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Reference for the small cancellation technique

Alexander Yu. Olshanskii, Geometry of defining relations in groups.
Mathematics and its Applications 70. Kluwer Academic Publishers Group,
Dordrecht, 1991.
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(Finite) presentations of groups

Proposition

If G = 〈S |R〉 is finitely presented and 〈X |Q〉 is another presentation with
|X | finite, then there exists Q0 ⊆ Q finite such that G = 〈X |Q0〉.

Proof: We have an isomorphism

φ : F (S)/〈〈R〉〉 → F (X )/〈〈Q〉〉

Write φ(s) = σs(X ). Likewise, ∀x ∈ X , φ−1(x) = wx(S), hence

x = wx({σs : s ∈ S}) (with equality in F (X )/〈〈Q〉〉).

So x = wx(σS)ux in F (X ), for some ux ∈ 〈〈Q〉〉.
∀r ∈ R, write vr = r({σs : s ∈ S}) ∈ 〈〈Q〉〉.

Let T0 ⊆ 〈〈Q〉〉 be the finite set {ux , vr : x ∈ X , r ∈ R}.

Cornelia Druţu (University of Oxford) Geometric Group Theory Part C course HT 2025 3 / 10



(Finite) presentations of groups

Let T0 ⊆ 〈〈Q〉〉 be the finite set {ux , vr : x ∈ X , r ∈ R}.

Claim: 〈〈T0〉〉 = 〈〈Q〉〉.

Proof of claim: Define

f : F (S)/〈〈R〉〉 → F (X )/〈〈T0〉〉, f (s) = σs .

Then f is an onto homomorphism.

Also, given π : F (X )/〈〈T0〉〉 → F (X )/〈〈Q〉〉, π ◦ f = φ is an isomorphism
and hence f is injective.
This proves the claim. Whence G = 〈X | T0〉. But T0 is not a subset of Q.
Every ρ ∈ T0 ⊆ 〈〈Q〉〉 can be written as ρ =

∏
r∈Fρ

r xr in F (X ), where

Fρ ⊂ Q finite. Take Q0 =
⋃

ρ∈T0
Fρ finite subset of Q.

Then 〈〈T0〉〉 ⊆ 〈〈Q0〉〉 ⊆ 〈〈Q〉〉, whence 〈〈Q0〉〉 = 〈〈Q〉〉. It follows that
G = 〈X | Q0〉.
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Tietze transformations

How do we recognise when two finite presentations give the same group?

There are two types of transformations (called Tietze transformations).

(T1) Given 〈S |R〉 and r ∈ 〈〈R〉〉, change the presentation to 〈S |R ∪ {r}〉
(or do the inverse operation).

(T2) Given 〈S |R〉, a new symbol a 6∈ S and w ∈ F (S), change the
presentation to 〈S ∪ {a}|R ∪ {a−1w}〉 (or do the inverse operation).

Theorem

Two finite presentations define isomorphic groups if and only if they are
related by a finite sequence of Tietze transformations.

Proof: (⇐) (T1) defines isomorphic groups because 〈〈R〉〉 = 〈〈R ∪ {r}〉〉.
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Tietze transformations

Theorem

Two finite presentations define isomorphic groups if and only if they are
related by a finite sequence of Tietze transformations.

Proof continued: For (T2), consider the homomorphisms

ι : F (S) ↪→ F (S ∪ {a}) (injection)

f : F (S ∪ {a})� F (S) f (a) = w (surjection)

Note that f ◦ ι = idF (S). They induce homomorphisms

F (S)
ῑ−→ F (S ∪ {a})/〈〈a−1w〉〉 f̄−→ F (S)

with f̄ ◦ ῑ = idF (S). ῑ is onto, and hence ῑ and f̄ are isomorphisms. Since

also f̄ −1(〈〈R〉〉) = 〈〈R ∪ {a−1w}〉〉/〈〈a−1w〉〉 we have that f̄ induces the
desired isomorphism.
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Tietze transformations

Theorem

Two finite presentations define isomorphic groups if and only if they are
related by a finite sequence of Tietze transformations.

Proof continued:
(⇒) Let G1 = 〈S1|R1〉, G2 = 〈S2|R2〉. WLOG S1 ∩ S2 = ∅.

There exist inverse isomorphisms φ : G1 → G2, ψ : G2 → G1. ∀s ∈ S1,
choose ws ∈ F (S2) representing φ(s) in G2. ∀t ∈ S2, choose vt ∈ F (S1)
representing ψ(t) in G1.

Take the two subsets of F (S1 ∪ S2):

U1 = {s−1ws : s ∈ S1}, U2 = {t−1vt : t ∈ S2}.

Claim: There exist finitely many Tietze transformations from 〈S1|R1〉 to
〈S1 ∪ S2|R1 ∪ R2 ∪ U1 ∪ U2〉.
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Tietze transformations

Claim: There exist finitely many Tietze transformations from 〈S1|R1〉 to
〈S1 ∪ S2|R1 ∪ R2 ∪ U1 ∪ U2〉.
Proof of claim: Use finitely many (T2) to get from 〈S1|R1〉 to
〈S1 ∪ S2|R1 ∪ U2〉. There exists an isomorphism

ρ : 〈S1 ∪ S2|R1 ∪ U2〉 → 〈S1|R1〉 ρ(s) = s, ∀s ∈ S1 ρ(t) = vt , ∀t ∈ S2

Then φ ◦ ρ : 〈S1 ∪ S2|R1 ∪ U2〉 → 〈S2|R2〉 is an isomorphism such that

t
ρ7−→ vt

φ7−→ t. Also, ∀r ∈ R2

φ ◦ ρ(r) = r ≡ 1 in 〈S2|R2〉 ⇒ r ∈ 〈〈R1 ∪ U2〉〉 ⇒ R2 ⊆ 〈〈R1 ∪ U2〉〉

Thus 〈S1 ∪ S2|R1 ∪ U2〉 is related to 〈S1 ∪ S2|R1 ∪ R2 ∪ U2〉 by a sequence
of (T1) transformations. Also, ∀s ∈ S1

φ ◦ ρ(s) = ws(t1...tk) φ ◦ ρ(ws) = φ ◦ ρ(ws(t1...tk)) = ws(t1...tk)

Hence, s−1ws ∈ 〈〈R1 ∪ U2〉〉, which implies that U1 ⊆ 〈〈R1 ∪ U2〉〉. So we
can apply several (T1) to get 〈S1 ∪ S2|R1 ∪ R2 ∪ U1 ∪ U2〉.
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Properties of finite presentability

Proposition

Let G be a group.

1 G finitely presented does not imply that a subgroup is finitely
presented or that a quotient is finitely presented.

2 If H is a finite index subgroup of G then G is finitely presented if and
only if H is.

3 If N E G is finitely presented and G/N is finitely presented then G is
finitely presented.

A proof can be found in the notes.
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Graham Higman

Remark

G finitely presented does not imply that a subgroup is finitely presented.

Theorem

Every finitely generated recursively presented group can be embedded as a
subgroup of some finitely presented group.
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