## Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2025

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2025 1 / 10

## Reference for the small cancellation technique

Alexander Yu. Olshanskii, *Geometry of defining relations in groups*. Mathematics and its Applications 70. Kluwer Academic Publishers Group, Dordrecht, 1991.

# (Finite) presentations of groups

#### Proposition

If  $G = \langle S | R \rangle$  is finitely presented and  $\langle X | Q \rangle$  is another presentation with |X| finite, then there exists  $Q_0 \subseteq Q$  finite such that  $G = \langle X | Q_0 \rangle$ .

Proof: We have an isomorphism

$$\phi: F(S)/\langle\langle R \rangle\rangle \to F(X)/\langle\langle Q \rangle\rangle$$

Write  $\phi(s) = \sigma_s(X)$ . Likewise,  $\forall x \in X$ ,  $\phi^{-1}(x) = w_x(S)$ , hence

 $x = w_x(\{\sigma_s : s \in S\})$  (with equality in  $F(X)/\langle\langle Q \rangle\rangle$ ).

So  $x = w_x(\sigma_S)u_x$  in F(X), for some  $u_x \in \langle \langle Q \rangle \rangle$ .  $\forall r \in R$ , write  $v_r = r(\{\sigma_s : s \in S\}) \in \langle \langle Q \rangle \rangle$ .

Let  $T_0 \subseteq \langle \langle Q \rangle \rangle$  be the finite set  $\{u_x, v_r : x \in X, r \in R\}$ .

# (Finite) presentations of groups

Let  $T_0 \subseteq \langle \langle Q \rangle \rangle$  be the finite set  $\{u_x, v_r : x \in X, r \in R\}$ . Claim:  $\langle \langle T_0 \rangle \rangle = \langle \langle Q \rangle \rangle$ .

Proof of claim: Define

 $f: F(S)/\langle\langle R \rangle 
angle o F(X)/\langle\langle T_0 
angle 
angle, \quad f(s) = \sigma_s.$ 

Then f is an onto homomorphism.

Also, given  $\pi : F(X)/\langle \langle T_0 \rangle \rangle \to F(X)/\langle \langle Q \rangle \rangle$ ,  $\pi \circ f = \phi$  is an isomorphism and hence f is injective.

This proves the claim. Whence  $G = \langle X \mid T_0 \rangle$ . But  $T_0$  is not a subset of Q. Every  $\rho \in T_0 \subseteq \langle \langle Q \rangle \rangle$  can be written as  $\rho = \prod_{r \in F_\rho} r^{x_r}$  in F(X), where  $F_\rho \subset Q$  finite. Take  $Q_0 = \bigcup_{\rho \in T_0} F_\rho$  finite subset of Q. Then  $\langle \langle T_0 \rangle \rangle \subseteq \langle \langle Q_0 \rangle \rangle \subseteq \langle \langle Q \rangle \rangle$ , whence  $\langle \langle Q_0 \rangle \rangle = \langle \langle Q \rangle \rangle$ . It follows that  $G = \langle X \mid Q_0 \rangle$ .

How do we recognise when two finite presentations give the same group?

There are two types of transformations (called Tietze transformations).

- (T1) Given  $\langle S|R \rangle$  and  $r \in \langle \langle R \rangle \rangle$ , change the presentation to  $\langle S|R \cup \{r\} \rangle$  (or do the inverse operation).
- (T2) Given  $\langle S|R \rangle$ , a new symbol  $a \notin S$  and  $w \in F(S)$ , change the presentation to  $\langle S \cup \{a\}|R \cup \{a^{-1}w\}\rangle$  (or do the inverse operation).

#### Theorem

Two finite presentations define isomorphic groups if and only if they are related by a finite sequence of Tietze transformations.

**Proof**: ( $\Leftarrow$ ) (T1) defines isomorphic groups because  $\langle \langle R \rangle \rangle = \langle \langle R \cup \{r\} \rangle \rangle$ .

#### Theorem

Two finite presentations define isomorphic groups if and only if they are related by a finite sequence of Tietze transformations.

Proof continued: For (T2), consider the homomorphisms

$$\iota: F(S) \hookrightarrow F(S \cup \{a\}) \quad \text{(injection)} \\ f: F(S \cup \{a\}) \twoheadrightarrow F(S) \quad f(a) = w \quad \text{(surjection)}$$

Note that  $f \circ \iota = id_{F(S)}$ . They induce homomorphisms

$$F(S) \xrightarrow{\overline{\iota}} F(S \cup \{a\}) / \langle \langle a^{-1}w \rangle \rangle \xrightarrow{\overline{f}} F(S)$$

with  $\overline{f} \circ \overline{\iota} = \operatorname{id}_{F(S)}$ .  $\overline{\iota}$  is onto, and hence  $\overline{\iota}$  and  $\overline{f}$  are isomorphisms. Since also  $\overline{f}^{-1}(\langle\langle R \rangle\rangle) = \langle\langle R \cup \{a^{-1}w\}\rangle\rangle/\langle\langle a^{-1}w\rangle\rangle$  we have that  $\overline{f}$  induces the desired isomorphism.

Cornelia Druţu (University of Oxford)

#### Theorem

Two finite presentations define isomorphic groups if and only if they are related by a finite sequence of Tietze transformations.

#### Proof continued:

$$(\Rightarrow)$$
 Let  $G_1 = \langle S_1 | R_1 \rangle$ ,  $G_2 = \langle S_2 | R_2 \rangle$ . WLOG  $S_1 \cap S_2 = \emptyset$ .

There exist inverse isomorphisms  $\phi : G_1 \to G_2, \psi : G_2 \to G_1. \forall s \in S_1$ , choose  $w_s \in F(S_2)$  representing  $\phi(s)$  in  $G_2. \forall t \in S_2$ , choose  $v_t \in F(S_1)$  representing  $\psi(t)$  in  $G_1$ .

Take the two subsets of  $F(S_1 \cup S_2)$ :

$$U_1 = \{s^{-1}w_s : s \in S_1\}, \qquad U_2 = \{t^{-1}v_t : t \in S_2\}.$$

Claim: There exist finitely many Tietze transformations from  $\langle S_1 | R_1 \rangle$  to  $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_1 \cup U_2 \rangle$ .

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Claim: There exist finitely many Tietze transformations from  $\langle S_1 | R_1 \rangle$  to  $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_1 \cup U_2 \rangle$ .

**Proof of claim**: Use finitely many (T2) to get from  $\langle S_1 | R_1 \rangle$  to  $\langle S_1 \cup S_2 | R_1 \cup U_2 \rangle$ . There exists an isomorphism

 $\rho: \langle S_1 \cup S_2 | R_1 \cup U_2 \rangle \rightarrow \langle S_1 | R_1 \rangle \quad \rho(s) = s, \forall s \in S_1 \quad \rho(t) = v_t, \forall t \in S_2$ 

Then  $\phi \circ \rho : \langle S_1 \cup S_2 | R_1 \cup U_2 \rangle \rightarrow \langle S_2 | R_2 \rangle$  is an isomorphism such that  $t \xrightarrow{\rho} v_t \xrightarrow{\phi} t$ . Also,  $\forall r \in R_2$ 

 $\phi \circ \rho(\mathbf{r}) = \mathbf{r} \equiv 1 \text{ in } \langle S_2 | R_2 \rangle \Rightarrow \mathbf{r} \in \langle \langle R_1 \cup U_2 \rangle \rangle \Rightarrow R_2 \subseteq \langle \langle R_1 \cup U_2 \rangle \rangle$ 

Thus  $\langle S_1 \cup S_2 | R_1 \cup U_2 \rangle$  is related to  $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_2 \rangle$  by a sequence of (T1) transformations. Also,  $\forall s \in S_1$ 

$$\phi \circ 
ho(s) = w_s(t_1...t_k) \quad \phi \circ 
ho(w_s) = \phi \circ 
ho(w_s(t_1...t_k)) = w_s(t_1...t_k)$$

Hence,  $s^{-1}w_s \in \langle \langle R_1 \cup U_2 \rangle \rangle$ , which implies that  $U_1 \subseteq \langle \langle R_1 \cup U_2 \rangle \rangle$ . So we can apply several (T1) to get  $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_1 \cup U_2 \rangle$ .

Cornelia Druțu (University of Oxford)

8 / 10

## Properties of finite presentability

### Proposition

- Let G be a group.
  - G finitely presented does not imply that a subgroup is finitely presented or that a quotient is finitely presented.
  - If H is a finite index subgroup of G then G is finitely presented if and only if H is.
  - If  $N \trianglelefteq G$  is finitely presented and G/N is finitely presented then G is finitely presented.

A proof can be found in the notes.

# Graham Higman

#### Remark

G finitely presented does not imply that a subgroup is finitely presented.



#### Theorem

Every finitely generated recursively presented group can be embedded as a subgroup of some finitely presented group.

Cornelia Druțu (University of Oxford)

Geometric Group Theory