Geometric Group Theory

Cornelia Druţu

University of Oxford

Part C course HT 2025

My favourite quotation

William Thurston:

"Mathematics is not about numbers, equations, computations, or algorithms: it is about understanding."

List of algorithmic problems of M. Dehn

Word problem: Given a finite presentation $G = \langle S|R \rangle$ design an algorithm recognising when $w \in F(S)$ satisfies $w = 1_G$ in G.

Conjugacy problem: Given a finite presentation $G = \langle S|R \rangle$ design an algorithm recognising when $u, v \in F(S)$ represent conjugate elements in G.

Remark

The conjugacy problem implies the word problem.

Isomorphism problem: Given finite presentations $G_i = \langle S_i | R_i \rangle$, i = 1, 2, determine if $G_1 \simeq G_2$.

Triviality problem (a particular case of the isomorphism problem): Given a finite presentation $G = \langle S|R\rangle$ determine if $G \simeq \{1\}$.

Novikov, Boone, Rabin ['56]: All of the above are unsolvable.

Fridman ['60]: There exists a group with solvable word problem, but unsolvable conjugacy problem.

Word and conjugacy problems

Proposition

If the word problem or conjugacy problem is solvable for $G = \langle S|R\rangle$ then it is solvable for any finite $\langle X|Q\rangle = G$.

Proof.

WP: Given $w \in F(X)$ we run simultaneously 2 procedures:

- **1** List all elements in $\langle\langle Q\rangle\rangle$ (i.e. multiply conjugates $q_i^{w_i}, w_i \in F(X), q_i \in Q$ and transform into reduced word); check if w is among them. If yes, stop and conclude w=1.
- ② List all homomorphisms $\phi: F(X)/\langle\langle Q \rangle\rangle \to F(S)/\langle\langle R \rangle\rangle$ (i.e. enumerate all |X|-tuples of words in F(S), then check if each $q \in Q$, rewritten by changing $x \mapsto w_x$, becomes $\equiv 1$ in $F(S)/\langle\langle R \rangle\rangle$). This can be done since the WP for $\langle S|R \rangle$ is solvable.
 - For each ϕ , check if $\phi(w) \neq 1$ in $F(S)/\langle\langle R \rangle\rangle$. If yes, stop and conclude $w \neq 1$.

Word and conjugacy problems

Proof continued: CP: Given $w, v \in F(X)$, run the following 2 procedures in parallel:

- - **6** Check if $gvg^{-1}w^{-1}$ is among the list of elements in $\langle\langle Q\rangle\rangle$. If yes, stop and conclude: "v, w conjugate".
- ② List all homomorphisms $\phi: F(X)/\langle\langle Q \rangle\rangle \to F(S)/\langle\langle R \rangle\rangle$.
 - **6** Check if $\phi(v)$, $\phi(w)$ are not conjugate. If yes, stop and conclude: "v, w not conjugate".

Idea: Approximate by finite quotients. So we will need enough of those. NB In what follows, we do not assume finite generatedness.

Lemma

TFAE

1

$$\bigcap_{H \leq_{f.i.} G} H = \{1\}$$

- **②** For all non-trivial $g \in G$, there exists $\phi : G \to F$ finite such that $\phi(g) \neq 1$.
- **3** For all $\{g_1,...,g_n\}$ distinct, there exists $\phi: G \to F$ such that $\phi(g_1),...,\phi(g_n)$ are distinct. In other words, every finite chunk of the infinite Cayley table of G can be reproduced identically in the Cayley table of a finite quotient.

Proof.

The proof is based on the fact that

$$\bigcap_{H \leq_{f.i.} G} H = \bigcap_{N \leq_{f.i.} G} N$$

The implications $(3) \Rightarrow (2) \Rightarrow (1)$ are OK.

And for (1) \Rightarrow (3): $\forall i \neq j$, take $N_{ij} \not\ni g_i g_j^{-1}$ and define

$$N = \bigcap_{i \neq j} N_{ij}$$

and then consider $\phi: G \to G/N$.

Examples

- **1** $GL(n,\mathbb{Z})$ is residually finite. $\forall g \neq id$:
 - If $\exists i \neq j$ such that $|g_{ij}| \neq 0$, take $p > |g_{ij}|$ and reduce mod p.
 - If $\forall i \neq j$, $g_{ii} = 0$, then $\exists g_{ii} = -1$. Reduce mod 3: $g_{ii} = 2$.
- **2** Any finitely generated $G \leq SL(n, \mathbb{Q})$ (or $GL(n, \mathbb{Q})$) is RF.

if we have some $\phi: \mathbb{Q} \to F$, $\phi(0) = \mathrm{id}$, take $g = \phi(1)$, n = |F| and then $g = \phi(1) = \phi(\frac{1}{n})^n = \mathrm{id}$.

Theorem (Mal'cev)

Let R be a commutative ring with unity. Any finitely generated $G \leq GL(n,R)$, G is residually finite.

Proposition

- **1** If G is RF and $H \leq G$ then H is RF.
- ② If H is a finite index subgroup of G then H is RF if and only if G is RF.
- **1** If two groups G and H are RF then $G \times H$ is RF.
- If $G = H \times K$ where H is finitely generated RF, K is RF, then G is RF.

Proposition

For all finite or countable X, F(X) is residually finite.

Proof: We have that $F_2 \simeq \langle \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \rangle \leq GL(2, \mathbb{Z})$. And for all X finite or countable, $F(X) \leq F_2$.