EXAMPLES OF NULL-LAGRANGIANS LUC NGUYEN

Notations

Let $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ be a smooth map. We write u as a column vector

$$u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}.$$

The gradient ∇u is a matrix-valued map from Ω into $\mathbb{R}^{n \times n}$:

$$\nabla u = \begin{pmatrix} \partial_1 u_1 & \dots & \partial_n u_1 \\ \vdots & \ddots & \vdots \\ \partial_1 u_n & \dots & \partial_n u_n \end{pmatrix}.$$

In particular, the (i, j)-entry of ∇u is $\partial_j u_i$.

Null-Lagrangian

Recall that an expression $L(\nabla u)$ where L is a function defined on $\mathbb{R}^{n\times n}$ is a null-Lagrangian if

$$\sum_{j} \partial_{j} \left[\frac{\partial L}{\partial p_{ij}} (\nabla u) \right] = 0 \text{ in } \Omega$$

for any smooth function $u \in C^{\infty}(\overline{\Omega})$ and $i = 1, \ldots, n$. Here p is a dummy variable for a matrix, and p_{ij} are its entries.

σ_k -functions of the gradient are null-Lagrangians

Define the σ_k functions on $\mathbb{R}^{n \times n}$ by

$$\det(\lambda I - p) = \lambda^n - \sigma_1(p) \,\lambda^{n-1} + \ldots + (-1)^n \,\sigma_n(p) \,I$$

Note that $\sigma_0(p) = I$, $\sigma_1(p) = \operatorname{tr} p$, $\sigma_n(p) = \det p$.

Proposition 1. $\sigma_k(\nabla u)$ is a null-Lagrangian for $0 \le k \le n$.

Proof. Define the Newton tensor $T_k(p)$ of a matrix p by

$$T_k(p) = p^k - \sigma_1(p) \, p^{k-1} + \ldots + (-1)^k \sigma_k(p) \, I$$

Note that $T_0(0) = I$ and $T_n(p) = 0$. It turns out that the first derivative of σ_k is given by the Newton tensor:

$$\frac{\partial \sigma_k}{\partial p_{ij}}(p) = (-1)^{k-1} (T_{k-1}(p))_{ji}.$$

(For extra fun, prove this algebraic fact.)

Thus, we only need to show that, for any $u \in C^{\infty}(\overline{\Omega})$ and $0 \le k \le n-1$,

$$\sum_{j} \partial_{j} \Big[(T_{k}(\nabla u))_{ji} \Big] = 0 \text{ in } \Omega.$$
(*)

Indeed, observe that

$$T_k(p) = T_{k-1}(p)p + (-1)^k \sigma_k(p) I.$$
(**)

This identity allows us to prove (*) by induction. When k = 0, (*) is clear as $T_0 = I$. Suppose (*) holds for some k. Then, by (**),

$$(T_{k+1}(\nabla u))_{ji} = \sum_{l} (T_k(\nabla u))_{jl}(\nabla u)_{li} + (-1)^{k+1}\sigma_{k+1}(\nabla u)\,\delta_{ij}$$
$$= \sum_{l} (T_k(\nabla u))_{jl}\partial_i u_l + (-1)^{k+1}\sigma_{k+1}(\nabla u)\,\delta_{ij},$$

and so

$$\sum_{j} \partial_{j} \Big[(T_{k+1}(\nabla u))_{ji} \Big] = \sum_{j,l} (T_{k}(\nabla u))_{jl} \partial_{j} \partial_{i} u_{l} + \sum_{l} \partial_{i} u_{l} \sum_{j} \partial_{j} \Big[(T_{k}(\nabla u))_{li} \Big] + (-1)^{k+1} \partial_{i} \sigma_{k+1}(\nabla u).$$

Note that the middle term vanishes due to induction hypothesis. Also, by the chain rule

$$\partial_i \sigma_{k+1}(\nabla u) = \sum_{r,s} \frac{\partial \sigma_{k+1}}{\partial p_{rs}} (\nabla u) \partial_i (\nabla u)_{rs} = (-1)^k \sum_{r,s} (T_k(\nabla u))_{sr} \partial_i \partial_s u_r$$

We thus have

$$\sum_{j} \partial_{j} \Big[(T_{k+1}(\nabla u))_{ji} \Big] = \sum_{j,l} (T_{k}(\nabla u))_{jl} \partial_{j} \partial_{i} u_{l} - \sum_{r,s} (T_{k}(\nabla u))_{sr} \partial_{i} \partial_{s} u_{r}$$

Relabeling r as l and s as j in the second sum, we see that this cancels out completely. We have thus shown (*) with k replaced by k + 1.