
University of Oxford
Mathematical Institute

C8.7 – Optimal Control
(Draft notes, March 26, 2025)

Samuel Cohen

Hilary Term 2025

2

Contents

Introduction 5

1 Discrete-time control and Markov Decision Processes 9

1.1 State variables and a first control problem . 9

1.1.1 Building a dynamic programming problem . 10

1.2 Discrete stochastic control . 12

1.2.1 Notation . 13

1.2.2 The martingale principle and dynamic programming 16

1.3 Finite state Markov Decision Problems . 19

1.3.1 Controlled Markov chains . 19

1.3.2 Finite horizon MDPs . 19

1.4 Infinite-horizon Discounted MDPs . 21

2 Numerical methods and Reinforcement Learning 25

2.1 Value iteration . 25

2.2 Policy iteration . 29

2.2.1 Approximate policy iteration . 30

2.3 Q-learning . 30

2.3.1 SARSA . 34

2.4 Aside: Entropy-regularized control . 34

2.5 Policy gradients . 36

3 Continuous Deterministic Control 39

3.1 Notation and problem formulation . 39

3.2 Dynamic programming and the Hamilton–Jacobi equation 41

3.3 Pontryagin’s maximum principle . 48

3

4 CONTENTS

4 Continuous Stochastic Control 51

4.1 Notation and problem formulation . 51

4.1.1 Useful estimates . 53

4.1.2 Dynamic programming . 56

4.2 Hamilton–Jacobi–Bellman equations . 59

A Some useful basic theory 65

A.1 Filtrations, Conditional Expectations, and Martingales . 65

A.1.1 Existence of essential suprema . 70

A.1.2 Almost supermartingales and stochastic approximation 71

A.2 A summary of stochastic calculus . 74

A.2.1 Lipschitz SDEs . 74

Introduction

This version of the lecture notes contains the main results (with proofs) which we will cover in the course,
but does not contain many examples – these will be added as we go through the course. The appendix
is still being completed, with the addition of material from other courses which may useful depending on
background.

Thanks to Lingyi Yang and Wojtek Anyszka for comments and pointing out errors in early versions of
these notes.

Notation

We will try and be somewhat consistent with notation throughout this course.

• For the avoidance of doubt, 0 ̸∈ N.

• A process (whether random or deterministic, in either discrete or continuous time) will be denoted
with a capital letter (say X), and the value it takes at time t will be either Xt or X(t) as convenient.
The space it takes values in is the calligraphic X , and a typical value in the set is denoted x.

• The set of times which we are considering in our problem will be T, and may be {0, 1, ..., T},
{0, 1, ...}, [0, T] or [0, ∞) as context requires. We will use s and t as time variables, and typically
take s ≤ t.

• The size of a set A (that is, the number of elements it contains), will be written |A| or #A if there
might be confusion.

• The indicator function will be written 1A, where A is some event or condition (so 1A = 1 if A

occurs, and 1A = 0 otherwise).

• The expectation operator will be written E, and the variance V. These can be augmented with
various superscripts, which specify (in some way) how the probabilities are chosen, for notational
convenience.

• Partial derivatives will be written using the shorthand ∂t = ∂
∂t , and when there is a clear spatial

variable x we write ∇ or Dx for the column vector with components ∂xi
, so ∇v = Dxv is the

gradient of v. Similarly, we write D2
xxv for the Hessian of v.

• The Euclidean norm will be denoted ∥x∥, and the ℓ∞ norm denoted ∥x∥∞ = maxi{|xi|}. (Eu-
clidean) inner products will be denoted either ⟨x, y⟩ or x⊤y.

5

6 CONTENTS

• The minimum of two quantities will be written min{x, y} = x ∧ y, and the maximum max{x, y} =
x ∨ y.

CONTENTS 7

References

While these lectures are aiming to be self-contained (and the proofs may differ from those which are
‘standard’), this is an area with many good books. However, you will find that there is a range of
styles, with varying levels of rigour and applicability. A few books (in a roughly increasing level of
complexity/rigour) are:

• Sutton and Barto Reinforcement Learning: An Introduction, MIT 1998

• Whittle, P. Optimal Control: Basics and Beyond, Wiley, 1996

• Bertsekas, Dimitri P. A Course in Reinforcement Learning (2nd Edition), Athena Scientific, 2024

• Bensoussan, Estimation and Control of Dynamical Systems, Springer 2018

• Pham, Continuous-time Stochastic Control and Optimization with Financial Applications, Springer
2009

• Bertsekas and Shreve, Stochastic Optimal Control: The Discrete-time case, Athena Scientific, 1996

• Yong and Zhou Stochastic Controls: Hamiltonian Systems and HJB equations, Springer 1999

• Touzi, Optimal Stochastic Control, Stochastic Target Problems and Backward SDE, Fields Lecture
Notes 2010

• Fleming and Soner, Controlled Markov Processes and Viscosity Solutions, Springer 2006

• Krylov, Controlled Diffusion Processes, Springer 1980

8 CONTENTS

Chapter 1

Discrete-time control and Markov
Decision Processes

In this first part of the course, we will look at discrete time optimal control problems. We will begin by
considering deterministic problems, and then introduce some randomness in our system.

1.1 State variables and a first control problem

In optimal control, we wish to make decisions about actions which modify the state of the world. To
make a mathematical model of this, we first need to describe what we mean by ‘the state of the world’,
and how this is affected by our actions. We will begin with a simple discrete time, deterministic setting,
which avoids technicalities, while showing us some of the basic properties of these problems.

We suppose we have a state process X = {Xt}t∈T, which describes all (relevant) properties of the world,
with T = {0, 1, ..., T}. We will assume that X takes values in X ⊆ Rd for some d ≥ 1. This process will
be affected by a control process, which we denote {Ut}t∈T, and takes values in some set U .

We will assume that X can be described through its one-step dynamics, which we write as

Xt+1 = f(t, Xt, Ut),

where f : T× X × U → X is a function (which we will assume known, for now). We will make continuity
assumptions about f as we go. This is known as the state dynamics or plant equation.

An agent wishes to optimize their rewards and costs. There are two conventions – in the mathematical
control and optimization community, we usually think about minimizing some cost; in the reinforcement
learning community, we usually think about maximizing rewards. For the sake of consistency, we will
follow the convention of minimizing costs (even for when presenting reinforcement learning algorithms),
but the only difference is a change of sign.

We describe the agent’s costs by a function g : T×X ×U → R, which represents the cost which the agent
must pay at time t, in state Xt, if they choose control Ut. We seek to find an optimal control, that is, a

9

10 CHAPTER 1. DISCRETE-TIME CONTROL AND MARKOV DECISION PROCESSES

control which minimizes
J(x, U) =

∑
s≥0

g(s, XU
s , Us) (1.1.1)

with respect to U = {Us}s≥0, where X0 = x is the initial value of X (which is where the system begins)
and where XU is the solution of the plant equation (for s ≥ 0) with control U .

At this point, before we try and solve this problem, we make the following observations:

• We have said that X should contain all relevant information. What do we mean by relevant?
Clearly X should be enough to allow us to determine our costs/rewards at every time (we will
define these later), as this allows us to describe our preferences about the world. Furthermore, it’s
important that X is enough to determine the future dynamics of the world, without needing to
know any additional information. In particular, we will assume that the current state is enough to
build a model of the future – we gain nothing by remembering more information (for example the
past values of X). In a stochastic setting, this is closely related to a Markov assumption (but this
is complicated by the control, as we will see later). If we want to include more memory, we can
expand X to include its past values, at the cost of increasing the dimension of X.

We now have a couple of ways to proceed:

• We could try and find the cheapest Ut for each pair (Xt, Xt+1), and so define

c(t, Xt, Xt+1) = min
Ut

{
g(t, Xt, Ut) : Xt+1 = f(t, Xt, Ut)

}
.

and c(T, XT , XT +1) = minUT
g(T, XT , UT). This would convert our problem into minimizing a

new functional (
∑

t≤T c(s, Xt, Xt+1)), which is the problem of calculus of variations. Doing this
conversion is not always simple, and it doesn’t allow us to include randomness.

• We could consider minimizing J with respect to {Xs, Us}s≥0, by treating Xt+1 = g(t, Xt, Ut) as a
constraint, which we can handle with Lagrange multipliers. This is a very high dimensional problem
though, so can be tricky to solve (but we will return to this approach later!).

• The option we will pursue is to embed our optimization within a family of optimization problems,
which exploits the dynamic nature of our problem. This will lend itself to stochastic problems as
well.

1.1.1 Building a dynamic programming problem

Instead of just optimizing J in (1.1.1), we will consider the family of problems of minimizing the
remaining-cost function (or cost-to-go), which we abuse notation and write as

J(t, x, U) =
∑
s≥t

g(s, Xt,x,U
s , Us)

where Xt,x,U solves the plant equation with control U and initial value Xt = x. With this notation
J = E[J(0, x, U)] is our original optimization objective.

1.1. STATE VARIABLES AND A FIRST CONTROL PROBLEM 11

The basic principle of dynamic programming is then fairly simple. We observe that J(t, x, U) depends
on U only through the values of Us for s ≥ t. We then write

J(t, x, U) = g(t, x, Ut) + J(t + 1, Xt,x,U
t+1 , U).

So, with a further abuse of notation

J(t, x, U) = g(t, x, Ut) + J
(

t + 1, f(t, x, Ut), {Us}s≥t+1

)
. (1.1.2)

We can then optimize with respect to Ut and {Us}s≥t+1 independently, to get the Bellman equation

V (t, x) := inf
U

J(t, x, U)

= inf
Ut

{
g(t, x, Ut) + inf

{Us}s≥t+1
J

(
t + 1, f(t, x, Ut), {Us}s≥t+1

)}
= inf

Ut

{
g(t, x, Ut) + V

(
t + 1, f(t, x, Ut)

)}
.

This allows us to compute the optimal cost function (or value function) V sequentially. Using V , we can
then identify Ut as the arg min in the Bellman equation, which describes the (set of) optimal controls.
Example 1.1.1. Consider the one-dimensional Linear-Quadratic problem, where, for t ≤ T ,

Xt+1 = a + bXt + Ut ⇒ f(t, x, u) = a + bx + u

g(t, x, u) = α + β(x − µx)2 + γ(u − µu)2

We make an ansatz (i.e. an educated guess) that the value function is quadratic, so can be written in the
form V (t, x) = πt + ρt(x − ξt)2, for some values of πt, ρt, ξt. We have the trivial value V (T + 1, x) ≡ 0,
so can write πT +1 = ρT +1 = ξT +1 = 0. The Bellman equation then is

V (t, x) = inf
u

{
α + β(x − µx)2 + γ(u − µu)2 + πt+1 + ρt+1

(
a + bx + u − ξt+1

)2
}

Basic calculus shows that the optimal strategy is of the form

u∗
t = γµu + ρt+1(ξt+1 − a − bx)

γ + ρt+1
= γµu + ρt+1(ξt+1 − a)

γ + ρt+1
− bρt+1

γ + ρt+1
x =: ht + ktx

and hence, by substitution,

V (t, x)

= α + β(x − µx)2 + γ(ht + ktx − µu)2 + πt+1 + ρt+1
(
a + bx + ht + ktx − ξt+1

)2

= α + πt+1 + β(x − µx)2 + k2
t γ

(
x − µu − ht

kt

)2
+ ρt+1(b + kt)2

(
x − ξt+1 − a − ht

b + kt

)2

=
[
β + k2

t γ + ρt+1(b + kt)2
](

x − βµx + ktγ(µu − ht) + ρt+1(b + kt)(ξt+1 − a − ht)
β + k2

t γ + ρt+1(b + kt)2

)2

+ βγ(ktµx − µu + ht)2 + βρt+1((b + kt)µx − ξt+1 + a + ht)2 + γρt+1(b(µu − ht) + kt(µu − ξt+1 − a))2

β + k2
t γ + ρt+1(b + kt)2

+ α + πt+1

From which, together with our ansatz, we can write the backward recursion

ρt = β + k2
t γ + ρt+1(b + kt)2,

ξt = βµx + ktγ(µu − ht) + ρt+1(b + kt)(ξt+1 − a − ht)
β + k2

t γ + ρt+1(b + kt)2 ,

12 CHAPTER 1. DISCRETE-TIME CONTROL AND MARKOV DECISION PROCESSES

and similarly for πt (but note that this is not needed to compute the optimal strategy). Various algebraic
simplifications of this are possible, as is making the parameters α, β, γ, µx, µu time dependent.

Remark 1.1.2. Even in this simple setting, there are some interesting things to say about dynamic
programming.

• One way of looking at dynamic programming is as a computational tool. Instead of having to
solve the high-dimensional constrained optimization problem where we find the optimal U subject
to X being constrained to satisfy the specified dynamics, we solve a family of low dimensional,
unconstrained optimization problems given by the dynamic programming equation. This may be
computationally much easier, depending on our context.

• Another, more modelling-driven perspective, is that we might have an agent who is allowed to change
their mind at any time. The dynamic programming equation tells us that our agent is dynamically-
consistent, in that if we find an optimal strategy at time zero, then that strategy remains optimal
at all future times (with the remaining-cost being used at time t) and, furthermore, if the agent
changes to a different strategy, which at time t they might consider optimal, then at time t = 0 we
are indifferent about such a change - the resulting changed policy will also be optimal.

The key fact that ensures dynamic programming holds here is the additive structure of J in (1.1.2), which
ensures that J is monotone with respect to the future cost-to-go.

1.2 Discrete stochastic control

We now want to expand our class of problems to include randomness. This is a bit tricky, as our agent will
be allowed to use their past observations when determining the control, which means their controls will
also be random. We will now move in a somewhat abstract direction, and try and get some understanding
of the basic structure of the control problem. Our aim is to describe what optimal strategies look like, in
a fairly generic way, so that we can then use this description to solve explicit problems.

Even though we are considering a discrete-time setting, we will try and do things carefully. This means
that we will use the tools and terminology of measure theory, as this gives us an efficient and precise
way to study random processes. These tools also will allow us to more easily take our results into more
difficult (continuous time) settings. Some introductory comments about this theory are in the appendix,
and you can also consult the lecture notes for B8.1, or the textbook [2].

One somewhat uncommon object which we will need is the measurable essential supremum. This ensures
we can take a maximum or minimum, of random objects, without worrying about measurability.

Definition 1.2.1. Let G be a family of functions (measurable, on a σ-finite measure space (Ω, F , µ)).
Then there exists a measurable function g∗ such that g∗ ≥ g almost everywhere for all g ∈ G, and if
h is another function such that h ≥ g a.e. for all g ∈ G, then g∗ ≤ h almost everywhere. We say
g∗ = ess sup G.

If G is upward directed (so for g, g′ ∈ G, there is g′′ ∈ G with g′′ ≥ g and g′′ ≥ g′), then the essential
supremum can be approached by a sequence gn ⊂ G, that is ess sup G = limn→∞ gn.

The essential infimum is defined analogously.

1.2. DISCRETE STOCHASTIC CONTROL 13

A proof that the essential supremum exists (and the limiting statement) can be found in the appendix
(Theorem A.1.20). Essentially, given a family of random variables gn (which is just a family of functions
gn : Ω → R), this essential supremum is the pointwise supremum with respect to n for each ω ∈ Ω, but
done in a way that makes sure we still have measurability.

As before, we suppose we have an agent who is going to choose a control U , which is a (random) process
taking values in a set U . We will assume that U is a topological space (so we can talk about open sets
and hence (Borel) measurability).

1.2.1 Notation

We motivate our setup with an example:
Example 1.2.2. A company has to decide how to price and advertise a subscription product in the
market – the number of subscribers changes randomly each day depending on the price and the number
already subscribed (and possibly other factors, for example they might see momentum in the number of
subscribers due to word-of-mouth). The reward (negative cost) is the number of subscribers at the start
of the period multiplied by the price (which is the control), minus the cost of advertising. The control
is the price and advertising level. We assume that the company knows the impact of their price and
advertising strategy (although this can be relaxed), and has a fixed horizon over which they are trying
to sell the product. The company is allowed to vary their control depending on how many subscribers
they have had in the past, on seasonal effects, and based on other random events which may occur (for
example, a competitor entering the market).

We start with a model of our world described by a filtered space (Ω, F , {Ft}t∈T). Here ω ∈ Ω is the state
of the world (you can think of it as the random seed, which determines the outcomes of every random
event), while Ft determines the information available at time t (formally, it is the set of events whose
outcome is known at time t).

While earlier we assumed that our controls changed the dynamics of a deterministic state variable, we
will now suppose that our control modifies the probabilities of different outcomes occurring. We see this
in our motivating example, as the choice of price and advertising will affect the probability that different
numbers of subscribers will join in each period.
Example 1.2.3. A technical setting we will focus on later is where Xt represents the state of a Markov
chain at each time, and Ft describes what we know from observing {X0, X1, ..., Xt}. In this world, it
is natural that a control might change the probabilities of transitions from one state to another, which
motivates the following construction.

We assume an agent is choosing a control (process) U (which we also call a policy or a strategy, as
convenient), which changes the probabilities of different outcomes in the world. This control takes values
in U , which we assume is a topological space (in particular, it has a Borel σ-algebra, and measurability
is defined using this σ-algebra.). In our example, U ∈ U = {advertising levels, price levels}. We write the
expectation when using control U as EU .

Let’s suppose that our agent is trying to minimize their expected cost

J(U) = EU
[(T −1∑

s=0
g(ω, s, Us)

)
+ Φ(ω)

]

14 CHAPTER 1. DISCRETE-TIME CONTROL AND MARKOV DECISION PROCESSES

where g : Ω × T × U → R, Φ : Ω → R. We separate out the cost at the final time, to emphasize that this
does not depend (directly) on the control chosen. The running cost g is assumed to be adapted, that is,
g(s, u) is Fs-measurable for every s and every u ∈ U , which we interpret as stating that g(s, u) is known
at time s.

We say a strategy U is optimal if it minimizes J(U). As usual, we drop the ω arguments of our terms to
minimize notation.

As before, we define the cost-to-go function

J(t, U) := EU
[(T −1∑

s=t

g(s, Us)
)

+ Φ
∣∣∣Ft

]
We note that J(t, U) is a random process (there’s hidden dependence on the random state of the world
ω), as we’ve used a conditional expectation.

Building on the deterministic theory we saw before, our job is to characterize optimal strategies in a
dynamic way, so that we can avoid solving the very high dimensional optimization problem we have just
written down. This is made worse by the fact that we are now allowed to use strategies which depend on
the (random) state of the world ω, which is not something which made sense in the deterministic setting.
Therefore, we will need to do a little more work in order to carefully specify what we mean by an optimal
strategy.

Before we attempt this, we will give a more careful description of different classes of strategies which we
might wish to consider.

Definition 1.2.4. We say a strategy U is admissible if U is an {Ft}t∈T-adapted process taking values in
U (i.e. Ut is Ft-measurable for all t). We write U for the space of admissible strategies.

If our filtration is generated by a state process X, this can be reexpressed as saying Ut is a (Borel mea-
surable) function of {Xs}s≤t (by the Doob–Dynkin lemma).

Assumption 1.2.5. To avoid measure-theoretic issues1, we make the following two assumptions:

• There is some measure Pref such that, for all U ∈ U, we know PU (A) = 0 only if Pref(A) = 0, that
is PU is absolutely continuous with respect to Pref .

• The map ({ut}t∈T, ω) 7→ dPU

dPref (ω) (where Ut = ut) is measurable as a map (UT, Ω) → R.

Given this definition, we can now see that it’s possible to combine different strategies, and not leave the
class of admissible strategies. The point here is that we’re allowed to switch strategies depending on the
random outcomes we have observed so far.

1For fixed U , the Radon–Nikodym derivative of PU with respect to Pref is a random variable, denoted dPU

dPref , such that
for all PU -integrable Z,

EU [Z] = Eref
[dPU

dPref Z
]
.

With this, we get a version of Bayes’ theorem for conditioning on a general σ-algebra

EU [Z|Ft] = Eref
[dPU

dPref Z
∣∣Ft

]/
Eref

[dPU

dPref

∣∣Ft

]
.

The second assumption guarantees that EU [Z|Ft] is a random variable (in particular, is measurable) for all integrable Z

and U ∈ U. Taken together, these assumptions ensure that the conditional expectation is simultaneously defined for all U

(as it is defined Pref -a.e.).

1.2. DISCRETE STOCHASTIC CONTROL 15

Definition 1.2.6. Let t ∈ T and A ∈ Ft. Consider any two admissible strategies U and U ′. Then the
pasting of U and U ′ (at t, on the set A) is given by

U ′′
s = (1 − 1s≥t1A)Us + 1s≥t1AU ′

s =


Us if s < t,

Us if s ≥ t, ω ̸∈ A,

U ′
s if s ≥ t, ω ∈ A

In other words, after time t, we switch to U ′ if event A occurs.

Proposition 1.2.7. The pasting U ′′ (of two admissible strategies) is also an admissible strategy.

Proof. This is simply stating that pasting preserves measurability of a process. We can check this, by
observing that, for any (Borel) measurable set B ⊂ U and any s ≥ t, we have

{ω : U ′′
s ∈ B} =

(
{ω : U ′

s ∈ B} ∩ A
)

∪
(
{ω : Us ∈ B} ∩ Ac

)
and the right hand term is Fs-measurable, by admissibility of Us and U ′

s. Alternatively, we see that
1s≤t, 1A, Ut and U ′

t are all Ft-measurable, and products and sums preserve measurability, so U ′′
t is also

Ft-measurable.

The final thing we need to specify is how U changes the probabilities. We do this in terms of pasting.

Definition 1.2.8. We say our control problem is dynamic if, for any random variable ξ, with U ′′ as
defined above, for s ≥ t we have

EU ′′
[ξ|Fs] = 1AEU ′

[ξ|Fs] + 1AcEU [ξ|Fs],

and for s < t,
EU ′′

[ξ|Fs] = EU
[
EU ′′

[ξ|Ft]
∣∣∣Fs

]
.

Essentially, the above definition tells us that switching from U to U ′ at time t, if A occurs, only changes
the probabilities of events which are not already known at time t, doesn’t change the probabilities of
events which only occur if A doesn’t occur, and, if we switch, the conditional probabilities (given our
information at time t) are completely determined by U ′ (not U). We will assume without further comment
that our problem is dynamic.

We need one assumption on the integrability of our costs, in order to avoid trivialities.

Assumption 1.2.9. The costs g and Φ are such that J satisfies the bounds

• For all t ∈ T and U ∈ U, we know EU [J(t, U)] > −∞; (i.e. there are no infinitely desirable controls);

• There exists at least one control Ū ∈ U such that EU [|J(t, Ū)|] < ∞ for all U ∈ U and t ∈ T;
(i.e. there is at least one control which is always acceptable).

It is convenient to allow, at least in principle, that the cost can be infinite – this encodes the idea that
there can be situations and controls which must be avoided, and so are assigned infinite costs.

16 CHAPTER 1. DISCRETE-TIME CONTROL AND MARKOV DECISION PROCESSES

1.2.2 The martingale principle and dynamic programming

We are now ready to prove the dynamic programming principle for our problem. As we want to, at least
in principle, allow any admissible control, this is a bit tricky, as we can’t assume any Markov properties
for our processes.

Definition 1.2.10. We define the value process

Vt = ess inf
U∈U

J(t, U)

where the (Ft-measurable) essential infimum is taken over all admissible controls.

Lemma 1.2.11. For each t ∈ T, the set of random variables {J(t, U)}U∈U is up/downward directed,
that is, for any admissible U, U ′ ∈ U there exists U ′′ ∈ U such that J(t, U ′′) ≤ min{J(t, U), J(t, U ′)}. In
particular, this implies that, for any t′ < t, and any U ∈ U,

ess inf
U ′

EU [J(t′, U ′)|Ft] = EU
[

ess inf
U ′

J(t′, U ′)|Ft

]
= EU

[
Vt′ |Ft

]
.

Observe that these two essential infima are quite different – the first optimizes the expected value, and
is Ft-measurable, while the second optimizes J(t′, U ′), and is Ft′ -measurable.

Proof. The upward/downward directed property follows by pasting, with the set A = {J(t, U) > J(t, U ′)}.
We know immediately that, for any U, U ′,

EU [J(t, U ′)] ≥ EU
[
Vt

]
Therefore

ess inf
U ′

EU [J(t, U ′)] ≥ EU
[
Vt

]
.

Conversely, from Theorem A.1.20, we know that there is a sequence Un such that J(t, Un) → Vt almost
surely. Without loss of generality, we can assume J(t, Un) ≤ J(t, Ū), where Ū is the reference control in
Assumption 1.2.9, for which we know EU [|J(t, Ū)|] ≤ ∞. Therefore, J(t, Ū) − J(t, Un) is an increasing
nonnegative sequence, and monotone convergence shows that

EU [J(t, Ū)] − lim
n→∞

EU [J(t, Un)] = lim
n→∞

EU [J(t, Ū) − J(t, Un)] = EU [J(t, Ū) − lim
n→∞

J(t, Un)]

= EU [J(t, Ū)] − EU [lim
n→∞

J(t, Un)].

It follows that

ess inf
U ′

EU [J(t, U ′)|Fs] ≤ lim
n→∞

EU [J(t, Un)|Fs] = EU
[

lim
n→∞

J(t, Un)
∣∣Fs

]
= EU [ess inf

U ′
J(t, U ′)|Fs].

Theorem 1.2.12 (Bellman equation / Martingale optimality principle). The value process V satisfies
the Bellman equation

Vt = ess inf
U

EU
[(t′−1∑

s=t

g(s, Us)
)

+ Vt′

∣∣∣Ft

]
.

1.2. DISCRETE STOCHASTIC CONTROL 17

Furthermore, for any admissible control U with integrable costs, the process

MU
t =

(t−1∑
s=0

g(s, Us)
)

+ Vt

is a submartingale (MU
t ≤ EU [MU

t+1|Ft] for all t), and is a martingale (MU
t = EU [MU

t+1|Ft] for all t) if
and only if U is optimal, that is, it minimizes J(U).

Proof. For a given policy U , using the tower property of conditional expectation, for t ≤ t′,

J(t, U) = EU
[(T −1∑

s=t

g(s, Us)
)

+ Φ
∣∣∣Ft

]

= EU
[(t′−1∑

s=t

g(s, Us)
)

+ EU
[(T −1∑

s=t′

g(s, Us)
)

+ Φ
∣∣∣Ft′

]∣∣∣Ft

]

= EU
[(t′−1∑

s=t

g(s, Us)
)

+ J(t′, U)
∣∣∣Ft

]
.

We now separate the behaviour of U before and after t′ , by considering the pasted strategy

Ũs = 1{s<t′}Us + 1{s≥t′}U ′
s,

for U ′ an arbitrary admissible control. Then we see that, by pasting and Lemma 1.2.11,

Vt = ess inf
Ũ

J(t, Ũ) = ess inf
U,U ′

J
(

t, 1{t′<t}Us + 1{t′≥t}U ′
s

)
= ess inf

U,U ′
EU

[(t′−1∑
s=t

g(s, Us)
)

+ J(t′, U ′)
∣∣∣Ft

]

= ess inf
U

EU
[(t′−1∑

s=t

g(s, Us)
)

+ ess inf
U ′

J(t′, U ′)
∣∣∣Ft

]

= ess inf
U

EU
[(t′−1∑

s=t

g(s, Us)
)

+ Vt′

∣∣∣Ft

]
.

This establishes the first statement.

It follows that, for any admissible U ,

Vt ≤ EU
[(t′−1∑

s=t

g(s, Us)
)

+ Vt′

∣∣∣Ft

]
.

To conclude, we add the costs before time t, to get

MU
t =

(t−1∑
s=0

g(s, Us)
)

+ Vt ≤ EU
[(t′−1∑

s=0
g(s, Us)

)
+ Vt′

∣∣∣Ft

]
= EU

[
MU

t′

∣∣∣Ft

]
,

which proves the submartingale property.

18 CHAPTER 1. DISCRETE-TIME CONTROL AND MARKOV DECISION PROCESSES

Finally, suppose U∗ is optimal. Then we know, for any stopping time τ ≤ T

V0 = MU∗

0 ≤ EU∗[
MU∗

τ

∣∣F0
]

≤ EU∗[
MU∗

T

∣∣F0
]

= EU∗
[(T −1∑

s=0
g(s, U∗

s)
)

+ Φ
∣∣∣F0

]
= J(0, U∗) = V0.

Hence all these terms are equal, and by Lemma A.1.19 we know that MU∗ is a martingale. The converse
statement follows from direct calculation.

Using the martingale optimality principle, we can give a version of Bellman’s dynamic programming
principle. These two statements encapsulate the key ideas of dynamic programming – if we have a policy
which is optimal at time t, then it will continue to be optimal after that time, and we don’t mind, at time
t, which optimal policy we choose at time t′. Because of this, we can simply say a control U is optimal,
without specifying the time at which we are evaluating it!

Theorem 1.2.13 (Dynamic Programming Principle). We say an admissible control U is optimal at time
t if J(t, U) ≤ J(t, U ′) a.s. for all admissible controls U ′, or equivalently, J(t, U) = ess infU ′ J(t, U ′) = Vt.
Then it holds that, for all t′ ≥ t,

• if U is optimal at t, then U is optimal at t′;

• if U (t) is optimal at t, and U (t′) is optimal at t′, then the pasted strategy

Ũs = 1{s<t′}U (t)
s + 1{s≥t′}U (t′)

s

is optimal at t.

Proof. We know MU is a submartingale. For stopping times τ ≥ t, this implies

(t−1∑
s=0

g(s, Us)
)

+ Vt = MU
t ≤ EU

[
MU

τ

∣∣Ft

]
≤ EU

[
MU

T

∣∣Ft

]
= EU

[(T −1∑
s=0

g(s, Us)
)

+ Φ
∣∣∣Ft

]
=

(t−1∑
s=0

g(s, Us)
)

+ J(t, U),

and we see that U is optimal at t if and only if this is an equality, or equivalently, the process M ′
s :=

1{s≥t}(MU
s − MU

t) is a martingale. However, this implies that MU
t′ = EU [MU

T |Ft′], which shows that U

is optimal at t′. The first statement follows.

To prove the second, we see that the strategy Ũ generates the process

M Ũ
s =

MU(t)

s if s < t

MU(t′)

s − MU(t′)

t + MU(t)

t if s ≥ t

and calculating expectations shows that this is a martingale if MU and MU ′ are martingales.

1.3. FINITE STATE MARKOV DECISION PROBLEMS 19

1.3 Finite state Markov Decision Problems

The previous section gave a general approach, but this is not so convenient for computation. We now
focus on a special case, where we are interested in controlling a Markov process (so we don’t have any
dependence on the past, except through our current state X). This will allow us to restrict our attention
to feedback controls, and lead to nicer numerical approaches.

In our motivating example, we might say that the state of the system is the current number of subscribers,
in particular, the number who joined yesterday has no impact on how many will join tomorrow (so there
is no momentum). This is explicitly a modelling choice which we are making.

1.3.1 Controlled Markov chains

Formally, we describe our problem through the use of the transition law (aka kernel, density, generator),

p(x′; t, x, u) = P
(

Xt+1 = x′
∣∣∣Xt = x, Ut = u

)
.

so p : X × T × X × U → [0, 1], with X being the (discrete) state space in which X takes values, and
T = {0, 1, ..., T}. In order for X to have Markov-like properties, we need this to describe the probabilities
conditional on Ft, that is,

PU
[
Xt+1 = x′∣∣Ft

]
= p(x′; t, Xt, Ut)

(this is weaker than assuming our filtration only contains information about X, but is enough for us).
We will focus here on discrete cases, but we can see that there is an extension to the case where X takes
continuous values, in which case we modify p to describe a measure on the (infinite) state space X , so

p(A; x, u, t) = P
(

Xt+1 ∈ A
∣∣∣Xt = x, Ut = u

)
for A ⊆ X a measurable set. Analysing this case would then require more integrability assumptions than
we will need when X is finite.

1.3.2 Finite horizon MDPs

In the previous section, we considered the general control of a random system. We will now specialize
this discussion to understand the optimal control of a Markov chain. We assume that our agent wants
to minimize a quantity

J(U) = EU
[T −1∑

s=0
g(s, Xs, Us) + Φ(XT)

]
where we limit our costs to only depend on the current state Xs of the controlled system (whereas
previously it could depend on the whole random seed ω). The Bellman equation states that our value
process satisfies

Vt = EU∗[
g(t, Xt, U∗

t) + Vt+1
∣∣Ft

]
,

with terminal value VT = Φ(XT), where U∗ is an optimal control.

There are a range of problems of this type – see [9] for a classic selection. Two examples cited there are:

20 CHAPTER 1. DISCRETE-TIME CONTROL AND MARKOV DECISION PROCESSES

Example 1.3.1. Consider a hydroelectric power plant which needs to decide whether to release water
from a dam and generate power. The excess power can be sold (leading to a negative cost), and the dam
refils randomly each day, up to a maximum level. By discretizing the level in the dam, which we write
X, we obtain an MDP.

Example 1.3.2. How much pest control should be used to manage weevils in an alfalfa crop? The state
is the current condition of the crop and weevil levels, and the cost is made up of the level of production
and the cost of pest control.

A classic financial example is:

Example 1.3.3. An insurance contract is written whose payoff depends on the weather in 6 months time.
An investor needs to hedge their position by investing in weather sensitive assets (for example, in heating
oil futures), in order to manage their risk. The state is the combination of weather forecasts (which are
uncontrolled) and the investor’s wealth, and the control is how much to invest in the oil market.

These examples show that there is a wide range of possible applications of this theory. Some examples
will be considered in more detail on problem sheets.

A natural property, which we will now try and prove, is that the control doesn’t depend on the past –
clearly the dynamics don’t incorporate the past, so the only relevant source of randomness is the current
state of the controlled system.

Assumption 1.3.4. The space of controls U is compact, and the function g and the transition density p

depend continuously on the choice of control u.

This assumption will be enough to guarantee that an optimal control exists, which simplifies our argu-
ments. Without this assumption we can still do quite a lot, but the analysis is more fiddly (as we will
see in continuous time).

Theorem 1.3.5. Under Assumption 1.3.4,

• there is a function v : T × X → R, known as the value function, such that the value process can be
written Vt = v(t, Xt);

• the value function satisfies the Bellman recursion

v(t, x) = min
u∈U

{
g(t, x, u) +

∑
x′∈X

p(x′; t, x, u)v(t + 1, x′)
}

with v(T, x) = Φ(x);

• there exists at least one optimal control which is of feedback type, that is, U∗
t = u∗(t, Xt) for some

function u∗ : T × X → U , which achieves the minimum in the Bellman recursion, for every t, x.

Proof. We proceed by backward induction. At the terminal time, the value is clearly given by VT =
Φ(XT) = v(T, XT), and we don’t need to define the control here.

1.4. INFINITE-HORIZON DISCOUNTED MDPS 21

Now assume that Vt+1 = v(t + 1, Xt+1). We know that

Vt = ess inf
U

{
EU

[
g(t, Xt, Ut) + Vt+1

∣∣∣Ft

]}
= ess inf

U

{
g(t, Xt, Ut) + EU

[
v(t + 1, Xt+1)

∣∣∣Ft

]}
= ess inf

Ut∈U

{
g(t, Xt, Ut) +

∑
x′∈X

p(x′; t, Xt, Ut)v(t + 1, x′)
}

For every possible value of Xt ∈ X , the term inside the infimum is a continuous function of Ut, which
takes values in a compact set. Therefore the infimum will be realized at some value2, which we denote
u∗(t, Xt). Substituting this value gives

Vt = g(t, Xt, u∗(t, Xt)) +
∑

x′∈X
p(x′; t, Xt, u∗(t, Xt))v(t + 1, x′)

Now observe the right hand side is just a function of Xt, which we denote v(t, Xt).

By induction, we hence construct v(t, x) and u∗(t, x) for all t, x, as required.

In many approaches to control, we would have begun by only considering feedback controls, which
simplifies the argument a little. Here we’ve done the hard work, and so have proven that there are
optimal feedback controls within the class of all admissible controls. That is, when solving an MDP,
there’s no possible advantage to remembering past values of the state when determining your control.
Remark 1.3.6. One thing which is clear from this construction is that the value function and cost-to-go
are not really intrinsic to the control problem – we can easily find alternative value functions, with slightly
different properties, which work just as well. A common example is to define the discounted value, for
some ρ > 0,

vρ(t, Xt) = min
U

EU
[T −1∑

s=t

e−ρ(s−t)g(s, Xs, Us) + e−ρ(T −t)Φ(XT)
∣∣∣Ft

]
which is related to our earlier value by vρ = eρtv, when

v(t, Xt) = min
U

EU
[T −1∑

s=t

e−ρsg(s, Xs, Us) + e−ρT Φ(XT)
∣∣∣Ft

]
(which is within the class we have considered, by perturbing g and Φ). The Bellman equation is then
modified to

vρ(t, x) = min
u∈U

{
g(t, x, u) + e−ρ

∑
x′∈X

p(x′; t, x, u)vρ(t + 1, x′)
}

.

We will return to this in the coming section.

1.4 Infinite-horizon Discounted MDPs

A further extension of our approach is to consider problems on an infinite horizon, but with a discounting
term. Hence, we now have T = {0, 1, ...}. Rather than repeat our general setup, we will give a version of
these results for MDPs, based on our finite-time results.

2As X is discrete, we don’t need to worry about measurability here, but otherwise there are various ‘measurable selection
theorems’ which can help, as long as we also assume continuity of f and Φ in x, for every t, u. See Bertsekas and Shreve,
Chapter 7, for details. We will come back to this point when we reach continuous stochastic control.

22 CHAPTER 1. DISCRETE-TIME CONTROL AND MARKOV DECISION PROCESSES

We consider an agent who seeks to minimize (at each time t),

J(t, U) = EU
[∞∑

s=t

e−ρ(s−t)g(Xs, Us)
∣∣∣Ft

]
where ρ > 0 is a fixed constant. Note that we’ve removed direct dependence on time in g. Under
Assumption 1.3.4, we now notice that maxx∈X ,u∈U |g(x, u)| ≤ ḡ for some ḡ < ∞. Our control has impact
through a transition law p(x′; x, u) which does not depend on time t. It’s easy to check that the dynamic
programming principle still holds for this problem.

Theorem 1.4.1. There exists a function v : X → R, such that

v(Xt) = min
U

J(t, U)

for all t ∈ T. This v (again called the value function) is a fixed point of the Bellman recursion

v(x) = min
u∈U

{
g(x, u) + e−ρ

∑
x′∈X

p(x′; x, u)v(x′)
}

and there is an optimal strategy of the form Ut = u∗(Xt), where u∗(x) achieves the minimum in this
Bellman recursion.

Proof. We will consider this problem by approximating with a finite horizon problem (this will also be
relevant for understanding numerical methods). We observe that, for any T ∈ T,∣∣∣ ∞∑

t=T

e−ρtg(Xt, Ut)
∣∣∣ ≤

∞∑
t=T

e−ρtḡ = e−ρT

1 − e−ρ
ḡ

Therefore, for any T > t,

EU
[T −1∑

s=t

e−ρ(s−t)g(Xs, Us) − e−ρ(T −t)

1 − e−ρ
ḡ
∣∣∣Ft

]
=: J−

T (t, U)

≤ J(t, U)

≤ J+
T (t, U) := EU

[T −1∑
s=t

e−ρ(s−t)g(Xs, Us) + e−ρ(T −t)

1 − e−ρ
ḡ
∣∣∣Ft

]
.

However, both J+
T (t, U) and J−

T (t, U) are then the costs for finite horizon problems up to time T (with
discount rate ρ). By our earlier results, we see that there are value functions v+

T (t, x) and v−
T (t, x),

satisfying Bellman recursions for t < T , such that

v−
T (t, Xt) ≤ ess inf

U
J(t, U) ≤ v+

T (t, Xt).

Clearly, for any U ,

0 ≤ J+
T (t, U) − J−

T (t, U) ≤ 2e−ρ(T −t)

1 − e−ρ
ḡ,

so if U− is the optimizer of J−
T , we know

0 ≤ v+
T (t, Xt) − v−

T (t, Xt) ≤ J+
T (t, U−) − v−

T (t, Xt) ≤ 2e−ρ(T −t)

1 − e−ρ
ḡ → 0 as T → ∞.

1.4. INFINITE-HORIZON DISCOUNTED MDPS 23

Therefore, by the sandwich theorem we conclude that ess infU J(t, U) = limT →∞ v+
T (t, Xt). It follows

that (as the right hand side of this limit is just a function), we know ess infU J(t, U) = ṽ(t, Xt) for some
function ṽ, and as v±

T both satisfy Bellman recursions, so does ṽ:

ṽ(t, x) = min
u∈U

{
g(x, u) + e−ρ

∑
x′∈X

p(x′; x, u)ṽ(t + 1, x′)
}

,

and there is an optimal feedback policy ũ∗(t, x) which achieves the minimum on the right hand side.

The next step is to show that we can eliminate time dependence. We write the expected value in terms
of the transition law, this is most easily done by recursively defining the multistep transition probability,
for a general feedback policy u, by pt,t+1(x′; x, u) = p(x′; x, u(t, x)) and

pt,s+1(x′; x, u) =
∑

x′′∈X
p(x′; x′′, u(s, x′′))pt,s(x′′; x, u).

This gives us a deterministic way to represent P
(
Xs = x′

∣∣Xt = x, {Un = u(n, Xn)}n∈T
)

= pt,s(x′, x, u).
Using this, and knowing that there is an optimal (time-dependent) feedback policy, we can express our
value function as a minimum

ṽ(t, x) = min
u:T×X →U

∞∑
s=t

∑
x′∈X

pt,s(x′; x, u)e−ρ(s−t)g(x′, u(s, x′))

= min
u:T×X →U

∞∑
s=0

∑
x′∈X

p0,s(x′; x, u(· + t, ·))e−ρsg(x′, u(s + t, x′)).

Now see that this is the same optimization problem for every value of t, so we can take a single solution
u, and know ut := u(· − t, ·) is optimal at t for all t. However, the resulting action Ut = ut(t, x) = u(0, x)
is then just the pasting together of ut at each time, so is optimal by dynamic programming. That is,
there exists a u∗ : X → U such that

ṽ(t, x) =
∞∑

s=t

∑
x′∈X

pt,s(x′; x, u∗)e−ρ(s−t)g(x′, u∗(x′))

=
∞∑

s=0

∑
x′∈X

p0,s(x′; x, u∗)e−ρsg(x′, u∗(x′)) =: v(x).

Substituting v into the Bellman recursion for ṽ finishes the proof.

Remark 1.4.2. If we do the work of constructing the infinite-horizon discounted problem for infinite-space
processes then not much changes (apart from technicalities involving transition laws becoming measures),
provided we assume that f is bounded. If this is not the case, some integrability constraints are needed,
in order to take the limit correctly from the finite horizon problem to the infinite horizon problem.

In our motivating example, the infinite horizon case corresponds to the setting where the subscription
campaign has no fixed end date. This may be particularly useful as a model if the campaign will last
a long time, as it gives us a simplified value function and strategy (no time dependence), which makes
understanding and implementation easier. By our construction, we can see that the infinite and finite-
horizon problems become similar as T → ∞.

This analysis gives us a fairly comprehensive description of these problems, but we still need to find ways
of solving the relevant equations numerically, in order for this to be practically useful. This is the theme
of our next topic.

24 CHAPTER 1. DISCRETE-TIME CONTROL AND MARKOV DECISION PROCESSES

Chapter 2

Numerical methods and
Reinforcement Learning

In the previous part of the course we have shown how optimal control theory works in a discrete-time
context. In particular, we have shown that the optimal control can be found, together with the value
function (which represents the optimal cost-to-go), by solving a recursive equation.

In practice, this remains computationally difficult, particularly when the state space X is large (and
especially if it is high-dimensional). This has lead to the study of various numerical approximations to
the control problem, which we will now consider.

Many numerical approaches focus on the infinite-horizon discounted setting, which we will focus on in
this chapter. This has the advantage of avoiding time dependence in our solution, while still displaying
a wide range of technical challenges.

2.1 Value iteration

Value iteration is the most fundamental approximation for control problems, and focusses on approxi-
mating v(x) directly. As x ∈ X and |X | < ∞, we can identify functions w : X → R with vectors in
R|X | ≡ RX , with components wi := w(xi). We will use this identification liberally, to make notation
simpler.

Assumption 2.1.1 (Assumptions for Value iteration). We know the transition law p(x′; x, u), and costs
g(x, u) perfectly.

We recall that v is our value function, defined1 by

v(x) = min
u

J(x, u) = min
u

Eu
[∞∑

t=0
e−ρtg(Xt, u(Xt))

∣∣∣X0 = x
]
.

1Here, as we focus on time homogenous feedback controls (so our world is Markovian and independent of time), we can
take J as being a function of the initial state x, rather than a random variable and dependent on t.

25

26 CHAPTER 2. NUMERICAL METHODS AND REINFORCEMENT LEARNING

Definition 2.1.2. We define the Bellman valuation operator Tu by

(
Tuv̂

)
(x) = g(x, u) + e−ρ

∑
x′∈X

p(x′; x, u)v̂(x′).

We also define the Bellman optimality operator T : RX → RX by

(
T v̂

)
(x) = min

u∈U

{
g(x, u) + e−ρ

∑
x′∈X

p(x′; x, u)v̂(x′)
}

= min
u

(
Tuv̂

)
(x)

With this notation, the value associated with a specific control u is a fixed point of Tu

J(x, u) =
(
TuJ(·, u)

)
(x).

The key idea of value iteration is to observe that v satisfies the Bellman equation

v(x) = min
u∈U

{
g(x, u) + e−ρ

∑
x′∈X

p(x′; x, u)v(x′)
}

= (T v)(x)

and so v is a fixed point of T .

Definition 2.1.3. The value iteration sequence is defined by an initial value v0 ∈ RX , and the iteration
vn = T vn−1.

Value iteration is fairly straightforward to implement. We start with some guess for the value function,
then iteratively refine it by computing the Bellman operator, which corresponds to finding the best
strategy given the value function at the next time step. If this converges to a unique fixed point, then
that fixed point must be the value function.

Remark 2.1.4. We can see the Bellman operator also applies to finite-horizon problems (assuming no t

dependence in g and p, or modifying appropriately), where we have vt = T vt+1. Our proof that the
finite-horizon problem converges to the infinite horizon problem then corresponds to saying T nv± → v,
where v± was the trivial upper or lower bounds on the value function. This can be done more generally,
as is shown by the following result.

Theorem 2.1.5. With discount rate ρ > 0, the Bellman operators T , Tu are strict contractions (with
rate e−ρ) under the ∥ · ∥∞ norm on RX . Consequently, the Banach fixed point theorem shows that the
value iteration sequence converges (exponentially quickly) to the value function v, that is,

∥vn − v∥∞ ≤ e−ρn∥v0 − v∥∞.

Proof. We consider T first. Consider w, w′ ∈ RX . By continuity and compactness, we know that there
is u∗ such that

(T w′)(x) = g(x, u∗) + e−ρ
∑

x′∈X
p(x′; x, u∗)w′(x′) = (Tu∗w′)(x).

2.1. VALUE ITERATION 27

Therefore, with this u∗,

(T w)(x) − (T w′)(x)

= min
u∈U

{(
Tuw

)
(x)} −

(
Tu∗w′)(x)

≤
(
Tu∗w

)
(x) −

(
Tu∗w′)(x)

≤
{

g(x, u∗) + e−ρ
∑

x′∈X
p(x′; x, u∗)w(x′)

}
−

{
g(x, u∗) + e−ρ

∑
x′∈X

p(x′; x, u∗)w′(x′)
}

= e−ρ
∑

x′∈X
p(x′; x, u∗)

(
w(x′) − w′(x′)

)
≤ e−ρ

∑
x′∈X

p(x′; x, u∗)∥w − w′∥∞

= e−ρ∥w − w′∥∞.

Interchanging w and w′ we see that

∥T w − T w′∥∞ ≤ e−ρ∥w − w′∥∞

so T is an L∞ contraction, with rate e−ρ < 1. The argument for Tu is analogous (and simpler). The
convergence result follows from Banach’s fixed point theorem.

There is another approach to showing convergence, which looks at monotonicity properties of the value
iteration. While this is not so critical here (as we’ve shown we have a contraction), it is also interesting
to see that the Bellman operator always improves the value, in a particular sense.

Theorem 2.1.6. The Bellman operators are pointwise monotone, in the sense that if w ≤ w′, then
T w ≤ T w′ (both inequalities being pointwise). In particular, if v0 is such that T v0 ≤ v0 (for example, if
v0(x) = 1

1−e−ρ maxx,u g(x, u)), then value iteration decreases monotonically to v.

Proof. Using exactly the same logic and notation as in the previous proof, we have

(T w)(x) − (T w′)(x) ≤ e−ρ
∑

x′∈X
p(x′; x, u∗)

(
w(x′) − w′(x′)

)
≤ 0

(and similarly for Tu). This establishes the monotonicity of T . The monotone convergence then follows
by induction, as v1 = T v0 ≤ v0 implies v2 = T v1 ≤ T v0 = v1.

Using this monotonicity, we can prove an elegant result on the controls which arise from value iteration.
The key result is the following policy error bound:

Theorem 2.1.7. For any v′ ∈ RX , let

ũ(x) ∈ arg min
u

{
(Tuv′)(x)

}
.

Suppose v ∈ RX is the optimal value. Then ũ has value

J(x, ũ) ≤ v(x) + 2e−ρ

1 − e−ρ
∥v − v′∥∞

28 CHAPTER 2. NUMERICAL METHODS AND REINFORCEMENT LEARNING

Proof. Write ε = ∥v − v′∥∞, and ṽ(x) = J(x, ũ) for the true value associated with the control ũ, so we
know ṽ = Tũṽ. As v is optimal, we know v ≤ ṽ.

By definition, it’s easy to check that T (w + a) = (T w) + e−ρa for all w ∈ RX and a ∈ R, and similarly
for Tu. As T is monotone, we know v = T v ≥ T (v′ − ε) = (T v′) − e−ρε.

Therefore,

0 ≤ ṽ − v = Tũṽ − T v ≤ Tũṽ − T v′ + e−ρε.

From the definition of ũ, we know T v′ = Tũv′, and expanding the definition gives

Tũṽ−Tũv′ = e−ρ
∑
x′

p(x′; x, ũ)
(
ṽ(x′)−v′(x′)

)
≤ e−ρ max

x′

{
ṽ(x′)−v′(x′)

}
≤ e−ρ max

x′

{
|ṽ(x′)−v(x′)|

}
+e−ρε.

Combining these inequalities,

0 ≤ ṽ − v ≤ e−ρ max
x′

{
|ṽ(x′) − v(x′)|

}
+ 2e−ρε

and hence

∥v − ṽ∥∞ ≤ e−ρ∥v − ṽ∥∞ + 2e−ρε.

The result follows by rearrangement.

Corollary 2.1.8. If vn is the sequence obtained by value iteration2, and we define

un(x) ∈ arg min
u

{
(Tuvn)(x)

}
,

then J(x, un) → v(x) (with geometric convergence), and for any subsequence of policies which converges,
the limit u∗ is an optimal policy.

Proof. From Theorem 2.1.7, we have the geometric convergence

0 ≤ J(x, un) − v(x) ≤ 2e−ρ

1 − e−ρ
∥vn − v∥∞ ≤ 2e−ρ

1 − e−ρ
e−ρn∥v0 − v∥∞ → 0.

As our policies lie in a compact set, there is a subsequence of un which is convergent. Writing

J(x, u) =
∞∑

t=0

∑
x′∈X

e−ρtp(x′; x, u)g(x, u(x)),

we use dominated convergence (in time) to show that along any convergent subsequence we have

v(x) = lim
n→∞

J(x, un) = J(x, lim
n→∞

un),

so u∗ = lim un is an optimal policy.

2The same result holds for any other scheme such that our value function approximations converge (geometrically) in
∥ · ∥∞ to the true value function.

2.2. POLICY ITERATION 29

2.2 Policy iteration

The next numerical method we will consider is related to value iteration, and works under the same
assumptions. Essentially, the problem with value iteration is that it combines the estimation of the value
of a policy and the optimization of the policy into a single step. Numerically, we often find that estimating
the value accurately requires us to work over many steps, and requiring us to compute the minimum in
every step becomes expensive. Policy iteration aims to separate these two operations, by allowing us to
accurately compute the value using multiple (easy) steps, and only infrequently computing the minimum.

Definition 2.2.1. Policy iteration consists of two alternating steps:

• Evaluation, where for a given policy un we compute its value function vn = J(·, un).

• Improvement, where for a given value function vn, we compute a new policy

un+1 ∈ arg min
u

Tuvn.

This process can be initialized by specifying either u0 or v0, and proceeding iteratively.

The key difference between policy and value iteration is in the evaluation step, where we compute the
true value associated with a given policy. Observe that this satisfies

vn(x) = g(x, un(x)) + e−ρ
∑
x′

p(x′; x, un(x))vn(x′),

which is a finite dimensional linear system. Indeed, associating v(xi) with the component v(i) of a vector
in R|X |, and similarly g(u)(i) = g(xi, u(xi)) and writing the matrix P (u)ij = p(xj ; xi, u(xi)), we have the
matrix-vector equation

vn = g(un) + e−ρP (un)vn =
(
I − e−ρP (un)

)−1g(un).

(With this notation, the fact P (un) has all eigenvalues having real part below 1 is enough to prove
this equation is well-posed (as we have previously argued), and this follows from the Perron–Frobenius
theorem as P is a stochastic matrix). As this is a linear equation, it can be solved in at most O(|X |3)
operations.

Therefore, in classical policy iteration, we assume that we can solve the evaluation step perfectly in
reasonable time, and hope that relatively few policy improvement steps will be sufficient to achieve
convergence.

Lemma 2.2.2 (Improvement lemma). The sequence of values constructed through policy iteration satisifes
vn ≥ T vn ≥ vn+1.

Proof. By construction, we know that T vn = Tun+1vn (improvement) and vn = Tunvn (evaluation). It
follows that

vn = Tun
vn ≥ T vn = Tun+1vn.

As Tun+1 is monotone, we can apply Tun+1 to both sides to see

Tun+1vn ≥
(
Tun+1

)2
vn.

30 CHAPTER 2. NUMERICAL METHODS AND REINFORCEMENT LEARNING

and by induction,
vn ≥ Tun+1vn ≥ · · · ≥

(
Tun+1

)k
vn

for all k ≥ 0. As Tun+1 is a contraction, the right hand side converges to the fixed point vn+1 = Tun+1vn+1,
giving the desired result.

Theorem 2.2.3. The value functions constructed via policy iteration converge geometrically to the true
value function (and hence the policies converge, in the sense that Corollary 2.1.8 applies).

Proof. Using our lemma, with v the true value function,

v ≤ vn ≤ T vn−1 ≤ · · · ≤ T nv0.

Therefore
0 ≤ vn − v ≤ T nv0 − v = T nv0 − T nv

and we see that, as T is a contraction with rate e−ρ,

∥vn − v∥∞ ≤ ∥T nv0 − T nv∥∞ ≤ e−ρn∥v0 − v∥∞.

Remark 2.2.4. If our set U is finite, then the fact our system is improving at every step shows that policy
iteration will terminate after finitely many steps, that is, the optimal policy will be found. This is because
there are only finitely many policies better than u0, and our choice of policy is improving at every step.
In fact, one can show that this occurs after polynomially many steps, a result which is due to Yingyu Ye
[10].

2.2.1 Approximate policy iteration

Various extensions of policy iteration are often considered. For example, we can replace the evaluation
step with an approximation, for example taking vn = (Tun)kvn−1 for some k < ∞. This effectively
interpolates between value iteration (where k = 1) and policy iteration (where k = ∞). A small variation
of our results above shows us that vn converges to v geometrically fast, just as in the two extreme cases.

Another common idea is to replace the policy improvement step with a simpler calculation, where we
simply try and find a un+1 such that

Tun+1vn ≤ vn,

with the requirement that Tun+1vn = vn iff vn = v. Looking back through our results, we can see that
this is enough to guarantee that vn ≥ vn+1, and we know that vn ≥ v, but proving vn → v is more
difficult.

2.3 Q-learning

Suppose we don’t want to compute expected values, or don’t know the probability law directly. Then value
and policy iteration is still possible, if we have access to simulations or observations from the controlled

2.3. Q-LEARNING 31

system. This is the fundamental trick that is sometimes called model free reinforcement learning, as we
will avoid explicitly modelling the transition function p and cost g (but there is still a mathematical
model behind everything we do, as we need to have state variables, repeated observations, conditional
independence, etc...).

Remark 2.3.1. So far, our analysis has assumed that the cost g is a (known) function of (xt, u). However,
it is straightforward to include random costs in our setup, which can depend on both Xt+1 and on some
auxiliary randomness ω̃t+1. In this case, we can define G(ω̃t+1, xt, Xt+1, ut) to be the (random) cost, and
then set g(xt, ut) = Eu[G(ω̃t+1, xt, Xt+1, ut)|u = ut, Xt = xt]. Using the tower law, we consider an agent
who wishes to minimize

EU
[∑

t

e−ρtG(ω̃t+1, Xt, Xt+1, Ut)
]

= EU
[∑

t

e−ρtg(Xt, Ut)
]
,

(or similarly for finite horizon problems), the first expectation being over both X and ω̃. The second
representation shows that this is formally the same problem as we have already considered. This is a
minor change to the theory, but in practice allows us to consider situations where we do not know the
distribution of the costs nor the probability transitions.

In our motivating example (Example 1.2.2), this tweak allows us to have a cost/reward depending on the
number of subscribers who join in the next period, rather than only existing subscribers, and random
advertising costs, which is a modest increase in modelling flexibility.

Q-learning attempts to build an approximation similar to value iteration, but using observations of the
random transitions and costs. The fundamental object is the Q function, which is defined as the map
Q : X × U → R which is a fixed point of the iteration

Q(x, u) = g(x, u) + e−ρ
∑
x′

p(x′; x, u) min
u′

Q(x′, u′)

= Tu{min
u′

Q(·, u′)}(x)

= Eu
[
G(x, Xt+1, u) + e−ρ min

u′
Q(Xt+1, u′)

∣∣∣Xt = x
]
.

It is fairly clear that the Q function is closely related to the value function, in particular v(·) =
minu′ Q(·, u′) (which immediately implies the Q function exists). The advantage of knowing Q instead of
v is that it also includes the expectation over the (random) costs G and the next transition, which may
be unknown, and so allows us to find good policies based only on optimizing Q.

We will attempt to learn Q based on observing trajectories of X and G. For any α ∈ R, we can write

Q(x, u) = Q(x, u) + αEu
[
G(x, Xt+1, u) + e−ρ min

u′
Q(Xt+1, u′) − Q(x, u)

∣∣∣Xt = x
]
.

Now suppose we have access to some collection of the variables {Xn, Xn+, Un, Gn}n∈N, where

• Xn ∈ X and Un ∈ U (sampled with an arbitrary distribution),

• Xn+ ∼ p(·; Xn, Un) and Gn ∼ G(Xn, Xn+, Un) (with an abuse of notation) and

• (Xn+, Gn) is independent of {(Xm, Xm+, Um, Gm)}m<n given (Xn, Un).

32 CHAPTER 2. NUMERICAL METHODS AND REINFORCEMENT LEARNING

For notational convenience, we define the filtration Fn = σ(Xn, Un, {(Xm, Xm+, Um, Gm)}m<n).

We note that these variables could be from simulating or observing the controlled system, with some
control rule Un chosen randomly (dependent on Xn) and Xn+ = Xn+1, or from another means. In
particular, we could use different control rules Un for each n.

Definition 2.3.2. With αn ∈ [0, 1) an {Fn}n≥0-adapted learning rate process, the Q-learning iteration
is defined by

Qn+1(x, u) =

Qn(x, u) + αn

[
Gn + e−ρ minu′ Qn(Xn+, u′) − Qn(x, u)

]
if Xn = x, Un = u,

Qn(x, u) otherwise.

We then have the following convergence result.

Theorem 2.3.3. Consider a control problem with finitely many actions. Let Q0 : X ×U → R be arbitrary,
and Qn be the random sequence of functions defined by the Q-learning iteration. If

E
[
G(x, X+, u)2∣∣X+ ∼ p(·; x, u)

]
< ∞ for all (x, u)

and αn satisfies the Robbins–Monro-type condition∑
n∈N

αn1{(Xn,Un)=(x,u)} = ∞,
∑
n∈N

α2
n1{(Xn,Un)=(x,u)} < ∞

for all x, u, then Qn(x, u) → Q(x, u) almost surely as n → ∞.

In order to prove this, we will make use of the following stochastic approximation result, the (rather
fiddly) proof of which is in Appendix A.1.2

Lemma 2.3.4. Consider an adapted random process {Yn}n∈N with values in Rm, with dynamics (for
each i an index in {1, ..., m})

Yn+1(i) =
(
1 − αn(i)

)
Yn(i) + αn(i)Zn+1(i)

where, for all i,

• αn(i) ∈ [0, 1],
∑

n∈N αn(i) = ∞,
∑

n∈N α2
n(i) < ∞,

• |E[Zn+1(i)|Fn]| ≤ γ∥Yn∥∞, with γ < 1,

• V[Zn+1(i)|Fn] ≤ c(1 + ∥Yn∥2
∞) for c > 0.

Then ∥Yn∥∞ → 0 a.s. as n → ∞.

Proof of Theorem 2.3.3. Take Qn to be the sequence generated by Q-learning, and Q to be the true
Q-function. Define

Yn(x, u) = Qn(x, u) − Q(x, u),

αn(x, u) = αn1{(Xn,Un)=(x,u)},

Zn+1(x, u) =
[
Gn + e−ρ min

u′
Qn(Xn+, u′) − Q(Xn, u)

]
1{(Xn,Un)=(x,u)}.

2.3. Q-LEARNING 33

With this notation, simple rearrangement shows that Yn(x, u) satisfies the dynamics

Yn+1(x, u) =
(
1 − αn(x, u)

)
Yn(x, u) + αn(x, u)Zn+1(x, u).

From the definition of Q, we know that

0 = Eu
[
Gn + e−ρ min

u′
Q(Xn+, u′) − Q(x, u)

∣∣∣Fn

]
1{(Xn,Un)=(x,u)},

and thus

E[Zn+1(x, u)|Fn] = E
[
Gn + e−ρ min

u′
Qn(Xn+, u′) − Q(Xn, u)

∣∣∣Fn

]
1{(Xn,Un)=(x,u)}

= e−ρE
[

min
u′

Qn(Xn+, u′) − min
u′

Q(Xn+, u′)
∣∣∣Fn

]
1{(Xn,Un)=(x,u)}.

Taking an absolute value, we have the bound∣∣E[Zn+1(x, u)|Fn]
∣∣ ≤ e−ρ max

(x,u)

∣∣Qn(x, u′) − Q(x, u′)
∣∣ = e−ρ∥Yn∥∞.

We also know (using (a + b)2 ≤ 2a2 + 2b2) that

(Zn+1(x, u))2 ≤ 2
(

Gn − Q(x, u) + e−ρQ(Xn+, u∗)
)2

+ 2e−ρ
(

Qn(Xn+, u∗) − Q(Xn+, u∗)
)2

,

where u∗ ∈ arg minu Qn(Xn+, u), and so

E[(Zn+1(x, u))2|Fn] ≤ c(1 + ∥Yn∥2
∞)

for some c > 0. Combining with our previous bound, we get the desired growth bound on the variance.
As e−ρ < 1, applying Lemma 2.3.4 we conclude that ∥Yn∥∞ → 0 a.s., as desired.

There are many variations of Q-learning, mainly depending on how the policies un are chosen, and
whether Xn+1 = Xn+. If Xn+1 = Xn+, then we can see this as an online method, where we use our
controlled system in order to learn the control.

When choosing un, we naturally want to focus our attention on policies which are likely to be optimal,
but the Robbins–Monro condition shows that we need to try all state-policy pairs infinitely often (as well
as tuning the learning rate accordingly). This trade-off is related to exploration-vs-exploitation (but this
usually refers to trying to optimize the values we realize while running an online control method). In
general the Q-learning algorithm is off-policy, in that the policy we use to learn Q does not need to be
an approximation of the optimal policy.

We can also tweak the algorithm to prevent us having to perfectly compute the minimum in the Q-
learning iteration (which is important for large action spaces), provided we are eventually sufficiently
accurate.
Remark 2.3.5. What’s described above is classical Q-learning. In recent years, there have been major
advances in this space, mainly through using deep neural networks (or similar tools) as function ap-
proximators for the Q function. The basic Q learning iteration can then be rewritten as an iterative
regression/function approximation problem, and hence an approximate method can be implemented.

Adding this approximation error makes the analysis significantly more complicated (but it’s not too bad
in this setting of finitely many states and actions), and is an active area of research. In infinite states,
one of the key problems boils down to the choice of metric – we have used the ∥ · ∥∞ metric extensively
above, but it is not so easy to prove approximation results in L∞ on infinite spaces, where our usual
approximation theory is in L2. This distinction causes many headaches.

34 CHAPTER 2. NUMERICAL METHODS AND REINFORCEMENT LEARNING

2.3.1 SARSA

A mild variation of the previous arguments can also be used to study the cost associated with a specific
randomized control rule π : X → P(U) (when U is finite, more on this later). This is commonly known
as SARSA (as the iteration depends on St, At, Rt, St+, At+, with the notation S for the state, A for the
action, and R for the reward). In our notation, the (optimized) Q-learning iteration is replaced by the
sequence

Qπ
n+1(x, u) = Qπ

n(x, u) + αn

[
Gn + e−ρQπ

n(Xn+, Un+) − Qπ
n(x, u)

]
1{Xn=x,Un=u}

where Xn, Un are sampled arbitrarily, Xn+ ∼ p(·; Xn, Un) and Un+ ∼ π(Xn+).

It is then straightforward to use the same logic as we used for Q-learning to show (provided all state-action
pairs are visited infinitely often, and the learning rate α satisfies the Robbins–Monro-type condition) that
Qπ

n converges to the function

Qπ(x, u) = E
[∑

t

e−ρtG(ω̃t+1, Xt, Xt+1, Ut)
∣∣∣X0 = x, U0 = u, Ut ∼ π(Xt), Xt+1 ∼ p(·; Xt, Ut)

]
.

From this, we see that the cost function J(x, π) = E[Qπ(x, u)|u ∼ π]. This can be used as the basis
for policy iteration methods, in particular by observing that a policy improvement step is given by
ũ(x) := arg minu Qπ(x, u), which does not involve computing any additional expected values.

2.4 Aside: Entropy-regularized control

One common technique to improve the convergence of these methods, is to try and regularize the se-
lection of the control. To do this, the usual technique is to think of having a finite number of controls
{u1, u2, ..., um} = U0, but then working with randomized policies: we think of the agent as having access
to an external source of randomness, which allows them to choose a control following a probability dis-
tribution on U0, independently at every point in time. Formally, this corresponds to U = P(U0), and we
extend our costs and transition law accordingly: for π ∈ U = P(U0), we know π = [π1, π2, ..., πm] (where
the probability our agent chooses ui is πi), and define

g0(x, π) :=
m∑

i=1
πig(x, ui) = E[G(ω̃, x, Xt+1, u)|Xt = x, Ut ∼ π]

and

p(x′; x, π) :=
m∑

i=1
πip(x′; x, ui).

If we simply solved the control problem with this g0, we would achieve the same value as for the intial
problem (as any control can be represented as a trivial distribution).

There are a couple of ways to make the probabilities nontrivial – the simplest is to use an ε-greedy
method, which sets π(u|x) = ε

|U|−1 + (1 − ε)1u=u∗(x), where u∗ is an optimal action, for some ε > 0. This
is easy to implement, and we can easily choose ε to give desired properties (such as the Robbins–Monro
condition and near-optimality of the strategy), but does not have good smoothness properties.

2.4. ASIDE: ENTROPY-REGULARIZED CONTROL 35

A common (and more interesting) alternative is to define a new cost which encourages randomization:

gλ(x, π) := g0(x, π) − λH(π)

where H(π) = −
∑

i πi log(πi) is the Shannon entropy of the random control. For λ > 0, this encourages
our control to randomize, and has the effect of smoothing out our problem.

We will use the following lemma.

Lemma 2.4.1. Take any c ∈ Rm and consider minimizing
{

⟨c, π⟩−λH(π)
}

for λ > 0, among probability
vectors π. Then the (unique) minimum is achieved by the Gibbs measure πi ∝ e−ci/λ, and is given by
the log-sum-exp function

min
π

{
⟨c, π⟩ − λH(π)

}
= −λ log

[∑
j

exp
(−cj

λ

)]
≥ min

i
ci − λ log(m).

Proof. As log has infinite slope near zero, and is convex, any local optimum will occur at an interior
point. Observing that ⟨π, 1⟩ =

∑
i πi = 1 (for 1 a vector of 1s), we have the Lagrangian

⟨c, π⟩ + λ
∑

i

πi log(πi) + η(⟨π, 1⟩ − 1).

Differentiating with respect to πi, we have the first order condition

0 = ci + λ log(πi) + λ + η.

Rearranging gives πi = e−(ci+λ+η)/λ) ∝ e−ci/λ, with η chosen to guarantee
∑

i πi = 1 (that is, λ + η =
λ log(

∑
j e−cj/λ)). We can then compute

λH(π) = −λ
∑

i

πi log(πi) =
∑

i

πi

(
ci + λ log

(∑
j

e−cj/λ
))

=
(∑

i

πici

)
+ λ log

(∑
j

e−cj/λ
)

.

Substitution gives the explicit minimizer, which we see is unique.

We also know that H(π) ≤ log(m) (as this is a general bound on the Shannon entropy, which is maximized
by a uniform distribution), and hence the final inequality follows.

Remark 2.4.2. This approach allows us to avoid explicitly optimizing our Q function, as is needed at each
step of value iteration. It also stabilizes the choice of policies, which ensures that we have convergence to
an optimizer, even if policies are not uniquely determined. For simplicity, in discrete time, we can also
take the limiting π∗, sample a rule u∗(x) ∼ π∗(x) once for each x, and verify that this will be an optimal
(deterministic) policy for our problem. In continuous time, however, this becomes much more delicate.

Proposition 2.4.3. Let v be the value function of the unregularized problem, and vλ the value of the
regularized problem. Then

vλ ≤ v ≤ vλ + λ
log(m)
1 − e−ρ

,

and the (unique) optimal policy for the regularized problem is given by

π(u|x) = exp
(vλ(x) − g0(x, u) − e−ρ

∑
x′ p(x′; x, u)vλ(x′)

λ

)
= exp

(vλ(x) − Qλ(x, u)
λ

)
∝ e−Qλ(x,u)/λ,

where
Qλ(x, u) = g(x, u) + e−ρ

∑
x′

p(x′; x, u)vλ(x′)

is a Q function associated with the value function vλ.

36 CHAPTER 2. NUMERICAL METHODS AND REINFORCEMENT LEARNING

Proof. As gλ = g0 − λH(π), we know that gλ ≤ g0 = gλ + λH(π) ≤ gλ + λ log(m). Solving for the value
function using each of these terms as the cost, we get

vλ ≤ v ≤ vλ + λ
log(m)
1 − e−ρ

,

as desired.

The Bellman equation satisfied by vλ is then

vλ(x) = min
π

{
g0(x, πλ(x, ·)) − λH(πλ(x, ·)) + e−ρ

∑
x′

p(x′; x, π)vλ(x′)
}

= min
π

{ ∑
u∈U

πλ(x, u)
(

g(x, u) + e−ρ
∑
x′

p(x′; x, u)vλ(x′)
)

− λH(π(x, ·))
}

= −λ log
∑
u∈U

exp
(−g(x, u) − e−ρ

∑
x′ p(x′; x, u)vλ(x′)
λ

)
= −λ log

∑
u∈U

exp
(−Qλ(x, u)

λ

)
,

where we use Lemma 2.4.1 in the penultimate line. The optimal strategy is given by

πλ(u|x) ∝ exp
(−Qλ(x, u)

λ

)
and checking the constant of proportionality gives us the stated form.

Remark 2.4.4. Given this proposition, in a Q-learning context, we can guarantee that all actions are
considered infinitely often, by counting nt(x) = #{s < t : Xs = x} and taking a state-dependent
regularizer λ(x) ∼ 1/n(x) and learning rate α(x) ∼ 1/n(x). If we also know that all states are visited
infinitely often (which is an assumption on the underlying controlled Markov chain), then online Q-
learning is guaranteed to converge to the true Q function when actions are chosen according to the
entropy-regularized rule.

2.5 Policy gradients

A common variation of policy iteration is to replace the optimization of the policy with a gradient-based
method. This is a major area, and we won’t seek to prove any convergence results (as they depend on a
wide range of results from optimization theory and probability), but will give an introduction to the core
method. We will assume that we have a finite action space, and work with randomized policies (which
will allow us to differentiate easily).

We suppose that we have an agent who is using a randomized policy πθ : X → P(U0) = U , parameterized
by θ ∈ Rn (for some n). We write πθ(u; x) for the probability of taking action u when in state x. A
classic example (sometimes called ‘logits in tabular form’), inspired by the entropy-regularized controls
above, is to take π(u; x) ∝ eθ(x,u), which is valid for all θ ∈ R|U0|×|X |. In this case,

∂θ(u,x) log π(u′; x′) =
[
1{u=u′} − eθ(u,x)∑

u′′ eθ(u′′,x)

]
1{x=x′}

2.5. POLICY GRADIENTS 37

which simplifies our calculations below. If we use this formulation for an entropy-regularized problem,
then we know that θλ(u, x) := −1

λ

(
g0(x, u)+e−ρ

∑
x′ p(x′; x, u)vλ(x′)

)
represents the true optimal policy,

so an interior solution (with finite θ) is optimal.

We are aiming to minimize the cost J(πθ) = E[J(X0, πθ)] (averaged with respect to a distribution over
X0, which has no real impact, as the optimal strategy will minimize J(x, πθ) for all x, by dynamic
programming), using a gradient method. The idea is to calculate the gradient ∇θJ |θn

, and then use
the gradient descent iteration θn+1 = θn − αnΣ∇θJ |θn

, where αn is the step size/learning rate, and Σ
is a (positive definite) preconditioning matrix. The challenge is to estimate ∇θJ |θn efficiently, based on
samples of the controlled system.

In order to do this, we make a few observations: For simplicity, we abuse our previous notation and write
g(xt, xt+1, ut) for the expected value of G(ω̃t+1, Xt, Xt+1, Ut) given Xt = xt, Xt+1 = xt+1, Ut = ut. If we
use the randomized control πθ, then the probability of a sequence is given by

P
(

Xt = xt, Ut = ut for t ≤ T
∣∣∣X0 = x0

)
=

T∏
t=0

p(xt+1; xt, ut)πθ(ut; xt).

In particular, we can write

J(x0, πθ) =
∑

T

E
[
e−ρT GT

∣∣∣X0 = x0, Ut ∼ πθ(Xt)
]

=
∑

T

∑
{xt,ut}t≤T

[T∏
t=0

p(xt+1; xt, ut)πθ(ut; xt)e−ρT g(xT , xT +1, uT)
]
.

We now observe that for any positive function ft,

∇θ

(
ft(θ)

)
= ft

∇θft(θ)
ft(θ) = ft(θ)∇θ log ft(θ)

and hence, by the product rule,

∇θ

(∏
t≤T

ft(θ)
)

=
(∏

t≤T

ft(θ)
)(∑

s≤T

∇θ log fs(θ)
)

=
∑
s≤T

((∏
t≤T

ft(θ)
)

∇θ log fs(θ)
)

.

Therefore, by differentiating through the sum for J(x0, πθ), we obtain

∇θJ(x0, πθ) =
∑

T

∑
{xt,ut}t≤T

∑
s≤T

[(T∏
t=0

p(xt+1; xt, ut)πθ(ut|xt)
)(

∇θ log πθ(us; xs)
)

e−ρT g(xT , xT +1, uT)
]

=
∑

T

∑
s≤T

E
[
e−ρT

(
∇θ log πθ(Us; Xs)

)
GT

∣∣∣X0 = x, Ut ∼ πθ(Xt)
]

=
∑

T

E
[
e−ρT

(∑
s≤T

∇θ log πθ(Us; Xs)
)

GT

∣∣∣X0 = x, Ut ∼ πθ(Xt)
]
.

This is sometimes called the ‘fundamental lemma of policy gradients’, as it allows us to estimate the
gradient of J using simulations of trajectories, by multiplying our observed costs with the gradients of
the log probabilities of actions, and taking a weighted average.

38 CHAPTER 2. NUMERICAL METHODS AND REINFORCEMENT LEARNING

We can also rearrange our expression by changing the order of summation (between s and T), to give
the representations (with all expectations conditional on Ut ∼ πθ(Xt))

∇θJ(x0, πθ) =
∑

T <∞

∑
s≤T

e−ρTE
[
GT ∇θ log πθ(Us; Xs)

∣∣∣X0 = x
]

=
∑
s<∞

E
[(∑

T ≥s

e−ρT GT

)
∇θ log πθ(Us|Xs)

∣∣∣X0 = x
]

=
∑
s<∞

E
[
E

[∑
T ≥s

e−ρT GT |Xs = xs

]
∇θ log πθ(Us; Xs)

∣∣∣X0 = x
]

=
∑
s<∞

E
[
e−ρsE

[∑
T ≥s

e−ρ(T −s)GT |Xs = xs

]
∇θ log πθ(Us; Xs)

∣∣∣X0 = x
]

=
∑
s<∞

E
[
e−ρsJ(Xs, πθ)∇θ log πθ(Us; Xs)

∣∣∣X0 = x
]
.

Particularly when G is deterministic given Xt, Ut, this expression is useful for analysis, as it expresses
the gradient in terms of the discounted occupation density under the stated control.

Given these expressions, we now have a fairly simple recipe for a policy gradient method:

• Simulate long trajectories {Xj , U j , Gj}j=1,...,N of the controlled system using the control πθ, with
a variety of starting points x0.

• Estimate the corresponding average gradients through

∇̂θJ |θn = 1
N

N∑
j=1

∑
T

e−ρT Gj
T

(∑
s≤T

∇θ log πθ(U j
s ; Xj

s)|θ=θn

)
.

• Increment θ using the step θn+1 = θn − αnΣ∇̂θJ |θn

If all goes well, then this should (at least with high probability), lead to an improvement in the values
associated with the policy, and ultimately to convergence to an optimal policy (when our parameterization
is rich enough). We can also simulate finite length paths, and replace the value after that point with an
estimate of e−ρT J(xT , πθ), which corresponds to a version of value iteration.

The details under which this process converges to the optimal solution are somewhat subtle, see for
example Bhandari and Russo [1] for recent results in this area.

There are many variations of this basic approach that are used in practice, by varying the exact calculation
which is done in order to reduce variance, adjusting the step size dynamically, adding tweaks to the steps
to improve the geometry (e.g. choosing a good preconditioning matrix) etc...

Chapter 3

Continuous Deterministic Control

We will now leave behind the discrete time-space theory that we have been considering, and move into a
continuous time setting. In this chapter we will focus on understanding deterministic problems – these
have some significant differences to stochastic problems, which we will consider in the next part of the
course.

We will not focus on numerical methods for these problems. In practice, many of the equations we consider
can be seen as ‘standard’ PDEs (for which numerical methods are well-known), or can be approximated by
discretization (or function approximation), and hence the RL methods we have just seen can be applied.
In fact, discretization of the state space is just a finite-difference approximation scheme for the PDE, so
this gives a very close connection between our continuous problems and their discretized versions.

3.1 Notation and problem formulation

We suppose we have a state process X, taking values in X ⊆ Rn, which satisfies a controlled explicit
inhomogeneous first-order ODE:

ẊU
t := dXU

t

dt
= f(t, XU

t , Ut), (3.1.1)

with initial condition XU
0 = x0, where Ut is a control process to be determined, taking values in a

topological space1 U , and f : T × X × U → Rn. We consider this equation over the time domain
T = [0, T] (with T < ∞) or T = [0, ∞). We do not need to make the assumption that U is compact (but
correspondingly won’t show that optimizers will always exist).

Of course, as we allow multiple dimensions, the fact that our ODE is first-order is not a particular
restriction as we can embed more derivatives in more dimensions in X; in this sense, requiring our
equation to be first-order is analogous to requiring X to be a Markov process, as we want (Xt, Ut) to
determine the value of Xt+ε, without needing further information (such as the derivatives of X at t).

We have an agent who chooses the control U within some class of admissible controls, which needs to
be defined in such a way that the state dynamics admit a nice solution. In particular, we usually need

1This is needed only so that we can talk about Borel measurability (which requires a notion of an open set). Even this
can be relaxed, by just using a measurable space.

39

40 CHAPTER 3. CONTINUOUS DETERMINISTIC CONTROL

the solution to be unique (otherwise we would again need more information in order to solve for X), and
sufficiently smooth that we can make sense of the equation above.

Example 3.1.1. Consider the problem of minimizing the value of
∫ 1

0 |XU
t |dt, given controls in the

set U = {1, −1}, and the one-dimensional dynamics Ẋt = Ut. If we require our state dynamics to
have a C1-smooth solution, there are no non-trivial admissible controls! Furthermore, even if we don’t
want smoothness, the intuitively optimal control Ut = −sign(Xt) behaves really weirdly when Xt = 0,
suggesting that we need to be cautious.

Because of this and similar examples, and because we don’t want to put unnecessary restrictions on U ,
but want to guarantee our equations are meaningful, we often assume that (3.1.1) needs only hold in a
weak sense, that is, XU should satisfy (for all t ∈ T)

XU
t = x0 +

∫ t

0
f(s, XU

s , Us)ds.

To allow us to work with our problem more dynamically, we define the more general state process, started
at time t in state x:

Xt,x,U
t′ = x +

∫ t′

t

f(s, Xt,x,U
s , Us)ds. (3.1.2)

The next ingredient we need in our problem is the cost, which we assume is of the form

J(U) =
∫ T

0
e−ρsg(s, XU

s , Us)ds + e−ρT Φ(XU
T) (3.1.3)

where T = ∞ if T = [0, ∞), in which case we assume ρ > 0. We assume Φ : X → R and g : T×X ×U → R,
and that g is Borel measurable.

As before, we define the rescaled cost-to-go for a control U as

J(t, x, U) =
∫ T

t

e−ρ(s−t)g(s, Xt,x,U
s , Us)ds + e−ρ(T −t)Φ(Xt,x,U

T).

Definition 3.1.2. For our deterministic problem, we say a control U : T → U is admissible, and write
U ∈ U if U is measurable and (3.1.2) admits a unique solution Xt,x,U , taking values in X , for all
(t, x) ∈ T × X .

Remark 3.1.3. This is a fairly vague definition of admissibility. In many problems we will know that
f(s, x, u) is (locally) Lipschitz continuous with respect to x, uniformly with respect to (s, u), is continuous
with respect to (s, u). Together with some integrability assumptions, this is enough to guarantee XU is
well-defined for any (Lebesgue) measurable U .

To avoid trivial cases, we assume that there exists at least one admissible control U with J(U) < ∞.
Furthermore, to avoid problems where the cost can be made infinitely negative, we assume that there is
an integrable function g∗ : T → R such that g(t, x, u) ≥ g∗(t) and Φ(x) ≥ g∗(T), for all x, u, so we have
the lower bounds J(t, x, U) ≥

∫ T

t
g∗(s)ds + g∗(T) > −∞.

We see that this defines the set of open loop controls – that is, general functions of time, rather than
feedback functions of time and the current state X (sometimes called closed loop controls).

Lemma 3.1.4. With the above definitions,

3.2. DYNAMIC PROGRAMMING AND THE HAMILTON–JACOBI EQUATION 41

• the set of admissible controls is closed under pasting, that is, given two admissible controls U, U ′

the control defined by U ′′
s = Us1s≤t + U ′

s1s>t is also admissible;

• for any admissible control, X and J satisfy the flow properties, for t ≤ t′ ≤ t′′,

Xt,x,U
t′′ = Xt,x,U

t′ +
∫ t′′

t′
f(s, Xt,x,U

s , Us)ds = X
t′,Xt,x,U

t′ ,U

t′′ ,

J(t, x, U) =
∫ t′

t

e−ρ(s−t)g(s, Xt,x,U
s , Us)ds + e−ρ(t′−t)J(t′, Xt,x,U

t′ , U);

• the cost-to-go does not depend on past actions, that is

J(t, x, U) = J
(
t, x, {1s≤tU

′
s + 1s>tUs}s≥0

)
for all admissible U ′.

Proof. The uniqueness of Xt,x,U guarantees that Xt,x,U satisfies the flow property. By direct calculation,
it follows that we have the flow property for J . Using these flow properties, the admissibility of the
pasted control is almost immediate.

3.2 Dynamic programming and the Hamilton–Jacobi equation

As we have seen in discrete time, a key to understanding these problems is the dynamic programming
principle. Given the flow properties we have obtained, and the fact that the space of admissible controls
is closed under pasting, it is not too difficult to obtain a result in this direction.

Theorem 3.2.1 (Dynamic programming). The value function v(t, x) := infU∈U J(t, x, U) satisfies the
dynamic programming equation

v(t, x) = inf
U∈U

{ ∫ t′

t

e−ρ(s−t)g(s, Xt,x,U
s , Us)ds + e−ρ(t′−t)v(t′, Xt,x,U

t′)
}

.

Proof. Fix t, x. We clearly see that for all U ∈ U,

v(t, x) ≤ J(t, x, U) =
∫ t′

t

e−ρ(s−t)g(s, Xt,x,U
s , Us)ds + e−ρ(t′−t)J(t′, Xt,x,U

t′ , U).

Fix ε > 0, and write ṽ(t, x) = infU∈U
{ ∫ t′

t
e−ρ(s−t)g(s, Xt,x,U

s , Us)ds + e−ρ(t′−t)v(t′, Xt,x,U
t′)

}
. Then there

exists U ∈ U such that
v(t, x) ≤ J(t, x, U) ≤ v(t, x) + ε.

Therefore

v(t, x) + ε ≥
∫ t′

t

e−ρ(s−t)g(s, Xt,x,U
s , Us)ds + e−ρ(t′−t)J(t′, Xt,x,U

t′ , U)

≥
∫ t′

t

e−ρ(s−t)g(s, Xt,x,U
s , Us)ds + e−ρ(t′−t)v(t′, Xt,x,U

t′) ≥ ṽ(t, x).

As ε is arbitrary, we conclude v ≥ ṽ.

42 CHAPTER 3. CONTINUOUS DETERMINISTIC CONTROL

For the converse inequality, choose a U ∈ U (which may depend on the fixed values t, x) such that∫ t′

t

e−ρ(s−t)g(s, Xt,x,U
s , Us)ds + e−ρ(t′−t)v(t′, Xt,x,U

t′) ≤ ṽ(t, x) + ε,

and use this to fix the value of Xt,x,U
t′ . As before, there exists U ′ ∈ U such that

J(t′, Xt,x,U
t′ , U ′) ≤ v(t′, Xt,x,U

t′) + ε

and by pasting, we build a control Ũ = 1s≤t′U + 1s>tU
′ such that Xt,x,U

s = Xt,x,Ũ
s for all s ≤ t′ and

J(t′, Xt,x,Ũ
t′ , Ũ) = J(t′, Xt,x,U

t′ , U ′). Therefore

J(t, x, Ũ) =
∫ t′

t

e−ρ(s−t)g(s, Xt,x,U
s , Us)ds + e−ρ(t′−t)J(t′, Xt,x,U

t′ , U ′)

≤
∫ t′

t

e−ρ(s−t)g(s, Xt,x,U
s , Us)ds + e−ρ(t′−t)(v(t′, Xt,x,U

t′) + ε)

≤ ṽ(t, x) +
(
1 + e−ρ(t′−t))ε.

This implies that
v(t, x) ≤ J(t, x, Ũ) ≤ ṽ(t, x) +

(
1 + e−ρ(t′−t))ε

and therefore, as ε is arbitrary, we conclude v ≤ ṽ.

Remark 3.2.2. This definition of the value function guarantees very little regularity – as it involves an
uncountable infimum, it’s not even clear that v is measurable (but it usually will be!).

Now that we have a dynamic programming equation, the natural thing to do is to try and convert this
into a differential form (i.e. a PDE for v), by taking t′ → t. The challenge, as we have seen in our example
above, is that when we do this, we might run into some serious problems in defining the state variable
– just because we have a sequence of admissible strategies with convergent costs does not mean that we
can take the limit when defining the state variable.

For this reason, we begin by giving a rather heuristic derivation of the PDE, and then argue that this is
the right equation provided the PDE admits sufficiently smooth solutions.

If we assume v is smooth, then we can do a Taylor expansion and write

v(t′, Xt,x,U
t′) = v(t, x) +

(
∂tv(t, x)

)
(t′ − t) +

〈
∇v(t, x), Xt,x,U

t′ − x
〉

+ o
(
|Xt,x,U

t′ − x| + |t′ − t|
)

= v(t, x) +
(
∂tv(t, x)

)
(t′ − t) +

〈
∇v(t, x), f(t, x, Ut)

〉
(t′ − t) + o(t′ − t).

We can then rearrange our dynamic programming equation to read

0 = inf
U∈U

{ ∫ t′

t

e−ρ(s−t)g(s, Xt,x,U
s , Us)ds + e−ρ(t′−t)(∂tv(t, x)

)
(t′ − t)

+ (e−ρ(t′−t) − 1)v(t, x) + e−ρ(t′−t)〈∇v(t, x), f(t, x, Ut)
〉
(t′ − t) + o(t′ − t)

}
.

As this should hold on every interval [t, t′], dividing through by t′ − t and taking a limit, we obtain

0 =
(
∂tv(t, x)

)
− ρv(t, x) + inf

u∈U

{
g(s, x, u) +

〈
∇v(t, x), f(t, x, u)

〉}
. (3.2.1)

3.2. DYNAMIC PROGRAMMING AND THE HAMILTON–JACOBI EQUATION 43

(Note that U has become U , as only the initial value u = Ut is relevant.) Recalling that X ⊆ Rn, and
defining the Hamiltonian to be

H : T × X × Rn → R;
(
t, x, q

)
7→ inf

u∈U

{
g(t, x, u) +

〈
q, f(t, x, u)

〉}
we can express this PDE in the standard form

−∂tv = −ρv + H
(

t, x, ∇v
)

.

This equation is a form of the classical Hamilton–Jacobi equation in physics2. The boundary condition
for the PDE varies somewhat – if we have a fixed terminal time T , then we know v(T, ·) = Φ(·). If our
problem is on an infinite horizon and g is bounded, then these get replaced with the growth condition
|v| ≤ ∥g∥∞/ρ (and it often turns out that this is enough to determine a unique solution to the PDE
on [0, ∞) × X). Similarly if our system stops when x hits some boundary values x ∈ Xb, then we have
v(·, x) = Φ(x) for all x ∈ Xb, together with boundedness of v.

Remark 3.2.3. It’s helpful to point out that the (unoptimized) Hamiltonian H̃(·, ·, ∇V) is, in some sense,
playing a role similar to what the Q function played in discrete time. To see this, compare the Bellman
iteration (for discrete deterministic systems, with ρ = 0) written in the form

−
(

v(t + 1, x) − v(t, x)
)

= min
u∈U

{
g(t, x, u) + v(t + 1, f(t, x, u))︸ ︷︷ ︸

Q(t,x,u)

−v(t + 1, x)
}

with the Hamilton–Jacobi equation

−∂tv = min
u∈U

{
g(t, x, u) +

〈
∇v, f(t, x, u)

〉︸ ︷︷ ︸
H̃(t,x,∇v)

}
.

The same connection also holds true in stochastic problems.

We can now obtain the verification step – if we have a smooth solution to the PDE, then it must be
the optimal control. We use somewhat restrictive assumptions in this theorem, mainly to allow us to
ensure stability of the resulting ODEs, and to allow us to have an intuitively straightforward proof. The
verification theorem we will give for stochastic problems supercedes this one, and has weaker assumptions.

Theorem 3.2.4 (Verification theorem). Consider a control problem with finite terminal time T . In this
case, the Hamilton–Jacobi equation with boundary conditions is given, for v : [0, T] × Rn → R, by

−∂tv = −ρv + H
(

t, x, ∇v
)

; v(T, ·) = Φ(·).

Suppose, for some constants K > 0, k ≥ 1, (for all (t, xt), (s, xs) ∈ T × X as appropriate)

• the Hamilton–Jacobi equation admits a solution w in C1(
[0, T] × Rn

)
satisfying the bound3,

|∇w(t, xt) − ∇w(s, xs)| ≤ K
(
|t − s| + ∥xt − xs∥

)(
1 + ∥xt∥k + ∥xs∥k

)
;

and ∥∇w(0, 0)∥ ≤ K.
2Some authors call it the Hamilton–Jacobi–Bellman equation, but this is arguably the more general version which we

will meet in the context of stochastic control.
3We impose a growth bound on the changes in ∇w for simplicity, and will see that this can be weakened to assuming a

growth bound on w when we consider the Hamilton–Jacobi–Bellman equation.

44 CHAPTER 3. CONTINUOUS DETERMINISTIC CONTROL

• f is K-Lipschitz continuous in (t, x) uniformly in u, that is, for any u ∈ U ,

∥f(t, xt, u) − f(s, xs, u)∥ ≤ K
(
|t − s| + ∥xt − xs∥

)
,

and ∥f(0, 0, u)∥ ≤ K;

• g satisfies the growth bound, for every u,

|g(t, xt, u) − g(s, xs, u)| ≤ K
(
|t − s| + ∥xt − xs∥

)(
1 + ∥xt∥k + ∥xs∥k

)
.

Then

• w is the unique solution to the Hamilton–Jacobi equation satisfying these continuity and growth
bounds;

• w is the value function of the control problem;

• a control U is optimal if and only if

Ut ∈ arg min
u∈U

{
g(t, XU

t , u) +
〈

∇w(t, XU
t), f(t, XU

t , u)
〉}

.

Proof. For notational convenience, we write

H̃(t, x, q, u) = g(t, x, u) +
〈
q, f(t, x, u)

〉
(3.2.2)

so that H(t, x, q) = infu∈U H̃(t, x, q, u).

Step 1: Stability of H, H̃. We begin by showing some stability estimates for our problem4. Observe that,
from Grönwall’s inequality, as f is Lipschitz, given X0 = x0, there exists a constant K ′ depending on x0

(and T, K) such that, if d
dt Xt = f(t, Xt, Ut) for some U , then

∥Xt − Xs∥ ≤ K ′|t − s| and ∥Xt∥ ≤ K ′, for all s, t ∈ [0, T].

By the triangle inequality, for any control u ∈ U ,∣∣∣H̃(
t, Xt, ∇w(t, Xt), u

)
− H̃

(
s, Xs, ∇w(s, Xs), u

)∣∣∣
≤

∣∣∣g(t, Xt, u) − g(s, Xs, u)
∣∣∣ +

∥∥∥f(t, Xt, u) − f(s, Xs, u)
∥∥∥ · ∥∇w(t, Xt)∥

+ ∥f(s, Xs, u)∥ ·
∥∥∥∇w(t, Xt) − ∇w(s, Xs)

∥∥∥
≤ K

(
|t − s| + ∥Xt − Xs∥

)(
1 + ∥Xt∥k + ∥Xs∥k

)
+ K

(
|t − s| + ∥Xt − Xs∥

)
K

(
1 + t + ∥Xt∥k

)(
1 + ∥Xt∥

)
+ K2

(
1 + s + ∥Xs∥

)(
1 + ∥Xs∥k + ∥Xt∥k

)(
|t − s| + ∥Xt − Xs∥

)
.

In particular, there exists a constant c > 0, depending on x0, such that∣∣H̃(
t, Xt, ∇w(Xt), u

)
− H̃

(
s, Xs, ∇w(Xs), u

)∣∣ ≤ c|t − s|. (3.2.3)
4We notice that this is the only point where we need the various continuity estimates on f, g, w, so if these vary, this is

the only step that needs to be redone.

3.2. DYNAMIC PROGRAMMING AND THE HAMILTON–JACOBI EQUATION 45

Taking ε > 0 and uε such that H̃
(
s, Xs, ∇w(s, Xs), uε

)
≤ H

(
s, Xs, ∇w(s, Xs)

)
+ ε we have

H
(
t, Xt, ∇w(t, Xt)

)
− H

(
s, Xs, ∇w(s, Xs)

)
≤ H̃

(
t, Xt, ∇w(t, Xt), uε

)
− H

(
s, Xs, ∇w(s, Xs)

)
≤ H̃

(
t, Xt, ∇w(t, Xt), uε

)
− H̃

(
s, Xs, ∇w(s, Xs), uε

)
+ ε

≤ c|t − s| + ε

and thus, exchanging (t, Xt) and (s, Xs), and taking ε → 0,

∣∣H(
t, Xt, ∇w(t, Xt)

)
− H

(
s, Xs, ∇w(s, Xs)

)∣∣ ≤ c|t − s|. (3.2.4)

Step 2: Finding an optimizer. The next step is to construct our candidate near-optimal control. We do
this by choosing U to be piecewise-constant, which has the advantage that it’s easy to guarantee that U

is admissible. Fix ε > 0, x0 ∈ X and δ = ε/c, where c is as in (3.2.3). Let Uε
0 be such that

H̃(t0, x0, ∇w(x0), Uε
0) ≤ H(t0, x0, ∇w(t0, x0)) + ε.

Using this Uε
0 , for t ≤ δ, define Uε

t = Uε
0 and the ODE solution

Xε
t = x0 +

∫ t

t0

f(s, Xε
s , Uε

0)ds.

As δ = ε/c, from (3.2.3) and (3.2.4) we know that

H̃(t, Xε
t , ∇w(t, Xε

t), Uε
t) ≤ H̃(t0, x0, ∇w(0, x0), Uε

0) + ε ≤ H(t0, x0, ∇w(0, x0)) + 2ε

≤ H(t, Xε
t , ∇w(t, Xε

t)) + 3ε.
(3.2.5)

We then repeat this construction started at (t0 + δ, Xε
δ) instead of (t0, x0), which defines Uε

t , Xε
t for t ∈

(δ, 2δ]. Iterating, we define Uε, Xε for all t, and know that d
dt Xε = f(t, Xε

t , Uε
t) and H̃(t, Xε

t , ∇w(t, Xε
t), Uε

t) ≤
H(t, Xε

t , ∇w(t, Xε
t)) + 3ε for all t (and as c is a constant depending only on our first choice of x0, we

know ε, δ can be left fixed through the iteration). In particular, Uε ∈ U.

Step 3: Connecting the PDE to the cost-to-go. The next step is to show that the solution w to our PDE
lower-bounds the cost-to-go J(t, X∗

t , U) for all U ∈ U. We know that

−∂tw = −ρw + H(t, x, ∇w).

For an arbitrary admissible control U , write w̃(t) = e−ρtw(t, XU
t), where XU

s = XU,t0,x0
s for s > t0. Then

the chain rule tells us that (all derivatives of w being evaluated at (t, XU
t), and the derivative of XU∗

interpreted in a weak sense)

d
dt

w̃ = −ρeρtw + e−ρt
[〈

∇w(t, XU
t), d

dt
XU

t

〉
+ ∂tw(t, XU

t)
]

= e−ρt
[〈

∇w(t, XU
t), f(t, XU

t , Ut)
〉

− H(t, XU
t , ∇w(t, XU

t))
]
.

46 CHAPTER 3. CONTINUOUS DETERMINISTIC CONTROL

Integration, along with the terminal value5 of w, shows that

e−ρtw(t, XU
t) = w̃(t)

=
∫ T

t

e−ρs
[

−
〈

∇w, f(s, XU
s , Us)

〉
+ H(s, XU

s , ∇w(s, XU
s))

]
ds + e−ρT Φ(XU

T)

=
∫ T

t

e−ρsg(s, XU
s , Us)ds + e−ρT Φ(XU

T)

+
∫ T

t

e−ρs
[
H(s, XU

s , ∇w(s, XU
s)) −

(
g(s, XU

s , Us) +
〈

∇w(s, XU
s), f(s, XU

s , Us)
〉)

︸ ︷︷ ︸
=H̃(s,XU

s ,∇w(s,XU
s),U)

]
ds.

In particular, by rearranging, we see that

w(t, XU
t) = J(t, XU

t , U) +
∫ T

t

e−ρ(s−t)
[
H(s, XU

s , ∇w(s, XU
s)) − H̃(s, XU

s , ∇w(s, XU
s), U)

]
︸ ︷︷ ︸

≤0

ds.

This immediately tells us that w(t0, x0) ≤ infU∈U J(t0, x0, U).

Step 4: Connecting w to the value function. Using this identity together with our candidate controls Uε,
we see that

w(t0, x0) ≥ J(t0, x0, Uε) − 3ε

∫ T

t

e−ρ(s−t)ds.

Taking ε → 0, we conclude that w(t0, x0) = infU∈U J(t0, x0, U). As t0 and x0 are arbitrary, we conclude
that w is indeed the value function.

Now that we have the value function, we see that w(0, x0) = J(0, x0, U) if and only if, for all t,

H(t, XU
t , ∇w(t, XU

t)) = H̃(t, XU
t , ∇w(t, XU

t), Ut),

that is, U is a minimizer in the Hamiltonian.

Step 5: Uniqueness of w. Finally, we know that the value function v(t, x) = infU∈U J(t, x, U) is unique.
However, we have shown that every solution of the PDE must be a value function for our control problem,
hence the PDE must admit at most one solution w = v.

Remark 3.2.5. As a corollary to this proof, we see that the infimal cost is approached by a sequence of
piecewise constant controls.

Corollary 3.2.6. Suppose the assumptions of Theorem 3.2.4 hold, and also the state dynamics f are
Lipschitz with respect to u, and we can find a locally Lipschitz continuous map u∗ : T× X → U such that
u∗(t, x) ∈ arg minu∈U H̃

(
t, x, v(t, x), ∇v(t, x), u

)
. It follows that d

ds Xt,x
s = f(s, Xt,x

s , u∗(s, Xt,x
s)) admits

a unique solution, and hence Us = u∗(s, X0,x0
s) is admissible, and therefore is an optimal control.

5This is where we use the boundary conditions, so if we have a different type of terminal condition for our control
problem, this would need to change. For example, if we assume w is bounded and ρ > 0, we simply take the limit
as T → ∞ (after rescaling) and get w(t, XU) =

∫ ∞
t

e−ρ(s−t)g(s, XU
s , Us)ds +

∫ ∞
t

e−ρ(s−t)(H(s, XU
s , ∇w(s, XU

s)) −
H̃(s, XU

s , ∇w(s, XU
s), U))ds. As (3.2.3) and (3.2.4) do depend on the terminal time T , we need to scale δ accordingly

when defining the ε-optimal control, but we can do this sequentially without much difficulty. The argument then contines
as before.

3.2. DYNAMIC PROGRAMMING AND THE HAMILTON–JACOBI EQUATION 47

Remark 3.2.7. We might ask what happens when we do not have a smooth solution to the PDE. This
naturally leads us into questions of what the right solution concept for PDEs is – we will discuss this
further later.

Example 3.2.8. Consider the problem of minimizing Φ(XT) = −X2
T using controls in U = [−1, 1], and

dynamics Ẋt = Ut. Then the intuitively optimal strategy is to push as fast as you can away from the
origin, leading to the value v(t, x) = −(|x| + T − t)2. We observe that this is not C1, and the optimal
strategy is not unique when x0 = 0. The Hamiltonian is simply H(t, x, p) = infu∈[−1,1]{pu} = −|p|, while
∇v = 2 sign(x)(|x| + T − t), ∂tv = −2(|x| + T − t), so the Hamilton–Jacobi equation is satisfied, except
at x = 0 (where we don’t have enough derivatives to evaluate it).

Example 3.2.9. In the setting of Example 3.1.1, (minimize
∫ T

0 |Xt|dt with U = {−1, 1} and dynamics
Ẋt = Ut), the intuitively ‘optimal’ strategy is to push towards the origin as fast as you can and then
oscillate close to zero arbitrarily quickly. The value function is given by

v(t, x) =


(
|x| − T −t

2
)
(T − t) if |x| > T − t,

x2

2 if |x| ≤ T − t

which is C1 but not C2, and if |x0| < 1 then the optimal strategy does not exist (as you can only
approximate the optimal strategy near Xt = 0). We can check that

H(t, x, p) = inf
u∈{±1}

{|x| + pu} = |x| − |p|

and then it’s easy to check that, for |x| ≤ T − t, we have H(t, x, ∇v) = 0 = −∂tv, and for x > T − t we
have ∇v = T − t, ∂tv = T − t−x, and so H(t, x, ∇v) = x−T + t = −(∂tv), and similarly for x < −(T − t).

Example 3.2.10. Consider a linear-quadratic problem with state X ∈ X = Rn and control space
U ∈ U ⊂ Rm. We suppose X follows the the linear dynamics

dX

dt
= f(t, Xt, u) = AXt + Bu + C

and we face costs
g(t, x, u) = x⊤Qx + u⊤Ru + 2x⊤Su + 2Wx + 2Y u + Z

and
Φ(x) = x⊤ΣT x + 2ΨT x + ΓT .

for matrices/vectors/scalars A, B, C, Q, R, S, W, Y, Z and ΣT , ΨT , ΓT of appropriate dimensions (one can
make the parameters time dependent, and/or include a discount term, with a perturbation of notation).
We assume Q, R are symmetric and R is strictly positive definite. The Hamilton–Jacobi equation becomes

−∂tv = H(t, x, ∇v) = min
u

{
x⊤Qx + u⊤Ru + 2x⊤Su + 2Wx + 2Y u + Z + (∇v)⊤(Ax + Bu + C)

}
.

We can then guess that the solution to the PDE should be a quadratic

v(t, x) = x⊤Σtx + 2Ψtx + Γt,

in which case
∇v = (Σt + Σ⊤

t)x + 2Ψ⊤
t .

48 CHAPTER 3. CONTINUOUS DETERMINISTIC CONTROL

Taking a first-order condition to optimize the Hamiltonian, we find (assuming U is sufficiently large), we
have (with Σ̄t = 1

2 (Σt + Σ⊤
t) the symmetric part of Σt)

0 = 2u⊤R + 2x⊤S + 2Y + 2(x⊤Σ̄t + Ψt)B

and hence the optimal strategy is

u∗
t = −R−1

(
S⊤x + Y ⊤ + B⊤(Σ̄tx + Ψ⊤

t)
)

=: Ktx + Ht.

Substituting into the Hamilton–Jacobi equation, we have

− ∂t(x⊤Σtx + 2Ψtx + Γt)

= x⊤Qx + (Ktx + Ht)⊤R(Ktx + Ht) + 2x⊤S(Ktx + Ht) + 2Wx + 2Y (Ktx + Ht) + Z

+ 2(x⊤Σ̄t + Ψt)(Ax + B(Ktx + Ht) + C).

Matching coefficients of x, we find the matrix Riccati system of equations

−∂tΣt = Q + K⊤
t RKt + 2SKt + 2Σ̄t(A + BKt),

−∂tΨt = H⊤
t RKt + H⊤

t S⊤ + W + Y Kt + Ψt(A + BKt) + (BHt + C)⊤Σ̄t,

−∂tΓt = H⊤
t RHt + 2Y Ht + Z + 2Ψt(BHt + C),

with terminal values ΣT , ΨT and ΓT specified. This can be simplified further if desired. While this
equation is long, it is explicit, which makes it relatively easy to work with numerically. Solving this
system of matrix ODEs, we get a smooth solution to the Hamilton–Jacobi equation, and hence the
optimal control and value function. We can then check that the state process X does not get too large,
so we can take U bounded by a large constant (ensuring the growth bounds in the derivation we have
given are satisfied).

3.3 Pontryagin’s maximum principle

For deterministic control, there is another elegant result that we can obtain. This is essentially the
first-order condition for the minimization problem, and we can either obtain it through a constrained
optimization argument, or from the Hamilton–Jacobi equation. This result is commonly known as Pon-
tryagin’s maximum principle (as Pontryagin derived it for control problems where we maximize rewards),
but for the sake of consistency we will give a version for minimizing costs instead.

While it is only a necessary condition for optimality (like other first-order conditions), it turns out that
in many cases this is enough – in particular if there is only one solution to the conditions, then that
path must be optimal. More generally, the first order condition will give us locally optimal or extremal
trajectories.

It turns out that it is then often possible to calculate this path by solving an ODE, rather than solving a
PDE as we did when computing the Hamilton–Jacobi equation. We give only a derivation of this result
(rather than stating a theorem), assuming f and g are smooth and the Hamilton–Jacobi equation admits
a C2 solution.

Fix X0 = x0 and suppose U∗ is an optimal control, with the controlled process X∗. In order to derive
a first order condition, assuming the Hamilton–Jacobi equation admits a sufficiently smooth solution, a

3.3. PONTRYAGIN’S MAXIMUM PRINCIPLE 49

simple approach would be to say that, with the notation H̃ as in (3.2.2) ∂uH̃(t, X∗, ∇v(t, X∗), U∗) = 0.
However, this is not immediately useful, as it still requires us to find ∇v, which involves solving the PDE.
The trick is to find a representation of ∇v(t, X∗) which we can use directly.

We define the adjoint process q : T × Rn → Rn by

qt = ∇v(t, X∗
t).

Differentiating, we see that the ith component of q satisifes

d
dt

q
(i)
t = d

dt

(
∂xi

v(t, X∗
t)

)
= [∂t∂xi

v](t, X∗
t) +

〈
[∂xi

∇v](t, X∗
t), f(t, X∗

t , U∗
t)

〉
.

As v satisfies the Hamilton–Jacobi equation, we know

−∂tv(t, x) = −ρv + g(t, x, U∗
t) + f(t, x, U∗

t)⊤∇v(t, x)

and hence

∂t∂xiv = ∂xi∂tv = ρ∂xivt − ∂xig|U=U∗ − ∂xi

〈
∇v, f |U=U∗

〉
= ρ∂xivt − ∂xig|U=U∗ −

〈
∂xi∇v, f |U=U∗

〉
−

〈
∇v, ∂xif |U=U∗

〉
.

Combining these, we have

d
dt

q
(i)
t = ρq

(i)
t − [∂xi

g](t, X∗
t , U∗

t) −
〈

qt, [∂xi
f](t, X∗

t , U∗
t)

〉
,

or as a vector equation

d
dt

qt = ρqt − ∇g(t, X∗
t , U∗

t) −
(

Dxf(t, X∗
t , U∗

t)
)⊤

qt,

where Dxf is the Jacobian of f , that is, the matrix with ith row given by the vector ∇[f (i)]. This ODE
has terminal value q(T) = ∇v(T, X∗

T) = ∇Φ(X∗
T), and we observe that this gives qt as the solution of a

vector ODE whose dynamics do not involve v, assuming we already know the value of U∗ and hence X∗.

Summarizing, if we just assume the Hamilton–Jacobi equation admits sufficiently smooth solutions, and
an optimal control exists, we can try and identify the optimal control as a fixed point to the system of
equations

d
dt

X∗
t = f(t, X∗

t , U∗
t), X∗

0 = x0;

d
dt

qt = ρqt − ∇g(t, X∗
t , U∗

t) −
(
Dxf(t, X∗

t , U∗
t)

)⊤
qt, qT = ∇Φ(X∗

T);

U∗ ∈ arg min
u∈U

{
g(t, X∗

t , u) +
〈

qt, f(t, X∗
t , u)

〉}
.

Particularly when the dimension of X is high, it may be much more efficient to try and solve this
forward-backward system of ODEs, rather than computing the solution to the PDE.

Remark 3.3.1. Numerous variations of this result exist, for different types of boundary conditions. In
many cases, this involves computing an additional adjoint process, given by µt = [∂tH](t, X∗

t), which
should satisfy certain additional boundary conditions (often called transversality conditions), related to
what happens if the end point of our problem depends on the trajectory of X. If you look in the literature
you will often see these presented as Pontryagin’s maximum principle.

50 CHAPTER 3. CONTINUOUS DETERMINISTIC CONTROL

Remark 3.3.2. It is slightly odd that our derivation depends on having a C2 solution to the Hamilton–
Jacobi PDE, but we do not have the PDE appearing in the end result. This suggests that this result
can be extended to situations where the PDE only has solutions in a weaker sense (e.g. in the viscosity
sense). In fact this is completely true, but proving it requires more care.

Remark 3.3.3. We mentioned that this can also be seen in terms of the Lagrange multipliers/calculus of
variations of a constrained optimization problem, without reference to the Hamilton–Jacobi equation or
dynamic programming. For simplicity, set ρ = 0, and n = 1. We observe that we are trying to maximize∫ T

0 g(t, Xt, Ut)dt + Φ(XT) subject to the constraint d
dt Xt = f(t, Xt, Ut) for almost all t, over possible

choices of U and X. A Lagrangian for this problem is given by∫ T

0
g(t, Xt, Ut)dt + Φ(XT) −

∫ T

0
λt

(dXt

dt
− f(t, Xt, Ut)

)
dt.

Integrating by parts, we see that∫ T

0
λt

dXt

dt
dt = λT XT − λ0x0 −

∫ T

0

dλt

dt
Xtdt,

and so our Lagrangian becomes∫ T

0

(
g(t, Xt, Ut) + dλt

dt
Xt + λtf(t, Xt, Ut)

)
dt + Φ(XT) − λT XT + λ0x0.

Differentiating with respect to Xt (or more formally, taking a variation Xt +εη for some smooth function
η supported on a compact in (0, T) and using the fundamental lemma of calculus of variations) we see
that for almost all t we should have

∂xg(t, Xt, Ut) + dλt

dt
+ λt∂xf(t, Xt, Ut) = 0.

Differentiating with respect to XT (or, formally, taking a variation with a smooth function with support
in [T − ε, T]), we see that λT = ∂xΦ(XT). Therefore, λ satisfies the same differential equation as q did
in our earlier derivation.

Finally, differentiating with respect to Ut (by taking a measurable variation) shows that for almost all t,
with the notation of (3.2.2),

0 = ∂ug(t, Xt, Ut) + λt∂uf(t, Xt, Ut) = ∂uH̃(t, Xt, λt, Ut)

so U is an extreme point of H̃ (in particular, a minimum).

Chapter 4

Continuous Stochastic Control

In this final chapter of the course, we will consider the problem where our state process is stochastic,
and we are in continuous time. We will work under somewhat restrictive assumptions on the class of
problems that we consider – this will allow us to directly establish some continuity estimates for the value
function, which will side-step the problem of proving measurability (which we really need, in order to be
able to use probability, and becomes really tricky in many cases).

4.1 Notation and problem formulation

We assume that T = [0, T], and we have a filtered probability space (Ω, F , {Ft}t∈T,P) (where {Ft}t∈T

satisfies the usual conditions of completeness and right-continuity) and our state in X = Rd follows the
stochastic differential equation

dXt = f(t, Xt, Ut)dt + σ(t, Xt, Ut)dWt (4.1.1)

where W is an Rm-dimensional Brownian motion, f : T × Rd × U → Rd, σ : T × Rd × U → Rd×m. The
process U is allowed to be a general {Ft}t∈T-progressive1 process in U (which we assume is a subset of
some topological2 space), that is, it can depend on all the information available at each point in time.
We write U for the set of progressive processes.

We say U is of feedback form if there is a (Borel measurable) function u such that Ut = u(t, Xt) at least
dt × dP-a.e. (Sometimes, the terminology of U being Markov is used instead3, but this is somewhat
ambiguous, as u(t, Xt) is not a Markov process, even if X is Markov.)

We interpret the state equation in an integral sense using Itô’s integration theory. In order to work with
dynamic programming more easily, we will define the family of controlled processes

Xt,x,U
t′ = x +

∫ t′

t

f(s, Xt,x,U
s , Us)ds +

∫ t′

t

σ(s, Xt,x,U
s , Us)dWs

1Progressive measurability ensures that U is measurable in both time and in ω, in a nice way, see the appendix.
2This is again just so that we can talk about Borel maps to U , which needs a notion of an open set.
3In fact, some authors say U is feedback if it is adapted to the filtration generated by X, and Markov if it is a function

of (t, Xt). However, this is inconsistent with the common use of the term in deterministic control theory, and usage seems
to vary in practice.

51

52 CHAPTER 4. CONTINUOUS STOCHASTIC CONTROL

for all t ∈ T, x ∈ X , and U ∈ U.

Our agent wishes to choose U to minimize their expected costs, which are given by J(0, x0, U), where J

is the expected cost-to-go:

J(t, x, U) = E
[∫ T

t

g(s, Xt,x,U
s , Us)ds + Φ(Xt,x,U

T)
∣∣∣Ft

]
,

for cost functions g : T × X × U → R and Φ : X → R. We can also include a discount term, but this
simply adds notational complexity.

We will vary slightly from the approach we took in discrete time, and want to define

v(t, x) ?= ess inf
U∈U

J(t, x, U).

This definition allows v to be a random function of t, x, as we’ve simply not written the dependence on ω

in v and J . However, we will see later that v is described by the solution (in some sense) to a PDE, and
hence is deterministic. However, for now, we don’t know this, and we just let v : Ω ×T× X → R. In fact,
we will be a little more careful in our definition (see later), as we need to make sure this is well defined
simultaneously for all t, x. This is an issue because conditional expectations and essential infima are only
defined almost everywhere, and we have uncountably many choices of t, x, so things can go wrong...

Example 4.1.1 (Merton portfolio problem). A classic financial example is as follows: We have a financial
asset described by the SDE

dSt = µStdt + StσdWt

for µ, σ > 0. An investor has wealth x, and they choose an investment policy uS determining the fraction
of their wealth to invest. They also choose a consumption policy uC ≥ 0, determining how much of their
wealth to consume at each time. Their wealth (assuming a zero interest rate) then is modelled by the
SDE

dXt = −uC
t Xtdt︸ ︷︷ ︸

consumption

+ uS
t Xt(µdt + σdWt)︸ ︷︷ ︸
gains from trading

.

and we model their costs as
−

∫ T

0
u(uC

t Xt)dt − u(XT)

where u is the utility they obtain from consumption, commonly of the form u(c) = c1−γ/(1 − γ) for some
γ > 0. We can assume uC and uS are bounded by some large constant (and with extensions of the results
below, can show this is optimal).

Assumption 4.1.2. In order for all of this to be well posed, we make the following assumptions:

There exists a constant K < ∞ such that

• f and σ are Lipschitz continuous with respect to x (uniformly in t, u), that is,

∥f(t, x, u) − f(t, x′, u)∥ + ∥σ(t, x, u) − σ(t, x′, u)∥ ≤ K∥x − x′∥;

• f and σ are continuous in t, Borel measurable in U , and satisfy (for all t, u)

∥f(t, 0, u)∥2 + ∥σ(t, 0, u)∥2 ≤ K;

4.1. NOTATION AND PROBLEM FORMULATION 53

• g and Φ satisfy the bounds, for some k ≥ 1 and all t, x, x′, u,

|g(t, x, u) − g(t, x′, u)| + |Φ(x) − Φ(x′)| ≤ K∥x − x′∥(1 + ∥x∥k + ∥x′∥k),

|g(t, 0, u)|2 ≤ K;

Remark 4.1.3. These bounds immediately imply that, for some K ′ < ∞,

∥f(t, x, u)∥2 ≤ 2∥f(t, x, u) − f(t, 0, u)∥2 + 2∥f(t, 0, u)∥2 ≤ K ′(1 + ∥x∥2),

and similarly for σ and g. We usually don’t need to think about the exact value of K, so we are free to
assume this also holds with K = K ′, for notational simplicity.

Remark 4.1.4. The assumption that controls have only a bounded impact on costs4 is somewhat restric-
tive, but it is possible to lift it in various ways. See Remark 4.2.6.

Remark 4.1.5. The key property of U, the space of {Ft}t≥0-progressive processes in U , that we will use is
that it is closed under (countable) pastings. In particular, for any stopping time τ , if {Ai}i∈N ⊂ Fτ is a
countable partition of Ω, then for any U0, U1, ... ∈ U, we know that Ũs := U0

s 1s≤τ +
∑

i∈N 1s>τ 1Ai
U i

s ∈ U.

4.1.1 Useful estimates

We want to define the value function by minimizing J(t, x, U) with respect to U ∈ U. The problem with
this is that this involves taking an infimum over an uncountable set, which can lead to non-measurable
functions. To avoid this, the classic method is to do a fairly careful analysis of how to do the selection
of minimizers, as in Bertsekas and Shreve, Chapter 7.

We will present an alternative (somewhat non-standard) approach, where we first show that J has very
strong continuity properties. This will allow us to obtain the standard results, but in a slightly different
order to what is usual.

Lemma 4.1.6. Given these assumptions on f and σ, we have the following standard properties:

• For every (t, x, U) ∈ T× X ×U there exists a unique solution Xt,x,U
s to the state equation, which is

continuous in s ≥ t.

• For each p ≥ 2, there exists K > 0 such that, for all (t, x, U), the process Xt,x,U
s satisfies the bound,

E
[

sup
s∈[t,T]

∥Xt,x,U
s ∥p

∣∣∣Ft

]
≤ K(1 + ∥x∥p).

• There exists a constant K < ∞ such that, for all (t, x, U), (t′, x′, U) ∈ T × X × U, with t ≤ t′,

E
[∥∥Xt,x,U

T − Xt′,x′,U
T

∥∥2
∣∣∣Ft

]
≤ K(1 + ∥x∥2)

(
|t − t′| + ∥x − x′∥2)

.

4Some authors require that E[|g(t, Xt,x,U , Ut)|2] < ∞, or a similar condition, in the definition of admissibility, instead
of assuming controls have bounded effects. However, such a requirement is a little difficult to work with, as it is not closed
under countable pastings of strategies – just because U i satisfies this bound for every i, we don’t know that

∑
i

1Ai
Ui also

satisfies the bound for a countable partition of Ω × T by progressively measurable sets {Ai}i∈N. This makes understanding
dynamic programming more difficult.

54 CHAPTER 4. CONTINUOUS STOCHASTIC CONTROL

Proof. The core of these results is presented in Appendix A.2.1, which gives the more general case of
SDEs with stochastic dynamics – this can be applied here by setting µ(ω, t, x) = f(t, x, Ut(ω)), and
similarly for σ, from which Theorem A.2.1 yields the existence of the unique solution.

To see the stated bounds, set µ(ω, r, ξ) = f(r, ξ, Ur(ω))1t≤r≤T and µ̃(ω, r, ξ) = f(r, ξ, Ur(ω))1t′≤r≤T , and
similarly for σ and σ̃. Then applying Lemma A.2.2 gives the growth bound on X. Applying Lemma
A.2.3 with β = 0 implies that (for some constant C ′ depending on K), for t ≤ t′,

E
[
∥Xt,x,U

T − Xt′,x′,U
T ∥2

∣∣∣Ft

]
≤ C ′

(
∥x − x′∥2 +

∫
[t,T]

E[∥µr(Xt,x,U
r) − µ̃r(Xt,x,U

r)∥2|Ft] + E[∥σr(Xt,x,U
r) − σ̃r(Xt,x,U

r)∥2|Ft]dr
)

≤ C ′
(

∥x − x′∥2 +
∫

[t,t′]

(
E[∥µr(Xt,x,U

r)∥2 + ∥σr(Xt,x,U
r)∥2|Ft]

)
dr

)
≤ C ′

(
∥x − x′∥2 + sup

r∈[t,T]

(
E

[
∥µr(Xt,x,U

r)∥2 + ∥σr(Xt,x,U
r)∥2

∣∣∣Ft

])
|t − t′|

)
≤ C ′

(
∥x − x′∥2 + sup

r∈[t,T]

(
E

[
∥f(r, Xt,x,U

r , Ur)∥2 + ∥σ(r, Xt,x,U
r , Ur)∥2

∣∣∣Ft

])
|t − t′|

)
≤ C ′

(
∥x − x′∥2 + K sup

r∈[t,T]

(
1 + E

[
∥Xt,x,U

r ∥2∣∣Ft

])
|t − t′|

)
The result follows as E

[
∥Xt,x,U

r ∥2|Ft] ≤ C(1 + ∥x∥2).

Lemma 4.1.7. For any K > 0, the set of random variables

{
Φ(XU

T),
∫ t′

t

g(s, Xt,x,U
s , Us)ds

}
U∈U,t≤t′,∥x∥≤K

is uniformly P-integrable.

Proof. This follows directly from the bounds we have just established, together with Jensen’s inequality
(to deal with the integral), and the de la Vallée Poussin criterion for uniform integrability.

Using these bounds, we can show that the following continuity estimate holds.

Theorem 4.1.8. There exists a (deterministic) constant K < ∞ such that, with k ≥ 1 from the growth
bound on g and Φ, for every U ∈ U we have the almost sure (crude) inequality, for all t, t′ ∈ T and
x, x′ ∈ X ,

E
[
|J(t, x, U) − J(t′, x′, U)|

∣∣∣Ft

]
≤ K(1 + ∥x∥2k + ∥x′∥2k)

(
|t − t′|1/2 + ∥x − x′∥

)
.

Consequently, for each U ∈ U, we can find a single function J(· · · , U) : Ω × T × X → R, which is
continuous in t, x, and agrees with J(t, x, U) almost surely for every (t, x).

Furthermore, there exists a function v : Ω × T × X → R such that v(ω, t, x) = ess infU∈U J(ω, t, x, U)
almost surely for each t, x (where the essential infimum is taken in the Ft-measurable random variables),
and for all t, t′ ∈ T and x, x′ ∈ X , with t ≤ t′,

E
[
|v(t, x) − v(t′, x′)|

∣∣∣Ft

]
≤ K(1 + ∥x∥2k + ∥x′∥2k)

(
|t − t′|1/2 + ∥x − x′∥

)
.

4.1. NOTATION AND PROBLEM FORMULATION 55

Proof. Using our bounds and applying Cauchy–Schwarz, for K a constant which can vary from line to
line,

E
[
|J(t, x, U) − J(t′, x′, U)|

∣∣∣Ft

]
≤ E

[∫ t′

t

|g(s, Xt,x,U
s , Us)|ds

∣∣∣Ft

]
+ E

[
|Φ(Xt,x,U

T) − Φ(Xt′,x′,U
T)|

∣∣∣Ft

]
+ E

[∫ T

t′
|g(s, Xt,x,U

s , Us) − g(s, Xt′,x′,U
s , Us)|ds

∣∣∣Ft

]
≤ E

[∫ t′

t

K(1 + ∥Xt,x,U
s ∥2)ds

∣∣∣Ft

]
+ E

[
K∥Xt,x,U

T − Xt′,x′,U
T ∥(1 + ∥Xt,x,U

T ∥k + ∥Xt′,x′,U
T ∥k)

∣∣∣Ft

]
+ E

[∫ T

0
K∥Xt,x,U

s − Xt′,x′,U
s ∥(1 + ∥Xt,x,U

s ∥k + ∥Xt′,x′,U
s ∥k)ds

∣∣∣Ft

]
≤ K

∫ t′

t

(1 + E
[
∥Xt,x,U

s ∥2∣∣Ft

]
)ds + KE

[
∥Xt,x,U

T − Xt′,x′,U
T ∥2

∣∣∣Ft

]1/2
E

[(
1 + ∥Xt,x,U

T ∥k + ∥Xt′,x′,U
T ∥k

)2
∣∣∣Ft

]1/2

+ K

∫ T

0
E

[
∥Xt,x,U

s − Xt′,x′,U
s ∥2

∣∣∣Ft

]1/2
E

[
(1 + ∥Xt,x,U

s ∥k + ∥Xt′,x′,U
s ∥k)2

∣∣∣Ft

]1/2
ds

≤ K(1 + ∥x∥2)|t − t′| + K
(

(1 + ∥x∥2)
(
|t − t′| + ∥x − x′∥2))1/2

(1 + ∥x∥2k + ∥x′∥2k)1/2

+ KT
(

(1 + ∥x∥2)(|t − t′| + ∥x − x′∥2)
)1/2

(1 + ∥x∥2k + ∥x′∥2k)1/2

≤ K(1 + ∥x∥2k + ∥x′∥2k)
(

|t − t′|1/2 + ∥x − x′∥
)

,

where we have repeatedly used the inequality (x + y)1/2 ≤ x1/2 + y1/2 and the fact (t − t′)1/2 < T 1/2.

These results are valid for each value of (t, x) and (t′, x′), and we need to be careful, as the bound only
holds almost surely, and we have uncountably many points to consider. However, by the Kolmogorov
continuity criterion5, we can find a single function J(· · · , U) : Ω × T × X → R which is continuous in
(t, x), and agrees with these conditional expectations with probability one at every point. It’s then easy
to check (by inspecting a dense set and using continuity), that J satisfies the continuity bounds we have
just established for J .

We now seek to define v. For fixed values of t, x, define ṽ(t, x) = ess infU J(t, x, U) (which we don’t expect
to have good properties in t, x). Observe that for each (t, x), (t′, x′) ∈ T × X , there exists a sequence Un

such that J(t′, x′, Un) → ṽ(t′, x′). It follows that we have the almost sure inequality

ṽ(t, x) − ṽ(t′, x′) ≤ lim
n

J(t, x, Un) − ṽ(t′, x′)

= lim
n

(
J(t, x, Un) − J(t′, x′, Un)

)
≤ K(1 + ∥x∥2k + ∥x′∥2k)(|t − t′|1/2 + ∥x − x′∥).

Exchanging the roles of (t, x) and (t′, x′) gives the lower bound. As for J , this inequality only holds
almost surely for each choice of (t, x) and (t′, x′), and we use Kolmogorov’s continuity criterion to find a

5This is usually stated for random processes X : Ω × T → R, but the proof extends reasonably easily to random fields
J : Ω × T × Rn → R, for any finite n. See [8, Theorem 25.2, p59] for a proof. Essentially, you fix J to equal of J(t, x, U)
on the dyadic rationals, and then use Borel–Cantelli to show that taking limits in J is valid, as there are not ‘too many’
dyadic rationals in a small set.

56 CHAPTER 4. CONTINUOUS STOCHASTIC CONTROL

single function v : Ω ×T× X → R which is continuous in (t, x), agrees with ṽ(t, x) almost surely for each
(t, x), and satisfies the above continuity bounds.

Given this theorem, we will simply assume that J = J in what follows, and always take this continuous
version of the essential infimum v.

4.1.2 Dynamic programming

The following lemma may seem obvious from the definition, but the complexity is that on the left we are
evaluating the random function J at the point τ(ω), Xt,x,U

τ (ω), while on the right we are computing the
conditional expectation of a random variable given the σ-algebra Fτ .

Lemma 4.1.9. For any (t, x, U) ∈ T × X × U and any stopping time τ ≥ t, the cost-to-go function J

satisfies

J(τ, Xt,x,U
τ , U) = E

[∫ T

τ

g(s, Xt,x,U
s , Us)ds + Φ(Xt,x,U

T)
∣∣∣Fτ

]
P-a.s.

Proof. We begin by considering a deterministic time t′ > t. For arbitrary ε > 0, and take a countable
partition {Aε

n}n∈N of X such that maxx,x′∈Aε
n
{∥x − x′∥2} ≤ ε. Choose6 a point xn ∈ Aε

n for each n.
For s ≥ t′, we consider the difference between Xt,x,U

s and
∑

n 1{Xt,x,U

t′ ∈Aε
n}Xt′,xn,U

s ; by a variation of the
bounds we showed above, we know that there exists K such that∑

n

1{Xt,x,U

t′ ∈Aε
n}E

[∥∥Xt,x,U
s − Xt′,xn,U

s

∥∥2
∣∣∣Ft′

]
≤ K(1 + ∥Xt,x,U

t′ ∥2)
(∑

n

1{Xt,x,U

t′ ∈Aε
n}

∥∥∥Xt,x,U
t′ − xn

∥∥∥2)
≤ K(1 + ∥Xt,x,U

t′ ∥2)ε.

In particular, as L2 convergence implies convergence of a subsequence almost everywhere, there is a
sequence εk → 0 such that∑

n

1{Xt,x,U
s ∈A

εk
n }Xt′,xn,U

s → Xt,x,U
s (ds + δs=T) × dP-a.e.

where δs=T is a point mass at T , and we look only on the interval [t′, T]. From our assumed continuity
of g and Φ, together with uniform integrability, it follows that

lim
εk→0

∑
n

1{Xt,x,U

t′ ∈A
εk
n }J(t′, xn, U)

= lim
εk→0

∑
n

1{Xt,x,U

t′ ∈A
εk
n }E

[∫ T

t′
g(s, Xt′,xn,U

s , Us)ds + Φ(Xt′,xn,U
T)

∣∣∣Ft′

]
= E

[∫ T

t′
lim

εk→0

∑
n

1{Xt,x,U

t′ ∈A
εk
n }g(s, Xt′,xn,U

s , Us)ds + lim
εk→0

∑
n

1{Xt,x,U

t′ ∈A
εk
n }Φ(Xt′,xn,U

T)
∣∣∣Ft′

]
= E

[∫ T

t′
g(s, Xt,x,U

s , Us)ds + Φ(Xt,x,U
T)

∣∣∣Ft′

]
.

6For example, take the points with rational coordinates (which is a countable set) under your favourite ordering, and let
xi be the first point in Aε

i . This can be done without using the axiom of choice!

4.1. NOTATION AND PROBLEM FORMULATION 57

On the other hand, from continuity of J we know that

J(t′, Xt,x,U
t′ , U) = lim

εk→0

∑
n

1{Xt,x,U

t′ ∈A
εk
n }J(t′, xn, U).

Combining these results, we see that, for each t′ ∈ [t, T],

J(t′, Xt,x,U
t′ , U) = E

[∫ T

t′
g(s, Xt,x,U

s , Us)ds + Φ(Xt,x,U
T)

∣∣∣Ft′

]
P-a.e.

Define a (right continuous, uniformly integrable) martingale M by

Mt′ = E
[∫ T

t

g(s, Xt,x,U
s , Us)ds + Φ(Xt,x,U

T)
∣∣∣Ft′

]
=

∫ t′

t

g(s, Xt,x,U
s , Us)ds + J(t′, Xt,x,U

t′ , U).

Observe that both sides of the outer equality are right continuous in t′, so this equality holds up to a
null set independent of time (and we have continuity, as the right hand side is continuous in t′). The
martingale optional stopping theorem implies that∫ τ

t

g(s, Xt,x,U
s , Us)ds + J(τ, Xt,x,U

τ , U) = Mτ = E
[∫ T

t

g(s, Xt,x,U
s , Us)ds + Φ(Xt,x,U

T)
∣∣∣Fτ

]
.

The result then follows by rearrangement and standard properties of the conditional expectation.

Theorem 4.1.10. The value function v satisfies the dynamic programming equation

v(t, x) = ess inf
U∈U

E
[∫ τ

t

g(s, Xt,x,U
s , Us)ds + v(τ, Xt,x,U

τ)
∣∣∣Ft

]
for any stopping time τ with t ≤ τ ≤ T .

Proof. By construction, we know that v(t, x) ≤ J(t, x, U) for all U ∈ U. Fix t, x and τ . Using the
previous lemma,

J(t, x, U) = E
[∫ τ

t

g(s, Xt,x,U
s , Us)ds +

∫ T

τ

g(s, Xt,x,U
s , Us)ds + Φ(Xt,x,U

T)
∣∣∣Ft

]
,

= E
[∫ τ

t

g(s, Xt,x,U
s , Us)ds + J(τ, Xt,x,U

τ , U)
∣∣∣Ft

]
≥ E

[∫ τ

t

g(s, Xt,x,U
s , Us)ds + v(τ, Xt,x,U

τ)
∣∣∣Ft

]
.

Taking the essential infimum with respect to U , we obtain

v(t, x) ≥ ess inf
U∈U

E
[∫ τ

t

g(s, Xt,x,U
s , Us)ds + v(τ, Xt,x,U

τ)
∣∣∣Ft

]
.

Conversely, fix ε > 0 and observe that we can find a countable partition of T × X into rectangles of the
form (ti, ti+1] × Ai (with Ai ∈ B(Rn) having nonempty interior), such that

max
(t,x),(t′,x′)∈Ai

{
(1 + ∥x∥2k + ∥x′∥2k)

(
|t − t′|1/2 + ∥x − x′∥

)}
< ε.

58 CHAPTER 4. CONTINUOUS STOCHASTIC CONTROL

Associated with each Ai we again choose a point xi ∈ Ai For each i, we take a sequence U i,n ⊂ U such
that J(ti, xi, U i,n) → v(ti, xi) as n → ∞. Define the pasted strategy

Ũn = 1t<τ U + 1{t≥τ}
∑
i∈N

1{(τ,Xt,x,U
τ)∈(ti,ti+1]×Ai}U i,n.

As this is based on a countable pasting, it is still admissible. Furthermore, from the continuity estimates
above, writing K̃i = K(1 + 2∥Xt,x,U

τ ∥2k + ∥xi∥2k + ε) for K as in Theorem 4.1.8,

lim sup
n

J(τ, Xt,x,U
τ , Ũn)

≤ lim sup
n

∑
i∈N

1(τ,Xt,x,U
τ)∈(ti,ti+1]×Ai

(
J(ti, xi, Ũ) + K̃i(|τ − ti|1/2 + ∥Xt,x,U

τ − xi∥)
)

≤
∑
i∈N

1(τ,Xt,x,U
τ)∈(ti,ti+1]×Ai

(
lim

n
J(ti, xi, U i,n) + K̃iε

)
=

∑
i∈N

1(τ,Xt,x,U
τ)∈(ti,ti+1]×Ai

(
v(ti, xi) + K̃iε

)
≤ v(τ, Xt,x,U

τ) + 2ε
∑
i∈N

1(τ,Xt,x,U
τ)∈(ti,ti+1]×Ai

K̃i

By definition, we know that

v(t, x) ≤ E
[∫ τ

t

g(s, Xt,x,U
s , Us)ds + J(τ, Xt,x,U

τ , Ũn)
∣∣∣Ft

]
.

Therefore, taking the lim sup as n → ∞ (by uniform integrability), we see that, for some K ′ (depending
on the moment bounds on Xt,x,U , and hence on (t, x)),

v(t, x) ≤ lim sup
n

E
[∫ τ

t

g(s, Xt,x,U
s , Us)ds + J(τ, Xt,x,U

τ , Ũn)
∣∣∣Ft

]
≤ E

[∫ τ

t

g(s, Xt,x,U
s , Us)ds + v(τ, Xt,x,U

τ)
∣∣∣Ft

]
+ K ′ε.

Finally, taking ε → 0, we see that for any U ∈ U, we have

v(t, x) ≤ E
[∫ τ

t

g(s, Xt,x,U
s , Us)ds + v(τ, Xt,x,U

τ)
∣∣∣Ft

]
.

Taking the essential infimum with respect to U completes the proof.

Corollary 4.1.11 (Martingale Optimality Principle). For any control U ∈ U, the process defined by

MU
t = v(t, X0,x0,U

t) +
∫ t

0
g(s, X0,x0,U

s , Us)ds

is a submartingale, and is a martingale if and only if U is optimal.

Proof. For fixed t < t′, we know that

MU
t = v(t, X0,x0,U

t) +
∫ t

0
g(s, X0,x0,U

s , Us)ds

= ess inf
U ′∈U

E
[∫ t′

t

g(s, X
t,X

0,x0,U
t ,U ′

s , U ′
s)ds + v(t′, X

t,X
0,x0,U
t ,U ′

t′)
∣∣∣Ft

]
+

∫ t

0
g(s, X0,x0,U

s , Us)ds

≤ E
[∫ t′

t

g(s, X0,x0,U
s , Us)ds + v(t, X0,x0,U

t′)
∣∣∣Ft

]
+

∫ t

0
g(s, X0,x0,U

s , Us)ds

= E[MU
t′ |Ft].

4.2. HAMILTON–JACOBI–BELLMAN EQUATIONS 59

so M is a submartingale. If (and only if) U is optimal, then this is an equality, in which case M is a
martingale.

4.2 Hamilton–Jacobi–Bellman equations

Given we know our value function v satisifes the dynamic programming equation, the natural next step
is to derive a PDE which we expect it to satisfy. As we did in the deterministic setting, we first give a
heuristic derivation of the result.

Suppose v is smooth and independent of ω. Itô’s lemma tells us that, for any process X = Xt,x,U of the
form we are considering,

v(t′, Xt′) = v(t, Xt) +
∫ t′

t

∂tv ds +
∫ t′

t

(Dxv)⊤dXs + 1
2

∫ t′

t

Tr
[
(D2

xxv)d⟨X⟩t

dt

]
ds

where Dxv = ∇v and D2
xxv is the Hessian of v, and all derivatives are evaluated at (s, Xs). We know that

dXs = f(s, Xs, Us)dt + σ(s, Xs, Us)dWs and d⟨X⟩t

dt = (σσ⊤)(s, Xs, Us), so, dropping the s, Xs arguments
for simplicity,

v(t′, Xt′) = v(t, Xt) +
∫ t′

t

∂tv + (Dxv)⊤f(Us) + 1
2Tr

[
(D2

xxv)
(
(σσ⊤)(Us)

)]
ds +

∫ t′

t

(Dxv)⊤σ(Us)dWs

Taking an expectation, we drop the dW term (as this is a martingale), and so find

v(t, x) = E
[
v(t′, Xt,x,U

t′) −
∫ t′

t

∂tv + (Dxv)⊤f(Us) + 1
2Tr

[
(D2

xxv)
(
(σσ⊤)(Us)

)]
ds

]
.

At the same time, from the dynamic programming principle, we know

v(t, x) = inf
U∈U

E
[∫ t′

t

g(s, Xt,x,U
s , Us)ds + v(t′, Xt,x,U

t′)
]

so by substitution, we get the equation (with all terms evaluated at Xt,x,U
s)

0 = inf
U∈U

E
[∫ t′

t

g(Us)ds +
∫ t′

t

∂tv + (Dxv)⊤f(Us) + 1
2Tr

[
(D2

xxv)
(
(σσ⊤)(Us)

)]
ds

]
As this must hold for all t, t′, we divide by t′ − t and take t′ ↘ t. Approximating Us ≈ u and Xt,x,Us

s ≈ x,
so there is no randomness left in our equation, we simply have

0 = inf
u∈U

{
∂tv(t, x) + g(t, x, u) +

(
Dxv(t, x)

)⊤
f(t, x, u) + 1

2Tr
[(

D2
xxv(t, x)

)(
(σσ⊤)(t, x, u)

)]}
or equivalently

−∂tv = H(t, x, Dxv, D2
xxv)

where H : T × X × Rd × Rd×d → R is the Hamiltonian

H(t, x, p, q) = inf
u∈U

{
g(t, x, u) + p⊤f(t, x, u) + 1

2Tr
[
q

(
(σσ⊤)(t, x, u)

)]}
︸ ︷︷ ︸

H̃(t,x,p,q,u)

.

60 CHAPTER 4. CONTINUOUS STOCHASTIC CONTROL

This equation is known as the Hamilton–Jacobi–Bellman (or HJB) equation, as it is a second-order
extension of the Hamilton–Jacobi equation we have previously seen. We immediately notice that in
the case σ ≡ 0, where our dynamics do not have any stochastic term, we recover the Hamilton–Jacobi
equation we studied in the previous chapter.

We now verify that this PDE is the ‘right’ representation of our value process. We give a slightly more
delicate version than we had in the deterministic case.

Theorem 4.2.1 (Verification Theorem). Let v be the value function, and w : [0, T] × Rd → R a
C1,2(

[0, T) × Rd
)

∩ C0(
[0, T] × Rd

)
function satisfying the polynomial growth condition that there ex-

ists p, K > 0 such that

|w(t, x)| ≤ K(1 + ∥x∥p) for all (t, x) ∈ [0, T] × Rd.

(i) Suppose that

−∂tw(t, x) ≤ H(t, x, Dxw(t, x), D2
xxw(t, x)) for all (t, x) ∈ [0, T) × Rd,

w(T, x) ≤ Φ(x) for all x ∈ Rd.

Then w(t, x) ≤ v(t, x) almost surely, for all (t, x) ∈ [0, T] × Rd.

(ii) Suppose that

−∂tw(t, x) ≥ H(t, x, Dxw(t, x), D2
xxw(t, x)) for all (t, x) ∈ [0, T) × Rd,

w(T, x) ≥ Φ(x) for all x ∈ Rd.

Then w(t, x) ≥ v(t, x) almost surely, for all (t, x) ∈ [0, T] × Rd.

(iii) Suppose that both (i) and (ii) hold (so w satisfies the HJB equation, and w = v almost surely), and
there exists a Borel measurable function u : [0, T) × Rd → U such that the SDE

dXt = f(t, Xt, u(t, Xt))dt + σ(t, Xt, u(t, Xt))dWt; X0 = x0

admits a unique (strong) solution, and u achieves the minimization

H(t, x, Dxw(t, x), D2
xxw(t, x)) = H̃(t, x, Dxw(t, x), D2

xxw(t, x), u(t, x))

for all (t, x) ∈ [0, T) × Rd. Then Ut = u(t, Xt) is an optimal control, and is a feedback control.

Proof. Expanding the PDE. To begin, choose an arbitrary control U ∈ U. We know that for any stopping
time τ ∈ [t, T] we can apply Itô’s formula

w(t′ ∧ τ, Xt,x,U
t′∧τ) = w(t, x) +

∫ t′∧τ

t

(Dxw(s, Xt,x,U
s))⊤σ(s, Xt,x,U

s , Us)dWs

+
∫ t′∧τ

t

∂tw(s, Xt,x,U
s) + (Dxw(t, x))⊤f(t, x, u) + 1

2Tr
[
(D2

xxw(t, x))
(
(σσ⊤)(t, x, u)

)]
ds

Choose τn = inf{t′ > t :
∫ t′

t
∥(Dxw(s, Xt,x,U

s))⊤σ(s, Xt,x,U
s , Us)∥2ds ≥ n} ∧ T , so that we know that the

dW term in the above formula has finite quadratic variation on [0, τn], and is therefore a true martingale

4.2. HAMILTON–JACOBI–BELLMAN EQUATIONS 61

(in particular with expected value zero). We also notice that τn ↗ T as n → ∞, as the integrands are
continuous. Hence, for any stopping time τ ≤ T , with τ ∧ τn = min{τ, τn} we have

E
[
w(τ ∧ τn, Xt,x,U

t′∧τ)
∣∣∣Ft

]
= w(t, x) + E

[∫ τ∧τn

t

∂tw(s, Xt,x,U
s) − g(s, Xt,x,U

s , Us) + H̃(s, Xt,x,U
s , Dxw, D2

xxw, Us)ds
∣∣∣Ft

]
.

by rearrangment, we can write this in the same form as the dynamic programming equation

w(t, x) = E
[
w(τ ∧ τn, Xt,x,U

τ∧τn
) +

∫ τ∧τn

t

g(s, Xt,x,U
s , Us)ds

∣∣∣Ft

]
− E

[∫ τ∧τn

t

∂tw(s, Xt,x,U
s) + H̃(t, Xt,x,U

s , Dxw, D2
xxw, Us)ds

∣∣∣Ft

]
.

As we know that |w(t, x)| ≤ K(1+∥x∥p) and g(t, x, u) ≤ K(1+∥x∥k+1), uniform integrability (cf. Lemma
4.1.7) implies that we can take n → ∞, and thus

w(t, x) = E
[
w(τ, Xt,x,U

τ) +
∫ τ

t

g(s, Xt,x,U
s , Us)ds

∣∣∣Ft

]
− lim

n→∞
E

[∫ τ∧τn

t

∂tw(s, Xt,x,U
s) + H̃(s, Xt,x,U

s , Dxw, D2
xxw, Us)ds

∣∣∣Ft

]
.

(4.2.1)

Step 2: Case (i). Now suppose the conditions of (i) hold. Then

−∂tw(s, Xt,x,U
s) ≤ H(s, Xt,x,U

s , Dxw, D2
xxw) ≤ H̃(s, Xt,x,U

s , Dxw, D2
xxw, Us),

so the second line of (4.2.1) is negative. Therefore, with τ = T ,

w(t, x) ≤ E
[
w(T, Xt,x,U

T) +
∫ T

t

g(s, Xt,x,U
s , Us)ds

∣∣∣Ft

]
≤ E

[
Φ(Xt,x,U

T) +
∫ T

t

g(s, Xt,x,U
s , Us)ds

∣∣∣Ft

]
and as U ∈ U is arbitrary, by taking an infimum we see that w ≤ v.

Step 3: Case (ii). Now suppose the conditions of (ii) hold. In order to establish the bound, we first need
to find a control U ∈ U such that, for some fixed ε > 0,

H̃(s, Xt,x,U
s , Dxw, D2

xxw, Us) ≤ H(s, Xs,x,U
s , Dxw, D2

xxw) + ε.

For notational simplicity, write h(t, x, u) = H̃(t, x, Dxw, D2
xxw, u). We know that h is continuous with

respect to (t, x), and in particular is uniformly continuous on [0, T ′] × XK , uniformly in u ∈ U , for all
T ′ < T and XK = {x : ∥x∥ ≤ K} with K < ∞.

Using this uniform continuity, we partition [0, T]×X into countably many pieces of the form [ti, ti+1)×Ai,
such that

|h(t, x, u) − h(t′, x′, u)| ≤ δ for all (t, x), (t′, x′) ∈ [ti, ti+1) × Ai

for all u ∈ U and all i. We fix some xi ∈ Ai, and find ui ∈ U such that h(ti, xi, ui) ≤ infu h(ti, xi, u)+ε/2.
We define uε(t, x) = u01t=0+

∑
i ui1(t,x)∈[ti,ti+1)×Ai

, and observe that uε : T×X → U is Borel measurable.

Now, for a given x0, we define Xε to be the solution of the state dynamics started at x0, with constant
control Uε

t := uε(0, x0), up to the stopping time

ρ1 = min
{

inf{t : ∥h(t, Xε
t , Uε

t) − h(t, x0, Uε
t)∥ > ε/2}, T

}
.

62 CHAPTER 4. CONTINUOUS STOCHASTIC CONTROL

With this definition, we know

h(t, Xε
t , Uε

t) ≤ inf
u

h(t, Xε
t , u) + ε for t ≤ ρ1.

We now iterate this construction, by defining the piecewise constant control Uε
t = uε(ρn, Xε

ρn
) for t ∈

(ρn, ρn+1], where Xε is the controlled state and

ρn+1 = min
{

inf{t : ∥h(t, Xε
t , Uε

t) − h(t, Xε
ρn

, Uε
t)∥ > ε/2}, T

}
.

As Uε only depends on past values of X, it is easy to check that Uε is progressive, that the state dynamics
admit a unique continuous solution with control Uε, and that, from condition (ii),

h(t, Xε
t , Uε

t) ≤ inf
u

h(t, Xε
t , u) + ε ≤ −∂tw(t, Xε

t) + ε for t ≤ ρn.

By the argument of Lemma A.2.4, as Xε satisfies our moment bounds its paths do not explode, and
hence we also know that ρn → T as n → ∞, almost surely.

We now compare with (4.2.1), to observe that

w(t, x) = E
[
w(ρn, Xε

ρn
) +

∫ ρn

t

g(s, Xε
s , Uε

s)ds
∣∣∣Ft

]
− E

[∫ ρn

t

∂tw(s, Xε
s) + h(t, Xε

s , Uε)ds
∣∣∣Ft

]
≥ E

[
w(ρn, Xε

ρn
) +

∫ ρn

t

g(s, Xε
s , Uε

s)ds
∣∣∣Ft

]
− E

[∫ ρn

t

εds
∣∣∣Ft

]
We now take n → ∞, so by dominated convergence (as in Step 1)

w(t, x) ≥ E
[
w(T, Xε

T) +
∫ T

t

g(s, Xε
s , Uε

s)ds
∣∣∣Ft

]
− E

[∫ T

t

εds
∣∣∣Ft

]
≥ E

[
Φ(Xε

T) +
∫ T

t

g(s, Xε
s , Uε

s)ds
∣∣∣Ft

]
− ε(T − t)

≥ v(t, x) − ε(T − t).

Finally, we conclude by taking ε ↘ 0.

Step 4. Describing an optimizer. Under condition (iii), we see from (4.2.1) that, with Us = u(t, Xs) and
X the solution to the state dynamics,

w(t, x) = v(t, x) = E
[
Φ(XT) +

∫ T

t

g(s, Xs, Us)ds
∣∣∣Ft

]
.

Therefore U is an optimal control, as stated.

Remark 4.2.2. We’ve actually shown quite a bit more in this proof than it seems. We know that the value
function exists and is continuous, and this theorem tells us that it lies above every smooth subsolution of
the PDE (Case (i)), and below every smooth supersolution of the PDE (Case (ii)). This is closely related
to the fact that it is a viscosity solution of the HJB equation, even if we don’t know that it’s smooth!
Furthermore, there is a unique continuous viscosity solution to the HJB equation of polynomial growth,
so this characterizes the value function completely. In particular, this implies that the value function is
independent of ω, as it must be the (viscosity) solution of a deterministic PDE!

4.2. HAMILTON–JACOBI–BELLMAN EQUATIONS 63

This is one of the directions that this theory develops in – showing that value functions are generally
viscosity solutions of the HJB equation, and then using this representation to find numerical methods
with which to solve the equation and thus the control problem. For more details of this theory, a classic
place to start is Crandall, Ishii, and Lions [3], and Fleming and Soner [5] give a nice summary for control
problems.

Remark 4.2.3. Note that the verification argument doesn’t use the boundedness of f and σ, except in
ensuring uniform integrability of XU , and hence the uniform integrability of the costs. This suggests that
we can lift that assumption, provided we have enough restrictions on our controls to ensure this fact.
For example, if g, Φ are bounded, we can take any f, σ such that X is well defined for piecewise-constant
controls.

Remark 4.2.4. In the truly stochastic context, we also know that HJB equation usually admits C1,2

solutions, at least under the ‘uniform ellipticity’ condition that there exists a constant δ > 0 such that
∥λ⊤σ(t, x, u)∥ ≥ δ∥λ∥ for all λ ∈ Rn. This is a result due to Evans and Krylov, see Krylov [7, Chapter
4] for details in this direction.

Remark 4.2.5. The approach we took (based on piecewise constant controls) is easy to work with, but a
nicer result is that in many cases, there exists an ε-optimal feedback control (with enough smoothness to
guarantee that the state dynamics admit a unique solution). Indeed, given a smooth solution to the HJB
equation, and sufficient smooth invertibility of the Hamiltonian, we expect that this will be the case.

Remark 4.2.6. While we have derived all our results under the assumption that controls have a bounded
impact, we could now consider taking a sequence of problems where we relax this condition. Suppose our
coefficients f, σ, g admit growth bounds with respect to u (which now takes values in a metric space), then
the problem with u restricted to a bounded set is as we have described. As we relax the bounds on this
set, we are allowing more controls, and so obtain a sequence of (pointwise decreasing) value functions.
Taking the limit (assuming this sequence does not diverge), we can show that the limit also satisfies a
version of the Hamilton–Jacobi–Bellman equation (at least in viscosity sense).

The only question is whether this limit coincides with the problem where we allow unbounded controls.
If we assume that there is an almost-surely bounded ε-optimal control (in the unbounded problem), for
all ε > 0, then it is easy to see that this is indeed the case.

64 CHAPTER 4. CONTINUOUS STOCHASTIC CONTROL

Appendix A

Some useful basic theory

We here give a summary of additional results in probability theory which we make use of in the course.
Some of these we simply state without proof (where the proofs are given in either B8.1 or B8.2), other
less familiar results we reproduce in full. While we reproduce the key definitions below, it would be
much better (if you’re not familiar with the material) to try and learn it from a more developed text, for
example [2].

A.1 Filtrations, Conditional Expectations, and Martingales

The basic structure we will use in order to understand stochastic processes is that of a filtered probability
space. This is an abstract axiomatization (essentially due to Kolmogorov) of probability theory, which
enables us to study the flow of information through time.

Definition A.1.1. A measurable space is a set S, together with a σ-algebra F (that is, a family of subsets
of S which is closed under taking complements and countable unions, and contains S). The elements of
F are called events (in probabilistic language).

A measure µ is a map F → [0, ∞] with the properties that µ(∅) = 0 and µ is additive with respect
to countable disjoint unions, that is, for disjoint sets A1, A2, ..., we know µ(∪nAn) =

∑
n µ(An). A

measure µ is called a probability measure if µ(S) = 1, and by convention, we write S = Ω in this case. A
measurable space with a probability measure is called a probability space.

We say a measure space is complete if for every A ∈ F with µ(A) = 0, we know B ∈ F for all B ⊆ A.

Definition A.1.2. A filtration on a measurable space is an increasing collection of sub-σ-algebras of F ,
that is, a family {Ft}t∈T such that Ft ⊆ Ft′ ⊆ F for all t ≤ t′. This provides a precise way to model the
events which are determined by time t – any such event is included in Ft, and we assume that this is still
a σ-algebra. A measurable space with a filtration is called a filtered space (and hence filtered probability
spaces are defined).

Definition A.1.3. The Borel σ-algebra on a topological space Y is the smallest σ-algebra containing all
open sets, and is written B(Y)

65

66 APPENDIX A. SOME USEFUL BASIC THEORY

Definition A.1.4. A function f : S → Y, where Y is a topological space1 and (S, F) is a measurable
space, is said to be measurable if for all sets A ∈ B(Y), we know X−1(A) ∈ F . If S is also a topological
space, we say X is Borel measurable if X−1(A) ∈ B(S). Every continuous function is Borel measurable.

If S is the set of random seeds Ω, we often call measurable functions by the name random variables.

Understanding σ-algebras is made somewhat easier by taking a concrete example, which is provided by
the σ-algebra generated by a function f

Definition A.1.5. Given a function f , the σ-algebra generated by f is the smallest σ-algebra on Ω such
that f is measurable.

This definition leads to the following basic result:

Theorem A.1.6 (Doob–Dynkin Lemma). Let f be a function from S to a topological space Y, and
let σ(f) denote the σ-algebra generated by f . Let g : S → R be a measurable function. Then g is
σ(f)-measurable if and only if there exists a Borel measurable function h : Y → R such that

g(s) = h ◦ f(s).

In order to work with families of random variables, it is convenient to be able to take limits of them.
A useful fact is that, for any countable sequence of measurable functions fn, the pointwise limit limn fn

is also a measurable function (provided it exists). Similarly for supn fn and infn fn. Unfortunately this
does not extend directly to the suprema/infima of uncountable families, see Theorem A.1.20 below.

Once we have a measure µ on a measurable space, we can define integrals. We will assume that µ is
σ-finite, that is, there is a sequence of sets An ∈ F with ∪n∈NAn = S, such that µ(An) < ∞ for all n.

Definition A.1.7. For a function f : S → R, the integral of f is written2 ∫
f(x)µ(dx).

For simple functions, that is functions of the form ϕ(x) =
∑

n∈N an1An(x) such that the An ∈ F are
disjoint, and ai ∈ R+, the integral is given by

∫
S ϕ(x)µ(dx) =

∑
n∈N anµ(An). For nonnegative functions

f+, the integral is the supremum of the integrals of all simple functions bounded above by f+. For general
functions, the integral is given by

∫
fµ(dx) =

∫
max{f, 0}µ(dx) −

∫
max{−f, 0}µ(dx), provided at least

one of these terms is finite.

In the case where we have a probability measure µ = P, and S = Ω, we often write E[f] =
∫

Ω f(ω)P(dω),
and call this the expectation.

Once we have an integral, we quickly obtain a topology over functions.

Definition A.1.8. We define the metric spaces Lp, which are (equivalence classes of) measurable func-
tions S → R, with the metric

∥f − g∥p =
(∫

S

|f(x) − g(x)|pµ(dx)
)2

.

This is a metric provided we identify functions where ∥f −g∥ = 0. Such functions are said to be the same
almost everywhere. We say functions are in Lp provided ∥f∥p < ∞.

1One can generalize this to having Y a measure space with an arbitrary σ-algebra, but this is not so interesting
2The notation

∫
f(x)dµ(x) is also common.

A.1. FILTRATIONS, CONDITIONAL EXPECTATIONS, AND MARTINGALES 67

Using this, we now have various notions of convergence of sequences of functions. We say fn → f

pointwise if fn(x) → f(x) for all x. Weakening this slightly, we say fn → f almost everywhere (or almost
surely, if we are working with probability spaces), if the set A = {x : fn(x) ̸→ f(x) satisfies µ(A) = 0.
It is possible to check that this agrees with the terminology above, and we often abbreviate it to writing
a.e. or a.s. We say that fn → f in Lp if ∥fn − f∥p → 0. Generally speaking, Lp and almost everywhere
convergence do not imply each other (but see Theorem A.1.15).

Radon–Nikodym theorem

The key insight of Kolmogorov’s axiomatization of probability in terms of measure theory was the defini-
tion of the conditional expecation (and the existence of certain continuous processes as a consequence).

Definition A.1.9. Take a random variable X ∈ L1 on a probability space. Given a sub-σ-algebra G of
F , we define the conditional expectation Y = E [X|G] to be the (unique, up to equality almost everywhere)
random variable such that, for all A ∈ G, we know E[1AY] = E[1AX].

The existence of the conditional expectation follows from the Riesz representation theorem in Hilbert
spaces (for random variables in L2), along with a convergence theorem for the integral, for example
Vitali’s convergence theorem below. We should note that the conditional expectation depends on the
choice of probability measure P, and is only uniquely defined P-almost everywhere.

The key property of the conditional expectation that is satisfied is the following:

Lemma A.1.10 (The tower law of conditional expectation). Let {Ft}t∈T be a filtration on a probability
space. Then for any random variable X ∈ L1, and any t ≤ t′, we know

E[X|Ft] = E
[
E[X|Ft′]

∣∣∣Ft

]
up to equality almost everywhere.

Bayes’ rule

The following inequality is one of the most useful inequalities in this area (together with Cauchy–Schwarz).

Lemma A.1.11 (Jensen’s Inequality). Suppose ϕ is a convex map of R into R and suppose X is an
integrable random variable such that ϕ ◦ X is integrable. Let G be any sub-σ-algebra of F . Then

ϕ
(
E[X|G]

)
≤ E[ϕ ◦ X|G] a.s.

Proof. Note that ϕ is the upper envelope of a countable family of affine functions

λn(x) = αnx + βn, x ∈ R, n ∈ N,

that is, ϕ(x) = supn{λn(x)}. The random variables λn ◦ X are integrable and

λn ◦ E[X|G] = E[λn ◦ X|G] ≤ E[ϕ ◦ X|G] a.s.

Taking the supremum with respect to n, the result follows.

As convergence almost surely does not usually imply convergence in L1 (or any other Lp), it is helpful
to study cases where this does hold. The required condition is uniform integrability.

68 APPENDIX A. SOME USEFUL BASIC THEORY

Definition A.1.12. Suppose K is a set of random variables. Then K is said to be a P-uniformly
integrable set if ∫

{|X|≥c}
|X(ω)| dP(ω) = E

[
1|X|≥c|X|

]
converges to 0 uniformly in X ∈ K as c → +∞.

A convenient reformulation is given be the following result, see [4, Theorem 2.5.4] for a proof.

Theorem A.1.13. Suppose K is a subset of L1. Then K is uniformly integrable if and only if both

(i) there is a number k < ∞ such that for all X ∈ K, E
[
|X|

]
< k, and

(ii) for any ε > 0 there is a δ > 0 such that, for all A ∈ F with P(A) ≤ δ, we have E
[
1A|X(ω)|

]
< ε

for all X ∈ K.

Lemma A.1.14 (de la Vallée Poussin criterion). Let K be a set of random variables. Suppose there is
a positive function ϕ defined on [0, ∞) such that limt→∞ t−1ϕ(t) = +∞ and supX∈K E

[
ϕ(|X|)

]
< ∞.

(Common examples are ϕ(x) = xp for p > 1, or ϕ(x) = x log x.) Then K is uniformly integrable.

Proof. Write λ = supX∈K E[ϕ(|X|)] and fix ε > 0. Put a = ε−1λ and choose c large enough that
t−1ϕ(t) ≥ a if t ≥ c. Then, for x > c, we have x ≤ a−1ϕ(x), so

sup
X∈K

E
[
1|X|>c|X|

]
≤ a−1 sup

X∈K
E

[
1|X|>cϕ(|X|)

]
≤ a−1 sup

X∈K
E

[
ϕ(|X|)

]
≤ ε.

Taking c → ∞ we see that
lim sup

c→∞
sup

X∈K
E

[
1|X|>c|X|

]
≤ ε

and as ε was arbitrary we conclude K is uniformly integrable.

The power of the uniform integrability condition is due to the following result, which generalizes the
dominated convergence theorem. (See [4, Theorem 2.5.8] for a proof.)

Theorem A.1.15 (Vitali convergence theorem). Suppose {Xn}n∈N is a sequence of integrable random
variables which converge in probability to a random variable X. Then the following are equivalent:

(i) Xn converges to X in L1 that is E
[
|Xn − X|

]
→ 0 (which easily implies E[Xn] → E[X]),

(ii) the collection K = {Xn}n∈N is uniformly integrable.

In either case, the limit X is also integrable.

A key property we make use of is that uniform integrability is not changed by taking conditional expec-
tations.

Theorem A.1.16. Let K be a uniformly integrable set, and G be a (possibly uncountable) family of
sub-σ-algebras of F . Then the family of random variables {E[X|G]}X∈K,G∈G is uniformly integrable.

A.1. FILTRATIONS, CONDITIONAL EXPECTATIONS, AND MARTINGALES 69

Proof. We prove this using Theorem A.1.13. From Jensen’s inequality, we know that for any A ∈ G,

E
[
1A|E[X|G]|

]
≤ E[1A|X|] for all X ∈ K, G ∈ G.

Setting A = Ω, we obtain a uniform bound on E
[
|E[X|G]|

]
. For each δ > 0, let Aδ(G) be the largest set

of the form {|E[X|G]| > k} such that P(Aδ(G)) ≤ δ, that is,

Aδ(G) =
⋃

{k:P(|E[X|G]|>k)≤δ}

{ω : |E[X|G]| > k}.

Note that Aδ(G) ∈ G and by construction, for A ∈ F with P(A) ≤ δ, we have E
[
1A|E[X|G]|

]
≤

E
[
1Aδ(G)|E[X|G]|

]
. For any ε > 0, we can find a δ > 0 such that E[1Aδ(F)|X|] < ε, and hence, for

any A ∈ F with P(A) ≤ δ,

E
[
1A|E[X|G]|

]
≤ E

[
1Aδ(G)|E[X|G]|

]
≤ E[1Aδ(G)|X|]

≤ E[IAδ(F)|X|] < ε

for all X ∈ K, G ∈ G. By Theorem A.1.13, we see that the family {E[X|G]}X∈K,G∈G is uniformly
integrable.

Given this structure, we can define some useful types of processes.

Definition A.1.17. We call functions X : Ω×T → Y (for Y a topological space), random processes. We
write Xt(ω) = X(ω, t) and often simplify to Xt. We say X is adapted if ω 7→ X(ω, t) is Ft-measurable
for all t. This is a fairly weak condition though, as it doesn’t tell us anything about the regularity of X

in time.

We say X is progressive if for all t ∈ T, the restricted map Ω× [0, t] → Y; (s, ω) 7→ Xs(ω) is B([0, t])⊗Ft-
measurable. This ensures regularity with respect to time, as well as ω. If X has continuous paths, that
is, t 7→ X(t, ω) is continuous for all ω, and X is adapted, then X is progressively measurable (but this is
only sufficient, for example having right-continuous or left-continuous paths is also enough).

Definition A.1.18. We say an process X is a submartingale if, for all t ≤ t′, we have Xt ≤ E[Xt′ |Ft],
and Xt ∈ L1. We say X is a supermartingale if −X is a submartingale, and a martingale if it is both a
sub- and super-martingale.

There are many beautiful properties of these processes.

Optional stopping

Martingale convergence

Existence of cadlag modifications.

Doob–Meyer

Lemma A.1.19. Let Y be an adapted right-continuous process. Then Y is a submartingale if and only
if, for all stopping times τ ≤ τ ′, we know E[Yτ] ≤ E[Yτ ′]. In particular, Y is a martingale if and only if
E[Yτ] is constant for all τ .

Proof. If Y is a submartingale, this is an immediate consequence of the Doob–Meyer decomposition and
optional stopping. We prove the converse. Let t < t′, and define the set

A =
{
E[Yt′ |Ft] < Yt

}
∈ Ft.

70 APPENDIX A. SOME USEFUL BASIC THEORY

Then τ = 1At + 1Act′ ≤ t′ is a stopping time, and Yt′ − Yτ = 1A(Yt′ − Yt). Therefore,

0 ≤ E[Yt′ − Yτ] = E[1A(Yt′ − Yt)] = E[1A(E[Yt′ |Ft] − Yt)︸ ︷︷ ︸
≤0

] ≤ 0.

Therefore, A is a null set and
Yt ≤ E[Yt′ |Ft]

that is, Y is a submartingale. The martingale statement follows by considering Y and −Y .

A.1.1 Existence of essential suprema

Theorem A.1.20. [[4], Theorem 1.3.40] Let (S, Σ, µ) be a σ-finite measure space. Let F be a (possibly
uncountable) collection of Σ-measurable functions. Then there exists a Σ-measurable function f∗ such
that

(i) f∗ ≥ f µ-a.e. for all f ∈ F ,

(ii) f∗ ≤ g µ-a.e. for all measurable g satisfying ‘g ≥ f µ-a.e. for all f ∈ F ’.

Suppose in addition that F is directed upwards, that is, for f, f ′ ∈ F there exists f̃ ∈ F with f̃ ≥ f ∨ f ′

µ-a.e. Then there exists an increasing sequence {fn}n∈N ⊂ F such that f∗ = limn fn µ-a.e.

We call the function f∗ the essential supremum of F , and write f∗ = ess sup F . Similarly ess inf F =
− ess sup{−F}. If we need to specify the sets involved, we will say that the essential infimum is taken
over F , in the Σ-measurable functions, and defined µ-a.e.

Proof. First assume that the functions in F are uniformly bounded above and µ is finite. If F is countable,
then f∗(x) := supf∈F f(x) is measurable, and satisfies the requirements. Now consider the quantity

c := sup
{ ∫

S

(
sup
f∈G

f(x)
)

dµ
∣∣∣ G ⊂ F countable

}
< ∞.

Let Gn be a sequence of countable subsets of F approaching the outer supremum, that is,
∫ (

supf∈Gn
f(x)

)
dµ ↑

c. Then G∗ = ∪nGn is a countable subset of F which attains the supremum, that is,
∫ (

supf∈G∗ f(x)
)
dµ =

c. Now let f∗(x) := supf∈G∗{f(x)} for every x, and note that f∗ is Σ-measurable.

To show this f∗ satisfies the requirements of the theorem, observe that if we have f ′ ∈ F with µ({f ′ >

f∗}) > 0 then {f ′} ∪ G∗ is a countable subset of F and∫
S

(
sup

f∈{f ′}∪G
f(x)

)
dµ =

∫
S

(
f ′(x) ∨ f∗(x)

)
dµ > c

giving a contradiction. Furthermore, if g satisfies g ≥ f µ-a.e. for all f ∈ F , then g(x) ≥ supf∈G∗ f(x) =
f∗. Finally, if F is upward directed, then G∗ can be replaced by an increasing sequence of functions, and
the result follows.

If the functions are not uniformly bounded, then the monotonic transformation f(x) 7→ arctan(f(x))
gives a uniformly bounded family. Using this,

f∗ = tan(ess sup
f∈F

{arctan ◦f)}

gives the essential supremum of the original unbounded family. If µ is not finite but σ-finite, then
decomposing into finite sections and constructing the essential supremum on each gives the result.

A.1. FILTRATIONS, CONDITIONAL EXPECTATIONS, AND MARTINGALES 71

A.1.2 Almost supermartingales and stochastic approximation

Here we prove some useful results related to stochastic approximation theory.

Definition A.1.21. An adapted process X is called an almost supermartingale if there exist nonnegative
adapted integrable processes A, B, C such that

E[Xt+1|Ft] ≤ Xt(1 + Bt) + At − Ct.

Theorem A.1.22 (Robbins–Siegmund convergence theorem). Let X be a nonnegative almost super-
martingale. Then limt→∞ Xt exists and is finite, and

∑
t Ct < ∞, on the event

{
ω :

∑
t(At + Bt) < ∞

}
.

Proof. We will rearrange X to construct a supermartingale bounded below, and then apply Doob’s
convergence theorem. Define

X ′
t = Xt

t−1∏
n=1

(1 + Bn)−1

and

A′
t = At

t∏
n=1

(1 + Bn)−1, C ′
t = Ct

t∏
n=1

(1 + Bn)−1

and then, for some β > 0,

Ut = X ′
t −

t−1∑
n=1

(A′
n − C ′

n), τ = min
{

t ∈ N :
∑
n≤t

A′
t > β

}
.

We claim that Uτ := {Ut∧τ }t∈N is a supermartingale bounded below. To show this, observe that τ is a
stopping time, so Uτ is adapted. As X, A, C are all integrable, and 0 ≤ Z ′ ≤ Z for Z ∈ {X, A, C}, we
see that U is integrable. We also know that, as X is an almost supermartingale,

E[X ′
t+1|Ft] = E[Xt+1|Ft]

t∏
n=1

(1 + Bn)−1 ≤
(

Xn(1 + Bt) + At − Ct

) t∏
n=1

(1 + Bn)−1 = X ′
t + A′

t − C ′
t

and hence

E[Uτ
t+1|Ft] = Uτ 1t≥τ + E[Ut+1|Ft]1t<τ = Uτ 1t≥τ + E

[
X ′

t+1 −
t∑

n=1
(An − Cn)

∣∣∣Ft

]
1t<τ

= Uτ 1t≥τ +
(
E[X ′

t+1 − At + Ct|Ft] −
t∑

n=1
(An − Cn)

)
1t<τ

≤ Uτ 1t≥τ +
(

X ′
t −

t∑
n=1

(An − Cn)
)

1t<τ = Uτ 1t≥τ + Ut1t<τ

= Uτ
t

It follows that Uτ is a supermartingale. We also know that X ′, A′, C ′ are nonnegative, so

Uτ
t ≥ Uτ

t −
∑

t≤τ−1
C ′

t = X ′
t −

∑
t≤τ−1

A′
t ≥ −β.

Therefore, as Uτ is a supermartingale bounded below, by Doob’s convergence theorem it must converge
to a finite limit a.s. In other words, U converges a.s. to a finite limit on the event {τ = ∞}.

72 APPENDIX A. SOME USEFUL BASIC THEORY

As β > 0 was arbitrary (and each defines a corresponding τβ), we now see that we have convergence of
U on the event ⋃

β>0
{τβ = ∞} =

{ ∑
t

A′
t < ∞

}
.

On this event, as X ′ is nonnegative, we know

t−1∑
n=1

C ′
n −

t−1∑
n=1

A′
n ≤ X ′

t −
t−1∑
n=1

(A′
n − C ′

n) = Ut ̸→ ∞,

so we must also have
∑

t C ′
t < ∞, and also that X ′ is convergent to a finite limit.

Finally, observe that

0 ≤
t∏

n=1
(1 + Bn) ≤ exp

(t∑
n=1

Bn

)
On the event {

∑
t(At + Bt) < ∞} ⊆ {

∑
t Bt < ∞} this remains finite, and hence Xt = X ′

t

∏t−1
n=1(1 + Bn)

is convergent and
∑

t Ct =
∑

t(C ′
t

∏t
n=1(1 + Bn)) < ∞, as desired.

This allows us to easily prove the following version of the Robbins–Monro result (essentially due to
Dvoretsky (1956)):

Lemma A.1.23. Consider an adapted random process Y with values in Rn, with dynamics (for each i

an index in {1, ..., n})
Yt+1(i) = (1 − αt(i))βt(i)Yt(i) + αt(i)εt+1(i)

where αt(i), βt(i) ∈ [0, 1] are adapted, and for all i,

• E[εt+1(i)|Ft] = 0

• V[εt(i)|Ft] ≤ c(1 + ∥Yt∥2
∞) for c > 0.

Then Y → 0 a.s. on the event{ ∑
t∈N

αt(i) = ∞ and
∑
t∈N

α2
t (i) < ∞ for all i

}
.

Proof. Let τ = min{t : ∥Yt∥∞ > k} for some k > 0, and consider the stopped process Y τ
t = 1t<τ Yt +

1t≥τ Yτ . We know that, omitting the argument i for clarity,

E[(Y τ
t+1)2|Ft] ≤ (1 − αt)2β2

t (Y τ
t)2 + 2(1 − αt)βt|(Y τ

t)|αtE[εt+1|Ft]

+ α2
tV[ε2

t+1|Ft] + α2
tE[εt+1|Ft]2

≤ (1 − αt)2(Y τ
t)2 + α2

tV[ε2
t+1|Ft]

≤ (1 − αt)2(Y τ
t)2 + α2

t c(1 + ∥(Y τ
t)∥2

∞)

≤ (1 + α2
t)(Y τ

t)2 + α2
t c(1 + k2) − 2αt(Y τ

t)2.

That is, (Y τ (i))2 is a nonnegative almost supermartingale, with

At = (αt(i))2c(1 + k2), Bt = (αt(i))2, Ct = 2(αt(i))(Y τ
t (i))2.

A.1. FILTRATIONS, CONDITIONAL EXPECTATIONS, AND MARTINGALES 73

We immediately see that, on the event of interest,
∑

t(At + Bt) < ∞, so (Y τ
t (i))2 converges to a finite

limit, as does ∑
t

Ct = 2
∑

t

αt(i)(Y τ
t (i))2.

But as
∑

t αt(i) = ∞, this implies that (Y τ
t (i))2 → 0, and so is bounded for all t. As this holds for all i

(and i takes finitely many values), it must be the case that ∥Yt∥∞ is a.s. bounded. Therefore, taking the
union over all k > 0 we have the result.

In order to prove the convergence of Q-learning and related algorithms, a slightly more involved version
(due to Jaakkola, Jordan and Singh [6], whose proof is a variant of the approach below) is useful.

Lemma A.1.24 (cf. Lemma 2.3.4). Consider an adapted random process Y with values in Rn, with
dynamics (for each i an index in {1, ..., n})

Yt+1(i) = (1 − αt(i))Yt(i) + αt(i)Zt+1(i)

where, for all i,

• αt(i) ∈ [0, 1],
∑

t∈N αt(i) = ∞,
∑

t∈N α2
t (i) < ∞,

• |E[Zt+1(i)|Ft]| ≤ γ∥Yt∥∞, with γ < 1,

• V[Zt(i)|Ft] ≤ c(1 + ∥Yt∥2
∞) for c > 0.

Then ∥Yt∥∞ → 0 a.s. as t → ∞.

Proof. We consider the rescaled process defined by

Ut+1(i) = (1 − αt(i))βtUt(i) + αt(i)βtZt+1(i); U0 = Y0

where βt = min{1, 1/∥Ut∥∞}, which has the property that βtUt ≤ 1. Observe that Ut =
(∏

0≤s<t βs)Yt.

We write εt = Zt − E[Zt|Ft−1]. We can then decompose Ut = ∆t + Γt, where ∆0 = U0, Γ0 = 0 and

∆t+1(i) = (1 − αt(i))βt∆t(i) + αt(i)βtE[Zt+1(i)|Ft],

Γt+1(i) = (1 − αt(i))βtΓt(i) + αt(i)βtεt+1(i).

In particular, applying Lemma A.1.23 to Γ, we see that Γ, βε → 0 a.s.

In order to bound ∆t, we again fix k > 0, and T > 0, and define

ρT,k = min
{

t ≥ T : ∥Γt∥∞ >
1 − γ

2γ
k or ∥∆t∥∞ > k

}
.

Observe that we can write (using our assumption to bound E[Zt+1|Ft])

|∆t+1(i)| ≤ (1 − αt(i))βt|∆t(i)| + αt(i)γ∥βtUt∥∞ ≤ (1 − αt(i))|∆t(i)| + αt(i)βtγ(∥∆t∥∞ + ∥Γt∥∞).

Define the event
AT,k =

{
∥Γt∥∞ ≤ 1 − γ

2γ
k for all t ≥ T

}
∩

{
∥∆T ∥∞ ≤ k

}
.

74 APPENDIX A. SOME USEFUL BASIC THEORY

On AT,k, for T ≤ t < ρT,k, by the triangle inequality we know (∥∆t∥∞ + ∥Γt∥∞) ≤ ηk, where η =
1 + 1−γ

2γ < 1
γ . Thus, as βt ≤ 1,

|∆t+1(i)| − γηk ≤ (1 − αt(i))
(

|∆t(i)| − γηk
)

≤
(

|∆T (i)| − γηk
) t∏

s=T

(1 − αt(i)) ≤ (k − γηk) exp
(

−
t∑

s=T

αt(i)
)

.
(1.1.1)

This must hold for all i, which implies that

∥∆t+1∥∞ ≤ k on AT,k, for all T ≤ t < ρT,k.

However, if ρT,k(ω) < ∞ for some ω ∈ AT,k, taking t = ρT,k − 1 it follows that ∆ρT,k
≤ k and

ΓρT,k
≤ 1−γ

2γ k, which gives a contradiction. Therefore ρT,k = ∞ on AT,k, for all T > 0. Coupled
with the convergence of Γ and βε, we conclude that the sets

∪T,k{ρT,k = ∞} ⊆ {∥Htεt∥∞ + ∥Γt∥∞ → 0} ⊆ ∪T,kAT,k ⊆ ∪T,k{ρT,k = ∞}

are equal and have probability one.

Going back to (1.1.1), on ∪T AT,k we can take t → ∞ to see that

lim sup
t→∞

∥∆t∥∞ ≤ γηk < k.

But, as ∥Γt∥∞ → 0 on ∪T AT,k, this implies that ∪T AT,k ⊆ ∪T AT,γηk. Conversely, as γη < 1, we know
∪T AT,k ⊇ ∪T AT,γηk. Therefore,{

lim sup
t→∞

∥∆t∥∞ < ∞
}

= ∪T,kAT,k = ∩k>0 ∪T AT,k =
{

lim sup
t→∞

∥∆t∥∞ = 0
}

.

To finish, we observe that we now have shown that ∥∆t∥∞ + ∥Γt∥∞ → 0, and therefore ∥Ut∥∞ → 0.
However, this means that βt ̸= 1 for a.s. only finitely many t, and so (

∏
s<t βs) converges a.s. to a strictly

positive value. Consequently, as Ut =
(∏

s<t βs)Yt, we conclude that ∥Yt∥∞ → 0 a.s.

A.2 A summary of stochastic calculus

progressive measurability

continuity of integral paths

Itô’s lemma

BDG inequality

A.2.1 Lipschitz SDEs

This appendix is taken, with slight modification, from [4, Chapter 16]. Consider an SDE of the form

Xt = X0 +
∫

[0,t]
µ(ω, s, Xs)ds +

∫
[0,t]

σ(ω, s, Xs)dWs, (1.2.1)

for W a Brownian motion. Throughout this section, we write ∥ · ∥ for the Euclidean norm and, by
extension, for a matrix ∥A∥2 =

∑
ij Aij .

A.2. A SUMMARY OF STOCHASTIC CALCULUS 75

Theorem A.2.1. Let µ and σ be uniformly Lipschitz stochastic functions (that is, maps µ : Ω × [0, T] ×
Rn → Rd and σ : Ω × [0, T] × Rd → Rd×m with ∥µ(t, x) − µ(t, x′)∥ ≤ K∥x − x′∥. Suppose∫

[0,T]
E

[
∥µs(0)∥2 + ∥σs(0)∥2]

ds < ∞

Then (1.2.1) has a unique3 (strong) solution X, with the predetermined Brownian motion.

Our method of proof depends on establishing a useful stability result for this equation, under some
additional assumptions.

Lemma A.2.2. Let X be a solution of (1.2.1) with µ, σ functions satisfying the linear growth condition

∥µs(x)∥ ≤ µ̃s + K∥x∥, ∥σs(x)∥ ≤ σ̃s + K∥x∥,

for some constant K and some processes µ̃ and σ̃. (Note that if µ and σ are uniformly Lipschitz, then
µ̃ = ∥µ(0)∥ and σ̃ = ∥σ(0)∥ satisfy these requirements, with K the Lipschitz constant of the functions.)

Then X is continuous and for any deterministic time T and any p ≥ 2, there exists a real constant C

depending on T , K and p such that

E
[

sup
t≤s≤T

∥Xs∥p
∣∣∣Ft

]
< C

(
∥Xt∥p +

∫
[t,T]

E
[
∥µ̃s∥p + ∥σ̃s∥p

∣∣Ft

]
ds

)
.

Proof. Continuity of X follows immediately from the continuity of the integrals in (1.2.1). If ∥Xt∥p +∫
[t,T] E

[
∥µ̃s∥p + ∥σ̃∥p

∣∣Ft

]
ds = ∞, then the result is trivial, so we can assume this quantity is finite. In

the following, C denotes a constant which can depend on T , K and p, and may vary from line to line.
We observe, for t ≤ t′ ≤ T ,

E
[

sup
t≤t′≤T

∥Xt′∥p
∣∣∣Ft

]
= E

[
sup

r∈[t,t′]

∥∥∥Xt +
∫

[t,r]
µs(Xs)ds +

∫
[t,r]

σs(Xs)dWs

∥∥∥p∣∣∣Ft

]
≤ C∥Xt∥p + C

∫
[t,t′]

E
[
∥µs(Xs)∥p

∣∣Ft

]
ds + CE

[(
sup

r∈[t,t′]

∣∣∣ ∫
[t,r]

σs(Xs)dWs

∣∣∣)p∣∣∣Ft

]
≤ C∥Xt∥p + C

∫
[t,t′]

E
[
∥µs(Xs)∥p

∣∣Ft

]
ds + CE

[(∫
[t,t′]

∥σs(Xs)∥2]ds
)p/2∣∣Ft

]
≤ C∥Xt∥p + C

∫
[t,t′]

E
[
∥µ̃s∥p + Kp∥Xs∥p

∣∣Ft]ds + C

∫
[t,t′]

E
[
∥σ̃∥p + Kp∥Xs∥p

∣∣Ft

]
ds

≤ C
(

∥Xt∥p +
∫

[t,t′]
E

[
∥µ̃s∥p + ∥σ̃∥p

∣∣Ft

]
ds

)
+ C

∫
[t,t′]

E
[

sup
s≤t

∥Xs∥p
∣∣Ft

]
ds

where on the third and fifth lines we have used Jensen’s inequality, and on the fourth we have used the
Burkholder–Davis–Gundy inequality. By Grönwall’s inequality, this implies that

sup
t′∈[t,T]

∥Xt′∥p ≤ C
(

∥Xt∥p +
∫

[t,T]
E

[
∥µ̃s∥p + ∥σ̃∥p

∣∣Ft

]
ds

)
eCT < ∞.

Replacing C by CeCT gives the result.
3Here and elsewhere, when stating that an equation has a unique solution, we mean both that a solution exists and that

the solution is unique. By a unique strong solution, we mean that it is the only solution adapted to the predetermined
filtration in which we pose our problem

76 APPENDIX A. SOME USEFUL BASIC THEORY

One approach to solving SDEs is to apply the above argument to the difference of two SDEs, and then
use the resulting estimate to solve the SDE over a short time interval. The existence of a solution for all
time follows by pasting. In this setting, we can instead give a more elegant approach using the following,
more careful, estimate, which we will also use elsewhere.

Lemma A.2.3. Let µ, µ̃, σ, σ̃ be uniformly Lipschitz functions satisfying the conditions of Theorem A.2.1.
Let X and X̃ be solutions of (1.2.1) with coefficients (µ, σ) and (µ̃, σ̃) respectively. For any β ≥ 0,

E
[
e−βT ∥XT − X̃T ∥2∣∣Ft

]
≤ e−(β−1−4K2)(T −t)

(
∥Xt − X̃t∥2 +

∫
[t,T]

2e−βsE[∥µs(Xs) − µ̃s(Xs)∥2∣∣Ft]

+ 2e−2βsE[∥σs(Xs) − σ̃s(Xs)∥2∣∣Ft]ds
)

.

Proof. Write Ys = e−βs∥Xs − X̃s∥2. As our processes are continuous, using the Itô product rule we see

YT = ∥Xt − X̃t∥2 − β

∫
[t,T]

e−βs∥Xs − X̃s∥2ds

+ 2
∫

[t,T]
e−βs(Xs − X̃s)⊤(µs(Xs) − µ̃s(X̃s))ds

+ 2
∫

[t,T]
e−βs(Xs − X̃s)⊤(σs(Xs) − σ̃s(X̃s))dWs

+
∫

[t,T]
e−2βs∥σs(Xs) − σ̃s(X̃s)∥2ds.

(1.2.2)

Calculating the quadratic variation of Y , we have

⟨Y ⟩t ≤ 4
∫

[t,T]
e−2βs∥Xs − X̃s∥2∥σ(ω, s, Xs) − σ̃(ω, s, X̃s)∥2ds.

From Lemma A.2.2, we see that E[sups∈[t,T] ∥Xs − X̃s∥2] < ∞, so E[
∫

[t,T] ∥Xs − X̃s∥2ds] < ∞ and

E[⟨Y ⟩1/2
T |Ft] ≤ 4E

[(
sup

s∈[t,T]
∥Xs − X̃s∥

)(∫
[t,T]

(
∥σs(0)∥2 + K2∥Xs − X̃s∥2)

ds
)1/2∣∣∣Ft

]
≤ 2E

[(
sup

s∈[t,T]
∥Xs − X̃s∥

)2
+

∫
[t,T]

(
∥σs(0)∥2 + K2∥Xs − X̃s∥2)

ds
∣∣∣Ft

]
< ∞.

By the BDG inequality we see that the ‘dW ’ term in (1.2.2) is a true martingale.

Write δµs = µs(Xs) − µ̃s(Xs) and δσs = σs(Xs) − σ̃s(Xs). Taking an expectation and applying the

A.2. A SUMMARY OF STOCHASTIC CALCULUS 77

Cauchy–Schwarz inequality to (1.2.2), we know that

E[YT |Ft] ≤ Yt − β

∫
[t,T]

E[Ys|Ft]ds +
∫

[0,t]
E[Ys|Ft]ds

+
∫

[t,T]
e−βsE[∥µs(Xs) − µ̃s(X̃s)∥2|Ft]ds

+
∫

[t,T]
e−2βsE[∥σs(Xs) − σ̃s(X̃s)∥2|Ft]ds

≤ Yt − (β − 1)
∫

[t,T]
E[Ys|Ft]ds +

∫
[t,T]

(
2E[∥δµs∥2|Ft] + 2K2E[Ys|Ft]

)
ds

+
∫

[t,T]

(
e−βs2E[∥δσs∥2|Ft] + 2K2E[Ys|Ft]

)
ds

≤ Yt − (β − 1 − 4K2)
∫

[t,T]
E[Ys|Ft]ds

+
∫

[t,T]

(
2e−βsE[∥δµs∥2|Ft] + e−2βs2E[∥δσs∥2|Ft]

)
ds.

Applying Grönwall’s inequality, we conclude

E[YT |Ft] ≤
(

Yt +
∫

[t,T]
2e−βsE[∥δµs∥2|Ft] + e−2βs2E[∥δσs∥2|Ft]ds

)
e−(β−1−4K2)t.

Using this estimate, we now prove existence and uniqueness of the solution.

Proof of Theorem A.2.1. Fix the initial condition X0 = x0. Consider the map F defined by

F (X)t = x0 +
∫

[0,t]
µs(Xs)ds +

∫
[0,t]

σs(Xs)dWs.

The process F (X) then satisfies an SDE of the form (1.2.1), with µ and σ which do not depend on F (X).
From Lemma A.2.3, taking an expectation we can see that, for any X, X̃ and any β > 0,

E[e−βt∥F (X)t − F (X̃)t∥2]

≤ 2e−(β−1)t

∫
[0,t]

(
e−βsE[∥µs(Xs) − µs(X̃s)∥2]

+ e−2βsE[∥σs(Xs) − σs(X̃s)∥2]
)

ds

≤ 4e−(β−1)t

∫
[0,t]

K2E[e−βs∥Xs − X̃s∥2]ds.

and hence, by Fubini’s theorem,∫
[0,T]

E[e−βt∥F (X)t − F (X̃)t∥2]dt

≤
∫

[0,T]
4e−(β−1)t

∫
[0,t]

K2E[e−βs∥Xs − X̃s∥2]ds dt

≤
∫

[0,T]

4K2

β − 1E[e−βs∥Xs − X̃s∥2]ds

78 APPENDIX A. SOME USEFUL BASIC THEORY

Therefore, for β > 4K2 + 1, F is a contraction on the space of progressive processes X : Ω × [0, T] → R,
under the norm

∥X∥β =
∫

[0,T]
E[e−βt∥Xt∥2]dt.

As this is simply a weighted L2 norm, the space is complete. By Banach’s fixed point theorem for
contractions, we know that there is a unique process which satisfies (1.2.1), up to equality in this norm.
By continuity of the integrals, F (X) is continuous, which implies the solution satisfies (1.2.1), and is
unique, up to indistinguishability.

The following lemma is sometimes useful when building approximations.

Lemma A.2.4. Let X be the solution of an SDE

dXt = µt(Xt)dt + σt(Xt)dWt

where W is a Brownian motion, and µ and σ are random Lipschitz functions, as above. For any δ > 0,
define a sequence of stopping times by τ0 = 0 and

τn+1 = min
{

inf{t : ∥Xt − Xτn
∥ > δ}, τn + δ, T

}
.

Then τn → T almost surely.

Proof. As X has continuous solutions which do not explode (with probability one), its paths are uniformly
continuous on [0, T]. Therefore, there exists a random variable ε such that τn+1 − τn > ε1{τn+1<T }. The
result follows.

Bibliography

[1] J. Bhandari and D. Russo, Global Optimality Guarantees for Policy Gradient Methods, Opera-
tions Research, 72:5, https://doi.org/10.1287/opre.2021.0014, 2024

[2] M. Capiński and P.E. Kopp, Measure, Integral and Probability (2nd Ed.). Springer, 2004.

[3] M.G. Crandall, H. Ishii, and P.-L. Lions, user’s guide to viscosity solutions of second order
partial differential equations, https://arxiv.org/abs/math/9207212, 1992

[4] S.N. Cohen and R.J. Elliott, Stochastic Calculus and Applications (2nd Ed.). Birkhaüser, 2015.

[5] W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions (2nd Ed.).
Springer, 2006.

[6] T. Jaakkola, M.I. Jordan, and S.P. Singh, On the Convergence of Stochastic Iterative Dynamic
Programming Algorithms, MIT AI Memo 1441, https://dspace.mit.edu/handle/1721.1/7205,
1993.

[7] N.V. Krylov, Controlled Diffusion Processes. Springer, 1980.

[8] L.C.G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales (2nd Ed., Vol-
ume 1: Foundations), Cambridge University Press, 2000.

[9] D.J. White, Real Applications of Markov Decision Processes, Interfaces, 15:6, 1985, http://www.
jstor.org/stable/25060766

[10] Y. Ye, The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov Decision
Problem with a Fixed Discount Rate, Mathematics of Operations Research, 36:4, https://doi.org/
10.1287/moor.1110.0516, 2011

79

https://doi.org/10.1287/opre.2021.0014
https://arxiv.org/abs/math/9207212
https://dspace.mit.edu/handle/1721.1/7205
http://www.jstor.org/stable/25060766
http://www.jstor.org/stable/25060766
https://doi.org/10.1287/moor.1110.0516
https://doi.org/10.1287/moor.1110.0516

	Introduction
	Discrete-time control and Markov Decision Processes
	State variables and a first control problem
	Building a dynamic programming problem

	Discrete stochastic control
	Notation
	The martingale principle and dynamic programming

	Finite state Markov Decision Problems
	Controlled Markov chains
	Finite horizon MDPs

	Infinite-horizon Discounted MDPs

	Numerical methods and Reinforcement Learning
	Value iteration
	Policy iteration
	Approximate policy iteration

	Q-learning
	SARSA

	Aside: Entropy-regularized control
	Policy gradients

	Continuous Deterministic Control
	Notation and problem formulation
	Dynamic programming and the Hamilton–Jacobi equation
	Pontryagin's maximum principle

	Continuous Stochastic Control
	Notation and problem formulation
	Useful estimates
	Dynamic programming

	Hamilton–Jacobi–Bellman equations

	Some useful basic theory
	Filtrations, Conditional Expectations, and Martingales
	Existence of essential suprema
	Almost supermartingales and stochastic approximation

	A summary of stochastic calculus
	Lipschitz SDEs

