Mathematical models of Alzheimer's disease treatments

<u>Georgia S. Brennan</u>

MMSC case study 2025

Mathematical Institute

Alzheimer's disease

Alzheimer's disease is a neurodegenerative disease which is characterised by the accumulation of misfolded Amyloid- β (A β) and tau proteins.

How do the driving factors interact?

Why such distinct spreading patterns?

Why do neurodegenerative diseases progress so slowly?

Can we interfere in the spreading?

We do not understand the fundamental mechanisms driving the disease.

Physiological Background

Clearance-mediated proteopathy models Aggregation kinetics and therapeutic modelling

Alzheimer's disease hypotheses

The Amyloid hypothesis

The Prion hypothesis

Toxic proteins propagate along axonal fibre bundles

Physiological Background

Clearance-mediated proteopathy models

Aggregation kinetics and therapeutic modelling

The brain as a network

Brain network models can predict the histopathological patterns of Alzheimer's disease.

Clinical observation: Jucker and Walker (2013)

Continuum model results: Weickenmeier *et al.* (2019)

Network model results: Fornari *et al.* (2019)

Clearance-mediated proteopathy models

The brain as a network

Neurodegeneration: a reaction-diffusion process on the brain network.

Network extracted from data of 418 healthy brains:

$$\mathbf{W}_{ij} = \frac{n_{ij}}{\ell_{ij}^2}, \qquad \mathbf{D}_{ii} = \sum_{j=1}^{|V|} \mathbf{W}_{ij}$$

 n_{ij} , number of fibres along the axonal tract ℓ_{ij} , average fibre length

Clearance-mediated proteopathy models

Brain network neurodegeneration models

OXFORD-GSK INSTITUTE of **MOLECULAR** and

Recent work has focused on the autocatalytic nature of protein dynamics in agreement with the prion-like hypothesis and captures the spatio-temporal spreading well.

The Fisher–Kolmogorov model :

convert

misfolded

Clearance-mediated proteopathy models

Brain network neurodegeneration models

OXFORD-GSK

INSTITUTE of **MOLECULAR** and

COMPUTATIONAL MEDICINE

Mathematical Institute

Developing an in vivo aggregation model

We need to further understanding of aggregate dynamics in the brain environment and at the brain scale.

Clearance-mediated proteopathy models

Aggregation kinetics and therapeutic modelling

Smoluchowski's theory of aggregation:

Let P_i be an aggregate of size i

$$P_i + P_j \rightleftharpoons P_{i+j}, i, j = 1, 2, 3, \dots$$

Evolution equation (smoluchowski-1916):

Smoluchowski's theory of aggregation:

Smoluchowski equations:

Clearance-mediated proteopathy models

Minimal microscopic system:

$$\begin{split} \frac{\mathrm{d}m}{\mathrm{d}t} &= -2k_n - 2k_+ mP - 2k_2 \sigma(m) m^2 M \\ \frac{\mathrm{d}p_2}{\mathrm{d}t} &= k_n - 2k_+ mp_2 + k_2 \sigma(m) m^2 M, \\ \frac{\mathrm{d}p_i}{\mathrm{d}t} &= 2k_+ m(p_{i-1} - p_i), \quad i > 2 \end{split}$$

$$\sigma(m) = \frac{K_m}{K_m + m^2}, \quad P = \sum_{i=2}^{\infty} p_i, \quad M = \sum_{i=2}^{\infty} i p_i.$$

number (toxic)

Physiological modelling assumptions:

- Production of monomers/ constant monomer concentration
- Saturation of secondary nucleation with toxic mass
- Clearance of aggregates
- Superparticle dynamics
- Transport across the connectome

The task is to develop an in vivo aggregation model, and use it for therapeutic modelling.

mass (toxic)

Mathematical Institute

A brain-wide aggregation model

Transport across the connectome reveals the importance of nuclei.

$$\frac{\mathrm{d}M_j}{\mathrm{d}t} = -\sum_{i=2}^{\infty} \lambda_{i,j} i p_{i,j} - \rho_j \sum_{k=1}^{V} L_{jk} M_k + 2k_n m_j^2 + 2k_+ m_j P_j + 2k_2 \sigma(M_j) m_j^2 M_j,$$

Applications in therapeutic modelling

Bridging the gap from kinetic fingerprints to brain-wide dynamics:

Clearance-mediated proteopathy models

Project goals and objectives

- 1. Brief overview of hypotheses/ experimental observations that network models of neurodegeneration are based on
- 2. Start by analysing macroscale reaction-diffusion network models like the FKPP
- 3. Aggregation models for exploring potential treatments
- 4. Simulations and analysis
 - **Asymptotics:** Fixed point analysis. What is the role of clearance in your model?
 - **Computational:** Run brain scale simulations including transport across a network representative of the brain's connectome. Compute average toxic mass evolution in the Braak regions and produce biomarker curves.
 - **Network analysis:** How does the brain's architecture influence pathology? Try different graph Laplacians. Try different connectome weights.