Lecture #4

String Theory 1

Chapter 1 Classical relativistic string

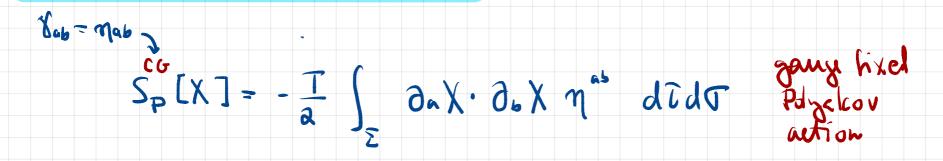
- La study relativistic classical string propagating in a fixed spacetime M
- > 1.1 Classical vulativistic point particle
- > 1.2 Classical relativistic string 'action principle
 - 1.3 Classical Folitions
 - 1.3.1 EOM & bamlany comolitions

 - 1.3.3 Solutions of FOM + bound. and,

1.3.4 Satisfying the constraints 1.3.5 The Witt-algebra & constrained symmetries

1.3.2 Comprused changes associated to the symmetries of the action

1.3 Classical solutions continued



tanget space: M = MD D-din Minkowski

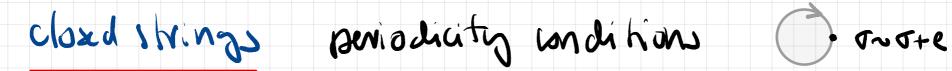
EOM $\partial_{\alpha}(\partial^{\alpha}X^{\nu}) = 0$: $X^{\mu}(\xi) = X^{\nu}_{L}(\xi^{\dagger}) + X^{\mu}_{R}(\xi)$ $\xi^{\dagger} = t \pm \sigma$

► impor conditions coming from the boundary term in 85=0

• constraints prom $\begin{cases} \overline{T}_{\overline{T}\overline{T}} = \overline{T}_{\overline{T}\overline{T}} = \frac{1}{2} \left(\partial_{\overline{T}} X \cdot \partial_{\overline{T}} X + \partial_{\overline{T}} X \cdot \partial_{\overline{T}} X \right) = 0 \\ \overline{T}_{\overline{T}\overline{T}} = \partial_{\overline{T}} X \cdot \partial_{\overline{T}} X = 0 \end{cases}$

► communion of Icu: 3,T² = 0

- $\delta X^{m}(T_{i}, \sigma) = \sigma \ b \ \delta X^{m}(T_{f}, \sigma) = \sigma$ string lept like at initial line position
- $O = \int_{T_i}^{\overline{U}_f} dT \frac{\partial X}{\partial X} \cdot \frac{\partial X}{\partial x} \int_{\sigma=0}^{\sigma=c}$



ie $\chi^{M}(\overline{U}, \overline{\sigma}) = \chi^{M}(\overline{U}, \overline{\sigma}+L)$

so boundary two vanishes

Moreouw: velutions of the EOM must be periodic in J with Awiod e

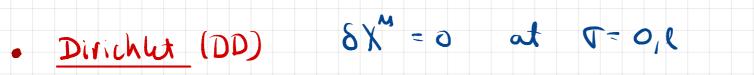
opm strings boundary conditions on the string endpoints

$o = -\tau \int_{\tau_i}^{\tau_b} d\tau \left(\frac{\partial \sigma \chi \cdot \delta \chi}{\sigma} \right)_{\sigma=0}^{\sigma=0} \longrightarrow \frac{\partial \sigma \chi_{\mu} \delta \chi^{\mu}}{\sigma=0} = \sigma \quad \text{at} \quad \sigma=0, e$

• Neumann (NN) no constraints on $\delta X^{\prime\prime}$ at $\sigma = 0.6$ x indipoints more freely in Mos long as : $\partial \sigma X^{\prime\prime}(\overline{U}, c) = 0$ & $\partial_{\sigma} X^{\prime\prime\prime}(\overline{U}, o) = 0$

"no momentum plouing off the string"

n 36 of 1 momentum 1 to 28





ic $\chi^{M}(\bar{L}, \ell) = \chi^{M}_{\ell}(\bar{L}), \quad \chi^{M}(\bar{L}, 0) = \chi^{M}_{0}(\bar{L})$

This involves a thore of spare time veiter -> break Poincaré invariance

• One can have mixed boundary conditions: bil example

Newmann (NN) on p+1 Bords Dirichlet (DD) on D-(p+1) coords

The ends of the string are free to move only on a subspace DCM, dim D=p+1. This subspace is called a Dp-brane with xo & x'e interpreted as the position of the brane (vous important! needed for internal consistencies of the non-serturbative theory; more (ater)

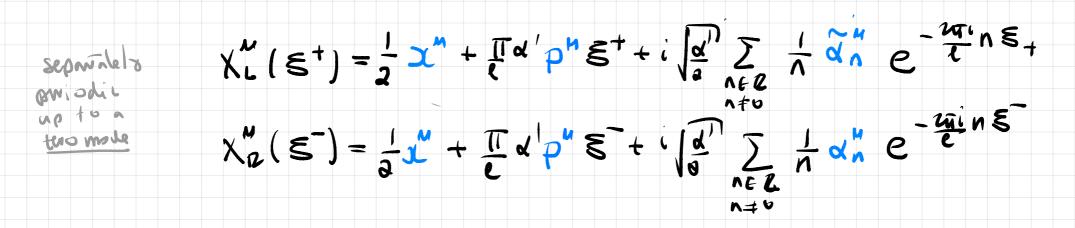
· Ore can also have (ND) boundary conditions.

1.3.2 Solutions of FOM + bound. ands.

growned solution of the wave eq. $\chi''(\overline{u}, \sigma) = \chi_{\mathbb{R}}^{m}(\overline{s}) + \chi_{\mathbb{L}}^{m}(\overline{s}^{\dagger})$

Cloud strings: $\chi^{m}(\overline{\upsilon}, \overline{\sigma}) = \chi^{m}(\overline{\upsilon}, \overline{\sigma}+e), \quad (\underline{\varepsilon}^{\pm} \rightarrow \underline{\varepsilon}^{\pm} \pm e)$

Expand in Fonsier modes:



where x^m, p^m, and a^m are the Fourier coeffs.

 X^{M} is real-valued: $X^{M} \in \mathbb{R}$, $p^{M} \in \mathbb{R}$, $\widetilde{a}_{-n}^{M} = (\widetilde{a}_{n})^{*}$, $d_{-n}^{M} = (\alpha_{n}^{M})^{*}$

 $d_0^m = d_0^m = \sqrt{\frac{\pi}{2}} p^m$ from prisolicity $T \to S + \ell$

Brwichach has very detailed solution (Chrpter 7)

- $\begin{array}{c} X^{\mu}\left(\overline{\iota}, \overline{\sigma}+\epsilon\right) = X^{\mu}_{\iota}\left(\overline{\varsigma}^{\dagger}+\epsilon\right) + X^{\mu}_{\ell}\left(\overline{\varsigma}^{\dagger}+\epsilon\right) & \overline{\varsigma}^{\dagger} \mapsto \overline{\varsigma}^{\dagger} \pm \epsilon \\ X^{\mu}(\overline{\iota}, \overline{\sigma}) = X^{\mu}_{\iota}\left(\overline{\varsigma}^{\dagger}\right) + X^{\mu}_{\ell}\left(\overline{\varsigma}^{\dagger}\right) \\ \Rightarrow X^{\mu}_{\iota}\left(\overline{\varsigma}^{\dagger}+\epsilon\right) X^{\mu}_{\iota}\left(\overline{\varsigma}^{\dagger}\right) = -\left(X^{\mu}_{\epsilon}\left(\overline{\varsigma}^{\dagger}-\epsilon\right) X^{\mu}_{\epsilon}(\overline{\varsigma}^{\dagger}\right)\right) = constraint \\ \end{array}$
 - = [[a'p"L.
 - $\Rightarrow \chi_{L,L}(S^{\pm}) = \frac{1}{2}\chi^{M} + \frac{1}{2}\chi^{P}S^{\pm} + \cdots$

Angent by later:

 $\partial_{+} \chi^{\mathsf{M}}(\mathsf{S}^{\dagger}) = \partial_{+} \chi^{\mathsf{M}}_{\mathsf{L}} = \frac{2\pi}{\mathsf{e}} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}}$

where $d_0^{m} = \tilde{d}_0^{m} = \sqrt{\frac{d}{2}} p^{m}$

Prefactors for communiant physical interpretations as

we will see below

Den strings with Newmann (NN) boundary conditions $\partial_{\sigma} X^{m}(\tau, e) = 0$ $\partial_{\sigma} X^{m}(\tau, o) = 0$ Due to the boundary conditions $X_{2}^{m} k X_{k}^{m}$ are no longer independent $(\overline{\sigma}_{n}^{m} = d_{n}^{m})$

 $\chi^{M}(\overline{\upsilon}, \sigma) = \chi^{M} + \frac{u_{\overline{\iota}} d}{e} p^{M} \overline{\upsilon} + i \sqrt{2} d^{T} \sum_{n \neq 0} \frac{1}{n} d^{M} e^{-i \underline{\tau} n} \overline{\upsilon} \overline{\upsilon} \cos(\underline{n} \underline{\tau} \sigma)$ $n \in \mathbb{R}$ $n \neq 0$ $n \neq 0$

 $\partial_{\pm} K^{m} = \overline{U} \sqrt{\frac{d}{d}} \sum_{n} d_{n} e^{-i \overline{U} n} s^{\pm}, \quad d_{o}^{m} = \sqrt{2d} p^{m}$

See lecture mus propen strings with DD & ND bandary coulds

Recell Noether's theorem: for each symmetry in the action there is a corresponding connected current. We also have Noether charges

• (global) nommetries arresponding to the isometries of M: Poincare invariance $\chi^{M} \mapsto \Lambda^{M} \cdot \chi^{V} + V^{M}$ brentz transfs

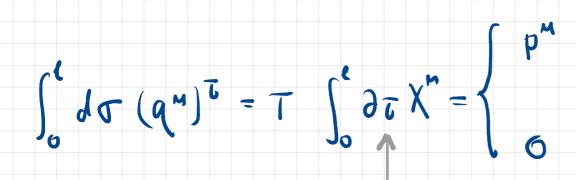
conved current $\Pi_a^M = \frac{\delta \delta}{\partial a X^2}$ momentum snjugate ($\partial_a \Pi_b^a M^a = 0$

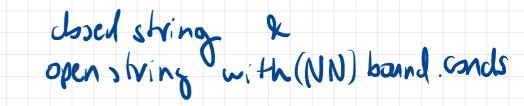
- translations $\chi^{M}(\Xi) \mapsto \chi^{M}(\Xi) + V^{M}$ current $q_{\mu}^{a} = -T\sqrt{-8} \delta^{ab} \partial_{a} \chi_{\mu} = -T\eta^{ab} \partial_{b} \chi_{\mu}$
- ζ communition $\partial_a q^a \mu = 0$ ζ communition of the oner go momentum arrivent
- > chavys: $\int_{0}^{e} (q^{n})^{T} d\sigma = T \int_{0}^{e} \partial \sigma \chi^{n} \equiv p^{n}$ centre of moss momentum
- (spatial integral of the t-component of each arrowt)
- · Lorent + transformations: Xm ~ Mv X2
 - current $J^{q}_{mv} = -T \eta^{ab} (\chi_{m} \partial_{b} \chi_{v} \chi_{v} \partial_{b} \chi_{u}) = \chi_{n} \eta^{a} \chi_{n} \eta^{a}$
- sommution de Juis = 0
 - charges: $\frac{1}{2}\int_{0}^{\infty} (J^{mu})^{T} dT$

► WS - symmetries: WS differmentisms (later)

communed anvient Jab, Mab 26 Tol = 0

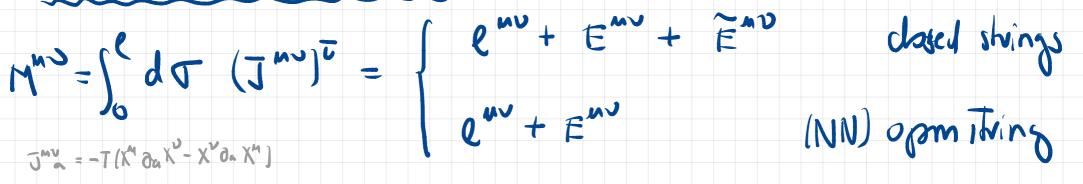
Intropretation of the coefficients

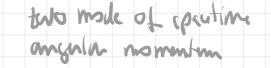


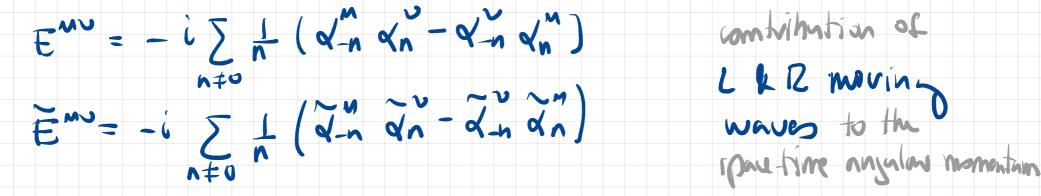


opmstring with (DD) bund. and

DEX^m = LITO' pⁿ + terms that vanish upon 5-interpration







1.3.4 Satisfying the constraints

Necall that we need to imposse constraints from the stress timpor. In the eight-one pordinates

 $\blacktriangleright union: M^{ab} \partial_a T_{bc} = 0 =) \partial_+ T_- + \partial_- T_+ = 0$

 $\partial - T_{++} + \partial_{+} \overline{\Gamma}_{++} = 0$

 $\frac{1}{100} = 0 \implies T_{+-} + T_{-+} = 0$ $\frac{1}{100} = 0 \implies T_{+-} + T_{-+} = 0$ $\frac{1}{100} = 0 \implies T_{+-} = -1 + 0$ $\frac{1}{100} = 0 \implies T_{+-} = -1 + 0$ $\frac{1}{100} = 0 = 0$ $\frac{1}{100} = 0 = 0$ $\frac{1}{100} =$

⇒ ∂+ T--= 0 ∂- T++= 0 These are astronch powarful!

zin Lorentzian version of holomorphicity (antiholomorphicity. These give us are lightimite set of conserved charges!

Finally enforce $T_{++} = 0$ $T_{--} = 0$

¥

A Closed strings

let f(5) be an aubilitran function and consider

 $\varphi_{\mathbf{f}} = \int d\mathbf{\nabla} f(\mathbf{s}) T_{--}(\mathbf{s}) \partial_{\mathbf{f}} = 0$

 $= \int_{0}^{2} d\tau = \int_{0}^{2} d\tau (28_{+} - 2\sigma)(f(s)) = -(f(s)) = -$

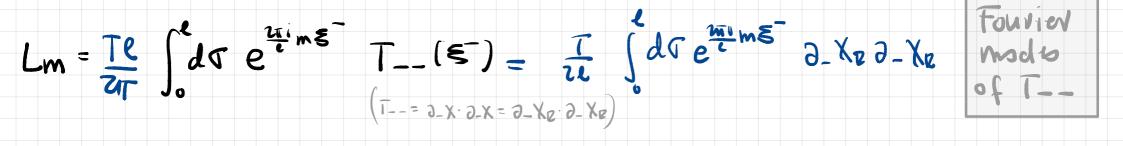
That is: the current f(5)T_-15) is also communed

since fis and inverso => there is an infinite set of conserved currents

milauly: T++ is conserved and so is gT++, g=g(5) prialic

A complete set of priodic functions in σ is given by $\{f_m(\overline{s}) = e^{2\overline{u}} m \overline{s}, m \in \mathbb{Z}.\}$

Define then an infinite set of changes:



take $\overline{U} = 0$ whose as $\lim_{n \to \infty} \frac{1}{n} \sum_{n \in \mathbb{Z}} \alpha_{m-n} \cdot \alpha_n$ with $\alpha_0^m = \int_0^{n} p^m$

Note that L-m = (Lm]*

became T__ is real

 $g_{m}(5^{\dagger}) = e^{\frac{1}{2}m_{s}^{\dagger}}$ Similarly: for T++(5),

 $\widetilde{L}_{m} = \frac{T \ell}{\mathcal{H} \Gamma} \int_{-\pi}^{\ell} d\sigma \ e^{\frac{\mathcal{H} \Gamma}{\ell} m \varepsilon^{+}} \widetilde{T}_{++}(\varepsilon^{+})$ Fourin modes of T++

 $= \frac{1}{2} \sum_{n \in \mathbb{Z}} \widetilde{q}_{m-n} \cdot \widetilde{q}_n, \qquad \widetilde{q}_0^* = \sqrt{\frac{1}{2}} p^n$

We have then

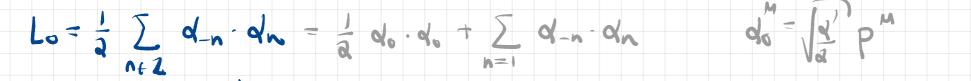
Recall that $\lim_{x \to \infty} \frac{1}{2} \lim_{x \to \infty} \frac{1}{2$

imposes the comptinits T++=0 k T_-=0

The company of these changes is equivalent to the quadratic comptionints on the Oscillator

$$x^{m}$$
, p^{r} , a^{m} , \tilde{a}^{m} γ

Consider these constraints for Lo & Lo (particularly intersting)



- $= \frac{d'}{4} \frac{p^2}{p^2} + \sum_{n=1}^{\infty} \frac{d_n \cdot q_n}{p^2} = 0 \qquad (p^2 = p \cdot p = p^m \cdot p_n)$
- $\widetilde{L}_{o} = \frac{d}{4}p^{2} + \sum_{n=1}^{\infty} d_{-n} \cdot \widetilde{q}_{n} = 0$
- Recall p^m = spasetime centre of mass momentum
- We have a mass shell condition: $M^2 = -p^2$
 - $-p^{2} = M^{2} = \frac{2}{\alpha'} \sum_{n=1}^{\infty} (\alpha \circ \alpha_{n} + \widetilde{\alpha_{n}} \circ \widetilde{\alpha_{n}}) \quad \text{contributions of osc. moles to the}$
 - rest mass of a string in a given state of oscillation
- Moreover: $\sum_{n=1}^{\infty} d_{-n} \cdot d_n = \sum_{n=1}^{\infty} a_{-n} \cdot a_n = -\frac{d'}{4} p^2$ live $\sum_{n=1}^{\infty} d_{-n} \cdot d_n = \sum_{n=1}^{\infty} a_{-n} \cdot a_n = -\frac{d'}{4} p^2$
 - luel matching condition (Iclates L(2 modes)

(do not conget we still need to enforce $L_m = 0$, $\tilde{L}_m = 0$ $\forall m \neq 0$)

B Opm strings with (NN) bamdany conditions on all X"

- let f(st) & g(s) be arbitrary function. Then
- $\partial_{+}(q(s^{-})T_{-}(s)) = 0 \quad k \quad \partial_{-}(f(s^{+})T_{++}(s^{+})) = 0$ let $Q_{f,q} = \int d\sigma \left(f(s^{+})T_{++} + q(s^{-})T_{--} \right)$
- and seek conditions on fleg st Q is conserved:
- $\partial_{\tau} Q_{f_{1}g} = \int_{0}^{t} d\sigma \left(\partial_{\sigma} (f(\Xi^{\dagger})T_{++}) \partial_{\sigma} (q(\Xi^{\dagger})T_{--}) \right)$ $\partial_{\tau} 2\partial_{+} \partial_{\sigma}$
 - $= (f(S^{+})T_{++} g(S^{-})T_{--})|_{0}^{k}$
 - At J=0, l: $\partial_{+} \chi^{m} = \partial_{-} \chi^{\nu}$ to $T_{++} = T_{--}$
 - $\partial t X^{m} = \frac{1}{e} \sqrt{a^{n}} \sum d^{n} e^{i\pi n} s^{\pm}$

 \Rightarrow Q is complied if $f(s^+) = g(s^-)$ at $\sigma = 0, l$

- (i) $\sigma = 0 \implies f(\tau) = g(\tau)$ (f & g are the same function)
- (ii) $\sigma = l \implies f(\tau + l) = g(\tau l) = f(\tau l)$ $\therefore f(\tau) = f(\tau + 2l)$
 - f priodic sunction with priod 22
- Let $f(s^{\dagger}) = e^{\pi i m s^{\dagger}/l}$ $q(s^{-}) = e^{\pi i m s^{-}/l}$
- and define $L_{m} = \frac{T_{IT}}{C} \int_{0}^{l} dT \left(e^{i m s^{t}/l} T_{++} + e^{i l m s^{t}/l} T_{--} \right) = \frac{T_{IT}}{l} \int_{0}^{l} dF \left(e^{i m s^{t}/l} T_{++}(r) + e^{i l m s^{t}/l} T_{--} \right)$
 - $\Rightarrow \qquad Lm = \frac{1}{2} \sum_{n \in \mathbb{Z}} d_{m-n} \cdot d_n \qquad \text{with} \quad d_0^m = \overline{12d} p^m$

Lo gives open-string mass-shell condition

 $l_{0}=0$; $M^{2}=-p^{2}=\frac{1}{q}\sum_{n=1}^{2}d_{-n}\cdot q_{n}$

due to the oscillator

Summers

We have constructed explicitly the space of colutions

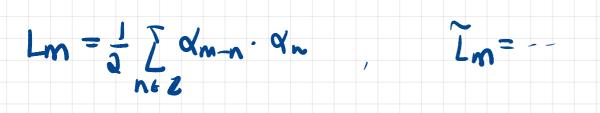
of the egs of motion ic, the phase space.

This is an infinite dimmional affine space with coordinates

 $\{L_n = 0, \tilde{L}_n = 0, \forall n \in \mathbb{B}\}$

subject to quadratic constraints

where La (Q In) constitute an infinite set of conserved drawyes coursponding to the Tarvier moder of Tas



1.3.5 The Witt-algebra & comprimel symmetries

algebra of gnevators of conformal transformations