

end while
return g(x)

end function

If you organise the code properly, this requires two evaluations of g per iteration.

Does this really help?

29 / 60

Aitken acceleration of fixed-point iterations

Assume g : [a, b]→ [a, b], and x0 ∈ [a, b].

function steffensen(g, x0, tol)
x← x0
while |g(x)− x| > tol do

x0 ← x
x1 ← g(x0)
x2 ← g(x1)
x←

(
x0x2 − x21

)
/(x2 − 2x1 + x0)

end while
return g(x)

end function

If you organise the code properly, this requires two evaluations of g per iteration.

Does this really help?

29 / 60

Aitken acceleration of fixed-point iterations

Assume g : [a, b]→ [a, b], and x0 ∈ [a, b].

function steffensen(g, x0, tol)
x← x0
while |g(x)− x| > tol do

x0 ← x
x1 ← g(x0)
x2 ← g(x1)
x←

(
x0x2 − x21

)
/(x2 − 2x1 + x0)

end while
return g(x)

end function

If you organise the code properly, this requires two evaluations of g per iteration.

Does this really help?

29 / 60

Aitken acceleration of fixed-point iterations

Assume g : [a, b]→ [a, b], and x0 ∈ [a, b].

function steffensen(g, x0, tol)
x← x0
while |g(x)− x| > tol do

x0 ← x
x1 ← g(x0)
x2 ← g(x1)
x←

(
x0x2 − x21

)
/(x2 − 2x1 + x0)

end while
return g(x)

end function

If you organise the code properly, this requires two evaluations of g per iteration.

Does this really help?
29 / 60

Aitken acceleration of fixed-point iterations

Yes, it does, under certain conditions:

Steffensen’s theorem (1933)
Suppose that g(x) has a fixed point x⋆ with g′(x⋆) 6= 1. If there exists δ > 0 such that
g ∈ C3([x⋆ − δ, x⋆ + δ],R), then Steffensen’s method gives quadratic convergence for any
x0 ∈ [x⋆ − δ, x⋆ + δ].

This can achieve quadratic convergence, without derivatives!

30 / 60

Aitken acceleration of fixed-point iterations

Let’s see two examples.

We previously considered the fixed-point iteration

g(x) =
x+ 1

x

for calculating the golden ratio ϕ.

Fixed-point iteration requires 37 evaluations of g to get ϕ to 16 digits. Steffensen’s method
requires only 8!

31 / 60

Aitken acceleration of fixed-point iterations

Let’s see two examples.

We previously considered the fixed-point iteration

g(x) =
x+ 1

x

for calculating the golden ratio ϕ.

Fixed-point iteration requires 37 evaluations of g to get ϕ to 16 digits. Steffensen’s method
requires only 8!

31 / 60

Aitken acceleration of fixed-point iterations

Let’s see two examples.

We previously considered the fixed-point iteration

g(x) =
x+ 1

x

for calculating the golden ratio ϕ.

Fixed-point iteration requires 37 evaluations of g to get ϕ to 16 digits. Steffensen’s method
requires only 8!

31 / 60

Aitken acceleration of fixed-point iterations

Let’s apply Newton’s method to
f(x) = (x− 1)2.

This gives
g(x) = x− (x− 1)2

2x− 2
.

Since f ′(1) = 0, g′(1) 6= 0, and we only achieve linear convergence:

In [17]: newton(lambda x: (x-1)**2, lambda x: 2*x - 2, 0, 1e-4)
Iteration 0: x = 0.000000e+00 f(x) = 1.000000e+00
Iteration 1: x = 5.000000e-01 f(x) = 2.500000e-01
Iteration 2: x = 7.500000e-01 f(x) = 6.250000e-02
Iteration 3: x = 8.750000e-01 f(x) = 1.562500e-02
Iteration 4: x = 9.375000e-01 f(x) = 3.906250e-03
Iteration 5: x = 9.687500e-01 f(x) = 9.765625e-04
Iteration 6: x = 9.843750e-01 f(x) = 2.441406e-04
Iteration 7: x = 9.921875e-01 f(x) = 6.103516e-05
Out[17]: 0.9921875

32 / 60

Aitken acceleration of fixed-point iterations

Let’s apply Newton’s method to
f(x) = (x− 1)2.

This gives
g(x) = x− (x− 1)2

2x− 2
.

Since f ′(1) = 0, g′(1) 6= 0, and we only achieve linear convergence:

In [17]: newton(lambda x: (x-1)**2, lambda x: 2*x - 2, 0, 1e-4)
Iteration 0: x = 0.000000e+00 f(x) = 1.000000e+00
Iteration 1: x = 5.000000e-01 f(x) = 2.500000e-01
Iteration 2: x = 7.500000e-01 f(x) = 6.250000e-02
Iteration 3: x = 8.750000e-01 f(x) = 1.562500e-02
Iteration 4: x = 9.375000e-01 f(x) = 3.906250e-03
Iteration 5: x = 9.687500e-01 f(x) = 9.765625e-04
Iteration 6: x = 9.843750e-01 f(x) = 2.441406e-04
Iteration 7: x = 9.921875e-01 f(x) = 6.103516e-05
Out[17]: 0.9921875

32 / 60

Aitken acceleration of fixed-point iterations

Let’s apply Newton’s method to
f(x) = (x− 1)2.

This gives
g(x) = x− (x− 1)2

2x− 2
.

Since f ′(1) = 0, g′(1) 6= 0, and we only achieve linear convergence:

In [17]: newton(lambda x: (x-1)**2, lambda x: 2*x - 2, 0, 1e-4)
Iteration 0: x = 0.000000e+00 f(x) = 1.000000e+00
Iteration 1: x = 5.000000e-01 f(x) = 2.500000e-01
Iteration 2: x = 7.500000e-01 f(x) = 6.250000e-02
Iteration 3: x = 8.750000e-01 f(x) = 1.562500e-02
Iteration 4: x = 9.375000e-01 f(x) = 3.906250e-03
Iteration 5: x = 9.687500e-01 f(x) = 9.765625e-04
Iteration 6: x = 9.843750e-01 f(x) = 2.441406e-04
Iteration 7: x = 9.921875e-01 f(x) = 6.103516e-05
Out[17]: 0.9921875

32 / 60

Aitken acceleration of fixed-point iterations

Converging linearly, you say?
In [19]: steffensen(lambda x: x - (x-1)**2/(2*x-2), 2, 1e-12, exact=1)
Iterations 0: fixed point = 2.000000000000000e+00 error = 1.000000000000000e+00
Iterations 2: fixed point = 1.000000000000000e+00 error = 0.000000000000000e+00

Steffensen’s method gets the answer exact to 16 digits in 2 iterations.

33 / 60

Rootfinding for polynomials

Section 4

Rootfinding for polynomials

34 / 60

Rootfinding for polynomials

We have seen general rootfinding methods that apply to many different kinds of functions.

Philosophical remark
When designing algorithms, we should always ask: have we used every piece of knowledge we

have about the problem?

For example, if we restrict ourselves to rootfinding for polynomials, can we make our
algorithms better? The answer is yes.

35 / 60

Rootfinding for polynomials

We have seen general rootfinding methods that apply to many different kinds of functions.

Philosophical remark
When designing algorithms, we should always ask: have we used every piece of knowledge we

have about the problem?

For example, if we restrict ourselves to rootfinding for polynomials, can we make our
algorithms better? The answer is yes.

35 / 60

Rootfinding for polynomials

We have seen general rootfinding methods that apply to many different kinds of functions.

Philosophical remark
When designing algorithms, we should always ask: have we used every piece of knowledge we

have about the problem?

For example, if we restrict ourselves to rootfinding for polynomials, can we make our
algorithms better? The answer is yes.

35 / 60

Horner’s method

Section 5

Horner’s method

36 / 60

Horner’s method

In the literature, Horner’s method refers to two different things:
1. an efficient evaluation strategy for polynomials in the monomial basis;

2. an iteration scheme for finding the roots of polynomials that combines Newton’s method
with the evaluation scheme.

The evaluation scheme was known in medieval times to Qín Jiǔsháo (c. 1202–1261) and
Sharaf al-Dīn al-Ṭūsī (c. 1135-1213), and later to Newton and Lagrange.

It’s not clear that Horner, a schoolmaster in Bath, even invented the latter
method that now bears his name. He was beaten to it by Paolo Ruffini in
1804 and Theophilus Holdred, a London watchmaker, in 1820. The method
was published again by Horner in 1830.

Paolo Ruffini, 1765–1822

37 / 60

Horner’s method

In the literature, Horner’s method refers to two different things:
1. an efficient evaluation strategy for polynomials in the monomial basis;
2. an iteration scheme for finding the roots of polynomials that combines Newton’s method

with the evaluation scheme.

The evaluation scheme was known in medieval times to Qín Jiǔsháo (c. 1202–1261) and
Sharaf al-Dīn al-Ṭūsī (c. 1135-1213), and later to Newton and Lagrange.

It’s not clear that Horner, a schoolmaster in Bath, even invented the latter
method that now bears his name. He was beaten to it by Paolo Ruffini in
1804 and Theophilus Holdred, a London watchmaker, in 1820. The method
was published again by Horner in 1830.

Paolo Ruffini, 1765–1822

37 / 60

Horner’s method

In the literature, Horner’s method refers to two different things:
1. an efficient evaluation strategy for polynomials in the monomial basis;
2. an iteration scheme for finding the roots of polynomials that combines Newton’s method

with the evaluation scheme.

The evaluation scheme was known in medieval times to Qín Jiǔsháo (c. 1202–1261) and
Sharaf al-Dīn al-Ṭūsī (c. 1135-1213), and later to Newton and Lagrange.

It’s not clear that Horner, a schoolmaster in Bath, even invented the latter
method that now bears his name. He was beaten to it by Paolo Ruffini in
1804 and Theophilus Holdred, a London watchmaker, in 1820. The method
was published again by Horner in 1830.

Paolo Ruffini, 1765–1822

37 / 60

Horner’s method

In the literature, Horner’s method refers to two different things:
1. an efficient evaluation strategy for polynomials in the monomial basis;
2. an iteration scheme for finding the roots of polynomials that combines Newton’s method

with the evaluation scheme.

The evaluation scheme was known in medieval times to Qín Jiǔsháo (c. 1202–1261) and
Sharaf al-Dīn al-Ṭūsī (c. 1135-1213), and later to Newton and Lagrange.

It’s not clear that Horner, a schoolmaster in Bath, even invented the latter
method that now bears his name. He was beaten to it by Paolo Ruffini in
1804 and Theophilus Holdred, a London watchmaker, in 1820. The method
was published again by Horner in 1830.

Paolo Ruffini, 1765–1822

37 / 60

Horner’s method

Let’s consider Horner’s two methods in order. Suppose we have a polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

with n large, e.g. n = 10, 000. How should we evaluate p(r) for r ∈ R?

One way would be to evaluate all the terms in the sum separately, and add them up. This
would require n additions and

0 + 1 + 2 + · · ·+ n =
n2 + n

2

multiplications. Scaling like n2 is bad!

38 / 60

Horner’s method

Let’s consider Horner’s two methods in order. Suppose we have a polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

with n large, e.g. n = 10, 000. How should we evaluate p(r) for r ∈ R?

One way would be to evaluate all the terms in the sum separately, and add them up. This
would require n additions and

0 + 1 + 2 + · · ·+ n =
n2 + n

2

multiplications. Scaling like n2 is bad!

38 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n

= a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .
This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).

39 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n = a0 +

x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .
This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).

39 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n = a0 + x (

a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .
This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).

39 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n = a0 + x (a1 + x

(a2 + · · ·+ x (an−1 + xan) · · ·)) .
This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).

39 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .

This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).

39 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .
This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).

39 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .
This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).

39 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .
This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).

39 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .
This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).

39 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .
This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).

39 / 60

Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .
This shares the evaluations of powers of x. It only requires n multiplications and n additions!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).
39 / 60

Horner’s method

There’s more to it than this, however.

Theorem
Define the polynomial

Q(x) := bnx
n−1 + bn−1x

n−2 + · · ·+ b2x+ b1.

Then
p(x) = (x− r)Q(x) + b0.

Before proving this, note that indeed p(r) = b0, and

p′(x) = Q(x) + (x− r)Q′(x),

so in particular
p′(r) = Q(r).

40 / 60

Horner’s method

There’s more to it than this, however.

Theorem
Define the polynomial

Q(x) := bnx
n−1 + bn−1x

n−2 + · · ·+ b2x+ b1.

Then
p(x) = (x− r)Q(x) + b0.

Before proving this, note that indeed p(r) = b0, and

p′(x) = Q(x) + (x− r)Q′(x),

so in particular
p′(r) = Q(r).

40 / 60

Horner’s method

There’s more to it than this, however.

Theorem
Define the polynomial

Q(x) := bnx
n−1 + bn−1x

n−2 + · · ·+ b2x+ b1.

Then
p(x) = (x− r)Q(x) + b0.

Before proving this, note that indeed p(r) = b0, and

p′(x) = Q(x) + (x− r)Q′(x),

so in particular
p′(r) = Q(r).

40 / 60

Horner’s method

There’s more to it than this, however.

Theorem
Define the polynomial

Q(x) := bnx
n−1 + bn−1x

n−2 + · · ·+ b2x+ b1.

Then
p(x) = (x− r)Q(x) + b0.

Before proving this, note that indeed p(r) = b0, and

p′(x) = Q(x) + (x− r)Q′(x),

so in particular
p′(r) = Q(r).

40 / 60

Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 =

(x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

41 / 60

Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

41 / 60

Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

41 / 60

Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

41 / 60

Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

41 / 60

Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)

= xi −
p(xi)

Q(xi)
.

41 / 60

Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

41 / 60

Horner’s method

function horner([a0, · · · , an], x0, tol, maxit)
x← x0

for i = 1, . . . ,maxit do
b← anx+ an−1 # Horner eval for p
c← an # Horner eval for p′
for k = n− 1, n− 2, . . . , 1, 0 do

c← cx+ b
b← bx+ ai

end for
if |b| < tol then # success

return x
end if
x← x− b/c # Newton update

end for
end function

42 / 60

Horner’s method

function horner([a0, · · · , an], x0, tol, maxit)
x← x0
for i = 1, . . . ,maxit do

b← anx+ an−1 # Horner eval for p

c← an # Horner eval for p′
for k = n− 1, n− 2, . . . , 1, 0 do

c← cx+ b
b← bx+ ai

end for
if |b| < tol then # success

return x
end if
x← x− b/c # Newton update

end for
end function

42 / 60

Horner’s method

function horner([a0, · · · , an], x0, tol, maxit)
x← x0
for i = 1, . . . ,maxit do

b← anx+ an−1 # Horner eval for p
c← an # Horner eval for p′

for k = n− 1, n− 2, . . . , 1, 0 do
c← cx+ b
b← bx+ ai

end for
if |b| < tol then # success

return x
end if
x← x− b/c # Newton update

end for
end function

42 / 60

Horner’s method

function horner([a0, · · · , an], x0, tol, maxit)
x← x0
for i = 1, . . . ,maxit do

b← anx+ an−1 # Horner eval for p
c← an # Horner eval for p′
for k = n− 1, n− 2, . . . , 1, 0 do

c← cx+ b

b← bx+ ai
end for
if |b| < tol then # success

return x
end if
x← x− b/c # Newton update

end for
end function

42 / 60

Horner’s method

function horner([a0, · · · , an], x0, tol, maxit)
x← x0
for i = 1, . . . ,maxit do

b← anx+ an−1 # Horner eval for p
c← an # Horner eval for p′
for k = n− 1, n− 2, . . . , 1, 0 do

c← cx+ b
b← bx+ ai

end for

if |b| < tol then # success
return x

end if
x← x− b/c # Newton update

end for
end function

42 / 60

Horner’s method

function horner([a0, · · · , an], x0, tol, maxit)
x← x0
for i = 1, . . . ,maxit do

b← anx+ an−1 # Horner eval for p
c← an # Horner eval for p′
for k = n− 1, n− 2, . . . , 1, 0 do

c← cx+ b
b← bx+ ai

end for
if |b| < tol then # success

return x
end if

x← x− b/c # Newton update
end for

end function

42 / 60

Horner’s method

function horner([a0, · · · , an], x0, tol, maxit)
x← x0
for i = 1, . . . ,maxit do

b← anx+ an−1 # Horner eval for p
c← an # Horner eval for p′
for k = n− 1, n− 2, . . . , 1, 0 do

c← cx+ b
b← bx+ ai

end for
if |b| < tol then # success

return x
end if
x← x− b/c # Newton update

end for
end function

42 / 60

Horner’s method

We can summarise with the following useful notation:

Definition (Big O notation)
For g(n) > 0, we say

f(n) = O(g(n)) as n→∞

if there exists M > 0 and n0 ∈ N such that

|f(n)| ≤Mg(n) for all n ≥ n0.

The number of operations to evaluate a degree-n polynomial is:
▶ O(n2) for the naïve way, but
▶ O(n) for Horner’s evaluation scheme.

This is much, much better at high n!

43 / 60

Horner’s method

We can summarise with the following useful notation:

Definition (Big O notation)
For g(n) > 0, we say

f(n) = O(g(n)) as n→∞

if there exists M > 0 and n0 ∈ N such that

|f(n)| ≤Mg(n) for all n ≥ n0.

The number of operations to evaluate a degree-n polynomial is:
▶ O(n2) for the naïve way, but

▶ O(n) for Horner’s evaluation scheme.
This is much, much better at high n!

43 / 60

Horner’s method

We can summarise with the following useful notation:

Definition (Big O notation)
For g(n) > 0, we say

f(n) = O(g(n)) as n→∞

if there exists M > 0 and n0 ∈ N such that

|f(n)| ≤Mg(n) for all n ≥ n0.

The number of operations to evaluate a degree-n polynomial is:
▶ O(n2) for the naïve way, but
▶ O(n) for Horner’s evaluation scheme.

This is much, much better at high n!

43 / 60

Horner’s method

In fact, Horner’s scheme for evaluation has a nice optimality property:

Theorem
Any algorithm for evaluating an arbitrary polynomial must require at least n additions
(Ostrowski, 1954) and at least n multiplications (Pan, 1966).

Since Horner’s scheme employs n additions and n multiplications, it is optimal (for arbitrary
polynomials).

If you know you’ll evaluate a polynomial many times on different inputs, it is possible to
preprocess the polynomial into a representation that requires fewer operations (trading offline
work for online work).

44 / 60

Horner’s method

In fact, Horner’s scheme for evaluation has a nice optimality property:

Theorem
Any algorithm for evaluating an arbitrary polynomial must require at least n additions
(Ostrowski, 1954) and at least n multiplications (Pan, 1966).

Since Horner’s scheme employs n additions and n multiplications, it is optimal (for arbitrary
polynomials).

If you know you’ll evaluate a polynomial many times on different inputs, it is possible to
preprocess the polynomial into a representation that requires fewer operations (trading offline
work for online work).

44 / 60

Horner’s method

In fact, Horner’s scheme for evaluation has a nice optimality property:

Theorem
Any algorithm for evaluating an arbitrary polynomial must require at least n additions
(Ostrowski, 1954) and at least n multiplications (Pan, 1966).

Since Horner’s scheme employs n additions and n multiplications, it is optimal (for arbitrary
polynomials).

If you know you’ll evaluate a polynomial many times on different inputs, it is possible to
preprocess the polynomial into a representation that requires fewer operations (trading offline
work for online work).

44 / 60

More philosophical remarks

Section 6

More philosophical remarks

45 / 60

More philosophical remarks

Horner’s evaluation scheme exhibits an important principle:

Philosophical remark
Equivalent expressions can have different algorithmic properties!

In Horner’s case, we had

a0 + a1x+ · · ·+ anx
n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .

Algorithmic advances sometimes come by deriving an equivalent expression with better
properties.

46 / 60

More philosophical remarks

Horner’s evaluation scheme exhibits an important principle:

Philosophical remark
Equivalent expressions can have different algorithmic properties!

In Horner’s case, we had

a0 + a1x+ · · ·+ anx
n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .

Algorithmic advances sometimes come by deriving an equivalent expression with better
properties.

46 / 60

More philosophical remarks

Horner’s evaluation scheme exhibits an important principle:

Philosophical remark
Equivalent expressions can have different algorithmic properties!

In Horner’s case, we had

a0 + a1x+ · · ·+ anx
n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .

Algorithmic advances sometimes come by deriving an equivalent expression with better
properties.

46 / 60

More philosophical remarks

Horner’s evaluation scheme exhibits an important principle:

Philosophical remark
Equivalent expressions can have different algorithmic properties!

In Horner’s case, we had

a0 + a1x+ · · ·+ anx
n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·)) .

Algorithmic advances sometimes come by deriving an equivalent expression with better
properties.

46 / 60

More philosophical remarks

Think back to our list of questions we ask about algorithms:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

There’s another very important question we might want to ask:

▶ Can we parallelise the algorithm?

Every computer nowadays has multiple processing units. (My phone has 8.) Can we use them?

47 / 60

More philosophical remarks

Think back to our list of questions we ask about algorithms:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

There’s another very important question we might want to ask:

▶ Can we parallelise the algorithm?

Every computer nowadays has multiple processing units. (My phone has 8.) Can we use them?

47 / 60

More philosophical remarks

Think back to our list of questions we ask about algorithms:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

There’s another very important question we might want to ask:

▶ Can we parallelise the algorithm?

Every computer nowadays has multiple processing units. (My phone has 8.) Can we use them?

47 / 60

More philosophical remarks

Think back to our list of questions we ask about algorithms:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

There’s another very important question we might want to ask:

▶ Can we parallelise the algorithm?

Every computer nowadays has multiple processing units. (My phone has 8.) Can we use them?

47 / 60

More philosophical remarks

Here’s another equivalent expression with different properties:

a0 + a1x+ · · ·+ anx
n

=
(
a0 + a2x

2 + a4x
4 + · · ·

)
+
(
a1x+ a3x

3 + a5x
5 + · · ·

)

=
(
a0 + a2x

2 + a4x
4 + · · ·

)
+ x

(
a1 + a3x

2 + a5x
4 + · · ·

)
= p1(x

2) + xp2(x
2)

which we can evaluate in parallel with two independent runs of Horner’s method.

More generally, if you have enough terms, you can break p up into k + 1 polynomials {pj}kj=0,
each taking the monomial term xi if

i mod (k + 1) = j.

48 / 60

More philosophical remarks

Here’s another equivalent expression with different properties:

a0 + a1x+ · · ·+ anx
n

=
(
a0 + a2x

2 + a4x
4 + · · ·

)
+
(
a1x+ a3x

3 + a5x
5 + · · ·

)
=

(
a0 + a2x

2 + a4x
4 + · · ·

)
+ x

(
a1 + a3x

2 + a5x
4 + · · ·

)

= p1(x
2) + xp2(x

2)

which we can evaluate in parallel with two independent runs of Horner’s method.

More generally, if you have enough terms, you can break p up into k + 1 polynomials {pj}kj=0,
each taking the monomial term xi if

i mod (k + 1) = j.

48 / 60

More philosophical remarks

Here’s another equivalent expression with different properties:

a0 + a1x+ · · ·+ anx
n

=
(
a0 + a2x

2 + a4x
4 + · · ·

)
+
(
a1x+ a3x

3 + a5x
5 + · · ·

)
=

(
a0 + a2x

2 + a4x
4 + · · ·

)
+ x

(
a1 + a3x

2 + a5x
4 + · · ·

)
= p1(x

2) + xp2(x
2)

which we can evaluate in parallel with two independent runs of Horner’s method.

More generally, if you have enough terms, you can break p up into k + 1 polynomials {pj}kj=0,
each taking the monomial term xi if

i mod (k + 1) = j.

48 / 60

More philosophical remarks

Here’s another equivalent expression with different properties:

a0 + a1x+ · · ·+ anx
n

=
(
a0 + a2x

2 + a4x
4 + · · ·

)
+
(
a1x+ a3x

3 + a5x
5 + · · ·

)
=

(
a0 + a2x

2 + a4x
4 + · · ·

)
+ x

(
a1 + a3x

2 + a5x
4 + · · ·

)
= p1(x

2) + xp2(x
2)

which we can evaluate in parallel with two independent runs of Horner’s method.

More generally, if you have enough terms, you can break p up into k + 1 polynomials {pj}kj=0,
each taking the monomial term xi if

i mod (k + 1) = j.

48 / 60

More philosophical remarks

Here’s another equivalent expression with different properties:

a0 + a1x+ · · ·+ anx
n

=
(
a0 + a2x

2 + a4x
4 + · · ·

)
+
(
a1x+ a3x

3 + a5x
5 + · · ·

)
=

(
a0 + a2x

2 + a4x
4 + · · ·

)
+ x

(
a1 + a3x

2 + a5x
4 + · · ·

)
= p1(x

2) + xp2(x
2)

which we can evaluate in parallel with two independent runs of Horner’s method.

More generally, if you have enough terms, you can break p up into k + 1 polynomials {pj}kj=0,
each taking the monomial term xi if

i mod (k + 1) = j.

48 / 60

Finding all roots of a polynomial

Section 7

Finding all roots of a polynomial

49 / 60

Finding all roots of a polynomial

Horner’s scheme is just a specialised variant of Newton’s method. It finds roots one at a time.

Once you have found a root x⋆ of p0(x), you can construct

p1(x) =
p0(x)

(x− x⋆)

and apply the scheme again to p1. Iterating in this way one can find all real roots, if you can
construct good initial guesses.

Can we find them all at once, without fussing over guesses?

50 / 60

Finding all roots of a polynomial

Horner’s scheme is just a specialised variant of Newton’s method. It finds roots one at a time.

Once you have found a root x⋆ of p0(x), you can construct

p1(x) =
p0(x)

(x− x⋆)

and apply the scheme again to p1. Iterating in this way one can find all real roots, if you can
construct good initial guesses.

Can we find them all at once, without fussing over guesses?

50 / 60

Finding all roots of a polynomial

Horner’s scheme is just a specialised variant of Newton’s method. It finds roots one at a time.

Once you have found a root x⋆ of p0(x), you can construct

p1(x) =
p0(x)

(x− x⋆)

and apply the scheme again to p1. Iterating in this way one can find all real roots, if you can
construct good initial guesses.

Can we find them all at once, without fussing over guesses?

50 / 60

Finding all roots of a polynomial

It turns out that we have very fast and powerful algorithms for computing the eigenvalues of
diagonalisable matrices:

for A ∈ Rn×n, find all λi, vi s.t. Avi = λvi, ‖vi‖2 = 1.

The algorithm is called the QR algorithm, invented independently by Francis (1959) and
Kublanovskaya (1961). It is widely regarded as one of the ten most important algorithms of
the 20th century.

John Francis, 1934– Vera Kublanovskaya, 1920–2012

You can learn more in A7: Numerical Analysis.

51 / 60

Finding all roots of a polynomial

It turns out that we have very fast and powerful algorithms for computing the eigenvalues of
diagonalisable matrices:

for A ∈ Rn×n, find all λi, vi s.t. Avi = λvi, ‖vi‖2 = 1.

The algorithm is called the QR algorithm, invented independently by Francis (1959) and
Kublanovskaya (1961). It is widely regarded as one of the ten most important algorithms of
the 20th century.

John Francis, 1934– Vera Kublanovskaya, 1920–2012

You can learn more in A7: Numerical Analysis.

51 / 60

Finding all roots of a polynomial

It turns out that we have very fast and powerful algorithms for computing the eigenvalues of
diagonalisable matrices:

for A ∈ Rn×n, find all λi, vi s.t. Avi = λvi, ‖vi‖2 = 1.

The algorithm is called the QR algorithm, invented independently by Francis (1959) and
Kublanovskaya (1961). It is widely regarded as one of the ten most important algorithms of
the 20th century.

John Francis, 1934– Vera Kublanovskaya, 1920–2012

You can learn more in A7: Numerical Analysis.
51 / 60

Finding all roots of a polynomial

Given p(x) of degree n, we want to construct an A with characteristic polynomial p(x).

Let

p(x) = a0 + a1x+ · · ·+ xn

be our (monic) polynomial. Then we can construct its companion matrix

C(a) :=


0 −a0
1 0 −a1
0 1 0 −a2

.
1 −an−1

 .

By construction, we have (proof is by induction):

det(C(a)− λI) = (−1)np(λ).

52 / 60

Finding all roots of a polynomial

Given p(x) of degree n, we want to construct an A with characteristic polynomial p(x). Let

p(x) = a0 + a1x+ · · ·+ xn

be our (monic) polynomial. Then we can construct its companion matrix

C(a) :=


0 −a0
1 0 −a1
0 1 0 −a2

.
1 −an−1

 .

By construction, we have (proof is by induction):

det(C(a)− λI) = (−1)np(λ).

52 / 60

Finding all roots of a polynomial

Given p(x) of degree n, we want to construct an A with characteristic polynomial p(x). Let

p(x) = a0 + a1x+ · · ·+ xn

be our (monic) polynomial. Then we can construct its companion matrix

C(a) :=


0 −a0
1 0 −a1
0 1 0 −a2

.
1 −an−1

 .

By construction, we have (proof is by induction):

det(C(a)− λI) = (−1)np(λ).

52 / 60

Finding all roots of a polynomial

By applying the QR algorithm for eigenvalues to the companion matrix, we can find all roots
in O(n3) operations.

We previously saw that Newton’s method can get stuck in a cycle for p(x) = x3 − 2x+ 2. No
problem:

In [2]: np.roots([1, 0, -2, -2])
Out[2]:
array([1.76929235+0.j,

-0.88464618+0.58974281j,
-0.88464618-0.58974281j])

53 / 60

Finding all roots of a polynomial

By applying the QR algorithm for eigenvalues to the companion matrix, we can find all roots
in O(n3) operations.

We previously saw that Newton’s method can get stuck in a cycle for p(x) = x3 − 2x+ 2. No
problem:

In [2]: np.roots([1, 0, -2, -2])
Out[2]:
array([1.76929235+0.j,

-0.88464618+0.58974281j,
-0.88464618-0.58974281j])

53 / 60

Representing polynomials

Section 8

Representing polynomials

54 / 60

Representing polynomials

Philosophical remark
Algorithms are usually tied to the data structures we use.

For example, as mathematicians we might think of p ∈ Πn, the vector space of degree-n
polynomials. But Horner’s method and the companion matrix rely on a particular
representation of p, in the monomial basis {Mi}:

p(x) =

n∑
i=0

aiMi(x), Mi(x) := xi.

The algorithms take in [a0, a1, . . . , an] ∈ Rn+1 to represent p.

A natural question to ask:
is the map a 7→ p stable?

55 / 60

Representing polynomials

Philosophical remark
Algorithms are usually tied to the data structures we use.

For example, as mathematicians we might think of p ∈ Πn, the vector space of degree-n
polynomials. But Horner’s method and the companion matrix rely on a particular
representation of p, in the monomial basis {Mi}:

p(x) =

n∑
i=0

aiMi(x), Mi(x) := xi.

The algorithms take in [a0, a1, . . . , an] ∈ Rn+1 to represent p.

A natural question to ask:
is the map a 7→ p stable?

55 / 60

Representing polynomials

Philosophical remark
Algorithms are usually tied to the data structures we use.

For example, as mathematicians we might think of p ∈ Πn, the vector space of degree-n
polynomials. But Horner’s method and the companion matrix rely on a particular
representation of p, in the monomial basis {Mi}:

p(x) =

n∑
i=0

aiMi(x), Mi(x) := xi.

The algorithms take in [a0, a1, . . . , an] ∈ Rn+1 to represent p.

A natural question to ask:
is the map a 7→ p stable?

55 / 60

Representing polynomials

Philosophical remark
Algorithms are usually tied to the data structures we use.

For example, as mathematicians we might think of p ∈ Πn, the vector space of degree-n
polynomials. But Horner’s method and the companion matrix rely on a particular
representation of p, in the monomial basis {Mi}:

p(x) =

n∑
i=0

aiMi(x), Mi(x) := xi.

The algorithms take in [a0, a1, . . . , an] ∈ Rn+1 to represent p.

A natural question to ask:
is the map a 7→ p stable?

55 / 60

Representing polynomials

If we make a perturbation δa to a, how big can the perturbation δp be? For the monomial
basis {Mi}, the answer is very very big:

Construct

p(x) =

20∏
i=1

(x− i), x ∈ [0, 20],

then perturb its monomial coefficients by

δa = [0,−2−23, 0, . . . , 0].
James H. Wilkinson, 1919–1986

The resulting δp has
‖δp‖∞ := max{|δp(x)| : x ∈ [0, 20]} ≈ 6.25× 1017

for a stability constant of
‖δp‖∞
‖δa‖∞

≈ 5× 1024.

56 / 60

Representing polynomials

If we make a perturbation δa to a, how big can the perturbation δp be? For the monomial
basis {Mi}, the answer is very very big:

Construct

p(x) =

20∏
i=1

(x− i), x ∈ [0, 20],

then perturb its monomial coefficients by

δa = [0,−2−23, 0, . . . , 0].
James H. Wilkinson, 1919–1986

The resulting δp has
‖δp‖∞ := max{|δp(x)| : x ∈ [0, 20]} ≈ 6.25× 1017

for a stability constant of
‖δp‖∞
‖δa‖∞

≈ 5× 1024.

56 / 60

Representing polynomials

If we make a perturbation δa to a, how big can the perturbation δp be? For the monomial
basis {Mi}, the answer is very very big:

Construct

p(x) =

20∏
i=1

(x− i), x ∈ [0, 20],

then perturb its monomial coefficients by

δa = [0,−2−23, 0, . . . , 0].
James H. Wilkinson, 1919–1986

The resulting δp has
‖δp‖∞ := max{|δp(x)| : x ∈ [0, 20]} ≈ 6.25× 1017

for a stability constant of
‖δp‖∞
‖δa‖∞

≈ 5× 1024.
56 / 60

Representing polynomials

Philosophical remark
Not all bases are equally good.

For example, for ε > 0, the set
{(1, 0)⊤, (1, ε)⊤}

is as much of a basis for R2 as
{(1, 0)⊤, (0, 1)⊤}.

But you’d much rather compute with the latter than the former for small ε.

57 / 60

Representing polynomials

Philosophical remark
Not all bases are equally good.

For example, for ε > 0, the set
{(1, 0)⊤, (1, ε)⊤}

is as much of a basis for R2 as
{(1, 0)⊤, (0, 1)⊤}.

But you’d much rather compute with the latter than the former for small ε.

57 / 60

Representing polynomials

Philosophical remark
Not all bases are equally good.

For example, for ε > 0, the set
{(1, 0)⊤, (1, ε)⊤}

is as much of a basis for R2 as
{(1, 0)⊤, (0, 1)⊤}.

But you’d much rather compute with the latter than the former for small ε.

57 / 60

Representing polynomials

So what is a good basis for polynomials? An excellent choice on [a, b] is

p(x) =

n∑
i=0

ciTi(x̂(x)), x̂ =
2(x− a)

(b− a)
− 1

where the Chebyshev polynomials {Ti : [−1, 1]→ [−1, 1]} satisfy
T0(x̂) = 1, T1(x̂) = x̂, Ti+1(x̂) = 2x̂Ti(x̂)− Ti−1(x̂).

The role of the x̂ is to map the input interval [a, b] to [−1, 1].

Chebyshev polynomials. Credit: Glosser.ca, Wikipedia

58 / 60

Representing polynomials

So what is a good basis for polynomials? An excellent choice on [a, b] is

p(x) =

n∑
i=0

ciTi(x̂(x)), x̂ =
2(x− a)

(b− a)
− 1

where the Chebyshev polynomials {Ti : [−1, 1]→ [−1, 1]} satisfy
T0(x̂) = 1, T1(x̂) = x̂, Ti+1(x̂) = 2x̂Ti(x̂)− Ti−1(x̂).

The role of the x̂ is to map the input interval [a, b] to [−1, 1].

Chebyshev polynomials. Credit: Glosser.ca, Wikipedia
58 / 60

Representing polynomials

Using this basis yields a stable map c 7→ p. For Wilkinson’s polynomial,

‖δp‖∞/‖δc‖∞ ≈ 1.

Just as a polynomial p has a finite Chebyshev series, general functions f have infinite
Chebyshev series. These expansions converge very, very fast:
Theorem
Let f : [a, b]→ R be analytic with Chebyshev expansion

f(x) =

∞∑
i=0

ciTi(x).

Then for a constant C > 1

‖f − pn‖∞ = O(C−n), pn(x) =
n∑

i=0

ciTi(x).

59 / 60

Representing polynomials

Using this basis yields a stable map c 7→ p. For Wilkinson’s polynomial,

‖δp‖∞/‖δc‖∞ ≈ 1.

Just as a polynomial p has a finite Chebyshev series, general functions f have infinite
Chebyshev series. These expansions converge very, very fast:

Theorem
Let f : [a, b]→ R be analytic with Chebyshev expansion

f(x) =

∞∑
i=0

ciTi(x).

Then for a constant C > 1

‖f − pn‖∞ = O(C−n), pn(x) =
n∑

i=0

ciTi(x).

59 / 60

Representing polynomials

Using this basis yields a stable map c 7→ p. For Wilkinson’s polynomial,

‖δp‖∞/‖δc‖∞ ≈ 1.

Just as a polynomial p has a finite Chebyshev series, general functions f have infinite
Chebyshev series. These expansions converge very, very fast:
Theorem
Let f : [a, b]→ R be analytic with Chebyshev expansion

f(x) =

∞∑
i=0

ciTi(x).

Then for a constant C > 1

‖f − pn‖∞ = O(C−n), pn(x) =

n∑
i=0

ciTi(x).

59 / 60

Representing polynomials

But we can’t apply Horner’s method for evaluation, or the companion matrix trick for
rootfinding, to Chebyshev expansions!

Our algorithms are tied to our choice of representation: to our choice of basis, or (from a CS
perspective) the data structure we use.

Good news
For Chebyshev bases, analogous algorithms exist:

3 the second barycentric formula, for O(n) evaluation, and
3 the colleague matrix, for finding all roots with the QR algorithm.

These allow us to work with polynomials with degrees in the millions.

60 / 60

Representing polynomials

But we can’t apply Horner’s method for evaluation, or the companion matrix trick for
rootfinding, to Chebyshev expansions!

Our algorithms are tied to our choice of representation: to our choice of basis, or (from a CS
perspective) the data structure we use.

Good news
For Chebyshev bases, analogous algorithms exist:

3 the second barycentric formula, for O(n) evaluation, and
3 the colleague matrix, for finding all roots with the QR algorithm.

These allow us to work with polynomials with degrees in the millions.

60 / 60

Representing polynomials

But we can’t apply Horner’s method for evaluation, or the companion matrix trick for
rootfinding, to Chebyshev expansions!

Our algorithms are tied to our choice of representation: to our choice of basis, or (from a CS
perspective) the data structure we use.

Good news
For Chebyshev bases, analogous algorithms exist:

3 the second barycentric formula, for O(n) evaluation, and
3 the colleague matrix, for finding all roots with the QR algorithm.

These allow us to work with polynomials with degrees in the millions.

60 / 60

Computational Mathematics
Week 4: Higher-dimensional rootfinding

Patrick E. Farrell

University of Oxford

1 / 49

Newton in higher dimensions

We have considered several algorithms for rootfinding over R:

given f : R → R, find x⋆ ∈ R such that f(x⋆) = 0.

▶ bisection (q = 1, µ = 1/2, when it applies)
▶ secant method (q = ϕ ≈ 1.618, usually)
▶ Newton’s method (q = 2, usually)
▶ Halley’s method (q = 3, usually)

2 / 49

Newton in higher dimensions

We have considered several algorithms for rootfinding over R:

given f : R → R, find x⋆ ∈ R such that f(x⋆) = 0.

▶ bisection (q = 1, µ = 1/2, when it applies)
▶ secant method (q = ϕ ≈ 1.618, usually)
▶ Newton’s method (q = 2, usually)
▶ Halley’s method (q = 3, usually)

2 / 49

Newton in higher dimensions

In real life, most problems involve more than one variable. So let’s consider

given F : RN → RN , find x⋆ ∈ RN such that F (x⋆) = 0.

Simpson extended Newton’s method to this case in his 1740 book Essays
on Several Curious and Useful Subjects in Speculative and Mix’d
Mathematicks, Illustrated by a Variety of Examples.

Thomas Simpson, 1710–1761

3 / 49

Newton in higher dimensions

In real life, most problems involve more than one variable. So let’s consider

given F : RN → RN , find x⋆ ∈ RN such that F (x⋆) = 0.

Simpson extended Newton’s method to this case in his 1740 book Essays
on Several Curious and Useful Subjects in Speculative and Mix’d
Mathematicks, Illustrated by a Variety of Examples.

Thomas Simpson, 1710–1761

3 / 49

Derivation of Newton’s method

Section 2

Derivation of Newton’s method

4 / 49

Derivation of Newton’s method

The geometric pictures we had in one dimension don’t naturally extend to higher dimensions.
So first let’s see another derivation of Newton’s method in R that does extend.

Consider a Taylor expansion of f . We want to find xi+1 = xi + δx:

f(xi + δx) = f(xi) + δxf ′(xi) + higher-order terms.

We want to choose the update δx so that f(xi + δx) = 0. Setting the left-hand side to zero,
and dropping higher-order terms, we get

δx = −[f ′(xi)]
−1f(xi), xi+1 = xi + δx,

which we recognise as Newton’s scheme written in update form.

5 / 49

Derivation of Newton’s method

The geometric pictures we had in one dimension don’t naturally extend to higher dimensions.
So first let’s see another derivation of Newton’s method in R that does extend.

Consider a Taylor expansion of f . We want to find xi+1 = xi + δx:

f(xi + δx) = f(xi) + δxf ′(xi) + higher-order terms.

We want to choose the update δx so that f(xi + δx) = 0. Setting the left-hand side to zero,
and dropping higher-order terms, we get

δx = −[f ′(xi)]
−1f(xi), xi+1 = xi + δx,

which we recognise as Newton’s scheme written in update form.

5 / 49

Derivation of Newton’s method

The geometric pictures we had in one dimension don’t naturally extend to higher dimensions.
So first let’s see another derivation of Newton’s method in R that does extend.

Consider a Taylor expansion of f . We want to find xi+1 = xi + δx:

f(xi + δx) = f(xi) + δxf ′(xi) + higher-order terms.

We want to choose the update δx so that f(xi + δx) = 0. Setting the left-hand side to zero,
and dropping higher-order terms, we get

δx = −[f ′(xi)]
−1f(xi), xi+1 = xi + δx,

which we recognise as Newton’s scheme written in update form.

5 / 49

Derivation of Newton’s method

Taylor’s theorem extends to higher dimensions, with the role of derivative f ′ replaced by the
Jacobian matrix. If F : RN → RN looks like

F (x) = F


x1

x2

...
xN

 =


F 1(x1, . . . ,xN)
F 2(x1, . . . ,xN)

...
FN (x1, . . . ,xN)

 ,

then its Jacobian DF : RN → RN×N is

DF (a) :=


∂F 1

x1 (a) ∂F 1

x2 (a) · · · ∂F 1

xN (a)

∂F 2

x1 (a) ∂F 2

x2 (a) · · · ∂F 2

xN (a)
...

∂FN

x1 (a) ∂FN

x2 (a) · · · ∂FN

xN (a)

 .

6 / 49

Derivation of Newton’s method

Taylor’s theorem extends to higher dimensions, with the role of derivative f ′ replaced by the
Jacobian matrix. If F : RN → RN looks like

F (x) = F


x1

x2

...
xN

 =


F 1(x1, . . . ,xN)
F 2(x1, . . . ,xN)

...
FN (x1, . . . ,xN)

 ,

then its Jacobian DF : RN → RN×N is

DF (a) :=


∂F 1

x1 (a) ∂F 1

x2 (a) · · · ∂F 1

xN (a)

∂F 2

x1 (a) ∂F 2

x2 (a) · · · ∂F 2

xN (a)
...

∂FN

x1 (a) ∂FN

x2 (a) · · · ∂FN

xN (a)

 .

6 / 49

Derivation of Newton’s method

Taylor expansions in higher dimensions look like

F (x) = F (a) +DF (a)(x− a) + higher-order terms.

Following the reasoning from one dimension,

F (xi+1) = F (xi + δx) ≈ F (xi) +DF (xi)δx,

and optimistically setting F (xi+1) = 0, we get

δx = −[DF (xi)]
−1F (xi), xi+1 = xi + δx.

In practice, we don’t actually invert the matrix, but rather

solve DF (xi)δx = −F (xi),

using e.g. an LU factorisation of the matrix.

7 / 49

Derivation of Newton’s method

Taylor expansions in higher dimensions look like

F (x) = F (a) +DF (a)(x− a) + higher-order terms.

Following the reasoning from one dimension,

F (xi+1) = F (xi + δx) ≈ F (xi) +DF (xi)δx,

and optimistically setting F (xi+1) = 0, we get

δx = −[DF (xi)]
−1F (xi), xi+1 = xi + δx.

In practice, we don’t actually invert the matrix, but rather

solve DF (xi)δx = −F (xi),

using e.g. an LU factorisation of the matrix.

7 / 49

Derivation of Newton’s method

Taylor expansions in higher dimensions look like

F (x) = F (a) +DF (a)(x− a) + higher-order terms.

Following the reasoning from one dimension,

F (xi+1) = F (xi + δx) ≈ F (xi) +DF (xi)δx,

and optimistically setting F (xi+1) = 0, we get

δx = −[DF (xi)]
−1F (xi), xi+1 = xi + δx.

In practice, we don’t actually invert the matrix, but rather

solve DF (xi)δx = −F (xi),

using e.g. an LU factorisation of the matrix.

7 / 49

Derivation of Newton’s method

Taylor expansions in higher dimensions look like

F (x) = F (a) +DF (a)(x− a) + higher-order terms.

Following the reasoning from one dimension,

F (xi+1) = F (xi + δx) ≈ F (xi) +DF (xi)δx,

and optimistically setting F (xi+1) = 0, we get

δx = −[DF (xi)]
−1F (xi), xi+1 = xi + δx.

In practice, we don’t actually invert the matrix, but rather

solve DF (xi)δx = −F (xi),

using e.g. an LU factorisation of the matrix.
7 / 49

Derivation of Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi − (DF (xi))

−1 F (xi).

Comments:
3 Still a fixed-point method.

3 Fixed points of g are roots of F .
7 We still require F to be differentiable.
7 We now require DF to be invertible at every iterate.
7 We have to solve linear systems (worse case O(N3) operations).
3 Sometimes the linear systems can be solved in O(N) operations.
3 If x0 is close to x⋆, Newton’s method usually converges quadratically.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method even generalises to infinite dimensions.

8 / 49

Derivation of Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi − (DF (xi))

−1 F (xi).

Comments:
3 Still a fixed-point method.
3 Fixed points of g are roots of F .

7 We still require F to be differentiable.
7 We now require DF to be invertible at every iterate.
7 We have to solve linear systems (worse case O(N3) operations).
3 Sometimes the linear systems can be solved in O(N) operations.
3 If x0 is close to x⋆, Newton’s method usually converges quadratically.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method even generalises to infinite dimensions.

8 / 49

Derivation of Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi − (DF (xi))

−1 F (xi).

Comments:
3 Still a fixed-point method.
3 Fixed points of g are roots of F .
7 We still require F to be differentiable.

7 We now require DF to be invertible at every iterate.
7 We have to solve linear systems (worse case O(N3) operations).
3 Sometimes the linear systems can be solved in O(N) operations.
3 If x0 is close to x⋆, Newton’s method usually converges quadratically.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method even generalises to infinite dimensions.

8 / 49

Derivation of Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi − (DF (xi))

−1 F (xi).

Comments:
3 Still a fixed-point method.
3 Fixed points of g are roots of F .
7 We still require F to be differentiable.
7 We now require DF to be invertible at every iterate.

7 We have to solve linear systems (worse case O(N3) operations).
3 Sometimes the linear systems can be solved in O(N) operations.
3 If x0 is close to x⋆, Newton’s method usually converges quadratically.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method even generalises to infinite dimensions.

8 / 49

Derivation of Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi − (DF (xi))

−1 F (xi).

Comments:
3 Still a fixed-point method.
3 Fixed points of g are roots of F .
7 We still require F to be differentiable.
7 We now require DF to be invertible at every iterate.
7 We have to solve linear systems (worse case O(N3) operations).

3 Sometimes the linear systems can be solved in O(N) operations.
3 If x0 is close to x⋆, Newton’s method usually converges quadratically.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method even generalises to infinite dimensions.

8 / 49

Derivation of Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi − (DF (xi))

−1 F (xi).

Comments:
3 Still a fixed-point method.
3 Fixed points of g are roots of F .
7 We still require F to be differentiable.
7 We now require DF to be invertible at every iterate.
7 We have to solve linear systems (worse case O(N3) operations).
3 Sometimes the linear systems can be solved in O(N) operations.

3 If x0 is close to x⋆, Newton’s method usually converges quadratically.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method even generalises to infinite dimensions.

8 / 49

Derivation of Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi − (DF (xi))

−1 F (xi).

Comments:
3 Still a fixed-point method.
3 Fixed points of g are roots of F .
7 We still require F to be differentiable.
7 We now require DF to be invertible at every iterate.
7 We have to solve linear systems (worse case O(N3) operations).
3 Sometimes the linear systems can be solved in O(N) operations.
3 If x0 is close to x⋆, Newton’s method usually converges quadratically.

7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method even generalises to infinite dimensions.

8 / 49

Derivation of Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi − (DF (xi))

−1 F (xi).

Comments:
3 Still a fixed-point method.
3 Fixed points of g are roots of F .
7 We still require F to be differentiable.
7 We now require DF to be invertible at every iterate.
7 We have to solve linear systems (worse case O(N3) operations).
3 Sometimes the linear systems can be solved in O(N) operations.
3 If x0 is close to x⋆, Newton’s method usually converges quadratically.
7 If x0 is far away, the method can diverge or get stuck in a cycle.

3 Newton’s method even generalises to infinite dimensions.

8 / 49

Derivation of Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi − (DF (xi))

−1 F (xi).

Comments:
3 Still a fixed-point method.
3 Fixed points of g are roots of F .
7 We still require F to be differentiable.
7 We now require DF to be invertible at every iterate.
7 We have to solve linear systems (worse case O(N3) operations).
3 Sometimes the linear systems can be solved in O(N) operations.
3 If x0 is close to x⋆, Newton’s method usually converges quadratically.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method even generalises to infinite dimensions.

8 / 49

Example

Section 3

Example

9 / 49

Example

Let’s do an example. Take

F (x, y) =

(
xy + y2 − 2
x3y − 3x− 1

)
,

with DF (x, y) =

(
y x+ 2y

3x2y − 3 x3

)
.

Starting at x0 = (0, 1)⊤, we have to solve(
1 2
−3 0

)(
δx
δy

)
=

(
1
1

)
.

This yields (δx, δy)⊤ = (−1/3, 2/3)⊤, so

x1 = x0 + δx =

(
0
1

)
+

(
−1/3
2/3

)
=

(
−1/3
5/3

)
.

Repeating the procedure, the next iterates are

x2 =

(
−0.357668
1.606112

)
, x3 =

(
−0.357838
1.604407

)
, x4 =

(
−0.357838
1.604406

)
.

10 / 49

Example

Let’s do an example. Take

F (x, y) =

(
xy + y2 − 2
x3y − 3x− 1

)
, with DF (x, y) =

(
y x+ 2y

3x2y − 3 x3

)
.

Starting at x0 = (0, 1)⊤, we have to solve(
1 2
−3 0

)(
δx
δy

)
=

(
1
1

)
.

This yields (δx, δy)⊤ = (−1/3, 2/3)⊤, so

x1 = x0 + δx =

(
0
1

)
+

(
−1/3
2/3

)
=

(
−1/3
5/3

)
.

Repeating the procedure, the next iterates are

x2 =

(
−0.357668
1.606112

)
, x3 =

(
−0.357838
1.604407

)
, x4 =

(
−0.357838
1.604406

)
.

10 / 49

Example

Let’s do an example. Take

F (x, y) =

(
xy + y2 − 2
x3y − 3x− 1

)
, with DF (x, y) =

(
y x+ 2y

3x2y − 3 x3

)
.

Starting at x0 = (0, 1)⊤, we have to solve(
1 2
−3 0

)(
δx
δy

)
=

(
1
1

)
.

This yields (δx, δy)⊤ = (−1/3, 2/3)⊤, so

x1 = x0 + δx =

(
0
1

)
+

(
−1/3
2/3

)
=

(
−1/3
5/3

)
.

Repeating the procedure, the next iterates are

x2 =

(
−0.357668
1.606112

)
, x3 =

(
−0.357838
1.604407

)
, x4 =

(
−0.357838
1.604406

)
.

10 / 49

Example

Let’s do an example. Take

F (x, y) =

(
xy + y2 − 2
x3y − 3x− 1

)
, with DF (x, y) =

(
y x+ 2y

3x2y − 3 x3

)
.

Starting at x0 = (0, 1)⊤, we have to solve(
1 2
−3 0

)(
δx
δy

)
=

(
1
1

)
.

This yields (δx, δy)⊤ = (−1/3, 2/3)⊤, so

x1 = x0 + δx =

(
0
1

)
+

(
−1/3
2/3

)
=

(
−1/3
5/3

)
.

Repeating the procedure, the next iterates are

x2 =

(
−0.357668
1.606112

)
,

x3 =

(
−0.357838
1.604407

)
, x4 =

(
−0.357838
1.604406

)
.

10 / 49

Example

Let’s do an example. Take

F (x, y) =

(
xy + y2 − 2
x3y − 3x− 1

)
, with DF (x, y) =

(
y x+ 2y

3x2y − 3 x3

)
.

Starting at x0 = (0, 1)⊤, we have to solve(
1 2
−3 0

)(
δx
δy

)
=

(
1
1

)
.

This yields (δx, δy)⊤ = (−1/3, 2/3)⊤, so

x1 = x0 + δx =

(
0
1

)
+

(
−1/3
2/3

)
=

(
−1/3
5/3

)
.

Repeating the procedure, the next iterates are

x2 =

(
−0.357668
1.606112

)
, x3 =

(
−0.357838
1.604407

)
,

x4 =

(
−0.357838
1.604406

)
.

10 / 49

Example

Let’s do an example. Take

F (x, y) =

(
xy + y2 − 2
x3y − 3x− 1

)
, with DF (x, y) =

(
y x+ 2y

3x2y − 3 x3

)
.

Starting at x0 = (0, 1)⊤, we have to solve(
1 2
−3 0

)(
δx
δy

)
=

(
1
1

)
.

This yields (δx, δy)⊤ = (−1/3, 2/3)⊤, so

x1 = x0 + δx =

(
0
1

)
+

(
−1/3
2/3

)
=

(
−1/3
5/3

)
.

Repeating the procedure, the next iterates are

x2 =

(
−0.357668
1.606112

)
, x3 =

(
−0.357838
1.604407

)
, x4 =

(
−0.357838
1.604406

)
.

10 / 49

Convergence

Section 4

Convergence

11 / 49

Convergence

Definition (Norm of x ∈ RN)
Given x ∈ RN , we define its ∞-norm to be

∥x∥∞ := max
k=1,...,N

|xk|.

Definition (Convergence of a vector-valued sequence)
We say (xi) → x⋆ in the ∥ · ∥∞ norm if

lim
i→∞

∥xi − x⋆∥∞ = 0.

Definition (Order of convergence of a sequence)
Suppose (xi) → x⋆. The sequence converges with order q if for some M > 0

lim
i→∞

∥xi+1 − x⋆∥∞
∥xi − x⋆∥q∞

= M.

12 / 49

Convergence

Definition (Norm of x ∈ RN)
Given x ∈ RN , we define its ∞-norm to be

∥x∥∞ := max
k=1,...,N

|xk|.

Definition (Convergence of a vector-valued sequence)
We say (xi) → x⋆ in the ∥ · ∥∞ norm if

lim
i→∞

∥xi − x⋆∥∞ = 0.

Definition (Order of convergence of a sequence)
Suppose (xi) → x⋆. The sequence converges with order q if for some M > 0

lim
i→∞

∥xi+1 − x⋆∥∞
∥xi − x⋆∥q∞

= M.

12 / 49

Convergence

Definition (Norm of x ∈ RN)
Given x ∈ RN , we define its ∞-norm to be

∥x∥∞ := max
k=1,...,N

|xk|.

Definition (Convergence of a vector-valued sequence)
We say (xi) → x⋆ in the ∥ · ∥∞ norm if

lim
i→∞

∥xi − x⋆∥∞ = 0.

Definition (Order of convergence of a sequence)
Suppose (xi) → x⋆. The sequence converges with order q if for some M > 0

lim
i→∞

∥xi+1 − x⋆∥∞
∥xi − x⋆∥q∞

= M.

12 / 49

Convergence

Assuming Newton’s method converges, how fast does it converge? From our one-dimensional
experience, we expect quadratic convergence to isolated roots.

Theorem (Quadratic convergence of Newton’s method)
Let F ∈ C2(RN ,RN), i.e. F is continuous with all first and second partial derivatives
continuous. Suppose x⋆ ∈ RN is an isolated root of F , i.e. F (x⋆) = 0 with DF (x⋆)
nonsingular. Then if x0 is close enough to x⋆, the Newton sequence will converge
quadratically.

The core of the proof is that the Jacobian matrix of the associated fixed-point iteration is zero
at x⋆.

13 / 49

Convergence

Assuming Newton’s method converges, how fast does it converge? From our one-dimensional
experience, we expect quadratic convergence to isolated roots.

Theorem (Quadratic convergence of Newton’s method)
Let F ∈ C2(RN ,RN), i.e. F is continuous with all first and second partial derivatives
continuous. Suppose x⋆ ∈ RN is an isolated root of F , i.e. F (x⋆) = 0 with DF (x⋆)
nonsingular. Then if x0 is close enough to x⋆, the Newton sequence will converge
quadratically.

The core of the proof is that the Jacobian matrix of the associated fixed-point iteration is zero
at x⋆.

13 / 49

Convergence

Assuming Newton’s method converges, how fast does it converge? From our one-dimensional
experience, we expect quadratic convergence to isolated roots.

Theorem (Quadratic convergence of Newton’s method)
Let F ∈ C2(RN ,RN), i.e. F is continuous with all first and second partial derivatives
continuous. Suppose x⋆ ∈ RN is an isolated root of F , i.e. F (x⋆) = 0 with DF (x⋆)
nonsingular. Then if x0 is close enough to x⋆, the Newton sequence will converge
quadratically.

The core of the proof is that the Jacobian matrix of the associated fixed-point iteration is zero
at x⋆.

13 / 49

Affine covariance

Section 5

Affine covariance

14 / 49

Affine covariance

Newton’s method has an important property that becomes apparent in higher dimensions.

Given F : RN → RN , and x0 ∈ RN , we construct the sequence x0,x1,

Now imagine that we change units or coordinate systems for our outputs F . Instead of solving
F (x) = 0, we want to solve F̃ (x) = AF (x) = 0, where A ∈ RN×N is constant and
nonsingular. Of course, this doesn’t change the roots x⋆.

Theorem (Affine covariance)
Premultiplying F by a constant nonsingular A ∈ RN×N does not change the Newton sequence.

15 / 49

Affine covariance

Newton’s method has an important property that becomes apparent in higher dimensions.

Given F : RN → RN , and x0 ∈ RN , we construct the sequence x0,x1,

Now imagine that we change units or coordinate systems for our outputs F . Instead of solving
F (x) = 0, we want to solve F̃ (x) = AF (x) = 0, where A ∈ RN×N is constant and
nonsingular. Of course, this doesn’t change the roots x⋆.

Theorem (Affine covariance)
Premultiplying F by a constant nonsingular A ∈ RN×N does not change the Newton sequence.

15 / 49

Affine covariance

Newton’s method has an important property that becomes apparent in higher dimensions.

Given F : RN → RN , and x0 ∈ RN , we construct the sequence x0,x1,

Now imagine that we change units or coordinate systems for our outputs F . Instead of solving
F (x) = 0, we want to solve F̃ (x) = AF (x) = 0, where A ∈ RN×N is constant and
nonsingular. Of course, this doesn’t change the roots x⋆.

Theorem (Affine covariance)
Premultiplying F by a constant nonsingular A ∈ RN×N does not change the Newton sequence.

15 / 49

Affine covariance

Newton’s method has an important property that becomes apparent in higher dimensions.

Given F : RN → RN , and x0 ∈ RN , we construct the sequence x0,x1,

Now imagine that we change units or coordinate systems for our outputs F . Instead of solving
F (x) = 0, we want to solve F̃ (x) = AF (x) = 0, where A ∈ RN×N is constant and
nonsingular. Of course, this doesn’t change the roots x⋆.

Theorem (Affine covariance)
Premultiplying F by a constant nonsingular A ∈ RN×N does not change the Newton sequence.

15 / 49

Affine covariance

Let F̃ (x) := AF (x). Newton’s method applied to F̃ from x0 = x̃0 generates a sequence

x̃0, x̃1, x̃2,

Proof.
For i = 0, we have xi = x̃i by assumption.

Assume xi = x̃i at iteration i. Then the Newton update for F̃ satisfies
−δx̃i = [DF̃ (x̃i)]

−1F̃ (x̃i) = [ADF (xi)]
−1AF (xi)

= [DF (xi)]
−1A−1AF (xi)

= [DF (xi)]
−1F (xi) = −δxi.

Hence xi+1 = x̃i+1, and the result follows by induction.

We get exactly the same iterates x0,x1, . . . , whether we apply Newton to F (x) = 0 or
AF (x) = 0.

16 / 49

Affine covariance

Let F̃ (x) := AF (x). Newton’s method applied to F̃ from x0 = x̃0 generates a sequence

x̃0, x̃1, x̃2,

Proof.
For i = 0, we have xi = x̃i by assumption.

Assume xi = x̃i at iteration i. Then the Newton update for F̃ satisfies
−δx̃i = [DF̃ (x̃i)]

−1F̃ (x̃i) = [ADF (xi)]
−1AF (xi)

= [DF (xi)]
−1A−1AF (xi)

= [DF (xi)]
−1F (xi) = −δxi.

Hence xi+1 = x̃i+1, and the result follows by induction.

We get exactly the same iterates x0,x1, . . . , whether we apply Newton to F (x) = 0 or
AF (x) = 0.

16 / 49

Affine covariance

Let F̃ (x) := AF (x). Newton’s method applied to F̃ from x0 = x̃0 generates a sequence

x̃0, x̃1, x̃2,

Proof.
For i = 0, we have xi = x̃i by assumption.

Assume xi = x̃i at iteration i. Then the Newton update for F̃ satisfies
−δx̃i = [DF̃ (x̃i)]

−1F̃ (x̃i) = [ADF (xi)]
−1AF (xi)

= [DF (xi)]
−1A−1AF (xi)

= [DF (xi)]
−1F (xi) = −δxi.

Hence xi+1 = x̃i+1, and the result follows by induction.

We get exactly the same iterates x0,x1, . . . , whether we apply Newton to F (x) = 0 or
AF (x) = 0.

16 / 49

Affine covariance

Let F̃ (x) := AF (x). Newton’s method applied to F̃ from x0 = x̃0 generates a sequence

x̃0, x̃1, x̃2,

Proof.
For i = 0, we have xi = x̃i by assumption.

Assume xi = x̃i at iteration i. Then the Newton update for F̃ satisfies
−δx̃i = [DF̃ (x̃i)]

−1F̃ (x̃i) = [ADF (xi)]
−1AF (xi)

= [DF (xi)]
−1A−1AF (xi)

= [DF (xi)]
−1F (xi)

= −δxi.

Hence xi+1 = x̃i+1, and the result follows by induction.

We get exactly the same iterates x0,x1, . . . , whether we apply Newton to F (x) = 0 or
AF (x) = 0.

16 / 49

Affine covariance

Let F̃ (x) := AF (x). Newton’s method applied to F̃ from x0 = x̃0 generates a sequence

x̃0, x̃1, x̃2,

Proof.
For i = 0, we have xi = x̃i by assumption.

Assume xi = x̃i at iteration i. Then the Newton update for F̃ satisfies
−δx̃i = [DF̃ (x̃i)]

−1F̃ (x̃i) = [ADF (xi)]
−1AF (xi)

= [DF (xi)]
−1A−1AF (xi)

= [DF (xi)]
−1F (xi) = −δxi.

Hence xi+1 = x̃i+1, and the result follows by induction.

We get exactly the same iterates x0,x1, . . . , whether we apply Newton to F (x) = 0 or
AF (x) = 0.

16 / 49

Affine covariance

Let F̃ (x) := AF (x). Newton’s method applied to F̃ from x0 = x̃0 generates a sequence

x̃0, x̃1, x̃2,

Proof.
For i = 0, we have xi = x̃i by assumption.

Assume xi = x̃i at iteration i. Then the Newton update for F̃ satisfies
−δx̃i = [DF̃ (x̃i)]

−1F̃ (x̃i) = [ADF (xi)]
−1AF (xi)

= [DF (xi)]
−1A−1AF (xi)

= [DF (xi)]
−1F (xi) = −δxi.

Hence xi+1 = x̃i+1, and the result follows by induction.

We get exactly the same iterates x0,x1, . . . , whether we apply Newton to F (x) = 0 or
AF (x) = 0.

16 / 49

Affine covariance

Let F̃ (x) := AF (x). Newton’s method applied to F̃ from x0 = x̃0 generates a sequence

x̃0, x̃1, x̃2,

Proof.
For i = 0, we have xi = x̃i by assumption.

Assume xi = x̃i at iteration i. Then the Newton update for F̃ satisfies
−δx̃i = [DF̃ (x̃i)]

−1F̃ (x̃i) = [ADF (xi)]
−1AF (xi)

= [DF (xi)]
−1A−1AF (xi)

= [DF (xi)]
−1F (xi) = −δxi.

Hence xi+1 = x̃i+1, and the result follows by induction.

We get exactly the same iterates x0,x1, . . . , whether we apply Newton to F (x) = 0 or
AF (x) = 0.

16 / 49

Affine covariance

Why does this matter?

Philosophical remark
Since Newton’s method is affine covariant, the conditions for any theorem guaranteeing its
convergence should also be affine covariant.

This is not true of proofs found in many books!

Moreover, any sensible strategy for globalising the convergence of Newton’s
method from poor initial guesses x0 must also preserve this property. This
insight leads to the current state of the art for globalising Newton’s method.

Peter Deuflhard, 1944–2019

17 / 49

Affine covariance

Why does this matter?

Philosophical remark
Since Newton’s method is affine covariant, the conditions for any theorem guaranteeing its
convergence should also be affine covariant.

This is not true of proofs found in many books!

Moreover, any sensible strategy for globalising the convergence of Newton’s
method from poor initial guesses x0 must also preserve this property. This
insight leads to the current state of the art for globalising Newton’s method.

Peter Deuflhard, 1944–2019

17 / 49

Affine covariance

Why does this matter?

Philosophical remark
Since Newton’s method is affine covariant, the conditions for any theorem guaranteeing its
convergence should also be affine covariant.

This is not true of proofs found in many books!

Moreover, any sensible strategy for globalising the convergence of Newton’s
method from poor initial guesses x0 must also preserve this property. This
insight leads to the current state of the art for globalising Newton’s method.

Peter Deuflhard, 1944–2019

17 / 49

Affine covariance

Why does this matter?

Philosophical remark
Since Newton’s method is affine covariant, the conditions for any theorem guaranteeing its
convergence should also be affine covariant.

This is not true of proofs found in many books!

Moreover, any sensible strategy for globalising the convergence of Newton’s
method from poor initial guesses x0 must also preserve this property. This
insight leads to the current state of the art for globalising Newton’s method.

Peter Deuflhard, 1944–2019

17 / 49

The Newton–Kantorovich theorem

Section 6

The Newton–Kantorovich theorem

18 / 49

The Newton–Kantorovich theorem

The generalisation of Newton’s method to infinite-dimensional (Banach) spaces is called the
Newton–Kantorovich algorithm.

▶ Invented linear programming when
consulting for the Leningrad Plywood
Trust.

▶ Instrumental in saving millions of lives
during the siege of Leningrad.

▶ Involved in the Soviet nuclear bomb
project.

▶ Nearly sent to the gulag for “shadow
prices”.

▶ Pseudo-Nobel prize in Economics (1975).

Leonid Kantorovich (1912–1986).
19 / 49

The Newton–Kantorovich theorem

The generalisation of Newton’s method to infinite-dimensional (Banach) spaces is called the
Newton–Kantorovich algorithm.

▶ Invented linear programming when
consulting for the Leningrad Plywood
Trust.

▶ Instrumental in saving millions of lives
during the siege of Leningrad.

▶ Involved in the Soviet nuclear bomb
project.

▶ Nearly sent to the gulag for “shadow
prices”.

▶ Pseudo-Nobel prize in Economics (1975).

Leonid Kantorovich (1912–1986).
19 / 49

The Newton–Kantorovich theorem

The generalisation of Newton’s method to infinite-dimensional (Banach) spaces is called the
Newton–Kantorovich algorithm.

▶ Invented linear programming when
consulting for the Leningrad Plywood
Trust.

▶ Instrumental in saving millions of lives
during the siege of Leningrad.

▶ Involved in the Soviet nuclear bomb
project.

▶ Nearly sent to the gulag for “shadow
prices”.

▶ Pseudo-Nobel prize in Economics (1975).

Leonid Kantorovich (1912–1986).
19 / 49

The Newton–Kantorovich theorem

The generalisation of Newton’s method to infinite-dimensional (Banach) spaces is called the
Newton–Kantorovich algorithm.

▶ Invented linear programming when
consulting for the Leningrad Plywood
Trust.

▶ Instrumental in saving millions of lives
during the siege of Leningrad.

▶ Involved in the Soviet nuclear bomb
project.

▶ Nearly sent to the gulag for “shadow
prices”.

▶ Pseudo-Nobel prize in Economics (1975).

Leonid Kantorovich (1912–1986).
19 / 49

The Newton–Kantorovich theorem

The generalisation of Newton’s method to infinite-dimensional (Banach) spaces is called the
Newton–Kantorovich algorithm.

▶ Invented linear programming when
consulting for the Leningrad Plywood
Trust.

▶ Instrumental in saving millions of lives
during the siege of Leningrad.

▶ Involved in the Soviet nuclear bomb
project.

▶ Nearly sent to the gulag for “shadow
prices”.

▶ Pseudo-Nobel prize in Economics (1975).

Leonid Kantorovich (1912–1986).
19 / 49

The Newton–Kantorovich theorem

20 / 49

The Newton–Kantorovich theorem

Kantorovich’s theorem (1948) is an example of the application of the Banach contraction
mapping theorem. It does not assume the existence of a solution: given certain conditions on
the residual and initial guess, it proves the existence and local uniqueness of a solution, and
the convergence of the Newton iteration.

With a good initial guess, and great cleverness, it is possible to devise computer-assisted
proofs of the existence of solutions to infinite-dimensional nonlinear problems.

21 / 49

The Newton–Kantorovich theorem

Kantorovich’s theorem (1948) is an example of the application of the Banach contraction
mapping theorem. It does not assume the existence of a solution: given certain conditions on
the residual and initial guess, it proves the existence and local uniqueness of a solution, and
the convergence of the Newton iteration.

With a good initial guess, and great cleverness, it is possible to devise computer-assisted
proofs of the existence of solutions to infinite-dimensional nonlinear problems.

21 / 49

The Newton–Kantorovich theorem

Theorem (Kantorovich (1948) in finite dimensions)
Let F ∈ C1(RN ,RN) be the residual of our nonlinear problem, and let x0 ∈ RN be an initial
guess such that the Jacobian DF (x0) is invertible. Let B(x0, r) denote the open ball of radius
r centred at x0.

Assume that there exists a constant r > 0 such that
(1) ∥DF (x0)

−1F (x0)∥ ≤ r
2 ,

(2) For all x̃,x ∈ B(x0, r),

∥DF (x0)
−1 (DF (x̃)−DF (x)) ∥ ≤ 1

r
∥x̃− x∥.

22 / 49

The Newton–Kantorovich theorem

Theorem (Kantorovich (1948) in finite dimensions)
Let F ∈ C1(RN ,RN) be the residual of our nonlinear problem, and let x0 ∈ RN be an initial
guess such that the Jacobian DF (x0) is invertible. Let B(x0, r) denote the open ball of radius
r centred at x0.

Assume that there exists a constant r > 0 such that
(1) ∥DF (x0)

−1F (x0)∥ ≤ r
2 ,

(2) For all x̃,x ∈ B(x0, r),

∥DF (x0)
−1 (DF (x̃)−DF (x)) ∥ ≤ 1

r
∥x̃− x∥.

22 / 49

The Newton–Kantorovich theorem

Theorem (Kantorovich (1948))
Then
(1) DF (x) is invertible at each x ∈ B(x0, r).

(2) The Newton sequence (xi)
∞
i=0 defined by

xi+1 = xi −DF (xi)
−1F (xi)

satisfies xi ∈ B(x0, r) for all i, and converges to a root x⋆ of F .
(3) For each i ≥ 0,

∥x⋆ − xi∥ ≤ r

2i
.

(4) The root x⋆ is locally unique, i.e. x⋆ is the only root of F in the ball ĞB(x0, r).

23 / 49

The Newton–Kantorovich theorem

Theorem (Kantorovich (1948))
Then
(1) DF (x) is invertible at each x ∈ B(x0, r).
(2) The Newton sequence (xi)

∞
i=0 defined by

xi+1 = xi −DF (xi)
−1F (xi)

satisfies xi ∈ B(x0, r) for all i, and converges to a root x⋆ of F .

(3) For each i ≥ 0,
∥x⋆ − xi∥ ≤ r

2i
.

(4) The root x⋆ is locally unique, i.e. x⋆ is the only root of F in the ball ĞB(x0, r).

23 / 49

The Newton–Kantorovich theorem

Theorem (Kantorovich (1948))
Then
(1) DF (x) is invertible at each x ∈ B(x0, r).
(2) The Newton sequence (xi)

∞
i=0 defined by

xi+1 = xi −DF (xi)
−1F (xi)

satisfies xi ∈ B(x0, r) for all i, and converges to a root x⋆ of F .
(3) For each i ≥ 0,

∥x⋆ − xi∥ ≤ r

2i
.

(4) The root x⋆ is locally unique, i.e. x⋆ is the only root of F in the ball ĞB(x0, r).

23 / 49

The Newton–Kantorovich theorem

Theorem (Kantorovich (1948))
Then
(1) DF (x) is invertible at each x ∈ B(x0, r).
(2) The Newton sequence (xi)

∞
i=0 defined by

xi+1 = xi −DF (xi)
−1F (xi)

satisfies xi ∈ B(x0, r) for all i, and converges to a root x⋆ of F .
(3) For each i ≥ 0,

∥x⋆ − xi∥ ≤ r

2i
.

(4) The root x⋆ is locally unique, i.e. x⋆ is the only root of F in the ball ĞB(x0, r).

23 / 49

The Davidenko differential equation

Section 7

The Davidenko differential equation

24 / 49

The Davidenko differential equation

Newton’s method applied to F (x) = 0 produces a sequence
x0,x1,x2, . . . , xi ∈ RN .

Philosophical question
Is there a curve x(s), s ∈ [0,∞), associated with this sequence?

Yes. The Davidenko differential equation is

dx

ds
= −[DF (x)]−1F (x).

The Newton iteration is the forward Euler discretisation of the Davidenko
differential equation with ∆s = 1:

dx

ds
≈ x(s+∆s)− x(s)

∆s
= −[DF (x(s))]−1F (x(s)).

Victor Davidenko, 1914–1983

25 / 49

The Davidenko differential equation

Newton’s method applied to F (x) = 0 produces a sequence
x0,x1,x2, . . . , xi ∈ RN .

Philosophical question
Is there a curve x(s), s ∈ [0,∞), associated with this sequence?

Yes. The Davidenko differential equation is

dx

ds
= −[DF (x)]−1F (x).

The Newton iteration is the forward Euler discretisation of the Davidenko
differential equation with ∆s = 1:

dx

ds
≈ x(s+∆s)− x(s)

∆s
= −[DF (x(s))]−1F (x(s)).

Victor Davidenko, 1914–1983

25 / 49

The Davidenko differential equation

Newton’s method applied to F (x) = 0 produces a sequence
x0,x1,x2, . . . , xi ∈ RN .

Philosophical question
Is there a curve x(s), s ∈ [0,∞), associated with this sequence?

Yes. The Davidenko differential equation is

dx

ds
= −[DF (x)]−1F (x).

The Newton iteration is the forward Euler discretisation of the Davidenko
differential equation with ∆s = 1:

dx

ds
≈ x(s+∆s)− x(s)

∆s
= −[DF (x(s))]−1F (x(s)).

Victor Davidenko, 1914–1983

25 / 49

The Davidenko differential equation

Newton’s method applied to F (x) = 0 produces a sequence
x0,x1,x2, . . . , xi ∈ RN .

Philosophical question
Is there a curve x(s), s ∈ [0,∞), associated with this sequence?

Yes. The Davidenko differential equation is

dx

ds
= −[DF (x)]−1F (x).

The Newton iteration is the forward Euler discretisation of the Davidenko
differential equation with ∆s = 1:

dx

ds
≈ x(s+∆s)− x(s)

∆s
= −[DF (x(s))]−1F (x(s)).

Victor Davidenko, 1914–1983

25 / 49

The Davidenko differential equation

Why is this useful?

Theorem
For any x0 ∈ RN , the solution curve of the Davidenko differential equation ends either at
▶ a root x⋆, or at
▶ a singular point of DF .

This shows us that the tangent of the curve—the Newton update [DF (x)]−1F (x)—is a
special direction to go to find a root, even far away from a solution. It’s just that it might be
too long.

You can use these ideas to build effective globalisation strategies for Newton’s method.

26 / 49

The Davidenko differential equation

Why is this useful?

Theorem
For any x0 ∈ RN , the solution curve of the Davidenko differential equation ends either at
▶ a root x⋆, or at

▶ a singular point of DF .

This shows us that the tangent of the curve—the Newton update [DF (x)]−1F (x)—is a
special direction to go to find a root, even far away from a solution. It’s just that it might be
too long.

You can use these ideas to build effective globalisation strategies for Newton’s method.

26 / 49

The Davidenko differential equation

Why is this useful?

Theorem
For any x0 ∈ RN , the solution curve of the Davidenko differential equation ends either at
▶ a root x⋆, or at
▶ a singular point of DF .

This shows us that the tangent of the curve—the Newton update [DF (x)]−1F (x)—is a
special direction to go to find a root, even far away from a solution. It’s just that it might be
too long.

You can use these ideas to build effective globalisation strategies for Newton’s method.

26 / 49

The Davidenko differential equation

Why is this useful?

Theorem
For any x0 ∈ RN , the solution curve of the Davidenko differential equation ends either at
▶ a root x⋆, or at
▶ a singular point of DF .

This shows us that the tangent of the curve—the Newton update [DF (x)]−1F (x)—is a
special direction to go to find a root, even far away from a solution. It’s just that it might be
too long.

You can use these ideas to build effective globalisation strategies for Newton’s method.

26 / 49

The Davidenko differential equation

Why is this useful?

Theorem
For any x0 ∈ RN , the solution curve of the Davidenko differential equation ends either at
▶ a root x⋆, or at
▶ a singular point of DF .

This shows us that the tangent of the curve—the Newton update [DF (x)]−1F (x)—is a
special direction to go to find a root, even far away from a solution. It’s just that it might be
too long.

You can use these ideas to build effective globalisation strategies for Newton’s method.

26 / 49

Newton fractals

Section 8

Newton fractals

27 / 49

Newton fractals

One last beautiful idea about Newton’s method in higher dimensions.

Consider the problem
find z ∈ C such that z3 − 1 = 0.

We could also think of this as a problem in R2.

We know this has three solutions,

z = 1, z = −1/2 + i
√
3/2, and z = −1/2− i

√
3/2.

Let’s take a subset of the complex plane and colour each point as follows. For a given z0 ∈ C,
we

1. run Newton’s method with that initial guess,
2. colour the point according to which root it converges to,
3. shade the colour by how many iterations it took.

28 / 49

Newton fractals

One last beautiful idea about Newton’s method in higher dimensions.

Consider the problem
find z ∈ C such that z3 − 1 = 0.

We could also think of this as a problem in R2.

We know this has three solutions,

z = 1, z = −1/2 + i
√
3/2, and z = −1/2− i

√
3/2.

Let’s take a subset of the complex plane and colour each point as follows. For a given z0 ∈ C,
we

1. run Newton’s method with that initial guess,
2. colour the point according to which root it converges to,
3. shade the colour by how many iterations it took.

28 / 49

Newton fractals

One last beautiful idea about Newton’s method in higher dimensions.

Consider the problem
find z ∈ C such that z3 − 1 = 0.

We could also think of this as a problem in R2.

We know this has three solutions,

z = 1, z = −1/2 + i
√
3/2, and z = −1/2− i

√
3/2.

Let’s take a subset of the complex plane and colour each point as follows. For a given z0 ∈ C,
we

1. run Newton’s method with that initial guess,

2. colour the point according to which root it converges to,
3. shade the colour by how many iterations it took.

28 / 49

Newton fractals

One last beautiful idea about Newton’s method in higher dimensions.

Consider the problem
find z ∈ C such that z3 − 1 = 0.

We could also think of this as a problem in R2.

We know this has three solutions,

z = 1, z = −1/2 + i
√
3/2, and z = −1/2− i

√
3/2.

Let’s take a subset of the complex plane and colour each point as follows. For a given z0 ∈ C,
we

1. run Newton’s method with that initial guess,
2. colour the point according to which root it converges to,

3. shade the colour by how many iterations it took.

28 / 49

Newton fractals

One last beautiful idea about Newton’s method in higher dimensions.

Consider the problem
find z ∈ C such that z3 − 1 = 0.

We could also think of this as a problem in R2.

We know this has three solutions,

z = 1, z = −1/2 + i
√
3/2, and z = −1/2− i

√
3/2.

Let’s take a subset of the complex plane and colour each point as follows. For a given z0 ∈ C,
we

1. run Newton’s method with that initial guess,
2. colour the point according to which root it converges to,
3. shade the colour by how many iterations it took.

28 / 49

Newton fractals

The Newton fractal for z3 − 1 = 0. 29 / 49

Newton fractals

The Newton fractal for z3 − 2z + 2 = 0. 30 / 49

Newton fractals

Some useful websites:
▶ https://attr.actor/snapshots/dxhdzbzwmylmtywj
▶ https://newtonfractal.starfree.app/
▶ https://www.youtube.com/watch?v=-RdOwhmqP5s

31 / 49

https://attr.actor/snapshots/dxhdzbzwmylmtywj
https://newtonfractal.starfree.app/
https://www.youtube.com/watch?v=-RdOwhmqP5s

Algorithms for optimisation problems

Section 9

Algorithms for optimisation problems

32 / 49

Algorithms for optimisation problems

In this final lecture, we study how to apply rootfinding ideas to optimisation.

Optimisation is fundamental to applied mathematics and engineering. It is also the engine that
powers machine learning.

Nature optimizes. Physical systems tend to a state of minimum energy. The molecules in an
isolated chemical system react with each other until the total potential energy of their
electrons is minimized. Rays of light follow paths that minimize their travel time.

The ideas in this lecture are further explored in ASO Calculus of Variations, B6.2 Optimisation
for Data Science, and C6.2 Continuous Optimisation.

33 / 49

Algorithms for optimisation problems

In this final lecture, we study how to apply rootfinding ideas to optimisation.

Optimisation is fundamental to applied mathematics and engineering. It is also the engine that
powers machine learning.

Nature optimizes. Physical systems tend to a state of minimum energy. The molecules in an
isolated chemical system react with each other until the total potential energy of their
electrons is minimized. Rays of light follow paths that minimize their travel time.

The ideas in this lecture are further explored in ASO Calculus of Variations, B6.2 Optimisation
for Data Science, and C6.2 Continuous Optimisation.

33 / 49

Algorithms for optimisation problems

In this final lecture, we study how to apply rootfinding ideas to optimisation.

Optimisation is fundamental to applied mathematics and engineering. It is also the engine that
powers machine learning.

Nature optimizes. Physical systems tend to a state of minimum energy. The molecules in an
isolated chemical system react with each other until the total potential energy of their
electrons is minimized. Rays of light follow paths that minimize their travel time.

The ideas in this lecture are further explored in ASO Calculus of Variations, B6.2 Optimisation
for Data Science, and C6.2 Continuous Optimisation.

33 / 49

Algorithms for optimisation problems

In this final lecture, we study how to apply rootfinding ideas to optimisation.

Optimisation is fundamental to applied mathematics and engineering. It is also the engine that
powers machine learning.

Nature optimizes. Physical systems tend to a state of minimum energy. The molecules in an
isolated chemical system react with each other until the total potential energy of their
electrons is minimized. Rays of light follow paths that minimize their travel time.

The ideas in this lecture are further explored in ASO Calculus of Variations, B6.2 Optimisation
for Data Science, and C6.2 Continuous Optimisation.

33 / 49

Algorithms for optimisation problems

Optimisation studies how to find an input x⋆ to a function f that achieves a minimal value.
(If you want to maximise f(x), just minimise −f(x).)

Let’s consider the optimisation problem: given f ∈ C2(RN ,R),

find x⋆ = argmin
x∈RN

f(x).

We assume f is bounded below (e.g. f(x) = −x2 has no min over R).

We want an argument x⋆ that satisfies f(x⋆) ≤ f(x) for all x ∈ RN .

This is usually too much to ask for, so instead we satisfy ourselves with local minima x⋆ such
that there is a neighbourhood N around x⋆ so that

f(x⋆) ≤ f(x) for all x ∈ N .

34 / 49

Algorithms for optimisation problems

Optimisation studies how to find an input x⋆ to a function f that achieves a minimal value.
(If you want to maximise f(x), just minimise −f(x).)

Let’s consider the optimisation problem: given f ∈ C2(RN ,R),

find x⋆ = argmin
x∈RN

f(x).

We assume f is bounded below (e.g. f(x) = −x2 has no min over R).

We want an argument x⋆ that satisfies f(x⋆) ≤ f(x) for all x ∈ RN .

This is usually too much to ask for, so instead we satisfy ourselves with local minima x⋆ such
that there is a neighbourhood N around x⋆ so that

f(x⋆) ≤ f(x) for all x ∈ N .

34 / 49

Algorithms for optimisation problems

Optimisation studies how to find an input x⋆ to a function f that achieves a minimal value.
(If you want to maximise f(x), just minimise −f(x).)

Let’s consider the optimisation problem: given f ∈ C2(RN ,R),

find x⋆ = argmin
x∈RN

f(x).

We assume f is bounded below (e.g. f(x) = −x2 has no min over R).

We want an argument x⋆ that satisfies f(x⋆) ≤ f(x) for all x ∈ RN .

This is usually too much to ask for, so instead we satisfy ourselves with local minima x⋆ such
that there is a neighbourhood N around x⋆ so that

f(x⋆) ≤ f(x) for all x ∈ N .

34 / 49

Algorithms for optimisation problems

Optimisation studies how to find an input x⋆ to a function f that achieves a minimal value.
(If you want to maximise f(x), just minimise −f(x).)

Let’s consider the optimisation problem: given f ∈ C2(RN ,R),

find x⋆ = argmin
x∈RN

f(x).

We assume f is bounded below (e.g. f(x) = −x2 has no min over R).

We want an argument x⋆ that satisfies f(x⋆) ≤ f(x) for all x ∈ RN .

This is usually too much to ask for, so instead we satisfy ourselves with local minima x⋆ such
that there is a neighbourhood N around x⋆ so that

f(x⋆) ≤ f(x) for all x ∈ N .

34 / 49

Algorithms for optimisation problems

A very profitable line of thinking is to identify conditions that are satisfied at local minima.
These are called optimality conditions.

In our case, the optimality conditions are that the gradient g : RN → RN is zero at a local
minimiser:

g(x⋆) := ∇f(x⋆) = Df(x⋆)⊤ =


∂f
∂x1 (x

⋆)
...

∂f
∂xN (x⋆)

 = 0.

In other words, if we can find roots of g, we can find local minima of f !

…and local maxima, and saddle points: any point like these satisfying g(x) = 0 is called a
critical point.

35 / 49

Algorithms for optimisation problems

A very profitable line of thinking is to identify conditions that are satisfied at local minima.
These are called optimality conditions.

In our case, the optimality conditions are that the gradient g : RN → RN is zero at a local
minimiser:

g(x⋆) := ∇f(x⋆) = Df(x⋆)⊤ =


∂f
∂x1 (x

⋆)
...

∂f
∂xN (x⋆)

 = 0.

In other words, if we can find roots of g, we can find local minima of f !

…and local maxima, and saddle points: any point like these satisfying g(x) = 0 is called a
critical point.

35 / 49

Algorithms for optimisation problems

A very profitable line of thinking is to identify conditions that are satisfied at local minima.
These are called optimality conditions.

In our case, the optimality conditions are that the gradient g : RN → RN is zero at a local
minimiser:

g(x⋆) := ∇f(x⋆) = Df(x⋆)⊤ =


∂f
∂x1 (x

⋆)
...

∂f
∂xN (x⋆)

 = 0.

In other words, if we can find roots of g, we can find local minima of f !

…and local maxima, and saddle points: any point like these satisfying g(x) = 0 is called a
critical point.

35 / 49

Algorithms for optimisation problems

A very profitable line of thinking is to identify conditions that are satisfied at local minima.
These are called optimality conditions.

In our case, the optimality conditions are that the gradient g : RN → RN is zero at a local
minimiser:

g(x⋆) := ∇f(x⋆) = Df(x⋆)⊤ =


∂f
∂x1 (x

⋆)
...

∂f
∂xN (x⋆)

 = 0.

In other words, if we can find roots of g, we can find local minima of f !

…and local maxima, and saddle points: any point like these satisfying g(x) = 0 is called a
critical point.

35 / 49

Algorithms for optimisation problems

To develop practical optimisation algorithms, we’ve already relaxed the problem twice:

global minimisers ⊂ local minimisers ⊂ critical points.

We will have to be careful, when looking for critical points, to find only the local minimisers
we’re interested in.

Local minimisers can be distinguished by studying the second-order sufficiency conditions. We
won’t see these.

Finding global minimisers is so hard that it is its own branch of study, global optimisation.

36 / 49

Algorithms for optimisation problems

To develop practical optimisation algorithms, we’ve already relaxed the problem twice:

global minimisers ⊂ local minimisers ⊂ critical points.

We will have to be careful, when looking for critical points, to find only the local minimisers
we’re interested in.

Local minimisers can be distinguished by studying the second-order sufficiency conditions. We
won’t see these.

Finding global minimisers is so hard that it is its own branch of study, global optimisation.

36 / 49

Algorithms for optimisation problems

To develop practical optimisation algorithms, we’ve already relaxed the problem twice:

global minimisers ⊂ local minimisers ⊂ critical points.

We will have to be careful, when looking for critical points, to find only the local minimisers
we’re interested in.

Local minimisers can be distinguished by studying the second-order sufficiency conditions. We
won’t see these.

Finding global minimisers is so hard that it is its own branch of study, global optimisation.

36 / 49

Algorithms for optimisation problems

To develop practical optimisation algorithms, we’ve already relaxed the problem twice:

global minimisers ⊂ local minimisers ⊂ critical points.

We will have to be careful, when looking for critical points, to find only the local minimisers
we’re interested in.

Local minimisers can be distinguished by studying the second-order sufficiency conditions. We
won’t see these.

Finding global minimisers is so hard that it is its own branch of study, global optimisation.

36 / 49

Algorithms for optimisation problems

The model problem we’re considering in this lecture is quite simplified. In
most real optimisation problems, there are constraints on the solution:

min
x∈RN

f(x)

subject to ci(x) ≥ 0, i ∈ I,
ce(x) = 0, i ∈ E .

For problems with constraints, the optimality conditions are no longer as
simple as ∇f(x) = 0. The optimality conditions for the problem above are
known as the Karush–Kuhn–Tucker conditions.

In this lecture we consider the unconstrained problem, since you need to
understand that first to attack the constrained one!

William Karush, 1917–1997

Harold Kuhn, 1925–2014

Albert Tucker, 1905–1995

37 / 49

Algorithms for optimisation problems

The model problem we’re considering in this lecture is quite simplified. In
most real optimisation problems, there are constraints on the solution:

min
x∈RN

f(x)

subject to ci(x) ≥ 0, i ∈ I,
ce(x) = 0, i ∈ E .

For problems with constraints, the optimality conditions are no longer as
simple as ∇f(x) = 0. The optimality conditions for the problem above are
known as the Karush–Kuhn–Tucker conditions.

In this lecture we consider the unconstrained problem, since you need to
understand that first to attack the constrained one!

William Karush, 1917–1997

Harold Kuhn, 1925–2014

Albert Tucker, 1905–1995
37 / 49

Algorithms for optimisation problems

The model problem we’re considering in this lecture is quite simplified. In
most real optimisation problems, there are constraints on the solution:

min
x∈RN

f(x)

subject to ci(x) ≥ 0, i ∈ I,
ce(x) = 0, i ∈ E .

For problems with constraints, the optimality conditions are no longer as
simple as ∇f(x) = 0. The optimality conditions for the problem above are
known as the Karush–Kuhn–Tucker conditions.

In this lecture we consider the unconstrained problem, since you need to
understand that first to attack the constrained one!

William Karush, 1917–1997

Harold Kuhn, 1925–2014

Albert Tucker, 1905–1995
37 / 49

Newton’s method for optimisation

Section 10

Newton’s method for optimisation

38 / 49

Newton’s method for optimisation

Let’s see what Newton iteration on the gradient looks like. If we take the Jacobian of the
gradient, we get the Hessian matrix:

Hf(a) = D∇f(a) :=


∂2f

∂x1x1 (a)
∂2f

∂x1x2 (a) · · · ∂2f
∂x1xN (a)

∂2f
∂x2x1 (a)

∂2f
∂x2x2 (a) · · · ∂2f

∂x2xN (a)
...

∂2f
∂xNx1 (a)

∂2f
∂xNx2 (a) · · · ∂2f

∂xNxN (a)

 .

The Hessian is always symmetric for f ∈ C2(RN ,R).

Applying Newton’s method to find roots of ∇f(x), we get

xi+1 = xi − [Hf(xi)]
−1∇f(xi) = xi − [Dg(xi)]

−1g(xi).

39 / 49

Newton’s method for optimisation

Let’s see what Newton iteration on the gradient looks like. If we take the Jacobian of the
gradient, we get the Hessian matrix:

Hf(a) = D∇f(a) :=


∂2f

∂x1x1 (a)
∂2f

∂x1x2 (a) · · · ∂2f
∂x1xN (a)

∂2f
∂x2x1 (a)

∂2f
∂x2x2 (a) · · · ∂2f

∂x2xN (a)
...

∂2f
∂xNx1 (a)

∂2f
∂xNx2 (a) · · · ∂2f

∂xNxN (a)

 .

The Hessian is always symmetric for f ∈ C2(RN ,R).

Applying Newton’s method to find roots of ∇f(x), we get

xi+1 = xi − [Hf(xi)]
−1∇f(xi) = xi − [Dg(xi)]

−1g(xi).

39 / 49

Newton’s method for optimisation

Let’s see what Newton iteration on the gradient looks like. If we take the Jacobian of the
gradient, we get the Hessian matrix:

Hf(a) = D∇f(a) :=


∂2f

∂x1x1 (a)
∂2f

∂x1x2 (a) · · · ∂2f
∂x1xN (a)

∂2f
∂x2x1 (a)

∂2f
∂x2x2 (a) · · · ∂2f

∂x2xN (a)
...

∂2f
∂xNx1 (a)

∂2f
∂xNx2 (a) · · · ∂2f

∂xNxN (a)

 .

The Hessian is always symmetric for f ∈ C2(RN ,R).

Applying Newton’s method to find roots of ∇f(x), we get

xi+1 = xi − [Hf(xi)]
−1∇f(xi)

= xi − [Dg(xi)]
−1g(xi).

39 / 49

Newton’s method for optimisation

Let’s see what Newton iteration on the gradient looks like. If we take the Jacobian of the
gradient, we get the Hessian matrix:

Hf(a) = D∇f(a) :=


∂2f

∂x1x1 (a)
∂2f

∂x1x2 (a) · · · ∂2f
∂x1xN (a)

∂2f
∂x2x1 (a)

∂2f
∂x2x2 (a) · · · ∂2f

∂x2xN (a)
...

∂2f
∂xNx1 (a)

∂2f
∂xNx2 (a) · · · ∂2f

∂xNxN (a)

 .

The Hessian is always symmetric for f ∈ C2(RN ,R).

Applying Newton’s method to find roots of ∇f(x), we get

xi+1 = xi − [Hf(xi)]
−1∇f(xi) = xi − [Dg(xi)]

−1g(xi).

39 / 49

Newton’s method for optimisation

There’s a nice geometric interpretation to this.

Suppose we’re at iterate xi and we’d like to minimise f . We don’t know how, so we’ll replace
f with a local quadratic model:

f(xi + δx) ≈ m(δx) := f(xi) +∇f(xi)
⊤δx+

1

2
δx⊤Hf(xi)δx.

We can decide what the update δx should be by solving ∇m(δx) = 0, which yields the update

δx = −[Hf(xi)]
−1∇f(xi).

So at every step, Newton’s method for optimisation approximates the function with a
paraboloid, and minimises that.

40 / 49

Newton’s method for optimisation

There’s a nice geometric interpretation to this.

Suppose we’re at iterate xi and we’d like to minimise f . We don’t know how, so we’ll replace
f with a local quadratic model:

f(xi + δx) ≈ m(δx) := f(xi) +∇f(xi)
⊤δx+

1

2
δx⊤Hf(xi)δx.

We can decide what the update δx should be by solving ∇m(δx) = 0, which yields the update

δx = −[Hf(xi)]
−1∇f(xi).

So at every step, Newton’s method for optimisation approximates the function with a
paraboloid, and minimises that.

40 / 49

Newton’s method for optimisation

There’s a nice geometric interpretation to this.

Suppose we’re at iterate xi and we’d like to minimise f . We don’t know how, so we’ll replace
f with a local quadratic model:

f(xi + δx) ≈ m(δx) := f(xi) +∇f(xi)
⊤δx+

1

2
δx⊤Hf(xi)δx.

We can decide what the update δx should be by solving ∇m(δx) = 0, which yields the update

δx = −[Hf(xi)]
−1∇f(xi).

So at every step, Newton’s method for optimisation approximates the function with a
paraboloid, and minimises that.

40 / 49

Newton’s method for optimisation

There’s a nice geometric interpretation to this.

Suppose we’re at iterate xi and we’d like to minimise f . We don’t know how, so we’ll replace
f with a local quadratic model:

f(xi + δx) ≈ m(δx) := f(xi) +∇f(xi)
⊤δx+

1

2
δx⊤Hf(xi)δx.

We can decide what the update δx should be by solving ∇m(δx) = 0, which yields the update

δx = −[Hf(xi)]
−1∇f(xi).

So at every step, Newton’s method for optimisation approximates the function with a
paraboloid, and minimises that.

40 / 49

Quasi-Newton methods

Section 11

Quasi-Newton methods

41 / 49

Quasi-Newton methods

Problems with this:
1. We only want to find local minimisers.

We often have huge N ≫ 1, causing two more difficulties:
2. How do we store Hf(xi)? (Can’t store a full/dense matrix.)
3. How do we solve Hf(xi)δx = −∇f(xi)?

It is often possible to overcome these issues by exploiting some structure in the problem.
When minimising energy functions in physics, the matrix is usually sparse, which can
sometimes be exploited to solve the linear system in time O(N) instead of O(N3).

But for many problems no such nice structure exists (e.g. neural networks).

The standard practice is to modify the algorithm to

xi+1 = xi −B−1
i ∇f(xi)

for carefully chosen matrices Bi. This is called a quasi-Newton scheme.

42 / 49

Quasi-Newton methods

Problems with this:
1. We only want to find local minimisers.

We often have huge N ≫ 1, causing two more difficulties:
2. How do we store Hf(xi)? (Can’t store a full/dense matrix.)
3. How do we solve Hf(xi)δx = −∇f(xi)?

It is often possible to overcome these issues by exploiting some structure in the problem.
When minimising energy functions in physics, the matrix is usually sparse, which can
sometimes be exploited to solve the linear system in time O(N) instead of O(N3).

But for many problems no such nice structure exists (e.g. neural networks).

The standard practice is to modify the algorithm to

xi+1 = xi −B−1
i ∇f(xi)

for carefully chosen matrices Bi. This is called a quasi-Newton scheme.

42 / 49

Quasi-Newton methods

Problems with this:
1. We only want to find local minimisers.

We often have huge N ≫ 1, causing two more difficulties:
2. How do we store Hf(xi)? (Can’t store a full/dense matrix.)
3. How do we solve Hf(xi)δx = −∇f(xi)?

It is often possible to overcome these issues by exploiting some structure in the problem.
When minimising energy functions in physics, the matrix is usually sparse, which can
sometimes be exploited to solve the linear system in time O(N) instead of O(N3).

But for many problems no such nice structure exists (e.g. neural networks).

The standard practice is to modify the algorithm to

xi+1 = xi −B−1
i ∇f(xi)

for carefully chosen matrices Bi. This is called a quasi-Newton scheme.

42 / 49

Quasi-Newton methods

Problems with this:
1. We only want to find local minimisers.

We often have huge N ≫ 1, causing two more difficulties:
2. How do we store Hf(xi)? (Can’t store a full/dense matrix.)
3. How do we solve Hf(xi)δx = −∇f(xi)?

It is often possible to overcome these issues by exploiting some structure in the problem.
When minimising energy functions in physics, the matrix is usually sparse, which can
sometimes be exploited to solve the linear system in time O(N) instead of O(N3).

But for many problems no such nice structure exists (e.g. neural networks).

The standard practice is to modify the algorithm to

xi+1 = xi −B−1
i ∇f(xi)

for carefully chosen matrices Bi. This is called a quasi-Newton scheme.

42 / 49

Quasi-Newton methods

Problems with this:
1. We only want to find local minimisers.

We often have huge N ≫ 1, causing two more difficulties:
2. How do we store Hf(xi)? (Can’t store a full/dense matrix.)
3. How do we solve Hf(xi)δx = −∇f(xi)?

It is often possible to overcome these issues by exploiting some structure in the problem.
When minimising energy functions in physics, the matrix is usually sparse, which can
sometimes be exploited to solve the linear system in time O(N) instead of O(N3).

But for many problems no such nice structure exists (e.g. neural networks).

The standard practice is to modify the algorithm to

xi+1 = xi −B−1
i ∇f(xi)

for carefully chosen matrices Bi. This is called a quasi-Newton scheme.
42 / 49

Quasi-Newton methods

Here are some choices for Bi:
1. Bi = Hf(xi). Newton again. Quadratic convergence, often impractical.

2. Bi = I ∈ RN×N . Gradient descent. Linear convergence, very slow.

The choice most used in practice is the BFGS algorithm (1970).

This builds up an approximation to the Hessian as the iterations proceed.

43 / 49

Quasi-Newton methods

Here are some choices for Bi:
1. Bi = Hf(xi). Newton again. Quadratic convergence, often impractical.
2. Bi = I ∈ RN×N . Gradient descent. Linear convergence, very slow.

The choice most used in practice is the BFGS algorithm (1970).

This builds up an approximation to the Hessian as the iterations proceed.

43 / 49

Quasi-Newton methods

Here are some choices for Bi:
1. Bi = Hf(xi). Newton again. Quadratic convergence, often impractical.
2. Bi = I ∈ RN×N . Gradient descent. Linear convergence, very slow.

The choice most used in practice is the BFGS algorithm (1970).

This builds up an approximation to the Hessian as the iterations proceed.

43 / 49

Quasi-Newton methods

Here are some choices for Bi:
1. Bi = Hf(xi). Newton again. Quadratic convergence, often impractical.
2. Bi = I ∈ RN×N . Gradient descent. Linear convergence, very slow.

The choice most used in practice is the BFGS algorithm (1970).

This builds up an approximation to the Hessian as the iterations proceed.
43 / 49

Quasi-Newton methods

The BFGS approach demands that the symmetric matrix Bi+1 satisfy
Bi+1(xi+1 − xi) = ∇f(xi+1)−∇f(xi).

which is the higher-order generalisation of the secant method.

In one dimension, this secant condition is enough to approximate f ′′(xi). But in higher
dimensions it is not; we have N equations, but N(N + 1)/2 variables to define Bi+1. So how
do we fill in the missing information?

BFGS proposed to choose, among all symmetric matrices satisfying the secant condition, the
one whose inverse is closest to B−1

i :
Bi+1 = argmin

B∈RN×N

∥B−1 −B−1
i ∥

subject to B = B⊤,

B(xi+1 − xi) = ∇f(xi+1)−∇f(xi).

This means we now need to supply B0. With the right choice of norm, this problem has an
explicit solution for Bi+1 and B−1

i+1.

44 / 49

Quasi-Newton methods

The BFGS approach demands that the symmetric matrix Bi+1 satisfy
Bi+1(xi+1 − xi) = ∇f(xi+1)−∇f(xi).

which is the higher-order generalisation of the secant method.

In one dimension, this secant condition is enough to approximate f ′′(xi). But in higher
dimensions it is not; we have N equations, but N(N + 1)/2 variables to define Bi+1. So how
do we fill in the missing information?

BFGS proposed to choose, among all symmetric matrices satisfying the secant condition, the
one whose inverse is closest to B−1

i :
Bi+1 = argmin

B∈RN×N

∥B−1 −B−1
i ∥

subject to B = B⊤,

B(xi+1 − xi) = ∇f(xi+1)−∇f(xi).

This means we now need to supply B0. With the right choice of norm, this problem has an
explicit solution for Bi+1 and B−1

i+1.

44 / 49

Quasi-Newton methods

The BFGS approach demands that the symmetric matrix Bi+1 satisfy
Bi+1(xi+1 − xi) = ∇f(xi+1)−∇f(xi).

which is the higher-order generalisation of the secant method.

In one dimension, this secant condition is enough to approximate f ′′(xi). But in higher
dimensions it is not; we have N equations, but N(N + 1)/2 variables to define Bi+1. So how
do we fill in the missing information?

BFGS proposed to choose, among all symmetric matrices satisfying the secant condition, the
one whose inverse is closest to B−1

i :
Bi+1 = argmin

B∈RN×N

∥B−1 −B−1
i ∥

subject to B = B⊤,

B(xi+1 − xi) = ∇f(xi+1)−∇f(xi).

This means we now need to supply B0.

With the right choice of norm, this problem has an
explicit solution for Bi+1 and B−1

i+1.

44 / 49

Quasi-Newton methods

The BFGS approach demands that the symmetric matrix Bi+1 satisfy
Bi+1(xi+1 − xi) = ∇f(xi+1)−∇f(xi).

which is the higher-order generalisation of the secant method.

In one dimension, this secant condition is enough to approximate f ′′(xi). But in higher
dimensions it is not; we have N equations, but N(N + 1)/2 variables to define Bi+1. So how
do we fill in the missing information?

BFGS proposed to choose, among all symmetric matrices satisfying the secant condition, the
one whose inverse is closest to B−1

i :
Bi+1 = argmin

B∈RN×N

∥B−1 −B−1
i ∥

subject to B = B⊤,

B(xi+1 − xi) = ∇f(xi+1)−∇f(xi).

This means we now need to supply B0. With the right choice of norm, this problem has an
explicit solution for Bi+1 and B−1

i+1. 44 / 49

Quasi-Newton methods

No matter the choice of Bi, we want to guarantee that

f(xi+1) < f(xi).

This will be achieved by ensuring that Bi is positive definite.

Definition (positive-definite)
A matrix A ∈ RN×N is said to be positive-definite if x⊤Ax > 0 for all nonzero x ∈ RN . This
is equivalent to all of its eigenvalues being positive.

Diagonal matrices
A diagonal matrix A is positive-definite iff all of its diagonal entries are strictly positive. In this
case,

xTAx = A11(x
1)2 +A22(x

2)2 + · · ·+ANN (xN)2 > 0.

BFGS gives a positive-definite Hessian approximation, if B0 is.

45 / 49

Quasi-Newton methods

No matter the choice of Bi, we want to guarantee that

f(xi+1) < f(xi).

This will be achieved by ensuring that Bi is positive definite.

Definition (positive-definite)
A matrix A ∈ RN×N is said to be positive-definite if x⊤Ax > 0 for all nonzero x ∈ RN . This
is equivalent to all of its eigenvalues being positive.

Diagonal matrices
A diagonal matrix A is positive-definite iff all of its diagonal entries are strictly positive. In this
case,

xTAx = A11(x
1)2 +A22(x

2)2 + · · ·+ANN (xN)2 > 0.

BFGS gives a positive-definite Hessian approximation, if B0 is.

45 / 49

Quasi-Newton methods

No matter the choice of Bi, we want to guarantee that

f(xi+1) < f(xi).

This will be achieved by ensuring that Bi is positive definite.

Definition (positive-definite)
A matrix A ∈ RN×N is said to be positive-definite if x⊤Ax > 0 for all nonzero x ∈ RN .

This
is equivalent to all of its eigenvalues being positive.

Diagonal matrices
A diagonal matrix A is positive-definite iff all of its diagonal entries are strictly positive. In this
case,

xTAx = A11(x
1)2 +A22(x

2)2 + · · ·+ANN (xN)2 > 0.

BFGS gives a positive-definite Hessian approximation, if B0 is.

45 / 49

Quasi-Newton methods

No matter the choice of Bi, we want to guarantee that

f(xi+1) < f(xi).

This will be achieved by ensuring that Bi is positive definite.

Definition (positive-definite)
A matrix A ∈ RN×N is said to be positive-definite if x⊤Ax > 0 for all nonzero x ∈ RN . This
is equivalent to all of its eigenvalues being positive.

Diagonal matrices
A diagonal matrix A is positive-definite iff all of its diagonal entries are strictly positive. In this
case,

xTAx = A11(x
1)2 +A22(x

2)2 + · · ·+ANN (xN)2 > 0.

BFGS gives a positive-definite Hessian approximation, if B0 is.

45 / 49

Quasi-Newton methods

No matter the choice of Bi, we want to guarantee that

f(xi+1) < f(xi).

This will be achieved by ensuring that Bi is positive definite.

Definition (positive-definite)
A matrix A ∈ RN×N is said to be positive-definite if x⊤Ax > 0 for all nonzero x ∈ RN . This
is equivalent to all of its eigenvalues being positive.

Diagonal matrices
A diagonal matrix A is positive-definite iff all of its diagonal entries are strictly positive. In this
case,

xTAx = A11(x
1)2 +A22(x

2)2 + · · ·+ANN (xN)2 > 0.

BFGS gives a positive-definite Hessian approximation, if B0 is.

45 / 49

Quasi-Newton methods

No matter the choice of Bi, we want to guarantee that

f(xi+1) < f(xi).

This will be achieved by ensuring that Bi is positive definite.

Definition (positive-definite)
A matrix A ∈ RN×N is said to be positive-definite if x⊤Ax > 0 for all nonzero x ∈ RN . This
is equivalent to all of its eigenvalues being positive.

Diagonal matrices
A diagonal matrix A is positive-definite iff all of its diagonal entries are strictly positive. In this
case,

xTAx = A11(x
1)2 +A22(x

2)2 + · · ·+ANN (xN)2 > 0.

BFGS gives a positive-definite Hessian approximation, if B0 is.
45 / 49

Quasi-Newton methods

To ensure we satisfy
f(xi+1) < f(xi)

we modify the iteration
xi+1 = xi −B−1

i ∇f(xi)

to use a line search.

The basic idea is this. The direction di = −B−1
i ∇f(xi) might point towards a minimum, but

we may overshoot if ∥di∥ gets too large. We fix this by adjusting the magnitude of the step.

Define
ϕi(t) := f(xi + tdi)

and consider its derivative at t = 0:

ϕ′
i(0) = ∇f(xi + 0di)

⊤di

= −∇f(xi)
TB−1

i ∇f(xi)

< 0.

46 / 49

Quasi-Newton methods

To ensure we satisfy
f(xi+1) < f(xi)

we modify the iteration
xi+1 = xi −B−1

i ∇f(xi)

to use a line search.

The basic idea is this. The direction di = −B−1
i ∇f(xi) might point towards a minimum, but

we may overshoot if ∥di∥ gets too large. We fix this by adjusting the magnitude of the step.

Define
ϕi(t) := f(xi + tdi)

and consider its derivative at t = 0:

ϕ′
i(0) = ∇f(xi + 0di)

⊤di

= −∇f(xi)
TB−1

i ∇f(xi)

< 0.

46 / 49

Quasi-Newton methods

To ensure we satisfy
f(xi+1) < f(xi)

we modify the iteration
xi+1 = xi −B−1

i ∇f(xi)

to use a line search.

The basic idea is this. The direction di = −B−1
i ∇f(xi) might point towards a minimum, but

we may overshoot if ∥di∥ gets too large. We fix this by adjusting the magnitude of the step.

Define
ϕi(t) := f(xi + tdi)

and consider its derivative at t = 0:

ϕ′
i(0) = ∇f(xi + 0di)

⊤di

= −∇f(xi)
TB−1

i ∇f(xi)

< 0.

46 / 49

Quasi-Newton methods

To ensure we satisfy
f(xi+1) < f(xi)

we modify the iteration
xi+1 = xi −B−1

i ∇f(xi)

to use a line search.

The basic idea is this. The direction di = −B−1
i ∇f(xi) might point towards a minimum, but

we may overshoot if ∥di∥ gets too large. We fix this by adjusting the magnitude of the step.

Define
ϕi(t) := f(xi + tdi)

and consider its derivative at t = 0:

ϕ′
i(0) = ∇f(xi + 0di)

⊤di

= −∇f(xi)
TB−1

i ∇f(xi)

< 0.

46 / 49

Quasi-Newton methods

To ensure we satisfy
f(xi+1) < f(xi)

we modify the iteration
xi+1 = xi −B−1

i ∇f(xi)

to use a line search.

The basic idea is this. The direction di = −B−1
i ∇f(xi) might point towards a minimum, but

we may overshoot if ∥di∥ gets too large. We fix this by adjusting the magnitude of the step.

Define
ϕi(t) := f(xi + tdi)

and consider its derivative at t = 0:

ϕ′
i(0) = ∇f(xi + 0di)

⊤di

= −∇f(xi)
TB−1

i ∇f(xi)

< 0.

46 / 49

Quasi-Newton methods

To ensure we satisfy
f(xi+1) < f(xi)

we modify the iteration
xi+1 = xi −B−1

i ∇f(xi)

to use a line search.

The basic idea is this. The direction di = −B−1
i ∇f(xi) might point towards a minimum, but

we may overshoot if ∥di∥ gets too large. We fix this by adjusting the magnitude of the step.

Define
ϕi(t) := f(xi + tdi)

and consider its derivative at t = 0:

ϕ′
i(0) = ∇f(xi + 0di)

⊤di

= −∇f(xi)
TB−1

i ∇f(xi)

< 0.

46 / 49

Quasi-Newton methods

Since ϕ′
i(0) < 0, this means that there exists t > 0 such that

ϕi(t) = f(xi + tdi) < f(xi) = ϕi(0)

so if we take a small enough step we will decrease f .

We therefore modify the algorithm to

xi+1 = xi − t⋆iB
−1
i ∇f(xi),

where t⋆i is an (approximate) minimiser of ϕ(t).

47 / 49

Quasi-Newton methods

Since ϕ′
i(0) < 0, this means that there exists t > 0 such that

ϕi(t) = f(xi + tdi) < f(xi) = ϕi(0)

so if we take a small enough step we will decrease f .

We therefore modify the algorithm to

xi+1 = xi − t⋆iB
−1
i ∇f(xi),

where t⋆i is an (approximate) minimiser of ϕ(t).

47 / 49

Quasi-Newton methods

Since ϕ′
i(0) < 0, this means that there exists t > 0 such that

ϕi(t) = f(xi + tdi) < f(xi) = ϕi(0)

so if we take a small enough step we will decrease f .

We therefore modify the algorithm to

xi+1 = xi − t⋆iB
−1
i ∇f(xi),

where t⋆i is an (approximate) minimiser of ϕ(t).

47 / 49

Quasi-Newton methods

We end the course with a final example. Consider the problem
find (x, y)⋆ = argmin

(x,y)∈R2

f(x, y) := 100(y − x2)2 + (1− x)2.

This is the Rosenbrock function and has unique minimiser (x, y)⋆ = (1, 1).

48 / 49

Quasi-Newton methods

We end the course with a final example. Consider the problem
find (x, y)⋆ = argmin

(x,y)∈R2

f(x, y) := 100(y − x2)2 + (1− x)2.

This is the Rosenbrock function and has unique minimiser (x, y)⋆ = (1, 1).

48 / 49

Quasi-Newton methods

We solve this from (x0, y0) = (−1.2, 1)⊤ with gradient descent, Newton’s method, and BFGS,
with a Wolfe line search, until ∥∇f(x)∥ < 10−5.

Gradient descent Newton’s method BFGS
1.827×10−4 3.48×10−2 1.70×10−3

1.826×10−4 1.44×10−2 1.17×10−3

1.824×10−4 1.82×10−4 1.34×10−4

1.823×10−4 1.17×10−8 1.01×10−6

∥(x, y)− (x, y)⋆∥ for the last 4 iterations.

Gradient descent took 5264 iterations, Newton’s method 21, and BFGS 34.

49 / 49

Quasi-Newton methods

We solve this from (x0, y0) = (−1.2, 1)⊤ with gradient descent, Newton’s method, and BFGS,
with a Wolfe line search, until ∥∇f(x)∥ < 10−5.

Gradient descent Newton’s method BFGS
1.827×10−4 3.48×10−2 1.70×10−3

1.826×10−4 1.44×10−2 1.17×10−3

1.824×10−4 1.82×10−4 1.34×10−4

1.823×10−4 1.17×10−8 1.01×10−6

∥(x, y)− (x, y)⋆∥ for the last 4 iterations.

Gradient descent took 5264 iterations, Newton’s method 21, and BFGS 34.

49 / 49

Quasi-Newton methods

We solve this from (x0, y0) = (−1.2, 1)⊤ with gradient descent, Newton’s method, and BFGS,
with a Wolfe line search, until ∥∇f(x)∥ < 10−5.

Gradient descent Newton’s method BFGS
1.827×10−4 3.48×10−2 1.70×10−3

1.826×10−4 1.44×10−2 1.17×10−3

1.824×10−4 1.82×10−4 1.34×10−4

1.823×10−4 1.17×10−8 1.01×10−6

∥(x, y)− (x, y)⋆∥ for the last 4 iterations.

Gradient descent took 5264 iterations, Newton’s method 21, and BFGS 34.

49 / 49

	Greatest common divisors
	Diophantine equations
	The extended Euclidean algorithm
	Euclid for polynomials
	Introduction
	Bisection
	Rate of convergence of a sequence
	Fixed point iterations
	The contraction mapping theorem
	Example
	Termination criteria
	Another example
	Accelerating sequence convergence
	Newton's method
	The secant iteration
	Aitken acceleration of fixed-point iterations
	Rootfinding for polynomials
	Horner's method
	More philosophical remarks
	Finding all roots of a polynomial
	Representing polynomials
	Newton in higher dimensions
	Derivation of Newton's method
	Example
	Convergence
	Affine covariance
	The Newton–Kantorovich theorem
	The Davidenko differential equation
	Newton fractals
	Algorithms for optimisation problems
	Newton's method for optimisation
	Quasi-Newton methods

