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Alzheimer’s disease is a neurodegenerative disease which is characterised by the
accumulation of misfolded Amyloid-3 (A3) and tau proteins.

Why do
neurodegenerative
diseases progress
so slowly?
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How do the driving | &
factors interact?
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The Amyloid hypothesis Toxic proteins propagate along axonal fibre bundles

The Prion hypothesis
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as a network “,
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Brain network models can predict the histopathological patterns of Alzheimer’s disease.

Clinical observation:
Jucker and Walker (2013)

University of Oxford

Continuum model results:
Weickenmeier et al. (2019)

Network model results:
Fornari et al. (2019)
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as a network uf

_g COMPUTATIONAL MEDICINE
ol Neurodegeneration: a reaction-diffusion process on the brain network.
C>> Network extracted from data
= of 418 healthy brains:
] L= D — W |
= —— ——
S degree matrix weighted adjacency
matrix
- V]
ij
W;; = 2. D = szj
ij j=1

Nij, number of fibres along the axonal tract
Eij, average fibre length
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etwork neurodegeneration models
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Recent work has focused on the autocatalytic nature of protein dynamics in agreement
with the prion-like hypothesis and captures the spatio-temporal spreading well.

The Fisher—Kolmogorov model :

convert

This model can be extended to include
aggregation kinetics and clearance
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We can investigate the model at the organ level by direct simulation.
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We need to further understanding of aggregate dynamics in the brain environment and

at the brain scale.
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Ol|gomer Protofibrils

Healthy Brain \t\lzheimer's Brain
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Damage to clearance mechanisms
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Amyloid PET
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)iNg an in vivo aggregation model uf
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Smoluchowski’s theory of aggregation:

Let P; be an aggregate of size i
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Pi + P] — Pi+j’ l,] — 1,2,3,

Evolution equation (smoluchowski-1916): _
aggregation
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<l Smoluchowski’s theory of aggregation:
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<l Smoluchowski equations:
G

o
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=

o dm Di _

g P kop —Am  — p(m)kpn,n1 dt ko — Aipi T §i’”1p (m)kh’”l,

C production and clearance loss to heterogeneous nucleation production and clearance  heterogeneous nucleation

) o s

- gnlnlmnl - J(m) n2mn2 Z g]aanpj + 67;7”1 gnl mnl + 5i7n20(m)mn2 Z gjan@jpj
N——— X ——— :
1 . . 7=2 . . j=2
oss to primary homogeneous nucleation , primary nucleation N ,
loss to secondary nucleation secondary nucleation
00 00 1 i—2
+ /Bz',lm sz' — oM sz' , -+ 5(1 — 51',2)(1 — 5,;,3) Z (Ozj,i_jpjpi_j — ﬂj,i_jpz—)
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addition from aggregation,
and loss to fragmentation

o0 (o 0}
+ Z Bi iPivi - Z @;,jPiP;j
=2 =2

S——— S———

addition from fragmentation loss of oligomers to aggregation

addition from disassociation loss to elongation

— 2B1mmp; + (1 —=6:2)200m(pi1 — pi)  — di 220 1mp;,
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JpINg an in vivo aggregation model uf
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Bl Minimal microscopic system:
o
= dm Physiological modelling assumptions:
I - = —2ky, — 2k, mP — 2kyo(m)m*M, y 5 5 P
Qv
>
o= d ) 1
= =2 = ky — 2kymps + kpo (m)ym?M, Production of monon?ers/ constant

dt monomer concentration

(gf =2k . m(pi—1 —pi), 1> 2 * Saturation of secondary nucleation

with toxic mass
* Clearance of aggregates
K N —. |- s icle dynami
_ m p— M= ) uperparticle dynamics
O-(m) Km + m2) — p ? ; Zp

\ - * Transport across the connectome

number (toxic) mass (toxic)

The task is to develop an in vivo aggregation model, and use it for therapeutic modelling.
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Transport across the connectome reveals the importance of nuclei.
dM,

oo Vv
5=~ 2 Mg — 05 ) LigMi + 2k + 2k m; Py + 2kao (My)mi M,

1=2 k=1

dP; d v
=2 k=1

d¢

Diffusivity wei
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ol Bridging the gap from kinetic fingerprints to brain-wide dynamics:
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Project goals and objectives u
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University of Oxford

Brief overview of hypotheses/ experimental observations that network models of neurodegeneration

are based on

Start by analysing macroscale reaction-diffusion network models like the FKPP

Aggregation models for exploring potential treatments

Simulations and analysis

Asymptotics: Fixed point analysis. What is the role of clearance in your model?

Computational: Run brain scale simulations including transport across a network representative of
the brain’s connectome. Compute average toxic mass evolution in the Braak regions and produce
biomarker curves.

Network analysis: How does the brain’s architecture influence pathology? Try different graph
Laplacians. Try different connectome weights.
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