
MATH 233A: Additive Combinatorics

Sarah Peluse

February 2, 2025

Contents

1 Logistics 2

2 Roth’s theorem 2
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Proof of Roth’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Improved bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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1 Logistics

1. I’ve made a canvas page with the syllabus, and I’ll also post the assignments there. If
you want to be added to the canvas page, send me an email.

2. Email: speluse@stanford.edu

3. There will be a final project, which consists of you finding a paper in additive combi-
natorics, reading it on your own, and then discussing it with me. The meetings will
happen during the last week of class, and I’ll make an online form to schedule them
soon. I’ll often mention topics and results that we will not have the time to go into,
so that can help you find papers to read, but you don’t have to pick something that I
mention.

2 Roth’s theorem

One of the first ever results in Ramsey theory is van der Waerden’s theorem.

Theorem 1 (van der Waerden, 1927). Let k, r ∈ N. For any r-coloring of the natural
numbers, some color class contains a nontrivial k-term arithmetic progression

x, x+ y, . . . , x+ (k − 1)y (y 6= 0).

Motivated by this result, Erdős and Turán conjectured in 1936 that any subset of N
with positive upper density1 must contain arbitrarily long nontrivial arithmetic progressions.
That is, van der Waerden’s theorem should hold because, in any finite coloring of the natural
numbers, some color class must have positive density.

Conjecture 1 (Erdős and Turán, 1936). If A ⊂ N has positive upper density, then A
contains arbitrarily long nontrivial arithmetic progressions.

This conjecture can be restated in a more finitary form.

Exercise 1. Prove that the above statement is equivalent to the following: Fix k ∈ N. If
A ⊂ [N ] contains no nontrivial k-term arithmetic progressions, then |A| = o(N).

1If A ⊂ N, its density in the first N integers [N ] := {1, . . . , N} is |A∩[N ]|
N . If the limit of this quan-

tity exists, then the limit is called the natural density of A. Its limsup and liminf always exist. We call

lim supN→∞
|A∩[N ]|

N and lim infN→∞
|A∩[N ]|

N the upper and lower densities, respectively, of A. So, A has

positive upper density if lim supN→∞
|A∩[N ]|

N > 0.
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In 1975, Szemerédi proved this conjecture via a purely combinatorial argument in which
he introduced his regularity lemma for graphs, which is now a fundamental tool in extremal
graph theory. The first nontrivial case of Szemerédi’s theorem is the case of three-term
arithmetic progressions, which was proved more than twenty years earlier by Roth.

Theorem 2 (Roth, 1953). If A ⊂ [N ] contains no nontrivial three-term arithmetic progres-
sions, then

|A| � N

log logN
.

Here and throughout the course, I use Vinogradov’s asymptotic notation: for two quanti-
ties X and Y , X � Y , Y � X, and X � Y mean X = O(Y ), Y = Ω(X), and X � Y � X,
respectively.

One of the central problems in additive combinatorics has been to determine the best
possible bounds in Roth’s theorem, i.e., to determine the size of the largest subset of [N ]
containing no nontrivial three-term arithmetic progressions. Attempts to improve these
bounds have led to the development of numerous new ideas and techniques. Here is a brief
history of progress that has been made:

Roth (1953) N
log logN

Heath-Brown (1987) and Szemerédi (1990) N
(logN)c

Bourgain (1999) N
(logN)1/2−o(1)

Bourgain (2008) N
(logN)2/3−o(1)

Sanders (2012) N
(logN)3/4−o(1)

Sanders (2011) N(log logN)6

logN

Bloom (2016) N(log logN)4

logN

Schoen (2021) N(log logN)3+o(1)

logN

Bloom–Sisask (2020) N
(logN)1+c′

Kelley–Meka (2023) N

exp(C 12√logN)
Bloom–Sisask (2023) N

exp(C′ 9
√

logN)

Here, c and c′ are small positive constants, C and C ′ are some positive constants, the −o(1)
in the exponent of logN in the third, fourth, and fifth rows hides bounded powers of log logN
in the numerator, and the o(1) in the exponent of log logN in the last row hides a bounded
power of log log logN . I’ll say a bit about what goes into some of the more important
improvements after we prove Roth’s theorem.

Note that the subset of integers below N with no twos in their ternary expansion,

AN :=

{
n ∈ [N ] : n =

k∑
i=0

ai3
i with ai ∈ {0, 1}

}
,

contains no three-term arithmetic progressions (you can see this by considering the first
nonzero digit of the common difference). This set has size |AN | � N log 2/ log 3. In 1942,
Salem and Spencer constructed subsets of [N ] of size N exp(−C logN/ log logN) containing
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no three-term arithmetic progressions for some constant C > 0, showing for the first time that
there exist three-term progression free sets of size�ε N

1−ε for all ε > 0; due to this, sets free
of three-term arithmetic progressions are sometimes called Salem–Spencer sets. A famous
construction of Behrend from 1946, which we will see later, gives a three-term progression
free subset of [N ] of size � N exp

(
−(2
√

2 + o(1))
√

log2N
)
. Over the past 80 years, there

were various minor improvements on Behrend’s construction that improved the o(1) term,
but no one was able to improve the 2

√
2 until very recently, when Elsholtz, Hunter, Proske,

and Sauermann introduced a new construction of a three-term progression free set in [N ] of

size� N exp
(
−(2

√
log2(24/7) + o(1))

√
log2N

)
. One can check that 2

√
log2(24/7) < 2

√
2.

2.1 Notation

Before we begin proving Roth’s theorem, we will fix some standard notation for the rest of
the course. For any real number t and natural number q, we will write e(t) := e2πit and
eq(t) := e(t/q), the latter of which can also naturally be viewed as a function on Z/qZ. We
will use ‖t‖ to denote the distance from t to the nearest integer.

For any finite nonempty set X and f : X → C, we denote the average of f over X by

Ex∈Xf(x) :=
1

|X|
∑
x∈X

f(x).

Sometimes, when the averaging set is implicitly understood, I will simply write Ex in place
of Ex∈X . When G is any finite abelian group, we define the Lp and `p norms of g : G → C
with the normalizations

‖g‖Lp := (Ex∈G|g(x)|p)1/p and ‖g‖`p :=

(∑
x∈G

|g(x)|p
)1/p

.

When h : G→ C as well, we define the inner product on G by

〈g, h〉 := Ex∈Gg(x)h(x)

and convolution by
(g ∗ h)(x) := Ey∈Gg(x− y)h(y).

Denote the dual group of G (i.e., the set of characters of G) by Ĝ. Recall that Ẑ/qZ ∼=
Z/qZ for any q ∈ N and

Ẑ/qZ = {x 7→ eq(ξx) : ξ ∈ Z/qZ} .

For any ξ ∈ Ĝ, we define the Fourier coefficient of g at ξ by

ĝ(ξ) := Ex∈Gg(x)ξ(x).

With our choice of normalizations, the Fourier inversion formula reads

g(x) =
∑
ξ∈Ĝ

ĝ(ξ)ξ(x),
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Plancherel’s theorem reads

〈g, h〉 = Ex∈Gg(x)h(x) =
∑
ξ∈Ĝ

ĝ(ξ)ĥ(ξ),

and we have ĝ ∗ h = ĝ · ĥ.

2.2 Proof of Roth’s theorem

Roth’s original argument was via a downward induction argument on density. The modern
way to phrase this argument (due to Gowers) is in the form of a density increment argument.
The idea of the argument is to show that if a subset A ⊂ [N ] of density α does not contain
many three-term arithmetic progressions, then either N is small in terms of α (precisely,
N � 1

αO(1) , which implies that the density of A is very small in terms of N) or A must have
density substantially larger than α on a “structured” subset of [N ] or N . This structured
subset resembles [N ] enough that one can repeat the argument relative to it, but now with
a set having density greater than α. One iterates this repeatedly, and since density cannot
be greater than 1, the iteration must terminate at some point; at this point, the structured
set must be small. We can then retrace the steps of the iteration to derive an upper bound
for the original density α in terms of N .

Here is our density increment lemma.

Lemma 1. Let A ⊂ [N ] have density α and assume that A contains no nontrivial three-term
arithmetic progressions. Then either

N <
8

α2
,

or there exists an arithmetic progression P = a+ q · [N ′] with N ′ ≥ 2−11α2
√
N such that

|A ∩ P |
|P |

≥ α + 2−10α2.

We will show how iterating this lemma proves Roth’s theorem.

Theorem 3. If A ⊂ [N ] contains no nontrivial three-term arithmetic progressions, then

|A| � N

log logN
.

Proof assuming Lemma 1. First, note that three-term arithmetic progressions are translation-
dilation invariant, so that if A contains no nontrivial arithmetic progressions and P =
a+ q · [N ′], then the shifted and rescaled set

A′ := {n ∈ [N ′] : a+ qn ∈ A}

also contains no nontrivial three-term arithmetic progressions.
Now, suppose that A ⊂ [N ] has density α and contains no nontrivial three-term arith-

metic progressions. Set A0 := A, N0 := N , and α0 := α. Repeatedly applying the density-
increment lemma produces a sequence of triples (Ai, Ni, αi) satisfying
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1. Ai+1 ⊂ [Ni+1] has density αi+1,

2. Ai+1 contains no nontrivial three-term arithmetic progressions,

3. Ni+1 ≥ 2−11α2
i

√
Ni, and

4. αi+1 ≥ αi + 2−10α2
i ,

all provided that Ni ≥ 8α−2
i . Since the density of Ai+1 in [Ni+1] cannot go above 1, this

iteration must terminate at some step i0 � 1
α

by the inequality αi+1 ≥ αi + 2−10α2
i . Indeed,

this inequality says that

αi ≥ α
(

1 +
α

210

)i
,

so that αi ≥ 2α after i ≤ 210

α
steps of the iteration, and, analogously, αi doubles again after

at most 210

2α
more steps of the iteration, and so on.

At the point of termination i0, the largeness assumption on Ni0 must fail, so that we
have Ni0 ≤ 8α−2. On the other hand, we have

Ni0 ≥
(
2−11α2

)∑i0
i=0 2−i

N2−i0 ≥ 2−22α4N2−O(1/α)

.

Combining these upper and lower bounds yields

N2−O(1/α) � 1

α6
.

Taking double logarithms of both sides (whenN � 1) and rearranging yields Roth’s theorem.

Before proving the density increment lemma, we will recall a standard result in Diophan-
tine approximation due to Dirichlet.

Theorem 4. Let γ ∈ R and Q ∈ N. There exist integers a and 1 ≤ q ≤ Q such that∣∣∣∣γ − a

q

∣∣∣∣ < 1

qQ
.

Proof. This is a simple application of the pigeonhole principle. Consider qγ (mod 1) for
q = 1, . . . , Q. Either qγ (mod 1) lies in [0, 1/Q) for some 1 ≤ q ≤ Q, in which case certainly
‖qγ‖ < 1/Q, or else qγ (mod 1) lies in one of the Q − 1 intervals [1/Q, 2/Q), . . . , [(Q −
1)/Q, 1). In the latter situation, there exist 1 ≤ q1 < q2 ≤ Q and k ∈ [Q − 1] such that
q1γ, q2γ (mod 1) both lie in [k/Q, (k + 1)/Q), in which case ‖(q2 − q1)γ‖ < 1/Q. Since
1 ≤ q2 − q1 < Q, in either case we get that there exists 1 ≤ q ≤ Q such that ‖qγ‖ < 1/Q.
The conclusion of the theorem follows.

Now we can prove the density increment lemma.
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Proof of Lemma 1. Suppose that N ≥ 8α−2. First, let p ∈ (2N, 4N) be prime2, and note
that any three-term arithmetic progression in {1, . . . , N} ⊂ Z/pZ corresponds to a genuine
three-term arithmetic progression in [N ]. Thus, the total number of three-term arithmetic
progressions in A equals ∑

x,y∈Z/pZ

1A(x)1A(x+ y)1A(x+ 2y). (1)

Since A contains only trivial three-term arithmetic progressions, the above equals αN , which
satisfies

αN =
α3N2

α2N
≤ α3N2

8
by our assumption on the size of N .

We define the balanced function fA : Z/pZ → R of A by fA := 1A − α1[N ]. Using that
1A = fA + α1[N ], we get that (1) equals the sum of∑

x,y∈Z/pZ

1A(x)1A(x+ y)fA(x+ 2y), (2)

α
∑

x,y∈Z/pZ

1A(x)fA(x+ y)1[N ](x+ 2y), (3)

and
α2

∑
x,y∈Z/pZ

1A(x)1[N ](x+ y)1[N ](x+ 2y). (4)

Note that (counting y in the union of [b(N − x)/2c] (mod p), −[b(x− 1)/2c] (mod p), and
{0}) (4) equals

α2
∑

x∈Z/pZ

1A(x)

(
1 +

⌊
x− 1

2

⌋
+

⌊
N − x

2

⌋)
≥ α2|A|N

4
=
α3N2

4
,

where we have used that N ≥ 6. Recalling that (1) is at most α3N/8, it follows that at least
one of (2) or (3) must have magnitude at least α3N2/16 ≥ 2−8α3p2. We will assume that
we are in the former case; the latter case can be handled similarly.

Now, for any f, g, h : Z/pZ→ C, we have the identity

Ex,y∈Z/pZf(x)g(x+ y)h(x+ 2y) =
∑

ξ∈Z/pZ

f̂(ξ)ĝ(−2ξ)ĥ(ξ),

which can be seen by plugging in the Fourier inversion formula for each of f, g, and h and
then using orthogonality of characters. Thus, we have

α3

28
≤ |Ex,y1A(x)1A(x+ y)fA(x+ 2y)|

≤
∑
ξ

∣∣∣1̂A(ξ)1̂A(−2ξ)f̂A(ξ)
∣∣∣

= max
ξ∈Z/pZ

∣∣∣f̂A(ξ)
∣∣∣ · ∥∥∥1̂A

∥∥∥2

`2
= α max

ξ∈Z/pZ

∣∣∣f̂A(ξ)
∣∣∣

2Such a p must exist by Bertrand’s postulate. It’s not actually that important that p is prime–all we will
use, besides the size bound on p, is that it is odd.
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by the Cauchy–Schwarz inequality and Parseval’s identity. Thus, there exists ξ ∈ Z/pZ such
that ∣∣∣∣∣∣

∑
x∈Z/pZ

fA(x)e

(
ξx

p

)∣∣∣∣∣∣ ≥ α2

28
p.

Since fA has mean zero by definition, we must, in fact, have ξ ∈ {1, . . . , p − 1}. Further,
since fA is supported on [N ], we have∣∣∣∣∣∣

∑
x∈[N ]

fA(x)e

(
ξx

p

)∣∣∣∣∣∣ ≥ α2

27
N.

Now, we will apply Dirichlet’s theorem with Q =
⌈√

N
⌉

to approximate ξ
p
. This tells us

that there exist integers a and 1 ≤ q ≤ Q and a real number θ ∈ [0, 1) such that

ξ

p
=
a

q
+

θ

q
√
N
.

Next, we will partition [N ] into arithmetic progressions with common difference q on which
the phase e(ξx/p) is roughly constant. Note that [N ] can be partitioned into K arithmetic
progressions P1, . . . , PK of length N ′ := d2−11α2

√
Ne and common difference q, where K ≥

b211α−2
√
Nc, along with q (possibly empty) arithmetic progressions P ′1, . . . , P

′
q of length at

most N ′ − 1 and common difference q. Thus, since (c + qd)a
q
≡ ac

q
(mod 1) for all c, d ∈ Z,

we have
K∑
i=1

∣∣∣∣∣∑
x∈Pi

fA(x)e

(
θx

q
√
N

)∣∣∣∣∣+

q∑
j=1

∣∣∣∣∣∣
∑
x∈P ′j

fA(x)e

(
θx

q
√
N

)∣∣∣∣∣∣ ≥ α2

27
N.

Now, note that whenever x, y ∈ Pi or x, y ∈ P ′j ,∣∣∣∣e( θx

q
√
N

)
− e

(
θy

q
√
N

)∣∣∣∣ =

∣∣∣∣e(θ(x− y)

2q
√
N

)
− e

(
θ(y − x)

2q
√
N

)∣∣∣∣
= 2

∣∣∣∣sin(πθ(x− y)

q
√
N

)∣∣∣∣
≤ α2

28
,

since | sin(πβ)| ≤ π|β|. Thus,

K∑
i=1

∣∣∣∣∣∑
x∈Pi

fA(x)

∣∣∣∣∣+

q∑
j=1

∣∣∣∣∣∣
∑
x∈P ′j

fA(x)

∣∣∣∣∣∣ ≥ α2

28
N.

Since P1, . . . , PK , P
′
1, . . . , P

′
q partition [N ] and fA has mean zero and support in [N ], we also

have
K∑
i=1

∑
x∈Pi

fA(x) +

q∑
j=1

∑
x∈P ′j

fA(x) = 0.
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Summing these two expressions and using that |t|+ t = 2 max(t, 0) for all t ∈ R, we obtain

K∑
i=1

max

(∑
x∈Pi

fA(x), 0

)
+

q∑
j=1

max

∑
x∈P ′j

fA(x), 0

 ≥ α2

29
N.

The contribution of the second sum on the left-hand side above is

q∑
j=1

max

∑
x∈P ′j

fA(x), 0

 ≤ qN ′ ≤ 2−10α2N

since fA is 1-bounded. Thus,

K∑
i=1

max

(∑
x∈Pi

fA(x), 0

)
≥ α2

210
N.

So, by the pigeonhole principle, there exists an i ∈ [K] such that

|A ∩ Pi|
|Pi|

≥ α +
α2

210
,

as desired.

Roth’s theorem can be bootstrapped from a result giving one three-term arithmetic
progression in a set of positive density to many.

Exercise 2. Prove that there exists a function c : (0, 1]→ (0, 1] such that the following holds:
If A ⊂ [N ] has density at least α, then A contains at least c(α)N2 three-term arithmetic
progressions.

2.3 Improved bounds

We will end the discussion of Roth’s theorem by briefly indicating the key ideas going into
some of its quantitative improvements. All of these arguments proceed via a density incre-
ment argument, with the main differences being the efficiencies of their density increment
lemmas (i.e., at each step, the size of the density increment and the size of the structured
set on which the increment is obtained).

Note that one source of quantitative inefficiency in our argument was that each step of
the density increment iteration reduced the size of the interval on which we worked by a
square root. Heath-Brown and Szemerédi instead collected many large nontrivial Fourier
coefficients at each step of the iteration, which they used to obtain a much larger (at least
α(1+Ω(mΩ(1))) for some positive integer m� α−O(1)) density increment on a long arithmetic
progression (of length at least � αN1/(m+1)). This iteration is more efficient than Roth’s,
and leads to an improved savings of a power of logN over the trivial bound.

The key innovation of Bourgain’s work was to obtain a density increment on “Bohr sets”,
which are approximate level sets of the characters ep(ξx). These sets have positive density,
but have much less additive structure than intervals. Thus, while Bourgain’s method obtains
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a density increment on a set of positive density, iterating this argument is significantly more
difficult. Bourgain’s second improvement on the bounds in Roth’s theorem comes from a
more careful analysis of the set of large nontrivial Fourier coefficients of 1A.

In 2010, Croot and Sisask proved a variety of theorems that, roughly, say that the
convolution of two functions is approximately invariant under translation by a large set of
shifts (which one can take to be fairly “additively structured”), and called this phenomenon
almost periodicity. Sanders’s improvement comes not from further analysis on the Fourier
side, but by incorporating a “physical side” argument using almost periodicity.

Bloom–Sisask’s first bound was proven by (essentially) adapting an argument of Bateman
and Katz in the setting of high dimensional vector spaces over finite fields to the integer
setting. The main feature of the work of Bateman and Katz was an extremely careful
analysis of the set of large nontrivial Fourier coefficients of 1A. It was a very difficult task to
adapt these ideas to the integer setting, and Bloom and Sisask required all of the previously
mentioned innovations (and more) in order to make it work.

The argument of Kelley and Meka was a shocking advance, and proceeds almost com-
pletely by arguing on the physical side. Aside from its use of an almost periodicity argu-
ment, the proof of their density increment lemma is very different than all of the previously
mentioned arguments. Good references to learn their methods are the expositions of Bloom–
Sisask and Green. Bloom–Sisask’s improvement on the root of logN in the Kelley–Meka
bound comes from optimizing the Kelley–Meka argument.

2.4 Two theorems of Sárközy

Answering a question of Lovász, Furstenberg and Sárközy both independently proved in
the late 1970s that any subset of the natural numbers having positive upper density must
contain two distinct elements that differ by a perfect square. Furstenberg’s proof was via
ergodic theory (in the same paper in which he gave his ergodic theoretic proof of Szemerédi’s
theorem), and produced no quantitative bounds, while Sárközy’s argument was, like Roth’s,
via a Fourier-analytic density increment argument, and produced similar explicit quantitative
bounds.

Theorem 5 (Sárközy, 1978). If A ⊂ [N ] contains no two elements a, a′ ∈ A for which
a− a′ = b2 for some b ∈ N, then

|A| � N

(logN)1/3−o(1)
.

You will prove this in your first homework (with a possibly different power of logN in the
denominator). It turns out that one can show that if A as no nontrivial square differences,

then 1̂A(ξ) (where, here, we take the Fourier transform on Z) is large for some ξ close to a
rational with small (� α−O(1)) denominator. This allows one to deduce a density increment
on an arithmetic progression contained in [N ] of length� αO(1)N , leading to a more efficient
density increment iteration than in our proof of Roth’s theorem.

Sárközy’s upper bound has since been improved several times, most notably by Pintz–
Steiger–Szemerédi in 1988, who proved an upper bound of

|A| � N

(logN)c log log log logN
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by a careful analysis of the set of possible large Fourier coefficients of 1A. An improved
version of this analysis was carried out by Bloom and Maynard in 2022, yielding the current
best known upper bounds in Sárközy’s theorem:

|A| � N

(logN)c′ log log logN
.

In 1984, Ruzsa gave a construction of a square difference-free subset of [N ] of size � N .73...,
and this is still the densest construction known. It is a problem of great interest in additive
combinatorics to determine whether the size of the largest square difference-free subset of
[N ] is asymptotically � N1−δ for some δ > 0.

In his 1978 paper, Sárközy also proved that any subset of the natural numbers having
positive upper density must contain two elements that differ by a prime minus one, with
explicit quantitative bounds3.

Theorem 6 (Sárközy, 1978). If A ⊂ [N ] contains no two elements a, a′ ∈ A for which
a− a′ = p− 1 for some prime p, then

|A| � N

(log logN)2−o(1)
.

This theorem has also been improved multiple times, with the current best result due to
Green in 2023, who shattered the previous record by proving a power saving bound:

|A| � N1−δ (5)

for some δ > 0 that can be explicitly computed. This suggests that it’s not completely
unreasonable to guess that a power saving bound for the size of sets lacking square differences
may be the truth. Green’s proof does not, in contrast to all others mentioned in this section,
proceed via a density increment argument. He instead carefully constructs a special explicit
trigonometric polynomial whose existence (by a straightforward Fourier analytic argument)
implies the bound (5). The largest known construction of a subset of [N ] with no shifted
prime common difference is again due to Ruzsa (1984), and has size � N c/ log logN for some
absolute constant c > 0.

2.5 Longer progressions

In this subsection, we will work in Z/NZ for simplicity, with N odd. Recall the identity

Λ3(f, g, h) := Ex,yf(x)g(x+ y)h(x+ 2y) =
∑
ξ

f̂(ξ)ĝ(−2ξ)ĥ(ξ)

for any f, g, h : Z/NZ→ C. When A ⊂ Z/NZ has density α, the normalized count

Λ3(1A, 1A, 1A) =
# {(x, y) ∈ (Z/NZ)2 : x, x+ y, x+ 2y ∈ A}

N2

3Note that 4N contain no two elements that differ by a prime, so it is not interesting to ask about sets
avoiding prime differences.
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of three-term arithmetic progressions in A equals∑
ξ

1̂A(ξ)21̂A(−2ξ) = α3 +
∑
ξ 6=0

1̂A(ξ)21̂A(−2ξ)

by separating out the contribution of the contribution of the zeroth Fourier coefficient. Thus,
by the triangle inequality and Parseval’s identity,∣∣Λ3(1A, 1A, 1A)− α3

∣∣ ≤ max
06=ξ∈Z/NZ

∣∣∣1̂A(ξ)
∣∣∣ . (6)

For context, if one were to sample a random subset of Z/NZ by including each element
with probability α independently, then this random subset will almost always have density
very close to α and contain very close to α3N2 three-term arithmetic progressions. Thus, the
inequality (6) says that the difference between the count of three-term arithmetic progressions
in A and in a random set of the same density is controlled by the size of the largest trivial
Fourier coefficient of 1A; in this sense, the L∞-norm of the Fourier transform is a measure of
pseudorandomness from the point of view of counting three-term arithmetic progressions.

It is thus natural to ask whether Fourier analysis also controls the count of longer arith-
metic progressions in subsets of Z/NZ. This turns out to not be the case, as can be seen by
considering the set {

n ∈ [N ] : 0 ≤
{√

2n2
}
≤ 1

1000

}
,

where {t} denotes the fractional part of any t ∈ R. You will show in your homework that this
set has far from the random density of four-term arithmetic progressions, yet has no large
nontrivial Fourier coefficients. Given this example, it is maybe then natural to conjecture
that if the indicator function of a set A does not correlate with any nontrivial quadratic
phase functions x 7→ e(βx2 + γx), then A has close to the random number α4N2 four-term
arithmetic progressions; this is again not the case, as you will also show in the homework.

The question remains of whether there is some theory analogous to Fourier analysis that
governs the count of arithmetic progressions of length greater than three. Such a theory
was first developed by Gowers in the late 1990s and early 2000s, and is now called higher
order Fourier analysis. Gowers used this to prove the first reasonable quantitative bounds
in Szemerédi’s theorem. In order to explain a bit about what higher order Fourier analysis
is, we will begin by controlling the difference |Λ3(1A, 1A, 1A)−α3| in an alternative way that
is more amenable to generalization.

Let fA := 1A−α denote the balanced function of A ⊂ Z/NZ (again, with N odd). Since
Λ3(1A, 1A, 1A) = Λ3(1A, 1A, fA) + αΛ3(1A, 1A, 1) = Λ3(1A, 1A, fA) + α3, we have∣∣Λ3(1A, 1A, 1A)− α3

∣∣ ≤ |Λ3(1A, 1A, fA)| .

Now, to bound the right-hand side, we apply the Cauchy–Schwarz inequality and make a

12



change of variables to obtain, using that 1A and fA are both 1-bounded,

|Λ3(1A, 1A, fA)| = |Ex,y1A(x)1A(x+ y)fA(x+ 2y)|

≤
(
Ex |Ey1A(x+ y)fA(x+ 2y)|2

)1/2

=
(
Ex,y,z1A(x+ y)1A(x+ z)fA(x+ 2y)fA(x+ 2z)

)1/2

=
(
Ex,y,h1A(x+ y)1A(x+ y + h)fA(x+ 2y)fA(x+ 2y + 2h)

)1/2

=
(
Ex,y,h1A(x)1A(x+ h)fA(x+ y)fA(x+ y + 2h)

)1/2

.

A second application of the Cauchy–Schwarz inequality to double the y variable and a change
of variables yields

|Λ3(1A, 1A, fA)|4 ≤ Ex,h

∣∣∣EyfA(x+ y)fA(x+ y + 2h)
∣∣∣2

≤ Ex,hEy,zfA(x+ y)fA(x+ z)fA(x+ y + 2h)fA(x+ z + 2h)

≤ Ex,y,h,kfA(x)fA(x+ k)fA(x+ h)fA(x+ h+ k).

This last expression is the fourth power of the Gowers U2-norm of fA, ‖fA‖4
U2 . Thus, we

have shown that ∣∣Λ3(1A, 1A, 1A)− α3
∣∣ ≤ ‖fA‖U2 .

One can show, by plugging in the Fourier inversion formula, that ‖f‖U2 = ‖f̂‖`4 , and from
this deduce again from Parseval’s identity that |Λ3(1A, 1A, 1A)− α3| is small whenever 1A has
no large nontrivial Fourier coefficients (though with slightly worse quantitative dependence).
Precisely, one has the following (easy to prove) statement, which is called the inverse theorem
for the U2-norm:

Lemma 2. Let f : Z/NZ → C be 1-bounded. If ‖f‖U2 ≥ δ, then there exists ξ ∈ Z/NZ
such that ∣∣∣f̂(ξ)

∣∣∣ ≥ δ2.

One can show, by three applications of the Cauchy–Schwarz inequality followed by a
change of variables, that whenever (N, 6) = 1 and f0, f1, f2, f3 : Z/NZ → C are any 1-
bounded functions, then, setting

Λ4(f0, f1, f2, f3) := Ex,yf0(x)f1(x+ y)f2(x+ 2y)f3(x+ 3y),

we have
|Λ4(f0, f1, f2, f3)| ≤ min

i∈[4]
‖fi‖U3 ,

where ‖ · ‖U3 is the Gowers U3-norm, defined by ‖f‖8
U3 equaling4

Ex,y,h,k,lf(x)f(x+ h)f(x+ k)f(x+ l)f(x+ h+ k)f(x+ h+ l)f(x+ k + l)f(x+ h+ k + l).

4It is not obvious that ‖ · ‖U3 is a norm; we will discuss this (and other) facts about the U3-norm later
in the course.
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It then follows that ∣∣Λ4(1A, 1A, 1A, 1A)− α4
∣∣� ‖fA‖U3 . (7)

The bulk of this course will consist of proving a “local” inverse theorem for the U3-norm
(originally due to Gowers in 1998), which, combined with (7), will allow us to deduce a
density increment on a long arithmetic progression whenever A ⊂ [N ] contains no nontrivial
four-term arithmetic progressions. This is sufficient to prove Gowers’s bound on the size of
subsets of [N ] lacking four-term arithmetic progressions.

Theorem 7 (Gowers, 1998). If A ⊂ [N ] contains no nontrivial four-term arithmetic pro-
gressions, then

|A| � N

(log logN)c

for some absolute constant5 c > 0.

Gowers’s upper bound has since been improved by Green and Tao to save a small power
of logN over the trivial bound of N .

The proof of the local inverse theorem for the U3-norm uses multiple foundational results
and techniques in additive combinatorics, and is thus a good a result to learn the proof of if
one wants an introduction to the area. We will spend the next few weeks on these results,
starting with the basic theory of sumsets and product sets.

3 Sumsets and product sets

Let G be any (possibly nonabelian) group and A,B ⊂ G. The product set of A and B is
defined by

AB := {ab : a ∈ A and b ∈ B} .

We will also write A−1 for {a−1 : a ∈ A} and say that A is symmetric if A = A−1. For any
k ∈ N, we will denote the k-fold product set of A by

Ak := {a1 · · · ak : a1, . . . , ak ∈ A}.

When G is abelian with operation denoted by +, the sumset of A and B is defined to be

A+B := {a+ b : a ∈ A and b ∈ B},

and we write −A for {−a : a ∈ A} (so that A is symmetric if A = −A) and

A−B := {a− b : a ∈ A and b ∈ B}

for the difference set of A and B. For any k ∈ N, we will denote the k-fold sumset of A by

kA := {a1 + · · ·+ ak : a1, . . . , ak ∈ A}.

Note that this is distinct from the dilation k · A := {ka : a ∈ A}, though k · A ⊂ kA.

5c = 2−2
13

works
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There are a few obvious trivial bounds for the sizes of sumsets and product sets. For any
A,B ⊂ G, we have

max{|A|, |B|} ≤ |AB| ≤ |A||B|.
When (G,+) is an abelian group and C ⊂ G, we have the stronger trivial upper bound

|C + C| ≤ |C|+
(
|C|
2

)
=
|C|(|C|+ 1)

2
.

These trivial bounds are, in fact, sharp. Indeed, if A = B = H for some finite subgroup H
of G, then |AB| = |A| = |B|. If, say, G = F2 = 〈a, b〉 is the free group on two letters and
A = {1, a, a2} andB = {1, b, b2}, then |AB| = |{1, a, a2, b, ab, a2b, b2, ab2, a2b2}| = 9 = |A||B|.
Similarly, if G = Z and C = {1, 2, 4}, then |C + C| = |{1, 2, 4, 3, 5, 6}| = 6 = |C|(|C|+1)

2
.

3.1 Basic results

Our first nontrivial result on sumsets and product sets will be the following, which is known
as Ruzsa’s triangle inequality.

Lemma 3. Let A,B,C ⊂ G be three finite nonempty subsets of G. Then,

|AC−1| ≤ |AB
−1||BC−1|
|B|

.

Proof. Note that the desired inequality is equivalent to

|AC−1||B| ≤ |AB−1||BC−1|.

We will prove this by considering the map φ : (AC−1)× B → (AB−1)× (BC−1) defined as
follows: fix arbitrarily, for each x ∈ AC−1, (ax, cx) ∈ A × C such that x = axc

−1
x , and then

set
φ(x, b) = φ(axc

−1
x , b) = (axb

−1, bc−1
x ).

The desired inequality will then follow if we can show that φ is injective. To see that φ is
injective, suppose that φ(x, b) = φ(y, d). This means that (axb

−1, bc−1
x ) = (ayd

−1, dc−1
y ), so,

in particular,
x = axc

−1
x = axb

−1bc−1
x = ayd

−1dc−1
y = ayc

−1
y = y.

From this, it also follows that bc−1
x = dc−1

x , and thus that b = d as well. Hence, φ is
injective.

The reason this lemma is called a “triangle inequality” is due to the existence of the
Ruzsa distance between two finite nonempty subsets of the same group A,B ⊂ G:

d(A,B) := log
|AB−1|√
|A||B|

.

It’s easy to check that d(A,B) is nonnegative (by the trivial lower bound on |AB−1|) and
symmetric (since |AB−1| = |BA−1|, as inversion is a bijection). The Ruzsa triangle inequality
is equivalent to the triangle inequality for Ruzsa distance:

d(A,C) ≤ d(A,B) + d(B,C),
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as can be seen by exponentiating both sides of the above and multiplying through by√
|A||C||B|. The Ruzsa distance is not, however, a true distance, since d(A,A) is not always

0 (consider A = {0, 1} ⊂ Z/4Z) and d(A,B) = 0 does not imply that A = B (consider
A = {0, 2}, B = {1, 3} ⊂ Z/4Z).

One can deduce from the Ruzsa triangle inequality that if a finite subset of a group has
3-fold product set not much larger than the original set (i.e., the set has small tripling), then
the size of its n-fold product sets can also be controlled for any positive integer n.

Lemma 4. Let A be a finite symmetric subset of a group G that contains the identity. If
|A3| ≤ K|A|, then

|An| ≤ Kn−2|A|
for all integers n ≥ 3.

Proof. We will proceed by induction on n, with the base case n = 3 already being covered by
assumption. So, assume that n ≥ 4 and that |An−1| ≤ Kn−3|A|. Note that, by the definition
of Ruzsa distance, we have

|An|
|A|

=
|An−2A2|
|A|

=

√
|An−2||A2|
|A|

exp
(
d(An−2, A2)

)
.

By Ruzsa’s triangle inequality, we have

exp
(
d(An−2, A2)

)
≤ exp

(
d(An−2, A) + d(A,A2)

)
=

|An−1||A3|√
|An−2||A| ·

√
|A||A2|

.

Combining this with the above, we deduce that

|An|
|A|
≤ |A

n−1||A3|
|A|2

≤ Kn−3 ·K = Kn−2

by the induction hypothesis and the initial assumption on |A3|.

To get a result that applies to all sets with small tripling, one can also use the Ruzsa
triangle inequality to show that a set having small tripling implies that its “symmetrization”
also has small tripling.

Lemma 5. Let A be a finite subset of a group G. If |A3| ≤ K|A|, then

|(A ∪ A−1 ∪ {1})3| ≤ 27K3|A|.

The proof of this lemma is left as an exercise.
It is not, in general, true that a set having small doubling (i.e., |A2| ≤ K|A|) implies

that its n-fold product sets can also be controlled for any positive integer n. Indeed, let
H ≤ G be a subgroup of some finite group G and g ∈ G \H, and set A = H ∪ {g}. Then
|A2| = |H ∪ gH ∪Hg| ≤ 3|A|, so A certainly has small doubling, but A3 ⊃ HgH, which can
be very large. For example, if G = SL2(Fp),

H =

{(
a b
0 c

)
∈ SL2(Fp)

}
,
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and g =

(
0 1
−1 0

)
, then one can check that |HgH| = p(p−1)(p−2), while |A| = |H∪{g}| =

p(p− 1) + 1. So, |A3| � p|A|, and there is thus no hope of proving an analogue of Lemma 4
with a small doubling hypothesis for general groups.

Note that the example above crucially relied on G being nonabelian. It turns out that,
for abelian groups, small doubling does imply control on the side of all iterated sumsets.

3.2 The Plünnecke–Ruzsa inequality

Next, we will prove the Plünnecke–Ruzsa inequality by following an argument of Petridis
from 2014 (in the form of a rephrasing due to Tao). Petridis’s proof is significantly shorter
and more elegant than all of the previously known proofs. For the entirety of this subsection,
G will be abelian with operation +.

Theorem 8. Let A,B ⊂ G be finite subsets of an abelian group and n,m ≥ 0 be integers.
If |A+B| ≤ K|A|, then |nB −mB| ≤ Kn+m|A|.

Note that this gives us our desired result on sets with small doubling when A = B. One
can ask whether this exponent can be improved to n + m − 1, since, when A = B, it tells
us that |A+A| ≤ K|A| implies that |A+A| ≤ K2|A|. This turns out not to be the case, as
you will show in the next problem set.

We will need one new definition before beginning the proof of the Plünnecke–Rusza
inequality. A real-valued function f on the set of subsets of some fixed set S is said to be
submodular if f(X∪Y )+f(X∩Y ) ≤ f(X)+f(Y ). Intuitively, a submodular function is one
for which the effect of adding additional elements to a set on the value of f has diminishing
returns. An equivalent characterization is that, whenever Y ⊂ X, we have

f(X ∪ {z})− f(X) ≤ f(Y ∪ {z})− f(Y )

whenever z /∈ X. We begin with a simple lemma about submodular functions.

Lemma 6. Let S be any set, f be a submodular function on 2S, and X1, . . . , Xn ⊂ S with
f(X1) = · · · = f(Xn) = 0 and such that f(Y ) ≥ 0 whenever Y ⊂ Xi. Then we must have

f

(
n⋃
i=1

Xi

)
≤ 0.

Proof. We proceed by induction on n, the base case n = 1 trivially holding by the assump-
tions of the lemma. Suppose that the desired inequality holds for a general n−1 ≥ 1. Then,
on setting Y = X1 ∪ · · · ∪Xn−1, we have

f

(
n⋃
i=1

Xi

)
= f(Y ∪Xn) ≤ f(Y ) + f(Xn)− f(Y ∩Xn) ≤ 0

since f(Y ) ≤ 0 by the induction hypothesis, f(Xn) = 0, and f(Y ∩Xn) ≥ 0 since Y ∩Xn ⊂
Xn.
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Lemma 7. Let ∅ 6= B ⊂ G and K ∈ R. The function f : 2G → R defined by

f(X) = |X +B| −K|X|

is submodular.

Proof. Let X, Y ∈ G. We first make two simple observations:

|X ∪ Y | − |X| − |Y |+ |X ∩ Y | = 0

and
(X ∩ Y ) +B ⊂ (X +B) ∩ (Y +B).

Thus, we have

f(X ∪ Y ) + f(X ∩ Y ) = |(X ∪ Y ) +B|+ |(X ∩ Y ) +B| −K(|X ∪ Y |+ |X ∩ Y |)
≤ |(X +B) ∪ (Y +B)|+ |(X +B) ∩ (Y +B)| −K(|X ∪ Y |+ |X ∩ Y |)
= |X +B|+ |Y +B| −K(|X|+ |Y |) = f(X) + f(Y ),

as desired.

Now we will apply our lemma on submodular functions to the particular function from
the previous lemma.

Lemma 8. Let A,B ⊂ G be finite nonempty subsets such that |A + B| ≤ K|A|. Let
∅ 6= X ⊂ A be such that

|X +B|
|X|

= min
∅6=Y⊂A

|Y +B|
|Y |

.

Then, for any C ⊂ G, we have

|(X + C) +B| ≤ K|X + C|.

Proof. Set K ′ = |X + B|/|X|, and define f(Y ) := |Y + B| −K ′|Y | for Y ⊂ G. Note that
K ′ ≤ K. Enumerate the elements of C, C = {c1, . . . , cn}, and set Xi := X + ci, so that
X1 ∪ · · · ∪Xn = X + C. By the definition of X, we have

f(Xi) = |X +B + ci| −K ′|X + ci| = |X +B| −K ′|X| = 0

for all i = 1, . . . , n. Further, for any Y ⊂ Xi (so that Y − ci ⊂ A), we have

f(Y ) = |Y +B| −K ′|Y | = |Y − ci +B| −K ′|Y − ci| ≥ 0

for all i = 1, . . . , n, again by the definition of X. Thus, we can apply our lemma on submod-
ular functions and obtain that f(X + C) ≤ 0. That is,

|X + C +B| ≤ K ′|X + C| ≤ K|X + C|,

as desired.

Now, we can finally prove the Plünnecke–Ruzsa inequality.
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Proof of Theorem 8. First, we will show that there exists X ⊂ A for which |X+`B| ≤ K`|X|
for all ` ∈ N. We will then put two instances of this statement (with ` = n and ` = m)
together using Ruzsa’s triangle inequality to complete the proof.

Let ∅ 6= X ⊂ A again be such that

|X +B|
|X|

= min
∅6=Y⊂A

|Y +B|
|Y |

.

We proceed yet again by induction. The desired inequality automatically holds for this
choice of X when ` = 1. Assume that it holds for a general `−1 ≥ 1. Applying the previous
lemma with C = (`− 1)B yields

|X + `B| ≤ K|X + (`− 1)B| ≤ K1+`−1|X| = K`|X|,

by the induction hypothesis.
We now apply Ruzsa’s triangle inequality with the sets −nB,X, and −mB, respectively,

to obtain that
|nB −mB||X| ≤ |X + nB||X +mB| ≤ Kn+m|X|2.

Thus, |nB −mB| ≤ Kn+m|X| ≤ Kn+m|A|, since X ⊂ A.

3.3 Approximate groups

Now we return to the general setting where G can possibly be nonabelian. A related notion
to a subset having small tripling is that of an approximate group.

Definition 1. Let K ≥ 1 be a real number. A subset A ⊂ G is a K-approximate group if
A is symmetric, contains the identity, and is such that A2 can be covered by at most K left
translates of A.

The last condition is equivalent to there existing X ⊂ G with |X| ≤ K such that
A2 ⊂ XA. The definition of a K-approximate group is very convenient to work with, and is
also closely related to having small tripling. Indeed, it’s easy to see that a K-approximate
group A has tripling at most K2: letting X with |X| ≤ K be such that A2 ⊂ XA, we have

|A3| ≤ |XA2| ≤ |X2A| ≤ |X|2|A| ≤ K2|A|.

Any dense subset of an approximate group also has small tripling. Indeed, if A is a K-
approximate group and B ⊂ A has density β in A, then

|B3| ≤ |A3| ≤ K2|A| = K2

β
|B|.

A rough converse also holds–any set with small tripling must be a dense subset of an ap-
proximate group. To prove this, we will need another important lemma due to Ruzsa, which
is called Ruzsa’s covering lemma.

Lemma 9. Let A,B ⊂ G be finite and nonempty, and assume that |AB| ≤ K|B|. Then
there exists X ⊂ A with |X| ≤ K such that

A ⊂ XBB−1.
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Proof. Let X = {a1, . . . , an} ⊂ A be a maximal subset of A such that a1B, . . . , anB are all
disjoint. Note that n ≤ |AB|/|B| ≤ K. For every x ∈ A, there exists i ∈ [n] such that
aiB ∩ xB 6= ∅ by the maximality assumption. That is, x ∈ aiBB

−1. We conclude that
A ⊂ XBB−1.

Now, we can relate the small tripling and approximate group properties.

Theorem 9. Let A ⊂ G and K ≥ 1. The following statements are equivalent, in the sense
that if one of them holds for some choice of implied constants, then the other also holds for
some choice of implied constants.

1. |A3| � KO(1)|A|

2. There exists a O(KO(1))-approximate group of size � KO(1)|A| containing A.

Proof. To see that the second implication implies the first, just note that, by our observation
that a K-approximate group has tripling at most K2,

|A3| ≤ |H3| � KO(1)|H| � KO(1)|A|.

To see that the first implication implies the second, set B = A∪A−1 ∪ {1} and H = B3.
By Lemma 5, we have |H| � KO(1)|A|, and H contains A by the inclusion of the identity
element in B. Since H is clearly symmetric and contains the identity, it remains to check the
last part of the definition of an O(KO(1))-approximate group. By Lemmas 4 and 5, we also
have that |H2B| � KO(1)|A| � KO(1)|B|. Thus, by Ruzsa’s covering lemma, there exists
X ⊂ H2 of size � KO(1) such that

H2 ⊂ XB2 ⊂ XH,

since B is symmetric and H = B3 ⊃ B2.

3.4 Product theorems

A natural problem is to classify, given a group G, all K-approximate groups of G (or,
equivalently, all sets with small tripling). It’s easy to show that any 1-approximate group in
G is just a genuine finite subgroup of G, i.e., any finite symmetric subset A ⊂ G containing
the identity for which |A2| = |A| must be a subgroup. One can, in fact, relax the inequality
|A2| ≤ |A| a bit.

Theorem 10. Let A ⊂ G be finite and nonempty. If |A−1A| < 3
2
|A|, then there exists a

subgroup H ≤ G with |H| < 3
2
|A| such that A is contained in some left coset of H.

The 3/2 in the above statement cannot be replaced by any larger constant. Indeed,
consider A = {0, 1} ⊂ Z. Then |A − A| = {−1, 0, 1}, so that |A − A| ≤ 3

2
|A|, but no

coset of a finite subgroup contains A. More generally, for larger K, it is not true that K-
approximate groups must always live inside a small number of translates of a not too much
larger subgroup. When G = Z, for example, the set A = [N ] is a 2-approximate group since

A+ A = {2, . . . , 2N} ⊂ (1 + [N ]) ∪ (N + [N ]),
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but the smallest number of cosets of {0} (the only finite subgroup of Z) needed to cover
A+A is 2N − 1. Examples such as this, which really only appear when G is closely related
to a nilpotent group, must be taken into account if one hopes to prove a general classification
theorem. Thus, we will postpone discussion of the abelian case (which will play an important
role in our proof of the local inverse theorem for the U3-norm) and general case to later.
In the remainder of this subsection, we will prove Theorem 10 and then discuss a result on
growth of three-fold product sets in SLn(Fq) and its applications.

We begin by showing that if |A−1A| < 3
2
|A|, then the different intersections A∩gA satisfy

a useful dichotomy.

Lemma 10. Let A ⊂ G be a finite subset such that |A−1A| < 3
2
|A|. Then, for all g ∈ G,

either A ∩ gA = ∅ or |A ∩ gA| > |A|
2

.

Proof. Suppose that A∩gA 6= ∅, so that there exists a ∈ A∩gA. This means that a, g−1a ∈ A,
and thus that a−1A, a−1gA ⊂ A−1A. But, since |A−1A| < 3

2
|A|, the sets a−1A and a−1gA,

which both have size |A|, must intersect in a set of size greater than |A|
2

. That is, we have

|a−1A ∩ a−1gA| > |A|
2

, which implies that |A ∩ gA| > |A|
2

, as desired.

We will call any g ∈ G for which |A∩ gA| > |A|
2

in the lemma involved. By exploiting the
above dichotomy, we will show that the set of involved elements forms a group.

Lemma 11. Let A ⊂ G be a finite subset such that |A−1A| < 3
2
|A|. Then, the set H ⊂ G of

involved elements is a finite subgroup of G, and H = AA−1.

Proof. Clearly, 1 ∈ H. Also, if h ∈ H, then since |A ∩ hA| = |h−1A ∩ A|, h−1 ∈ H as well.
So now suppose that h1, h2 ∈ H. Then, since |A ∩ h−1

1 A|, |A ∩ h2A| > 1
2
|A|, certainly the

intersection A ∩ h−1
1 A ∩ h2A is nonempty. Thus,

|A ∩ h1h2A| = |h−1
1 A ∩ h2A| ≥ |A ∩ h−1

1 A ∩ h2A| > 0.

By the dichotomy from the previous lemma, this implies that |A ∩ h1h2A| > |A|
2

, and hence
that h1h2 ∈ H. This completes the proof that H is a subgroup. To see that H = AA−1,
we simply note that if h = a1a

−1
2 ∈ AA−1, then a1 ∈ A ∩ hA 6= ∅, so that h ∈ H by

the dichotomy lemma, and if h ∈ H, then there exist a1, a2 ∈ A such that a1 = ha2, i.e.,
h = a1a

−1
2 , so that h ∈ AA−1.

Now that we’ve constructed a group out of the small growth assumption on A, we can
prove Theorem 10.

Proof of Theorem 10. Let H = AA−1 be as in the previous lemma and a ∈ A, so that
Aa−1 ⊂ H. This means that A ⊂ Ha. Replacing H with its conjugate K := a−1Ha, this
implies that A ⊂ aK. By double counting and the dichotomy lemma,

|A|2 =
∑
h∈H

|A ∩ hA| > |H| |A|
2
.

Thus, |K| = |H| < 2|A|. But, for any k ∈ K, Ak ⊂ K, and so since A ⊂ K and |Ak| = |A|,
the sets A and Ak have nonempty intersection. It follows that k ∈ A−1A, and hence that
K = A−1A. We conclude that |K| < 3

2
|A|, as desired.
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We will see the key ideas of this proof appear again later when we discuss the proof of
the sum product theorem in finite fields. By a much more elaborate extension of these ideas,
one can prove that if a subset of SLn(Fq) isn’t contained in a proper subgroup or close to
the whole group, then its must have large tripling.

Theorem 11 (Product theorem for special linear groups). Let n ≥ 2 be an integer and q be
a prime power. There exists an absolute constant ε = ε(n) > 0 such that the following holds.
If γ ≤ ε, A ⊂ SLn(Fq) generates SLn(Fq), and |A| < |G|1−On(γ), then

|A3| ≥ |A|1+γ.

This theorem was first proven in the case n = 2 and q prime in breakthrough work of
Helfgott in 2008. Helfgott then extended his argument to the case n = 3 in 2011, and the
general case (even more generally than above, giving a product theorem for any finite group
of Lie type) was proven, independently, by Pyber–Szabo in 2016 and Breuillard–Green–Tao
in 2011.

Theorem 11 is relevant to a famous conjecture of Babai from 1979. For any group G and
S ⊂ G a symmetric generating set, we define Cay(G,S) to be the associated Cayley graph,
meaning that Cay(G,S) is the graph with verticesG with an edge between g, g′ ∈ G whenever
sg = g′ for some s ∈ S. The assumption that S generates G means that Cay(G,S) is
connected, and the diameter of Cay(G,S) (i.e., the maximum length of the shortest path from
the identity element to each element ofG) equals the smallest d ∈ N for which (S∪{1})d = G.

Conjecture 2 (Babai’s conjecture, 1979). There exists an absolute constant C > 0 such
that the following holds. For all nonabelian finite simple groups G and symmetric generating
sets S ⊂ G, the diameter of Cay(G,S) is at most (log |G|)C.

By the classification theorem for finite simple groups, it suffices to prove Babai’s con-
jecture for finite simple groups of Lie type and for the alternating group. The product
theorems of Pyber–Szabo and Breuillard–Green–Tao have resolved Babai’s conjecture for
finite simple groups of Lie type of bounded rank. Helfgott and Seress (2011) have obtained
very strong bounds when G = An, proving that the diameter of any Cay(An, S) is bounded
by exp(O((log n)4 log log n)). The current best bounds in the high rank case of finite simple
groups of Lie type are based off of ideas from this argument, and have the analogous shape.

Prior Helfgott’s work, no nontrivial bounds were known in Babai’s conjecture for PSL2(Fp)
Cayley graphs aside from very special sets of generators. For example, nothing was known
for the generating set

S =

{(
1 3
0 1

)
,

(
1 0
3 1

)}
.

Helfgott used his product theorem to prove the following beautiful diameter bound, which
is independent of the generating set.

Theorem 12 (Helfgott, 2008). Let S ⊂ SL2(Fp) be a symmetric set of generators. Then,
Cay(SL2(Fp), S) has diameter � (log p)O(1).

This immediately implies the corresponding diameter bound in PSL2(Fp), since PSL2(Fp)
is just SL2(Fp) quotiented out by ±I.
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3.5 Quasirandom groups and diameter bounds

To deduce diameter bounds for Cayley graphs from Theorem 11, we will need a way to under-
stand product sets of relatively large (i.e., of size |G|1−δ for δ > 0 smaller than some absolute
constant) subsets of SL2(Fp), which will require some basic facts about the representation
theory of SL2(Fp).

Definition 2. Let D ≥ 1 be an integer and G be a finite group. We say that G is D-
quasirandom if all nontrivial irreducible representations of G have dimension at least D.

This terminology comes from the fact that dense Cayley graphs of quasirandom groups
are quasirandom graphs. Intuitively, the more quasirandom a group is, the better its mixing
properties. One generally says that a family of finite groups Gn are quasirandom if Gn

is Dn-quasirandom for some Dn tending to infinity with |Gn|. A standard example of a
quasirandom group is An, which is (n− 1)-quasirandom when n ≥ 6. More relevant to us is
the fact that the family SL2(Fp) is quasirandom.

Fact 1. For all primes p, the group SL2(Fp) is p−1
2

-quasirandom.

To prove the desired mixing properties of quasirandom groups, we will need a bit of
nonabelian Fourier analysis. Let G be any finite group and f, f1, f2 : G → R (we will only
care about real-valued functions), and define the `2-norm of f by

‖f‖`2 =

√∑
x∈G

|f(x)|2

and the convolution of f1 and f2 by

(f1 ∗ f2)(x) :=
∑
y∈G

f1(xy−1)f2(y)

for all x ∈ G. We will let Ĝ denote the set of irreducible (unitary) representations of G, and

for all ρ ∈ Ĝ define the Fourier transform of f at ρ by

f̂(ρ) =
∑
x∈G

f(x)ρ(x).

Then, we have that f̂1 ∗ f2(ρ) = f̂1(ρ)f̂2(ρ) for all ρ ∈ Ĝ. We also have Parseval’s identity:

‖f‖2
`2 =

1

|G|
∑
ρ∈Ĝ

dρ‖f̂(ρ)‖2
HS,

where ‖ · ‖HS is the Hilbert-Schmidt norm of a matrix, which is defined by ‖M‖2
HS =

tr(M∗M). An important property of the Hilbert–Schmidt norm is that it is submultiplica-
tive, i.e., ‖MM ′‖HS ≤ ‖M‖HS‖M ′‖HS. This can be proved by a simple application of the
Cauchy–Schwarz inequality.

The following lemma, which will be the key technical ingredient in our forthcoming mixing
lemma for large product sets, is due to Babai–Nikolov–Pyber (2007).
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Lemma 12. Let D ≥ 1 and G be a finite D-quasirandom group. Assume that f1, f2 : G→ R
are such that f1 has mean zero. Then,

‖f1 ∗ f2‖`2 ≤
|G|1/2

D1/2
‖f1‖`2‖f2‖`2 .

Proof. By Parseval’s identity and the assumption that f1 has mean zero and the submulti-
plicativity of the Hilbert–Schmidt norm, we have

‖f1 ∗ f2‖2
`2 =

1

|G|
∑

16=ρ∈Ĝ

dρ‖f̂1(ρ)f̂2(ρ)‖2
HS ≤

1

|G|
∑

16=ρ∈Ĝ

dρ‖f̂1(ρ)‖2
HS‖f̂2(ρ)‖2

HS.

Observe that, again by Parseval’s identity,

‖f1‖2
`2 =

1

|G|
∑
ρ∈Ĝ

dρ‖f̂1(ρ)‖2
HS ≥

dρ
|G|
‖f̂1(ρ)‖2

HS

for any ρ ∈ Ĝ. Rearranging, this says that dρ‖f̂1(ρ)‖2
HS ≤ |G|‖f1‖2

`2 for all ρ ∈ Ĝ. Plugging
this back into the first inequality, we obtain that

‖f1 ∗ f2‖2
`2 ≤ ‖f1‖2

`2

∑
16=ρ∈Ĝ

‖f̂2(ρ)‖2
HS ≤

|G|
D
‖f1‖2

`2
1

|G|
∑

16=ρ∈Ĝ

dρ‖f̂2(ρ)‖2
HS.

By Parseval’s identity yet again, it follows that

‖f1 ∗ f2‖2
`2 ≤

|G|
D
‖f1‖2

`2‖f2‖2
`2 .

Taking the square root of both sides completes the proof of the lemma.

We can now prove a general mixing lemma for large subsets of quasirandom groups.

Lemma 13. Let D ≥ 1 and G be a finite D-quasirandom group. If A,B,C ⊂ G, then∥∥∥∥1A ∗ 1B −
|A||B|
|G|

∥∥∥∥
`2
≤ |G|

1/2

D1/2

√
|A||B|.

and ∥∥∥∥1A ∗ 1B ∗ 1C −
|A||B||C|
|G|

∥∥∥∥
`∞
≤ |G|

1/2

D1/2

√
|A||B||C|.

Proof. The first inequality follows from writing fA := 1A − |A|
|G| , and using that 1A ∗ 1B =

(fA+ |A|/|G|)∗1B = fA∗1B+ |A||B|
|G| and the previous lemma. To prove the second inequality,

we use that, for all x ∈ G,∣∣∣∣(1A ∗ 1B −
|A||B|
|G|

)
∗ 1C(x)

∣∣∣∣ =

∣∣∣∣∣∑
y∈G

(
1A ∗ 1B −

|A||B|
|G|

)
(xy−1)1C(y)

∣∣∣∣∣
≤
∥∥∥∥1A ∗ 1B −

|A||B|
|G|

∥∥∥∥
`2

√
|C|,

by the Cauchy–Schwarz inequality, and combine it with the first inequality and the fact that
[(|A||B|/|G|) ∗ 1C ](x) = |A||B||C|/|G|.
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This lemma was (essentially) originally due to Gowers in 2008, who used it to answer a
question of Babai and Sós. A subset A of a group G is said to be product free if there are
no a1, a2, a3 ∈ A for which a1a2 = a3. Babai and Sós asked whether any finite group G has
a product free subset of size � |G|. Gowers showed that the answer to their question is
negative for quasirandom G. This is a consequence of the following corollary of our mixing
lemma.

Corollary 1. Let D ≥ 1 and G be a finite D-quasirandom group. If A ⊂ G satisfies

|A| > |G|
D1/3

,

then there exist a1, a2, a3 ∈ A such that a1a2 = a3.

Proof. Apply the second inequality of the mixing lemma to get that∣∣∣∣1A ∗ 1A ∗ 1A−1(0)− |A|
3

|G|

∣∣∣∣ ≤ |G|1/2|A|3/2|D|1/2
.

Thus, 1A ∗ 1A ∗ 1A−1(0) > 0 provided that

|A|3

|G|
>
|G|1/2|A|3/2

|D|1/2
.

Rearranging gives the conclusion of the lemma.

By an almost identical argument, if A,B, and C are sufficiently large, then ABC = G.

Corollary 2. Let D ≥ 1 and G be a finite D-quasirandom group. If A,B,C ⊂ G with

|A||B||C| > |G|3
D

, then ABC = G.

We can now combine the above corollary with the fact that SL2(Fp) is p−1
2

-quasirandom
and Helfgott’s product theorem to prove his diameter bound for Cayley graphs.

Proof. Since S generates SL2(Fp), we certainly have |S| ≥ 2. Let C > 0 be some constant
to be chosen shortly. Applying the product theorem with γ � 1, we obtain that∣∣(S ∪ {1})d∣∣ ≥ C| SL2(Fp)|9/10,

say, for d�C (log p)O(1). Since | SL2(Fp)| = p3−p and SL2(Fp) is p−1
2

-quasirandom, to show
that (S ∪ {1})3d = SL2(Fp), it suffices to check that

C| SL2(Fp)|9/10 ≥ | SL2(Fp)|(
p−1

2

)1/3
� p3

p1/3
= p8/3.

Since | SL2(Fp)|9/10 � p27/10 and 27/10 > 8/3, there exists a constant C such that the above
always holds, which we will take to be our constant.
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The mixing lemma tells us that quasirandom groups have product mixing for large sets, in
the sense that ifG isD-quasirandom and A,B,C ⊂ G have densities α, β, and γ, respectively,
with α, β, γ sufficiently large (depending on |G| and D), then

#{(a, b, c) ∈ A×B × C : ab = c} ∼ αβγ|G|2.

Note that such a result does not hold in abelian groups such as Z/NZ, sinceA = {0, 1, . . . , N/10}
contains substantially more than N2

1000
solutions to a1 + a2 = a3. In the paper in which he

introduced the notion of D-quasirandom groups, Gowers asked whether they also exhibit
mixing for three-term geometric progressions x, xy, xy2. Tao proved that this is the case
for the family of quasirandom groups SLd(Fp), and then I proved it for all nonabelian finite
simple groups, and then Bhangale, Harsha, and Roy proved it in full generality.

One interesting open question is whether quasirandom groups exhibit mixing for four-
term geometric progressions x, xy, xy2, xy3. It’s not even known whether any particular
family of groups exhibits mixing for these configurations. Tao has some partial results in
this direction in SL2(Fp) for the set of shifts restricted to the subset of y diagonalizable over
Fp.

3.6 The sum-product theorem

Consider first finite A,B ⊂ Z. The simplest example we know of A for which A + A is not
much larger than A are intervals like A = [N ], and the simplest example we know of B for
which BB is not much larger than A are geometric progressions like B := {1, 2, 4, . . . , 2n}.
Note that, however |B+B| = |B|(|B|+1)

2
� |B|2 is maximally large, and |AA| � N2

(logN)2
(since

the number of primes in [N ] is asymptotically N
logN

) is almost maximally large6. Thus, it
is natural to ask whether a subset of Z can have both small sumset and small product set.
This is known as the sum-product problem.

Erdős and Szemerédi were the first to prove, in 1983, that there exists an absolute
constant δ > 0 such that

max (|A+ A|, |AA|)� |A|1+δ (8)

for all finite A ⊂ Z, and conjectured that, in fact

max (|A+ A|, |AA|) ≥ |A|2−o(1)

for all finite A ⊂ R. There have been a number of quantitative improvements upon the lower
bound (8), though obtaining an exponent of 2 − o(1) seems out of reach. We will mention
some of these improvements later on. Note that the sum-product problem also makes sense
in finite fields Fp (and, more generally, non-prime fields Fq), provided one rules out the
obvious issue of A being close to everything Fp.

We will prove the following sum-product theorem that holds in both finite fields and R
simultaneously.

6It is not hard to show by elementary methods in analytic number theory that |[N ]2| = o(N2). Deter-
mining the exact order of magnitude of |[N ]2| is known as the multiplication table problem, and was fully
resolved by Kevin Ford in 2008.
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Theorem 13. There exists an absolute constant δ0 > 0 such that the following holds. Let
0 < δ < δ0, F be a field, and A ⊂ F be finite and nonempty. Then either

max (|A+ A|, |AA|)� |A|1+δ,

or there exists a subfield F′ of F with |F′| � |A|1+O(δ) and a nonzero x ∈ F such that cF′

contains all but O
(
|A|O(δ)

)
elements of A.

Note that the latter case cannot occur when F has characteristic zero, and so we obtain
a sum-product theorem in R, in particular. When F is a prime field, the latter case just says
that |A| is large: |A| � |F|1−O(δ). When F is finite but not prime, it says that A is close to
a dilate of a subfield of F.

Assume that A ⊂ F is finite. We showed previously that if |A + A| is not much larger
than |A|, then the same is true (with at most polynomial losses depending on n and m)
for |nA −mA| in general. We also showed that if |A2| is not much larger than |A| and A
doesn’t contain 0, then the same holds (again, with at most polynomial losses depending
on ` and k) for |A`A−k| in general. One may hope that if both |A + A| and |AA| are not
much larger than |A|, then arbitrary rational combinations of A must also not grow much.
It turns out that this is not true in general. To see why, consider the subfield Fp of Fp2 , let
ω ∈ Fp2 \ Fp, and set A = Fp ∪ {ω}. Then, |A + A| = |Fp ∪ (ω + Fp) ∪ {2ω}| < 2|A| and
|AA| = |Fp∪ωFp∪{ω2}| < 2|A|, yet A2 +A2 = Fp2 . One can rectify the situation by taking
a large subset B of the set A, namely Fp. Then, all polynomial combinations of B fail to
grow the size of the set at all.

A lemma of Katz and Tao (often called the “Katz–Tao Lemma”) shows that taking a
large subset works in general.

Lemma 14. Let F be a field and A ⊂ F× be finite and nonempty. Assume that |A + A| ≤
K|A| and |AA| ≤ K|A| for some K ≥ 1. Then, there exists B ⊂ A with |B| � K−1|A| such
that |B2 −B2| � KO(1)|A|.

Proof. We may as well assume that |A| � KC for some absolute constant C > 0 (to be fixed
later), or else the lemma is trivial. First of all, by double counting, we have that

|A|2 =

∥∥∥∥∥∑
a∈A

1aA

∥∥∥∥∥
`1

.

(Note that
∑

a∈A 1aA is finitely supported by the assumption that A is finite, so taking
this `1-norm makes sense.) Since

∑
a∈A 1aA is supported on AA, by the Cauchy–Schwarz

inequality, we have

|A|4 ≤ |AA|

∥∥∥∥∥∑
a∈A

1aA

∥∥∥∥∥
2

`2

.

Using that |AA| ≤ K|A| and rearranging, we arrive at

|A|3

K
≤

∥∥∥∥∥∑
a∈A

1aA

∥∥∥∥∥
2

`2

.
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Expanding out the square reveals that the right-hand side above equals∑
a,a′∈A

|aA ∩ a′A|.

Thus, by the pigeonhole principle, there exists some c ∈ A such that∑
a∈A

|aA ∩ cA| ≥ |A|
2

K
.

Since c 6= 0 by assumption, we may as well assume (by applying a dilation to A) that c = 1.
Now set B := {a ∈ A : |aA ∩ A| ≥ |A|/2K}, so that

|A|2

2K
≤
∑
a∈B

|aA ∩ A| ≤ |A||B|,

which implies that |B| ≥ |A|/2K. Note that |aA − A| ≤ 2K3|A| whenever a ∈ B. Indeed,
if a ∈ B, then |aA ∩ A| ≥ |A|/2K by definition, and since |aA+ aA| = |A+ A| ≤ K|A|, we
therefore have

|aA+ (aA ∩ A)|, |A+ (aA ∩ A)| ≤ K|A|.
It then follows from Ruzsa’s triangle inequality that |aA− A| ≤ 2K3|A|.

Similarly, if b, b′ ∈ B, then |bb′A − A| � 4K6|A|. Indeed, we have by the above that
|bA−A|, |bb′A−bA| ≤ 2K3|A|, and so by another application of the Ruzsa triangle inequality,
we have |bb′A− A| ≤ 4K6|A|.

Now, if b, b′ ∈ B2, then |bA−A|, |b′A−A| ≤ 4K6|A|, which implies, by the Ruzsa covering
lemma, that each of bA and b′A can each be covered by at most 4K6 translates of A − A,
say bA ⊂ X + (A−A) and b′A ⊂ Y + (A−A) for X, Y ⊂ F each of size at most 4K6. Then,

|(b−b′)A−A| ≤ |bA−b′A−A| = |X−Y +(A−A)−(A−A)−A| ≤ 16K12|2A−3A| � KO(1)|A|

by the Plünneke–Ruzsa inequality.
The upshot is that if b ∈ B2 − B2, then |bA − A| � KO(1)|A|. Thus, by the Cauchy–

Schwarz inequality,

|A|2 =

∥∥∥∥∥∑
a∈A

1bA−a

∥∥∥∥∥
`1

≤
√
|bA− A|

∥∥∥∥∥∑
a∈A

1bA−a

∥∥∥∥∥
`2

� KO(1)|A|1/2
∥∥∥∥∥∑
a∈A

1bA−a

∥∥∥∥∥
`2

.

Note that the square of the `2-norm on the right-hand side equals∑
a,a′∈A

|(bA− a) ∩ (bA− a′)| = #
{

(a1, a2, a3, a4) ∈ A4 : ba1 − a2 = ba3 − a4

}
.

So, for each b ∈ B2 − B2, there are � K−O(1)|A|3 choices of (a1, a2, a3, a4) ∈ A4 for which
ba1 − a2 = ba3 − a4. The number of these for which a1 = a3, which implies that a2 = a4 as
well, is � |A|2. Thus, provided that |A| � KO(1), there are, in fact, � K−O(1)|A|3 choices
of (a1, a2, a3, a4) ∈ A4 for which ba1 − a2 = ba3 − a4 with a1 6= a3 is also � K−O(1)|A|3.
Note, however, that any such quadruple of ai’s uniquely determines b, since b = a2−a4

a1−a3 . It

follows that the number of possible b’s is � KO(1)|A|, i.e., that |B2 − B2| � KO(1)|A| �
KO(1)|B|.
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The Katz–Tao lemma can be further upgraded to give control of more polynomial com-
binations of B. The proof of the following lemma will be left as an exercise.

Lemma 15. Let F be a field and A ⊂ F× be finite and nonempty. Assume that |A2−A2| ≤
K|A| for some K ≥ 1. Then, for all n ∈ N, we have |An − An| ≤ KO(n)|A|.

Next, we prove a dichotomy-like lemma analogous to the one from last class.

Lemma 16. Let F be a field, A ⊂ F be finite and nonempty, and x ∈ F. Then at least one
of the following two statements holds:

1. |A+ xA| = |A|2

2. |A+ xA| ≤ |(A− A)A+ (A− A)A|

Proof. Suppose that |A + xA| 6= |A|2, which means that |A + xA| < |A|2, and thus that
the map φ : A × A → A + xA defined by φ(a, a′) = a + xa′ is not injective. So, there exist
a1, a2, a3, a4 ∈ A with (a1, a2) 6= (a3, a4) such that a1 + xa2 = a3 + xa4, i.e.

x =
a1 − a3

a4 − a2

,

since a2 6= a4. Thus,

|A+ xA| =
∣∣∣∣A+

a1 − a3

a4 − a2

A

∣∣∣∣ = |(a4 − a2)A+ (a1 − a3)A| ≤ |(A− A)A+ (A− A)A|,

as desired.

Observe that if B is as in the Katz–Tao lemma, then |(B −B)B + (B −B)B| ≤ |2B2 −
2B2| � KO(1)|B| by the Plünnecke–Ruzsa inequality. Thus, for such B, this lemma gives a
true dichotomy (provided |B|, and thus |A|, is large enough in terms of K).

Now we can prove the sum-product theorem

Proof of Theorem 13. We will assume that |A + A|, |AA| ≤ |A|1+δ =: K|A| for sufficiently
small δ > 0. Note that, by taking δ small enough and assuming that |A| is larger than a
sufficiently large absolute constant, we can force |A| ≥ C1K

C2 for any fixed C1, C2 > 0, and
also may as well assume that 0 /∈ A. We can then apply the Katz–Tao lemma to obtain
B ⊂ A with |B| � K−1|A| such that |B2−B2| � KO(1)|B|. By applying a dilation, we may
assume that 1 ∈ B. By Lemma 15, |Bn − Bn| �n K

O(n)|B| for all n ∈ N. It then follows
from the Plünnecke–Ruzsa inequality and having 1 ∈ B that any iterated sumset of at most
n (dilated) product sets of the form ±Bm for m ≤ n has size at most �n K

O(n2)|B|.
By the dichotomy lemma, for all x ∈ F, either |B+xB| = |B|2 (the “noninvolved” case) or

|B+xB| ≤ CKC |B| (the “involved” case) for some fixed absolute constant C > 0. Note that
all elements of B are involved (provided we take |A| � KO(1)), since |B2 −B2| � KO(1)|B|
implies that |B + BB| ≤ |B2 + B2| � KO(1)|B| since 1 ∈ B. Similarly, by the discussion
above, if x1, x2 ∈ F are involved, then

|B + x1x2B|, |B + (x1 + x2)B|, |B + (x1 − x2)B| � KO(1)|B|
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which, provided that |A| � KO(1), implies that x1x2, x1 + x2, x1− x2 are all involved. Thus,
the set of involved elements is closed under mutliplication, addition, and subtraction. Since
0 and 1 are also, clearly, involved elements, it follows that the set R of involved elements
form a nontrivial subring of F. Recalling that all elements of B are involved, we get that
|R| � K−O(1)|A|. To see that R is, in fact, a field, it suffices to show that |R| � KO(1)|A|,
which, in particular, implies that R is finite.

To see that |R| � KO(1)|A|, we argue as in the end of the proof of the Katz–Tao lemma.
Let x ∈ R. Then,

|B|2 =

∥∥∥∥∥∑
b∈B

1b+xB

∥∥∥∥∥
`1

≤
√
|B + xB|

∥∥∥∥∥∑
b∈B

1b+xB

∥∥∥∥∥
`2

� KO(1)|B|1/2
∥∥∥∥∥∑
b∈B

1b+xB

∥∥∥∥∥
`2

,

so that
#
{

(b1, b2, b3, b4) ∈ B4 : b1 + xb2 = b3 + xb4

}
� K−O(1)|B|3,

and thus, assuming that |A| � KO(1), we have that, for each x ∈ R, there are� K−O(1)|B|3
quadruples (b1, b2, b3, b4) ∈ B4 with b2 6= b4 such that b1 + xb2 = b3 + xb4. Each quadruple
uniquely determines x and there are only |B|4 total quadruples, and so we must have |R| �
KO(1)|B| � KO(1)|A|, as desired.

To finish (since we may have applied a nontrivial dilation at the beginning of the proof),
we will show that R that contains all but O(KO(1)) elements of A. We noted above that
B ⊂ R, so that, since the B provided by the Katz–Tao lemma is a subset of A, |A ∩ R| ≥
|B| � K−O(1)|A|. Thus, by the Ruzsa triangle inequality, we have

|A+R| ≤ |A+ (A ∩R)||(A ∩R) +R|
|A ∩R|

� KO(1)|R|.

It follows from the Ruzsa covering lemma that A is contained in the union of � KO(1)

translates s1 +R, . . . , sK +R of R. Similarly,

|AR| ≤ |A(A ∩R)||(A ∩R)R|
|A ∩R|

� KO(1)|R|,

and so, by the Ruzsa covering lemma again, A is contained in the union of � KO(1) dilates
x1R, . . . , xLR, with x1, . . . , xL 6= 0, of R. Note that if x /∈ R, then

|(s+R) ∩ xR| ≤ 1.

Indeed, if s + r1 = xr2 and s + r3 = xr4 for r1, r2, r3, r4 ∈ R, then r1 − r3 = x(r2 − r4). If
r2 6= r4, then this equation forces x ∈ R, which contradicts our assumption. If r2 = r4, then
r1 = r3 as well. Thus, all but � KO(1) elements of A are contained in R.

The finite field setting is more difficult to prove sum-product theorems in than the integer
or real setting, since in the latter settings one can take advantage of “geometric” properties of
R2. While the first sum-product result in the real setting was proven in the 1980s, it wasn’t
until work of Bourgain–Glibichuk–Konyagin in 2006 that the first true (i.e., not requiring a
nontrivial lower bound on the size of the set) sum-product theorem was proven in the finite
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field setting. The world record for δ0 that can be taken in the sum-product theorem for prime
fields when |A| ≤ p1/2 is δ0 = 1

4
, due to Mohammadi and Stevens in 2023. The exponent

δ0 = 1
4

was obtained in the real setting in 1997, using a tool from incidence geometry (the
Szemerédi–Trotter theorem). Exploiting geometry in R2 in a different way, Solymosi proved
an exponent of δ0 = 1

3
in the sum-product theorem in the reals in 2009. The current world

record in the sum-product theorem in the reals is δ0 = 1
3

+ 2
1167

, due to Rudnev and Stevens
in 2020.

3.7 The Balog–Szemerédi–Gowers theorem

Let (G,+) be an abelian group and A ⊂ G be finite. The additive energy E(A) of A is the
number of additive quadruples

a1 + a2 = a3 + a4 a1, a2, a3, a4 ∈ A

in A, i.e.,
E(A) = #

{
(a1, a2, a3, a4) ∈ A4 : a1 + a2 = a3 + a4

}
.

We can also define an asymmetric notion of additive energy. If B ⊂ G is finite as well, then

E(A,B) := #
{

(a, a′, b, b′) ∈ A2 ×B2 : a+ b = a′ + b′
}
.

Note that we have the trivial bounds

|A|2 ≤ E(A) ≤ |A|3

and
|A||B| ≤ E(A,B) ≤ min

(
|A||B|2, |A|2|B|

)
≤ |A|3/2|B|3/2.

An example of a set with large additive energy is [N ] ⊂ Z, since E([N ]) � N3. An
example of a set with small additive energy is B = {1, 2, 4, . . . , 2N}, since E(B) = 2

(
N
2

)
+

N � N2. Additive energy and the size of sumsets can be related by a standard application
of the Cauchy–Schwarz inequality. Indeed, let A,B ⊂ G be finite, and note that

|A||B| =
∑
x∈G

(1A ∗ 1B)(x) ≤ |A+B|1/2 ‖1A ∗ 1B‖`2 ,

and thus
|A|2|B|2

|A+B|
≤ ‖1A ∗ 1B‖2

`2 =
∑
x∈G

(1A ∗ 1B)(x)2 = E(A,B).

So, |A + B| being small implies that E(A,B) is large. The converse fails to hold, however.
Consider the subset

A := [N ] ∪
{

2N , . . . , 2N−1
}

of Z, which has size 2N . Then E(A) ≥ E([N ]) � N3 � |A|3, but |A + A| ≥
(
N
2

)
+ N �

N2 � |A|2.
The Balog–Szemerédi–Gowers theorem provides a partial converse, saying that a set with

large additive energy must contain a large subset with small doubling. We will actually prove
a more general, asymmetric version.
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Theorem 14. Let (G,+) be an abelian group and A,B ⊂ G be finite. Suppose that

E(A,B) ≥ |A|
3/2|B|3/2

K

for some K ≥ 1. Then, there exist A′ ⊂ A and B′ ⊂ B with |A′| � K−O(1)|A| and
|B′| � K−O(1)|B| such that |A′ +B′| � KO(1)|A′|1/2|B′|1/2.

A version of this result that was far weaker quantitatively was first proven by Balog
and Szemerédi, and was improved to polynomial dependence on K by Gowers in his paper
proving the first reasonable bounds in Szemerédi’s theorem for 4-APs.

Corollary 3. Let (G,+) be an abelian group and A ⊂ G be finite. Suppose that

E(A) ≥ |A|
3

K

for some K ≥ 1. Then, there exists A′ ⊂ A with |A′| � K−O(1)|A| such that |A′ + A′| �
KO(1)|A′|.

The above symmetric version of the Balog–Szemerédi–Gowers theorem can be deduced
from the asymmetric version using the Ruzsa triangle inequality.

We will deduce Theorem 14 from the following purely graph-theoretic statement.

Lemma 17. Let A and B be finite sets and H = (A t B,E) be a bipartite graph with edge
set E between A and B. Suppose that

|E| ≥ |A||B|
K

for some K ≥ 1. Then, there exist A′ ⊂ A and B′ ⊂ B with |A′| � K−O(1)|A| and
|B′| � K−O(1)|B| such that every a′ ∈ A′ and b′ ∈ B′ are joined by � K−O(1)|A||B| paths of
length three.

Note that the maximum possible number of paths of length three between A and B is
|A|2|B|2, and the maximum between any fixed a ∈ A and b ∈ B is |A||B|. Thus, this lemma
says that in any dense bipartite graph one can find a dense bipartite subgraph A′ ×B′ such
that any a ∈ A′ and b ∈ B′ are connected by a positive proportion of the maximum number
of paths of length three between a and b.

Proof of Theorem 14 from Lemma 17. Set

E :=

{
(a, b) ∈ A×B : (1A ∗ 1B)(a+ b) >

|A|1/2|B|1/2

2K

}
.

Then, since ∑
(a,b)∈A×B

(1A ∗ 1B)(a+ b) = E(A,B) ≥ |A|
3/2|B|3/2

K
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and ∑
(a,b)∈(A×B)\E

(1A ∗ 1B)(a+ b) ≤ |A|
3/2|B|3/2

2K
,

it follows that
|A|3/2|B|3/2

2K
≤
∑

(a,b)∈E

(1A ∗ 1B)(a+ b) ≤ |E|
√
|A||B|

since |(1A ∗ 1B)(x)| ≤ ‖1A‖`2‖1B‖`2 by the Cauchy–Schwarz inequality. It follows that |E| ≥
|A||B|/2K.

Now, consider the bipartite graph H with vertex sets A and B and edge set E (for each
element in A ∩ B, we create a vertex in both A and B viewed as vertex sets, and view
each edge in E as an undirected edge despite the elements of E being ordered pairs). By
Lemma 17, there exist A′ ⊂ A and B′ ⊂ B with |A′| � K−O(1)|A| and |B′| � K−O(1)|B| such
that the number of paths of length three between any a′ ∈ A′ and b′ ∈ B′ is� K−O(1)|A||B|.
That is, for all a′ ∈ A′ and b′ ∈ B′, there exist � K−O(1)|A||B| pairs a, b ∈ A×B for which
(a′, b), (a, b), (a, b′) ∈ E. It follows that∑

a,b∈G

(1A ∗ 1B)(a′ + b)(1A ∗ 1B)(a+ b)(1A ∗ 1B)(a+ b′)� K−O(1)|A|5/2|B|5/2.

The left-hand side above equals∑
a,b∈G

(1A ∗ 1B)(a′ + b)(1−A ∗ 1−B)(−a− b)(1A ∗ 1B)(a+ b′)

=
∑
a,b∈G

(1A ∗ 1B)(b)(1−A ∗ 1−B)(−a− b+ (a′ + b′))(1A ∗ 1B)(a)

=
∑

c1,c2,c3∈G
c1+c2+c3=a′+b′

(1A ∗ 1B)(c1)(1−A ∗ 1−B)(c2)(1A ∗ 1B)(c3)

= (1A ∗ 1B ∗ 1−A ∗ 1−B ∗ 1A ∗ 1B)(a′ + b′)

by making the changes of variables a 7→ a − b′ and b 7→ b − a′ and then c1 = b, c2 =
−a− b+ (a′ + b′), and c3 = b′.

Thus, we have

(1A ∗ 1B ∗ 1−A ∗ 1−B ∗ 1A ∗ 1B)(a′ + b′)� K−O(1)|A|5/2|B|5/2

for all a′ ∈ A′ and b′ ∈ B′. On the other hand,∑
x∈G

(1A ∗ 1B ∗ 1−A ∗ 1−B ∗ 1A ∗ 1B)(x) = |A|3|B|3.

It follows that

|A′ +B′| � |A|3|B|3

K−O(1)|A|5/2|B|5/2
� KO(1)|A|1/2|B|1/2,

as desired.
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In order to prove Lemma 17, we will need a preparatory lemma about paths of length
two.

Lemma 18. Let A and B be finite sets, H = (A t B,E) be a bipartite graph with edge set
E between A and B, and ε > 0. Suppose that

|E| ≥ |A||B|
K

for some K ≥ 1. Then, there exist A′ ⊂ A with |A′| ≥ |A|/
√

2K such that all but at most
ε|A′|2 pairs of vertices a′1, a

′
2 ∈ A′ are joined by at least ε

2K2 |B| paths of length two.

Proof. The proof proceeds by a technique in extremal combinatorics known as dependent
random choice. We will choose A′ to be the set of neighbors of a random element b ∈ B;
such sets are more likely to be “well connected” than a typical random subset of the same
size, since all elements at least share an edge with b.

Let b ∈ B be chosen uniformly at random and let A′ = A′(b) := {a ∈ A : {a, b} ∈ E} be
the neighborhood of b. The expected size of A′ is

Eb∈B|A′| = Eb∈B#{a ∈ A : {a, b} ∈ E} =
|E|
|B|
≥ |A|

K
(9)

by the assumption on the size of |E|. Set

S :=

{
(a′1, a

′
2) ∈ (A′)2 : a′1 and a′2 are connected by fewer than

ε|B|
2K2

paths of length two

}
.

Then

Eb∈B|S| <
|A|2

|B|
ε|B|
2K2

=
ε|A|2

2K2
,

since any pair (a1, a2) ∈ A2 that is connected by < ε|B|
2K2 paths of length two can only lie in

< ε|B|
2K2 different sets A′(b)2.
By (9) and the Cauchy–Schwarz inequality,

|A|2

K2
≤ Eb∈B|A′|2.

Thus, we have

Eb∈B

(
|A′|2 − |S|

ε
− |A|

2

2K2

)
≥ 0,

and so there must exist b ∈ B for which

|A′|2 − |S|
ε
≥ |A|

2

2K2
.

It then follows that |A′| ≥ |A|/
√

2K, and also that |S|
ε
≤ |A′|2, so that |S| ≤ ε|A′|2.

Now, we can finally prove Lemma 17 and complete the proof of the Balog–Szemerédi–
Gowers theorem.
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Proof of Lemma 17. Let A1 ⊂ A be the set of vertices of degree at least |B|
2K

and let E1 ⊂ E
be the set of edges in E connecting A1 to B. Then,

|E1| >
|A||B|
K

− |A||B|
2K

=
|A||B|

2K

and thus

|A1| ≥
|E1|
|B|

>
|A|
2K

.

Now, we apply Lemma 18 with the bipartite graph (A1, B,E1) and ε > 0 to be chosen later.
This yields A2 ⊂ A1 with |A2| � K−O(1)|A| such that all but ε|A2|2 of the pairs of vertices
a, a′ ∈ A2 are joined by at least C−1K−Cε|B| paths of length two for some absolute constant
0 < C � 1. Let E2 ⊂ E be the set of edges connecting A2 with B.

Let A′ ⊂ A2 be the set{
a ∈ A2 :

∣∣{a′ ∈ A2 : a, a′ joined by fewer than C−1K−Cε|B| paths of length 2
}∣∣ ≤ √ε|A2|

}
.

Then,
|A2 \ A′| ·

√
ε|A2| ≤ ε|A2|2,

and so |A2 \A′| ≤
√
ε|A2|. Also note that since every vertex in A2 ⊂ A1 has degree at least

|B|/2K,

|E2| ≥
|A2||B|

2K
� |A||B|

KO(1)

and thus, by an argument similar to the one at the beginning of the proof, there exist B′ ⊂ B
with |B′| ≥ (C ′)−1K−C

′ |B| such that each b ∈ B′ has degree at least (C ′)−1K−C
′|A| in the

bipartite graph (A2, B,E2) for some 0 < C ′ � 1.
Now, by taking ε = D−1K−D for some fixed D � 1, we get that any pair of vertices

(a′, b′) ∈ A′ × B′ is connected by � K−O(1)|A||B| paths of length three. Indeed, b′ has
at least (C ′)−1K−C

′ |A| neighbors a ∈ A2, and the number of those for which a and a′ are
joined by fewer than C−1K−Cε|B| paths of length two is at most

√
ε|A2| ≤

√
ε|A|. Taking

D = 2C ′ then yields that b′ has at least (2C ′)−1K−C
′ |A| neighbors a ∈ A2 for which a and

a′ are joined by at least (2CC ′)−1K−(C+2C′)|B| paths of length two. This means that b′ and
a′ are connected by at least

(2C ′)−1K−C
′ |A| · (2CC ′)−1K−(C+2C′)|B| � K−O(1)|A||B|

paths of length three, as desired.

4 An application to bounding exponential sums

Next, we will present a beautiful application of several results developed in the previous
section (most notably, the sum-product and Balog–Szemerédi–Gowers theorems) to bound-
ing the size of additive characters of Fp over multiplicative subgroups, due to Bourgain,
Glibichuk, and Konyagin.

35



Theorem 15 (Bourgain–Glibichuk–Konyagin, 2006). For all δ > 0, there exists ε = ε(δ) > 0
such that the following holds. Let p�δ 1 and H ≤ F×p be a multiplicative subgroup such that
|H| ≥ pδ. Then, ∣∣∣∣∣∑

x∈H

ep(ξx)

∣∣∣∣∣ ≤ p−ε|H|

for all nonzero ξ ∈ Fp.

This theorem says that we can get nontrivial bounds for nontrivial additive character sums
over multiplicative subgroups of Fp of size an arbitrarily small power of p. Prior approaches,
which were either purely number-theoretic or incorporated bounds for the number of Fp-
points on certain varieties, failed to get below the p1/4 barrier. Bourgain and others then
extended the ideas going into the proof to bound a wider variety of interesting exponential
sums, and also to the more general situation of H having small doubling |HH| ≤ K|H|.

One should contrast this result with the state of our knowledge of nontrivial multiplica-
tive (i.e., nonprincipal Dirichlet) character sums over short intervals, which are the most
“additively structured” subsets of Fp. The classical Pólya–Vinogradov inequality says that∣∣∣∣∣ ∑

M<n≤M+N

χ(n)

∣∣∣∣∣ ≤ 6
√
q log q

whenever χ is a nonprincipal Dirichlet character modulo q; this inequality is only nontrivial
for N �ε q

1/2+ε. Burgess’s bound provides nontrivial bounds for such character sums when
N �ε q

1/4+ε, and it’s a major open problem to obtain nontrivial bounds in general for
sums over shorter intervals (any progress would, for example, improve on the best known
upper bound for the least quadratic nonresidue modulo a prime). On GRH, we can obtain
nontrivial bounds for character sums of length �ε q

O(ε).
We begin by defining the notion of the large spectrum of a set, which is simply the set

of frequencies at which the Fourier transform is large.

Definition 3. Let A ⊂ Fp with density α and δ ∈ [0, 1]. The δ-large spectrum of A is the
set

Specδ(A) :=
{
ξ ∈ Fp :

∣∣∣1̂A(ξ)
∣∣∣ ≥ δα

}
.

Observe that Spec1(A) = {0} and Spec0(A) = Fp. Further, from Parseval’s identity,

α = Ex∈Fp1A(x)2 =
∑
ξ∈Fp

∣∣∣1̂A(ξ)
∣∣∣2 ≥ (δα)2 |Specδ(A)| ,

so that, by rearranging, we obtain the upper bound

|Specδ(A)| ≤ 1

αδ2
.

An important fact about the large spectrum of a set is that it posesses some weak additive
structure.
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Lemma 19. Let A ⊂ Fp with density α and δ ∈ (0, 1]. For any nonempty S ⊂ Specδ(A),
we have

#
{

(ξ1, ξ2) ∈ S2 : ξ1 − ξ2 ∈ Specδ2/2(A)
}
≥ δ2

2
|S|2

Proof. For each ξ ∈ Fp, let φ(ξ) ∈ C be such that
∣∣∣1̂A(ξ)

∣∣∣ = φ(ξ)1̂A(ξ), so that |φ(ξ)| = 1.

We certainly have

δα|S| ≤
∑
ξ∈S

∣∣∣1̂A(ξ)
∣∣∣ =

∑
ξ∈S

φ(ξ)Ex∈Fp1A(x)ep(−ξx) = Ex∈Fp1A(x)
∑
ξ∈S

φ(ξ)ep(−ξx).

By the triangle inequality and then the Cauchy–Schwarz inequality, we get from the above
that

α2δ2|S|2 ≤ αEx∈Fp1A(x)

∣∣∣∣∣∑
ξ∈S

φ(ξ)ep(−ξx)

∣∣∣∣∣
2

= αEx∈Fp1A(x)
∑

ξ1,ξ2∈S

φ(ξ1)φ(ξ2)ep(−(ξ1 − ξ1)x)

= α
∑

ξ1,ξ2∈S

φ(ξ1)φ(ξ2)1̂A(ξ1 − ξ2).

Thus, by the triangle inequality,

αδ2|S|2 ≤
∑

ξ1,ξ2∈S

∣∣∣1̂A(ξ1 − ξ2)
∣∣∣ .

Since
∣∣∣1̂A(ξ1 − ξ2)

∣∣∣ ≤ α and the contribution to the above from pairs (ξ1, ξ2) for which

ξ1 − ξ2 /∈ Specδ2/2(A) is at most αδ2

2
|S|2, we conclude that

#
{

(ξ1, ξ2) ∈ S2 : ξ1 − ξ2 ∈ Specδ2/2(A)
}
≥ δ2

2
|S|2.

In 2002, Chang proved a more precise and powerful statement about the additive struc-
ture of large spectra. To state it, we will need a couple of simple definitions.

Definition 4. Let (G,+) be any abelian group and S ⊂ G. We say that S is dissociated if
the only choice of (εs)s∈S ∈ {−1, 0, 1}S for which∑

s∈S

εss = 0

is the zero vector. For any A ⊂ G, the dimension is the size of the largest dissociated subset
of A.

Chang proved a bound on the dimension of the δ-large spectrum of subsets of cyclic
groups. In the setting we’re focusing on in this section, her result is as follows.
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Lemma 20 (Chang, 2002). Let A ⊂ Fp with density α and δ ∈ (0, 1]. Then, the dimension

of Specδ(A) is � logα−1

δ2
.

One should compare this to our trivial size upper bound |Specδ(A)| ≤ 1
αδ2

. Thus, when
the density α is small, the dimension of the δ-large spectrum is substantially smaller than
its maximum possible size.

Chang used her lemma to improve the best known bounds in the Freiman–Ruzsa theo-
rem, which gives a classification of subsets of the integers with small doubling, and which
will be the next major result we prove in this course. Chang’s lemma has since found many
applications in additive combinatorics, such as to improving the bounds on Roth’s theo-
rem (due to Sanders, Bloom, and Bloom–Sisask (in various forms) but now superceded by
the Kelley–Meka bounds), in further improving the bounds in the Freiman–Ruzsa theorem
(due to Sanders, and which implies quasipolynomial bounds in the inverse theorem for the
U3-norm), and finding long arithmetic progressions in sumsets (due to Green). A version
of Chang’s lemma for vector spaces over finite fields also has applications in theoretical
computer science, in particular, to the analysis of boolean functions.

Returning to the proof of the Bourgain–Glibichuk–Konyagin bound, the basic idea of the
argument is that if H ≤ F×p is a multiplicative subgroup and A := Specδ(H) is more than
just the zero frequency, then A is, in fact, 0 along with a union of cosets of H, since∑

h∈H

ep(ξh) =
∑
h∈H

ep(ξh
′h) =

∑
h∈H

ep([h
′ξ]h)

for all h′ ∈ H, so that if ξ ∈ Specδ(H), then h′ξ ∈ Specδ(H). This should translate to
A having some amount of nontrivial multiplicative structure. On the other hand, we saw
above that A also has some weak additive structure, as long as Specδ2/2(H) is not too much
larger than A = Specδ(H). The sum-product theorem tells us, morally, that a set cannot
simultaneously be both additively structured and multiplicatively structured, and so this
should lead to a contradiction unless A = {0}, which will lead us to a good bound on the
original exponential sum. To make all of this talk of “weak additive/multiplicative structure”
rigorous, we will use the Balog–Szemerédi–Gowers theorem, and to ensure that Specδ2/2(H)
is not much larger than Specδ(H), we will use a dyadic pigeonholing argument, which was
one of Bourgain’s signature techniques.

We begin with deriving a couple of useful consequences of the sum-product theorem. The
first is that subsets of Fp grow rapidly under iterated combined sumsets and product sets

Lemma 21. Let A ⊂ Fp be nonempty, m ∈ N, and δ ∈ (0, 1). Then, there exists k �m,δ 1
such that ∣∣kAk∣∣�m,δ min

(
|A|m, p1−δ) .

Proof. First, observe that if n ∈ N with n ≥ 2, then

|nAn + nAn|, |(nAn)(nAn)| ≤ |n2An
2|.

Now let ε > 0 be such that, for all A ⊂ Fp with |A| ≤ Cp1−δ,

max (|A+ A|, |AA|) ≥ C|A|1+ε
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for some absolute constant C > 0. Then, for all n ∈ N, we have∣∣∣22nA22
n
∣∣∣ ≥ Cn(1+ε)n|A|(1+ε)n

unless
∣∣∣22n−1

A22
n−1
∣∣∣ > Cp1−δ, in which case we certainly have

∣∣∣22nA22
n
∣∣∣ > Cp1−δ as well.

Taking k = 22n for n = log(1+ε) m completes the proof.

It follows that iterated combined sumsets and product sets expand to fill all of Fp after
few iterations.

Lemma 22. Let δ ∈ (0, 1) and A ⊂ Fp with |A| ≥ pδ. Then, there exists k �δ 1 such that
kAk = Fp.

This will be an immediate consequence of the previous lemma and the following one.

Lemma 23. Let A ⊂ F×p with |A| > p3/4. Then, 3A2 = Fp.

Proof. Set f := Ea∈A1aA, and note that, for all ξ ∈ F×p , we have

∣∣∣f̂(ξ)
∣∣∣ =

∣∣∣Ea∈A1̂A(aξ)
∣∣∣ ≤√Ea∈A

∣∣∣1̂A(ξ)
∣∣∣2 ≤ |A|−1/2

√∑
η∈Fp

∣∣∣1̂A(η)
∣∣∣2 =

√
α

|A|
= p−1/2

by the Cauchy–Schwarz inequality. Now, consider f ∗ f ∗ f , which has support 3A2. For all
x ∈ Fp, we have, by Fourier inversion, that

f(x) =
∑
ξ∈Fp

f̂(ξ)3e(ξx) ≥ α3 −
∑

06=ξ∈Fp

∣∣∣f̂(ξ)
∣∣∣3 ≥ α3 − p−1/2α

where we have used that f̂(0) = Ex∈Fpf(x) = α and also Parseval’s identity again. So,
f(x) > 0 if α3 − p−1/2α. The latter occurs whenever α > p−1/4. Thus, whenever α > p−1/4,
f(x) > 0 for all x ∈ Fp, i.e., 3A2 = supp f ∗ f ∗ f = Fp.

The key consequence of the sum-product theorem that we will require says that if A ⊂ Fp

is not too large and B ⊂ F×p is not too small, then |A + b · A| must be significantly larger
than |A| for some b ∈ B.

Proposition 1. Let δ, δ′ ∈ (0, 1), A ⊂ Fp with 3 ≤ |A| ≤ p1−δ and B ⊂ F×p with |B| ≥ pδ
′
.

Then, there exists b ∈ B such that |A+ b · A| ≥ |A|1+Ωδ,δ′ (1).

In order to prove this, we will need a simple lemma (originally due to Glibichuk and
Konyagin) whose proof is similar to arguments we carried out during our proof of the sum-
product theorem.

Lemma 24. Let A ⊂ Fp. There exists x ∈ Fp such that

|A+ x · A| ≥ 1

2
min

(
|A|2, p

)
.
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Proof. Observe that∑
x∈Fp

E(A, x · A) = #
{

(a1, a2, a3, a4, x) ∈ A4 × Fp : a1 + xa2 = a3 + xa4

}
= |A|2(|A| − 1)2 + |A|2(p− 1),

since any quadruple (a1, a2, a3, a4) with a2 6= a4 satisfying a1 + xa2 = a3 + xa4 uniquely
determines x, and this x is nonzero if and only if a1 6= a3, and any quadruple (a1, a2, a3, a4)
with a2 = a4 satisfying a1 + xa2 = a3 + xa4 also requires a1 = a3 (and there is no restriction
on x). Thus, by the pigeonhole principle, there must exist x ∈ Fp such that

E(A, x · A) ≤ |A|
2(|A| − 1)2 + |A|2(p− 1)

p− 1
≤ |A|

4

p
+ |A|2 ≤ 2 max

(
|A|4

p
, |A|2

)
since (|A|−1)2

p−1
≤ |A|2

p
by |A| ≤ p. Recalling our lower bound

E(A, x · A) ≥ |A|4

|A+ x · A|
and comining it with our upper bound for the additive energy yields

|A+ x · A| ≥ |A|4

2 max
(
|A|4
p
, |A|2

) ,
from which the lemma follows.

Now we can prove Proposition 1.

Proof of Proposition 1. Analogous to the proof of the sum-product theorem, we have that if
|A + x · A|, |A + y · A| ≤ K|A|, then |A + (x + y) · A|, |A + (xy) · A| ≤ K9|A|. Indeed, by
Ruzsa’s triangle inequality,

|x · A− y · A| ≤ |A− x · A||A− y · A|
|A|

which is at most K4|A| by the Plünnecke–Ruzsa inequality, and thus, by another application
of the Ruzsa triangle inequality, we have

|A+ (x+ y) · A| ≤ |A+ (x · A+ y · A)| ≤ |A+ x · A|| − x · A+ (x · A+ y · A)|
|x · A|

≤ K9|A|

again by the Pünnecke–Ruzsa inequality. For the latter inequality, we simply have

|A+ (xy) · A| ≤ |A+ x · A|| − x · A+ (xy) · A|
|x · A|

≤ K3|A|

by the Ruzsa triangle inequality and Plünnecke’s inequality again.
Let m�δ′ 1 be such that mBm = Fp. If K ≥ 1 were such that |A+ b ·A| ≤ K|A| for all

b ∈ B, then by the above we would have that |A+x ·A| ≤ KOm(1)|A| ≤ KOδ′ (1)|A| for all x ∈
Fp. But, by the previous lemma, there exists x ∈ Fp such that |A+x ·A| ≥ 1

2
min (|A|2, p)�

|A|1+Ωδ′ (1). Combining these upper and lower bounds leads to a contradiction when K = |A|c
for c�δ,δ′ 1.
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Next, we will derive a useful consequence of the Balog–Szemerédi–Gowers theorem con-
cerning sumsets of A with its dilates. During the proof of the Bourgain–Glibichuk–Konyagin
bound, we will play this off of Proposition 1 to obtain a contradiction.

Corollary 4. Let A ⊂ Fp and B ⊂ F×p be such that

E(A, b · A) ≥ K|A|3

for all b ∈ B. Then, there exists x ∈ B−1, A′ ⊂ A, and B′ ⊂ x · B with |A′| � K−O(1)|A|,
|B′| � K−O(1)|B|, and

|A′ + b′ · A′| � KO(1)|A|
for all b′ ∈ B′.

Proof. We begin by applying the Balog–Szemerédi–Gowers theorem to A and b · A for each
b ∈ B. This produces Cb, Db ⊂ A with |Cb|, |Db| � K−O(1)|A| such that |Cb + b · Db| �
KO(1)|A|. By the Cauchy–Schwarz inequality,

K−O(1)|A|2|B| �
∑
x,y∈A

∑
b∈B

1Cb×Db(x, y) ≤ |A|

∑
x,y∈A

∣∣∣∣∣∑
b∈B

1Cb×Db(x, y)

∣∣∣∣∣
2
1/2

,

and so

K−O(1)|A|2|B|2 �
∑
x,y∈A

∑
b,b′∈B

1Cb×Db(x, y)1Cb′×Db′ (x, y) =
∑
b,b′∈B

|(Cb ×Db) ∩ (Cb′ ×Db′)|.

By the pigeonhole principle, there exists b ∈ B (which we will now fix) for which

K−O(1)|A|2|B| �
∑
b′∈B

|(Cb ×Db) ∩ (Cb′ ×Db′)|,

and, thus, also B′ ⊂ B with |B′| � K−O(1)|B| such that |(Cb × Db) ∩ (Cb′ ∩ Db′)| �
K−O(1)|A|2 for all b′ ∈ B′. This additionally implies, since Cb′ , Db′ ⊂ A, that, in fact,
|Cb ∩ Cb′|, |Db ∩Db′| � K−O(1)|A| for all b′ ∈ B′.

By the Plünnecke–Ruzsa inequality, |2Cb|, |2Db| � KO(1)|A| and also |2Cb′ |, |2Db′| �
KO(1)|A| for all b′ ∈ B′. By the Ruzsa triangle inequality,

|Cb − Cb′| ≤
|Cb + (Cb ∩ Cb′)||Cb′ + (Cb ∩ Cb′)|

|Cb ∩ Cb′ |
� KO(1)|A|

for all b′ ∈ B′, and, similarly, |Db −Db′| � KO(1)|A| for all b′ ∈ B′. Thus, letting d denote
the Ruzsa distance, it follows by a couple more applications of the Ruzsa triangle inequality
and Plünnecke’s inequality that

d(b ·Db, b
′ ·Db) ≤ d(b ·Db,−Cb) + d(−Cb, b′ ·Db)

≤ d(b ·Db,−Cb) + d(−Cb,−Cb′) + d(−Cb′ , b′ ·Db)

≤ d(b ·Db,−Cb) + d(Cb, Cb′) + d(−Cb′ , b′ ·Db′) + d(b′ ·Db′ , b
′ ·Db)

for all b′ ∈ B′, the upshot being that |b · Db − b′ · Db| � KO(1)|A| for all b′ ∈ B′. Setting
A′ := Db, it thus follows from the Plünnecke–Ruzsa inequality that |A′+ b′′ ·A′| � KO(1)|A|
for all b′′ ∈ b−1B′ ⊂ b−1B, as desired.
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Now we can prove the Bourgain–Glibichuk–Konyagin exponential sum bound.

Proof of Theorem 15. Let ε > 0 be a paramter to be chosen later (depending only on δ, and
suppose by way of contradiction that |Eh∈Hep(ξh)| > p−ε for some nonzero ξ ∈ Fp. By our
earlier observation on the H-invariance of large spectra of H, Specp−ε(H) contains at least
one coset of H in F×p . Since the p−ε-large spectrum of H also certainly contains zero, we

have
∣∣Specp−ε(H)

∣∣ ≥ |H|+ 1 ≥ pδ + 1.
We now run a dyadic pigeonholing argument to locate a scale α at which Specα(H) and

Specα2/2(H) do not differ too much in size. Define a sequence α0 > · · · > αM of reals in

(0, 1) by setting α0 := p−ε and, for m = 1, . . . ,M , setting αm :=
α2
m−1

2
, where M ∈ N will be

chosen later (also depending only on δ). Note that, certainly, Specαm(H) ⊂ Specαm−1
(H) for

all m = 1, . . . ,M , and that each αm satisfies αm ≥ (p−ε/2)2m . By the pigeonhole principle,
there must exist m ∈ [M ] for which∣∣Specαm(H)

∣∣ ≤ p1/M
∣∣Specαm−1

(H)
∣∣ .

Indeed, if the above inequality failed to hold for all m ∈ [M ], then we would have∣∣Specα0
(H)

∣∣ < p−1/M
∣∣Specα1

(H)
∣∣ < p−2/M

∣∣Specα2
(H)

∣∣ < · · · < p−1
∣∣SpecαM (H)

∣∣ ,
which, since the αM -large spectrum of H can have at most p elements and the α0-large
spectrum of H is nonempty, would lead to a contradiction. Set A := Specαm−1

(H) and
B := Specαm(H).

Recall that we have∑
b∈B

(1A ∗ 1−A)(b) =
∣∣{(ξ1, ξ2) ∈ A2 : ξ1 − ξ2 ∈ B

}∣∣ ≥ α2
m−1

2
|A|2.

Thus, by the Cauchy–Schwarz inequality,

α2
m−1|A|2

2
≤
√
|B|#

{
(ξ1, ξ2, ξ3, ξ4) ∈ A4 : ξ1 − ξ2 = ξ3 − ξ4

}1/2
,

i.e.,

E(A,A) ≥
α4
m−1

4
|A|3 |A|
|B|
≥
α4
m−1

4
p−1/M |A|3 �M p−2Mε−1/M |A|3.

We have |A| ≥ p−δ and, by the trivial upper bound for the size of large spectra,

|A| ≤ 1

pδ−1α2
m−1

�M p1−δ+2Mε.

Thus, since E(A,A) = E(A, h · A) for all h ∈ H, we can apply our corollary to the Balog–
Szemerédi–Gowers theorem to get that there exist A′ ⊂ A and H ′ ⊂ H with |A′| �M

p−O(2Mε+1/M)|A| and |H ′| �M p−O(2Mε+1/M)|H| such that

|A′ + h′ · A′| �M p−O(2Mε+1/M)|A′|

for all h′ ∈ H ′. Taking M sufficiently large in terms of δ and then ε sufficiently small in
terms of M and δ, this contradicts Proposition 1.
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5 The Freiman–Ruzsa theorem

In this section, we will prove a classification of subsets of the integers with small doubling.
Let A ⊂ Z be finite, and enumerate the elements of A: a1 < a2 < · · · < aN . Then, observe
that

a1 + a1 < a1 + a2 < · · · < a1 + aN < a2 + aN < · · · < aN + aN ,

and so A+A contains at least 2|A| − 1 distinct elements, showing that |A+A| ≥ 2|A| − 1.
We already saw that this lower bound is attained by [N ] or any other arithmetic progression
in Z of length N , and it is not hard to show that if |A + A| = 2|A| − 1 then A must be an
arithmetic progression.

More examples of sets with small doubling are given by generalized arithmetic progres-
sions

{a+ b1k1 + · · ·+ bnkn : ki = 0, . . . ,Mi − 1 for all i ∈ [n]} (10)

of dimension n and volume M1 · · ·Mn. For example, consider

A = {k1 + 3Mk2 : k1, k2 = 0, . . . ,M − 1} .

Then, |A| = M2 (since if k1 + 3Mk2 = `1 + 3M`2, then k1− `1 = 3M(`2− k2), which by the
size bounds on k1 and `1 forces `2 = k2, and thus `1 = k1 as well), so that the cardinality of
A is the same as its volume, and

A+ A = {k1 + 3Mk2 : k1, k2 = 0, . . . , 2M − 2} .

Thus, |A+ A| ≤ (2M − 1)2 ≤ 4M2 = 4|A|.
We say that a generalized arithmetic progression (10) is proper if all of the elements

a+ b1k1 + · · ·+ bnkn are distinct, i.e., if the volume of the GAP equals its cardinality. Note
that a proper n-dimensional GAP has doubling at most 2n. If A is a proper n-dimensional
GAP and B ⊂ A has density β, then

|B +B| ≤ |A+B| ≤ 2n|A| ≤=
2n

β
|B|,

and so dense subsets of generalized arithmetic progressions also have small doubling. The
Freiman–Ruzsa theorem says that these are all possible examples of sets with small doubling.

Theorem 16. Let A ⊂ Z be finite. If |A+A| ≤ K|A|, then A is contained in a generalized
arithmetic progression of dimension at most d(K) and volume at most v(K)|A|.

Using her eponymous lemma, Chang was able to obtain the explicit bounds d(K) ≤
K2+o(1) and v(K) ≤ eK

2+o(1), and Sanders was able to improve the exponent of K in Chang’s

bounds to 7/4. Schoen then proved that d(K) ≤ K1+o(1) and v(K) ≤ eK
1+o(1)

suffices. The
proof we will present obtains bounds that are single exponential and double exponential in
KO(1) for d(K) and v(K), respectively.

One can also formulate a version of the Freiman–Ruzsa theorem in high dimensional vec-
tor spaces over finite fields, where generalized arithmetic progressions are replaced by unions
of cosets of a subspace. In a recent spectacular breakthrough, Gowers, Green, Manners, and
Tao proved polynomial bounds
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Theorem 17 (Gowers–Green–Manners–Tao, 2024). For each prime p, there exists a constant
c = cp > 0 such that the following holds. If A ⊂ Fn

p with |A + A| ≤ K|A|, then there exists
a subspace V ≤ Fn

p of size |V | ≤ |A| such that A is contained in the union of at most Kc

cosets of V .

It is possible to formulate a version of the Freiman–Ruzsa theorem in Z for which one
can obtain improved bounds by replacing generalized arithmetic progressions by a bounded
number of translates of the linear image of an intersections of Zn with a centrally symmetric
convex body in Rn (i.e., a convex progression) having volume at most |A|. In this formulation,
Sanders has obtained bounds on the dimension of (logK)O(1) and number of translates of

e(logK)O(1)
.

5.1 Background from the geometry of numbers

One of the key ingredients in the proof of the Freiman–Ruzsa theorem is the ability to locate
large generalized arithmetic progressions in Bohr sets. In order to do this, we will need some
tools from the geometry of numbers.

Recall that a lattice in Rn is a discrete cocompact subgroup. Thus, any lattice Λ ⊂ Rn

takes the form
Λ = Zv1 ⊕ · · · ⊕ Zvn

for some linearly independent vectors v1, . . . , vn ∈ Rn. Note that a fundamental domain of
Rn/Λ is given by

F(Λ) := {x1v1 + · · ·+ xnvn : x1, . . . , xn ∈ [0, 1)} .

We will denote the volume of the fundamental domain by Vol(Λ). Note that

Vol(Λ) =
∣∣det

(
v1 v2 . . . vn

)∣∣ .
The following is a simple consequence of the pigeonhole principle.

Lemma 25 (Blichfeldt’s Lemma). Let K ⊂ Rn be measurable and Λ ⊂ Rn be a lattice.
If Vol(K) > Vol(Λ), then there exist distinct x, y ∈ K such that x − y ∈ Λ (i.e., K − K
intersects Λ in more than just the zero vector).

Proof. Note that we may, without loss of generality, assume that K is bounded. Consider
the tiling of Rn by translates of F(Λ): Λ + F(Λ) = Rn. Set, for each v ∈ Λ,

Kv := [K ∩ (v + F(Λ))]− v ⊂ F(Λ).

Observe that, since K is bounded, there are only finitely many v ∈ Λ for which Kv 6= ∅, and
that ∑

v∈Λ

Vol(Kv) = Vol(K).

Thus, by the pigeonhole principle, there exist distinct v, w ∈ Λ for which Vol(Kv ∩Kw) > 0.
Let a ∈ Kv ∩Kw. Then, there exists a ∈ K ∩ (v+F(Λ)) and b ∈ K ∩ (w+F(Λ)) for which
a− v = b− w, i.e., a− b = v − w ∈ Λ. Since v + F(Λ) and w + F(Λ) are disjoint, a and b
must be distinct.
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From this lemma, we can easily deduce what’s known as Minkowski’s first theorem.

Theorem 18. Let K ⊂ Rn be a centrally symmetric convex body and Λ ⊂ Rn be a lattice.
If

Vol(K) > 2n Vol(Λ),

then K contains a nonzero vector in Λ.

Proof. Apply Blichfeldt’s lemma to the dilation 1
2
K to get that 1

2
K contains two distinct

points 1
2
x and 1

2
y, with x, y ∈ K, such that x−y

2
∈ Λ. Since K is centrally symmetric, −y ∈ K

as well, and since K is convex, so is x−y
2

.

Let K ⊂ Rn be a centrally symmetric convex body. For each i ∈ [n], we define the ith

successive minimum λi of K with respect to Λ by taking λi to be the infimum of λ ≥ 0 for
which the dilation λK := {λx : x ∈ K} contains i linearly independent vectors in Λ. That
is,

λi := inf {λ ∈ [0,∞) : dim span(λK ∩ Λ) ≥ i} .

The key result from the geometry of numbers that we will need is Minkowski’s second
theorem, which concerns successive minima.

Theorem 19. Let K ⊂ Rn be a centrally symmetric convex body and Λ ⊂ Rn be a lattice.
If λ1 ≤ · · · ≤ λn are the successive minima of K with respect to Λ, then we have

Vol(K) ≤ 2n Vol(Λ)

λ1 · · ·λn
.

This theorem is tight, as can be seen by considering K =
∏n

i=1[−λ−1
i , λ−1

i ] and Λ = Zn.
Note that Minkowski’s first theorem is an immediate consequence of Minkowski’s second
theorem, since the hypothesis of the first theorem implies that λ1 · · ·λn < 1, which, since
the λi are increasing, implies that λ1 < 1, i.e., that K contains some nonzero vector in Λ.
We will not prove Minkowski’s second theorem in this class. A proof can be found in any
book on the geometry of numbers.

5.2 Bohr sets and generalized arithmetic progressions

Recall that, for any t ∈ R, we use ‖t‖ to denote the distance from t to the nearest integer.
We will now define the notion of a Bohr set in a cyclic group.

Definition 5. Let Γ ⊂ Z/NZ and ρ > 0. We define the (homogeneous) Bohr set Bohr(Γ, ρ)
by

Bohr(Γ, ρ) :=
{
x ∈ Z/NZ :

∥∥∥γx
N

∥∥∥ ≤ ρ for all γ ∈ Γ
}
.

We call Γ the frequency set, |Γ| the rank, and ρ the radius of the Bohr set.

A definition of Bohr set can be given in any abelian group, though we will not do so here.
In vector spaces over finite fields, Bohr sets of sufficiently small radius are simply subspaces.
One should think of Bohr sets in cyclic groups as stand-ins for subspaces, especially in
the context of proving bounds in Szemerédi’s theorem. Note that any interval of the form
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{−M, . . . ,M} with M ≤ N−1
2

in can be viewed as a Bohr set of rank 1 in Z/NZ, but the
class of Bohr sets is much larger than just intervals, or even modular arithmetic progressions.

Note that the we have the trivial inclusions

Bohr(Γ, ρ) ∩ Bohr(Γ′, ρ) = Bohr(Γ ∪ Γ′, ρ)

and
Bohr(Γ, ρ) + Bohr(Γ, ρ′) ⊂ Bohr(Γ, ρ+ ρ′)

the latter of which is a consequence of the triangle inequality. Thus, in particular, kBohr(Γ, ρ) ⊂
Bohr(Γ, kρ) for all k ∈ N.

We begin by proving a basic lower bound on the size of a Bohr set.

Lemma 26. Let Γ ⊂ Z/NZ and ρ > 0. We have

|Bohr(Γ, ρ)| ≥ ρ|Γ|N.

Proof. For each γ ∈ Γ, choose xγ ∈ R/Z uniformly at random independently. Then,

Ex#
{
n ∈ Z/NZ :

∥∥∥γn
N
− xγ

∥∥∥ ≤ ρ

2
for all γ ∈ Γ

}
= ρ|Γ|N.

Thus, there exists x = (xγ)γ∈Γ for which

#
{
n ∈ Z/NZ :

∥∥∥γn
N
− xγ

∥∥∥ ≤ ρ

2
for all γ ∈ Γ

}
≥ ρ|Γ|N.

Call the set on the left-hand side above B. Note that if n,m ∈ B, then∥∥∥∥γ(n−m)

N

∥∥∥∥ =
∥∥∥γn
N
− xγ + xγ −

γm

N

∥∥∥ ≤ ρ

for all γ ∈ Γ by the triangle inequality. Picking m ∈ B arbitrarily, it follows that m + B ⊂
Bohr(Γ, ρ), and the first inequality follows.

Next, we will show that Bohr sets contain large generalized arithmetic progressions.

Theorem 20. Let Γ ⊂ Z/NZ with N prime, |Γ| = d, and ρ ∈ (0, 1/2). Then Bohr(Γ, ρ)
contains a symmetric proper generalized arithmetic progression of dimension d and size at
least (ρ/d)dN .

Proof. Write Γ = {γ1, . . . , γd} with each γi a representative in {0, . . . , N − 1}, set γ :=
(γ1/N, . . . , γd/N), and consider the lattice

Λ := Zγ + Zd ⊂ Rd

(note that this certainly is a lattice, since 1
N

Zd ⊂ Λ ⊂ Zd) and the box

K :=
{

(x1, . . . , xd) ∈ Rd : |xi| ≤ ρ for all i ∈ [d]
}
,

which is a centrally symmetric convex body. Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λd be the successive
minima of K with respect to Λ. There also exists an associated directional basis v1, . . . , vd ∈
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Λ of K with respect to Λ, i.e., v1, . . . , vd is a basis for Rd with vi ∈ ∂λiK ∩ Λ for each
i ∈ [d] and such that (λiK ∩ Λ)◦ does not contain any elements of Λ outside of the span of
v1, . . . , vi−1.

For each i ∈ [d], there exists ai ∈ {0, . . . , N −1} such that vi = aiγ+Zd. Since vi ∈ λiK,
each of the components of vi has size at most λiρ. Thus,∥∥∥aiγj

N

∥∥∥ ≤ λiρ (11)

for all i, j ∈ [d]. Set Mi := d 1
dλi
e for each i ∈ [d], and define the generalized arithmetic

progression

P := {a1k1 + · · ·+ adkd : ki ∈ (−Mi,Mi) ∩ Z for all i ∈ [d]} .

P is clearly symmetric and has dimension d. We will show that P ⊂ Bohr(Γ, ρ) and that P
is proper. The size lower bound on P will then follow from Minkowski’s second theorem.

First, note that, for any a1k1 + · · ·+ adkd ∈ P and any j ∈ [d], we have∥∥∥∥(a1k1 + · · ·+ adkd)γj
N

∥∥∥∥ ≤ d∑
i=1

|ki|
∥∥∥aiγj
N

∥∥∥ ≤ ρ
d∑
i=1

λi|ki| ≤ ρ

by the size upper bound on each Mi. Thus, P ⊂ Bohr(Γ, ρ). That P is proper follows from
the fact that the directional basis is, in fact, a basis. Indeed, suppose that

a1k1 + · · ·+ adkd = a1k
′
1 + · · ·+ adk

′
d

for two distinct vectors (k1, . . . , kd), (k
′
1, . . . , k

′
d) ∈

∏d
i=1 [(−Mi,Mi) ∩ Z]. This certainly im-

plies that

(k1 − k′1, . . . , kd − k′d) ·
(a1

N
, . . . ,

ad
N

)
= 0,

and thus that
(k1 − k′1)v1 + · · ·+ (kd − k′d)vd ∈ Zd.

But, for each j ∈ [d], the jth component of (k1 − k′1)v1 + · · ·+ (kd − k′d)vd has size bounded
by

d∑
i=1

|ki − k′i|λiρ ≤ ρ
d∑
i=1

(2Mi − 1)λi ≤ 2ρ,

again by the size upper bound on Mi, since all components of vi have size at most λiρ. This
forces (k1− k′1)v1 + · · ·+ (kd− k′d)vd = 0 by the assumption that ρ < 1/2, contradicting that
(k1, . . . , kd) and (k′1, . . . , k

′
d) are distinct.

Finally, we will obtain a size lower bound on P using Minkowski’s second theorem, which
tells us that

Vol(K) ≤ 2d Vol(Λ)

λ1 · · ·λd
.

We have Vol(K) = (2ρ)d and

|P | =
d∏
i=1

(2Mi − 1) ≥
d∏
i=1

1

dλi
=

(1/d)d

λ1 · · ·λd
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(as 2dte− 1 ≥ t whenever t > 0). So, it just remains to compute Vol(Λ). Recall that Vol(Λ)
is the volume of the fundamental domain F(Λ), and, if Λ1 ≤ Λ2 ⊂ Rd are any two lattices,
then

Vol(Λ1) = Vol(Λ2)[Λ1 : Λ2].

Applying this with Λ1 = Zd and Λ2 = Λ, we obtain

Vol(Λ) =
1

[Zd : Λ]
.

Since we chose N to be prime, |Λ/Zd| = N , and so we get that Vol(Λ) = N−1. Thus,

|P | ≥ (1/d)d

λ1 · · ·λd
≥ (1/d)d Vol(K)

2d Vol(Λ)
=
(ρ
d

)d
N,

as desired.

5.3 Bogolyubov’s lemma

By the Plünnecke–Ruzsa inequality, if A has small doubling, then nA−mA isn’t too much
larger than A itself. It turns out that iterated sum and difference sets are very structured
objects: we will show that 2A − 2A contains a large generalized arithmetic progression
whenever A ⊂ Z/NZ is dense, and thus, by Ruzsa’s covering lemma, A can be covered by a
small number of translates of a not too much larger GAP, which can then trivially be seen
to be a GAP. It is then a small step to go from a set with small doubling in A to one in
Z/NZ whose structure can be translated back to A.

Lemma 27 (Bogolyubov’s lemma). Let A ⊂ Z/NZ have density α. Then, 2A−2A contains
a Bohr set of rank less than 1

α2 and radius 1
4
.

Proof. Observe that the support of 1A∗1A∗1−A∗1−A is exactly 2A−2A, and thus x ∈ 2A−2A
if and only if

(1A ∗ 1A ∗ 1−A ∗ 1−A)(x) =
∑

ξ∈Z/NZ

∣∣∣1̂A(ξ)
∣∣∣4 eN(−ξx)

is positive. We split up the right-hand side as

α4 +
∑

06=ξ∈Z/NZ

|1̂A(ξ)|≥β

∣∣∣1̂A(ξ)
∣∣∣4 eN(−ξx) +

∑
ξ∈Z/NZ

|1̂A(ξ)|<β

∣∣∣1̂A(ξ)
∣∣∣4 eN(−ξx)+

for some parameter α > β > 0 to be chosen shortly. By Parseval’s identity,∣∣∣∣∣∣∣∣∣
∑

ξ∈Z/NZ

|1̂A(ξ)|<β

∣∣∣1̂A(ξ)
∣∣∣4 eN(−ξx)

∣∣∣∣∣∣∣∣∣ < β2α.
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We also have (by another application of Parseval’s identity a couple of sections ago)∣∣Specβ/α(A)
∣∣ ≤ α

β2
.

Set Γ := Specβ/α(A) \ {0}, so that |Γ| < α
β2 . Note that if x ∈ Bohr(Γ, 1/4), then, for all

γ ∈ Γ, since ‖γx
N
‖ ≤ 1

4
, cos(2πγx/N) ≥ 0. It follows that

(1A ∗ 1A ∗ 1−A ∗ 1−A)(x) > α4 +
∑

06=ξ∈Z/NZ

|1̂A(ξ)|≥β

∣∣∣1̂A(ξ)
∣∣∣4 eN(−ξx)− β2α ≥ α4 − β2α

whenever x ∈ Bohr(Γ, 1/4). Since we want α4−β2α ≥ 0, the optimal choice of β is β = α3/2.
Then |Γ| < α

β2 = 1
α2 , as desired.

It follows that 2A− 2A also contains a large generalized arithmetic progression of small
dimension.

Corollary 5. Assume that N is prime, and let A ⊂ Z/NZ have density α. Then, 2A− 2A

contains a generalized arithmetic progression of dimension d < 1
α2 and size at least

(
1
4d

)d
N .

The current best bounds in Bogoylubov’s lemma are due to Sanders in 2012, who proved
that in 2A−2A one can always find a d dimensional GAP of size at least exp(−O(d))N with
d� logO(1)(2/α).

5.4 Freiman homomorphisms and Ruzsa’s modeling lemma

Now that we have proved some useful results about subsets of Z/NZ, we want to show that
we can use them to obtain information about subsets A of Z with small doubling. One may
want to apply Bogolyubov’s lemma to A modulo some appropriate integer N . But, if N is
too small, then A and its image in Z/NZ may not have the same “additive behavior”, and if
N is too large, then the GAP found using Bogoylubov’s lemma will be too small relative to
|A|. Recall that we do not know anything about A except for its size and that it has small
doubling; in particular, we definitely cannot assume that it is contained in some interval not
too much larger than |A|.

In order to find a useful embedding of A into a cyclic group of prime order, we will need
the notions of Freiman homomorphisms and isomorphisms.

Definition 6. Let k ≥ 2 be an integer, (G,+) and (H,+) be abelian groups, A ⊂ G, B ⊂ H,
and φ : A→ B. We say that φ is a Freiman k-homomorphism if

φ(a1) + · · ·+ φ(ak) = φ(a′1) + · · ·+ φ(a′k)

whenever
a1 + · · ·+ ak = a′1 + · · ·+ a′k

for a1, a
′
1, . . . , ak, a

′
k ∈ A, i.e., φ respects all additive 2k-tuples in A. We say that φ is a

Freiman k-isomorphism if it is a bijection and its inverse is also a Freiman k-homomorphism.
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The most basic examples of Freiman homomorphisms (of all orders) are restrictions of
homomorphisms fromG toH. For example, the canonical map [N ]→ Z/2NZ is a Freiman 2-
isomorphism, and, more generally, the reduction modulo N map is a Freiman k-isomorphism
when restricted to any interval of integers of the form (x, x+N

k
]∩Z. Freiman homomorphisms

form a much wider class of functions, however. For example, any map from A = {1, 4, 16} is
trivially a Freiman 2-homomorphism because A contains no nontrivial additive quadruples.
Another example of a Freiman homomorphism of all orders is the canonical map φ : {0, 1}n →
(Z/2Z)n, since it is just the homomorphism from Zn to (Z/2Z)n that takes all components
modulo 2. However, its inverse function is not even a Freiman 2-homomorphism, since it does
not respect the additive relation (1, 0, . . . , 0) + (1, 0, . . . , 0) = (0, . . . , 0) + (0, . . . , 0) (mod 2).
Thus, φ is a Freiman homomorphism of all orders but not a Freiman k-isomorphism for any
k ≥ 2.

We say that two subsets A and B of abelian groups are Freiman k-isomorphic if there
exists a Freiman k-isomorphism between A and B. It is easy to check that he composition
of Freiman k-homomorphisms is again a Freiman k-homomorphism, and that Freiman k-
homomorphisms are also Freiman k′-homomorphisms for any 2 ≤ k′ ≤ k. Freiman k-
homomorphisms A → B also induce Freiman homomorphisms of smaller order from nA −
nA→ nB − nB.

Lemma 28. Let φ : A→ B be a Freiman k-homomorphism and n ≤ k
2

be an integer. Then
φ induces a Freiman k′-homomorphism φ′ : nA − nA → nB − nB for any positive integer
k′ ≤ k

2n
.

Proof. For any a1 + · · ·+ an− a′1− · · · − a′n ∈ nA− nA, we define φ′ : nA− nA→ nB − nB
by

φ′(a1 + · · ·+ an − a′1 − · · · − a′n) := φ(a1) + · · ·+ φ(an)− φ(a′1)− · · · − φ(a′n).

That φ′ is actually well defined follows immediately from the assumption that φ is a Freiman
k-homomorphism and n ≤ k

2
, as does φ′ being a Freiman k′-homomorphism as long as

k′ ≤ k
2n

.

The particular consequence we will use later is that if A is Freiman 8-isomorphic to B,
then 2A− 2A is Freiman 2-isomorphic to 2B − 2B.

Freiman homomorphisms and isomorphisms are useful because they preserve important
additive structure of sets.

Lemma 29. Let φ : A→ B be a Freiman 2-homomorphism. Then, if A1, A2 ⊂ A are finite,
we have

|φ(A1) + φ(A2)| ≤ |A1 + A2|,
with equality if φ is a Freiman 2-isomorphism.

Proof. We define a map f : φ(A1)+φ(A2)→ A1 +A2 as follows. For any x ∈ φ(A1)+φ(A2),
pick a1 ∈ A1 and a2 ∈ A2 such that φ(a1)+φ(a2) = x, and then set f(x) := a1+a2. Then, that
φ is a Freiman 2-homomorphism implies that f is injective: if f(x) = a1+a2 = a′1+a′2 = f(y)
for a1, a

′
1 ∈ A1 ⊂ A and a2, a

′
2 ∈ A2 ⊂ A, then φ(a1) + φ(a2) = φ(a′1) + φ(a′2), so that x = y.

Note that, when φ is a Freiman 2-isomorphism, we have both |φ(A1) + φ(A2)| ≤ |A1 + A2|
and |A1 + A2| = |φ−1(φ(A1)) + φ−1(φ(A2))| ≤ |φ(A1) + φ(A2)|.
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Thus, Freiman homomorphisms with sufficiently large image preseve the property of
having small doubling. Freiman homomorphisms also preserve generalized arithmetic pro-
gressions.

Lemma 30. Let P ⊂ G be a d-dimensional generalized arithmetic progression and φ : P →
B be a Freiman 2-homomorphism. Then, φ(P ) is also a d-dimensional generalized arithmetic
progression. If, additionally, φ is a Freiman 2-isomorphism, φ(P ) is proper whenever P is.

Proof. Observe first that φ preserves arithmetic progressions. Indeed, for any a, b ∈ G, one
can show that φ(a + bM) = φ(a) + (φ(a + b) − φ(a))M by induction on integers M ≥ 0:
the base cases M = 0 and M = 1 are trivial, and if we have that φ(a + b(M − 1)) =
φ(a) + (φ(a+ b)− φ(a))(M − 1) for a general M − 1 ≥ 1, then since

(a+ bM) + 0 = (a+ b(M − 1)) + b

we have that

φ(a+ bM) + φ(0) = φ(a+ b(M − 1)) + φ(b) = φ(a) + (φ(a+ b)− φ(a))(M − 1) + φ(b)

and, since,
(a+ b) + 0 = a+ b,

we have that
φ(b)− φ(0) = φ(a+ b)− φ(a)

by the assumption that φ is a Freiman 2-homomorphism, from which it follows that

φ(a+ bM) = φ(a) + (φ(a+ b)− φ(a))M,

as desired.
Now, write

P = {a+ b1k1 + · · ·+ bdkd : ki = 0, . . . ,Mi − 1 for all i ∈ [d]}

for some a, b1, . . . , bd ∈ G. Iteratively applying the above to induct on d, we can deduce that
φ(P ) is also a d-dimensional generalized arithmetic progression. Indeed, suppose that we
have

φ

(
a′ +

d−1∑
i=1

b′ik
′
i

)
= φ(a′) +

d−1∑
i=1

(φ(a′ + b′i)− φ(a′)) k′i

for all a′, b′1, . . . , b
′
d−1 ∈ G and nonnegative integers k′1, . . . , k

′
d−1. Then, we have that

φ
(
a+

∑d
i=1 biki

)
equals

φ
(
a+

d−1∑
i=1

biki
)

+
(
φ
(
a+

d−1∑
i=1

biki + bd
)
− φ
(
a+

d−1∑
i=1

biki
))
kd,
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, which equals

φ(a)+
d−1∑
i=1

(φ(a+ bi)− φ(bi))ki +
(
φ(a+ bd)− φ(a)

+
d−1∑
i=1

[φ(a+ bi + bd)− φ(a+ bd)− φ(a+ bi) + φ(a)]ki
)
kd

= φ(a) +
d−1∑
i=1

(φ(a+ bi)− φ(bi)) ki + (φ(a+ bd)− φ(a)) kd

for all nonnegative integers k1, . . . , kd, where we have used that

(a+ bi + bd) + a = (a+ bi) + (a+ bd)

and so, since φ is a Freiman 2-homomorphism,

φ(a+ bi + bd)− φ(a+ bd)− φ(a+ bi) + φ(a) = 0

for all i ∈ [d− 1].
Thus, it follows that φ(P ) is a d-dimensional generalized arithmetic progression whenever

P is a d-dimensional generalized arithmetic progression. It immediately follows that when
φ is a Freiman 2-isomorphism (so that it is, necessarily, a bijection), that φ(P ) is proper
whenever P is proper.

Observe that A = {1, 2, 4, . . . , 2n−1} cannot possibly be Freiman isomorphic to any subset
of a cyclic group Z/NZ with N of comparable size to n. Indeed, if A were Freiman 2-
isomorphic to B ⊂ Z/NZ, so that |B| = n, then, by our lemma on the size of sumsets, we

would be forced to have |B+B| = n(n−1)
2

+n = n(n+1)
2

, and thus N ≥ n(n+1)
2

= |A|(|A|+1)
2

. So,
certainly not every subset of Z is Freiman isomorphic to a dense subset of a cyclic group.
On the other hand, Ruzsa showed that all subsets with small doubling have a large subset
that is Freiman isomorphic to a dense subset of a cyclic group.

Lemma 31 (Ruzsa’s modeling lemma). Let k ≥ 2 be an integer and A ⊂ Z be finite. If
|kA− kA| ≤ K|A|, then, for every prime p > 2K|A|, there exists A′ ⊂ A with |A′| ≥ |A|/k
such that A′ is Freiman k-isomorphic to a subset of Z/pZ.

Proof. Let p > 2K|A| be prime. We may assume, without loss of generality, that A ⊂ N
with 1 ∈ A (as shifts, which are affine homomorphisms, are Freiman homomorphisms). Pick
any prime q greater than the largest element of kA− kA, and, for every nonzero λ ∈ Z/qZ,
define a map φλ : Z→ {0, 1, . . . , q − 1} as the composition

Z
(mod q)−−−−−→ Z/qZ

·λ−→ Z/qZ→ {0, . . . , q − 1}, (12)

where the last map takes an element of Z/qZ to its unique representative in the interval
{0, . . . , q − 1}. Observe that if λ ∈ [q − 1] is chosen uniformly at random, then each n ∈ Z
that is not divisible by q is mapped uniformly at random to an element of [q − 1]. Thus,
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each n ∈ Z that is not divisible by q has probability at most 1
p

of being divisible by p, since

there are b q−1
p
c multiples of p in [q − 1]. Thus, the expected number of nonzero elements of

kA− kA whose image is divisible by p under the map φλ is at most

|kA− kA|
p

<
K|A|
2K|A|

=
1

2
.

It follows that there exists λ ∈ (Z/qZ)× such that φλ maps each nonzero element of kA−kA
to an element of [q − 1] that is not divisible by p.

Recall that the last map in the composition (12) is a Freiman k-isomorphism when
restricted to an interval of length at most q

k
in {0, . . . , q − 1}. By the pigeonhole principle,

there exists some interval I of length < q
k

(since q is prime and q > k) in {0, . . . , q− 1} such
that #{a ∈ A : φλ(a) ∈ I} ≥ |A|/k. Setting A′ := {a ∈ A : φλ(a) ∈ I}, we thus have that
φλ is a Freiman k-homomorphism from A′ onto its image. Letting φ be the composition of
φλ with the reduction modulo p map, we then have that φ is a Freiman k-homomorphism
of A′ onto its image in Z/pZ. Thus, to show that φ is, in fact, injective and a Freiman
k-isomorphism, it suffices to show that if

φ(a1) + · · ·+ φ(ak) = φ(a′1) + · · ·+ φ(a′k)

for some a1, a
′
1, . . . , ak, a

′
k ∈ A′, then we must have

a1 + · · ·+ ak = a′1 + · · ·+ a′k.

The former displayed equation implies that

b := φλ(a1) + · · ·+ φλ(ak)− φλ(a′1)− · · · − φλ(a′k)

is a multiple of p. Without loss of generality (by relabeling), we may assume that the integer
b is nonnegative. By our choice of A′, each φλ(ai) and φλ(a

′
i) lies in the interval I, and thus

b ≤ q − 1 < q. We have

b ≡ φλ(a1 + · · ·+ ak − a′1 − · · · − a′k) (mod q),

and thus, since φλ(a1 + · · ·+ ak − a′1 − · · · − a′k) ∈ [q − 1] by the choice of q and λ, we must
have

b = φλ(a1 + · · ·+ ak − a′1 − · · · − a′k).

But, by our choice of λ, p cannot divide φλ(a1 + · · · + ak − a′1 − · · · − a′k) when a1 + · · · +
ak − a′1 − · · · − a′k 6= 0, since a1 + · · · + ak − a′1 − · · · − a′k ∈ kA′ − kA′ ⊂ kA − kA. Thus,
since p | b, we must have a1 + · · ·+ ak = a′1 + · · ·+ a′k, as desired.

5.5 The proof of the Freiman–Ruzsa theorem

Now, we can finally prove the Freiman–Ruzsa theorem, which we now recall.

Theorem 21. Let A ⊂ Z be finite. If |A+A| ≤ K|A|, then A is contained in a generalized
arithmetic progression of dimension at most d(K) and volume at most v(K)|A|.
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Proof. By the Plünnecke–Ruzsa inequality, we have |8A − 8A| �K |A|. Thus, by Ruzsa’s
modeling lemma, whenever N �K |A| is prime, there exists an A′ ⊂ A with |A′| �K |A|
that is Freiman 8-isomorphic to a subset φ(A′) of Z/NZ. We can use Bertrand’s postulate
to fix such a prime N �K |A|, so that the φ(A′) obtained has density �K 1 in Z/NZ. This
Freiman 8-isomorphism induces a Freiman 2-isomorphism of 2A′−2A′ with 2φ(A′)−2φ(A′).

We now apply Bogolyubov’s lemma, which tells us that 2φ(A′)−2φ(A′) contains a proper
generalized arithmetic progression of dimension �K 1 and size �K |A|. Since Freiman 2-
isomorphisms preserve generalized arithmetic progressions, this means that 2A′−2A′ likewise
contains a generalized arithmetic progression P of dimension �K 1 and size �K |A|.

Now, since P ⊂ 2A−2A, we have that A+P ⊂ 3A−2A. Thus, by the Plünnecke–Ruzsa
inequality, we have |A+P | �K |A|. Since |P | �K |A|, Ruzsa’s covering lemma then tells us
that A can be covered by �K 1 translates of P − P , which is still a generalized arithmetic
progression of dimension �K 1 and size �K |A|. That is,

A ⊂ X + P − P

for some X ⊂ Z with |X| �K 1. But, X is trivially contained in a generalized arithmetic
progression of dimension �K 1, so that X + P − P is contained in a generalized arithmetic
progression of dimension �K 1 and size �K |A|.

One can check that this argument does, indeed, give bounds that are single exponential
and double exponential in KO(1) for d(K) and v(K), respectively

6 Sets lacking four-term arithmetic progressions

Our next goal in this course is to prove the following quantitative version of Szemerédi’s
theorem for four-term arithmetic progressions.

Theorem 22 (Gowers, 1998). If A ⊂ [N ] contains no nontrivial four-term arithmetic pro-
gressions, then

|A| � N

(log logN)c

for some absolute constant c > 0.

One of the key ingredients will be the Freiman–Ruzsa theorem. We will begin by covering
some of the basic theory of the Gowers uniformity norms.

6.1 The Gowers U s-norms

The Gowers uniformity norms can be defined for finitely supported functions on any abelian
group, though we will only consider them for finite abelian groups (and then, later, specialize
even further to cyclic groups).

Definition 7. Let (G,+) be a finite abelian group, s ∈ N, and f : G→ C. For any h ∈ G,
we define the multiplicative discrete derivative operator ∆h by

∆hf(x) = f(x)f(x+ h)
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for all x ∈ G. For any h1, . . . , hs ∈ G, we define the s-fold multiplicative discrete derivative
operator ∆h1,...,hs by

∆h1,...,hsf = ∆h1∆h2 · · ·∆hsf.

Observe that, for all h1, . . . , hs ∈ G and permutations τ of [s], we have

∆h1,...,hsf = ∆hτ(1),...,hτ(s)f

for all f : G→ C.

Definition 8. Let (G,+) be an abelian group, s ∈ N, and f : G → C. We define the
Gowers U s-norm of f by

‖f‖Us = (Ex,h1,...,hs∈G∆h1,...,hsf(x))1/2s ,

where, on the right-hand side, we are taking the unique nonnegative real 2s-th root.

We will show shortly that Ex,h1,...,hs∈G∆h1,...,hsf(x) ≥ 0, and so this definition makes
sense. We will also show that these are, in fact, norms when s ≥ 2, though the U1-norm is
only a seminorm. Recall from the beginning of the course that ‖f‖U2 = ‖f̂‖`4 , from which
these properties of ‖ · ‖U2 immediately follow.

We will also require the notion of the Gowers inner product.

Definition 9. Let (G,+) be an abelian group, s ∈ N, and, for each ω ∈ {0, 1}s, fω : G→ C.
Then the Gowers U s-inner product of the fω’s is

〈(fω)ω∈{0,1}s〉Us := Ex,h1,...,hs∈G
∏

ω∈{0,1}s
C|ω|fω(x+ ω · (h1, . . . , hs)),

where C denotes complex conjugation and |ω| denotes the number of 1’s in ω.

Note that 〈f, . . . , f〉Us = ‖f‖2s

Us for all f : G → C and s ∈ N. Also note the recursive
identity

‖f‖2s

Us = Eh∈G ‖∆hf‖2s−1

Us−1 (13)

for all integers s ≥ 2.
We will begin by proving the Gowers–Cauchy–Schwarz inequality∣∣〈(fω)ω∈{0,1}s〉Us

∣∣ ≤ ∏
ω∈{0,1}s

‖fω‖Us .

In fact, we will prove that ∣∣〈(fω)ω∈{0,1}s〉Us
∣∣2s ≤ ∏

ω∈{0,1}s
‖fω‖2s

Us

from which it will follow that ‖f‖2s

Us is always real and nonnegative by taking f0 = f and
fω = 1 for all 0 6= ω ∈ {0, 1}s in the Gowers–Cauchy–Schwarz inequality.
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Proof. We proceed by induction on s. For the case s = 1, we have that

|〈f0, f1〉|2 = |Ex,h∈Gf0(x)f1(x+ h)|2 = |Ex∈Gf0(x)Ey∈Gf1(y)|2 = ‖f0‖2
U1‖f1‖2

U1 ,

on observing that |Ez∈Gfi(z)|2 = Ez,z′∈Gfi(z)fi(z′) = Ez,h∈Gfi(z)fi(z + h) by a change of
variables. Now, before we do the inductive step, observe that

〈(fω)ω∈{0,1}s〉Us = Ex,h1,h′1,...,hs,h
′
s∈G

∏
ω∈{0,1}s

C|ω|fω(x+ (1− ω) · (h1, . . . , hs) + ω · (h′1, . . . , h′s))

by inserting extra averaging and making the change of variables hi 7→ h′i−hi for each i ∈ [s]
and x 7→ x+h1 + · · ·+hs and in the definition of the Gowers inner product. Suppose that we
have proven the Gowers–Cauchy–Schwarz inequality for a general s ∈ N. We can rearrange
〈(fω)ω∈{0,1}s+1〉Us+1 as

Ex,h1,h′1,...,hs,h
′
s∈G

Ehs+1∈G
∏

ω∈{0,1}s
C|ω|fω0(x+ (1− ω) · (h1, . . . , hs) + ω · (h′1, . . . , h′s) + hs+1)


·

Eh′s+1∈G
∏

ω∈{0,1}s
C|ω|fω1(x+ (1− ω) · (h1, . . . , hs) + ω · (h′1, . . . , h′s) + h′s+1)


and then apply the Cauchy–Schwarz inequality to get that

∣∣〈(fω)ω∈{0,1}s+1〉Us+1

∣∣2 is bounded
above by

Ex,h1,h′1,...,hs,h
′
s∈G

Ehs+1∈G
∏

ω∈{0,1}s
C|ω|fω0(x+ (1− ω) · (h1, . . . , hs) + ω · (h′1, . . . , h′s) + hs+1)


·

Eh′s+1∈G
∏

ω∈{0,1}s
C|ω|fω0(x+ (1− ω) · (h1, . . . , hs) + ω · (h′1, . . . , h′s) + h′s+1)


times

Ex,h1,h′1,...,hs,h
′
s∈G

Ehs+1∈G
∏

ω∈{0,1}s
C|ω|fω1(x+ (1− ω) · (h1, . . . , hs) + ω · (h′1, . . . , h′s) + hs+1)


·

Eh′s+1∈G
∏

ω∈{0,1}s
C|ω|fω1(x+ (1− ω) · (h1, . . . , hs) + ω · (h′1, . . . , h′s) + h′s+1)

.
By making the change of variables x 7→ x− hs+1 and ks+1 = h′s+1 − hs+1, these equal

Eks+1∈GEx,h1,h′1,...,hs,h
′
s∈G

∏
ω∈{0,1}s

C|ω|∆ks+1fωi(x+ (1− ω) · (h1, . . . , hs) + ω · (h′1, . . . , h′s))
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for i = 0, 1, so that
∣∣〈(fω)ω∈{0,1}s+1〉Us+1

∣∣2 is bounded above by(
Eks+1∈G〈(∆ks+1fω0)ω∈{0,1}s〉Us

) (
Eks+1∈G〈(∆ks+1fω1)ω∈{0,1}s〉Us

)
.

Thus, by the triangle inequality and induction hypothesis,∣∣〈(fω)ω∈{0,1}s+1〉Us+1

∣∣2 ≤ Eks+1∈G
∣∣〈(∆ks+1fω0)ω∈{0,1}s〉Us

∣∣Eks+1∈G
∣∣〈(∆ks+1fω1)ω∈{0,1}s〉Us

∣∣
≤

Eks+1∈G
∏

ω∈{0,1}s
‖∆ks+1fω0‖Us

Eks+1∈G
∏

ω∈{0,1}s
‖∆ks+1fω1‖Us


The desired bound now follows from Hölder’s inequality and the identity (13).

It follows that the Gowers norms are also monotone in s:

‖f‖U1 ≤ ‖f‖U2 ≤ ‖f‖U3 ≤ . . . .

This can be seen by taking, for each s ∈ N and ω ∈ {0, 1}s, fω0 = f and fω1 = 1, so that

‖f‖2s

Us = 〈(fω)ω∈{0,1}s+1〉 ≤ ‖f‖2s

Us+1 ,

and then taking 2s-th roots yields ‖f‖Us ≤ ‖f‖Us+1 .
Now, we can finally show that the Gowers uniformity norms are, in fact, norms when

s ≥ 2. We have already shown that they take values in [0,∞), and, clearly, ‖0‖Us = 0 and
‖tf‖Us = |t|‖f‖Us for all t ∈ R. To see that ‖f‖Us = 0 only if f = 0 when s ≥ 2 (note that
‖f‖U1 = 0 whenever f has mean zero), suppose that f : G → C is not identically zero, so
that f(a) 6= 0 for some a ∈ G. Then,

〈f, 1a, 1a, 1a〉 6= 0,

since if x+ h, x+ k, x+ h+ k = a, then x = (x+ h) + (x+ k)− (x+ h+ k) = a as well. On
the other hand,

0 < |〈f, 1a, 1a, 1a〉| ≤ ‖f‖U2

by the Gowers–Cauchy–Schwarz inequality. Thus, ‖f‖U2 > 0, and so ‖f‖Us > 0 whenever
s > 2 as well. It just remains to check that the U s-norms satisfy the triangle inequality for
all s ≥ 1. If f0, f1 : G→ C, then, by the Gowers–Cauchy–Schwarz inequality, we have

‖f0 + f1‖2s

Us =
∑

ω∈{0,1}2s
〈(fω(i))i∈[2s]〉Us ≤

∑
ω∈{0,1}2s

‖f0‖2s−|ω|
Us ‖f1‖|ω|Us =

2s∑
j=0

(
2s

j

)
‖f0‖2s−j

Us ‖f1‖jUs ,

which equals (‖f0‖Us + ‖f1‖Us)2s . Thus, ‖f0 + f1‖Us ≤ ‖f0‖Us + ‖f1‖Us .
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6.2 The U 3-norm and four-term arithmetic progressions

Now, we specialize to the case of G = Z/pZ for p a large prime. For all f0, f1, f2, f3 : G→ C,
define

Λ(f0, f1, f2, f3) := Ex,y∈Gf0(x)f1(x+ y)f2(x+ 2y)f3(x+ 3y).

When f0 = f1 = f2 = f3 = f , we will simply write Λ(f). In the beginning of the course, we
showed (by iterated appliations of the Cauchy–Schwarz inequality) that

|Ex,y∈Gf0(x)f1(x+ y)f2(x+ 2y)| ≤ ‖f2‖U2 (14)

whenever f0, f1, f2 : G → C are 1-bounded and p > 2. We will now deduce from this the
analogous inequality for Λ.

Lemma 32. Let p > 3 be prime and f0, f1, f2, f3 : G→ C be 1-bounded. Then,

|Λ(f0, f1, f2, f3)| ≤ ‖f3‖U3 .

Proof. We apply the Cauchy–Schwarz inequality and a change of variables (z = y + h and
then x 7→ x− y) to get that

|Λ(f0, f1, f2, f3)|2 ≤ Ex∈G |Ey∈Gf1(x+ y)f2(x+ 2y)f3(x+ 3y)|2

≤ Ex,y,z∈Gf1(x+ y)f2(x+ 2y)f3(x+ 3y)f1(x+ z)f2(x+ 2z)f3(x+ 3z)

= Eh∈GEx,y∈G∆hf1(x+ y)∆2hf2(x+ 2y)∆3hf3(x+ 3y)

= Eh∈GEx,y∈G∆hf1(x)∆2hf2(x+ y)∆3hf3(x+ 2y)

≤ Eh∈G‖∆3hf3‖U2

by (14) (since p > 2). Since p is relatively prime to 3 by assumption, a change of variables
yields |Λ(f0, f1, f2)|2 ≤ Eh∈G‖∆hf3‖U2 . By Hölder’s inequality and (13),

Eh∈G‖∆hf3‖U2 ≤
(
Eh∈G‖∆hf3‖4

U2

)1/4
= ‖f3‖2

U3 .

We therefore conclude that |Λ(f0, f1, f2, f3)| ≤ ‖f3‖U3 .

By making different changes of variables, one can, in fact, deduce that

|Λ(f0, f1, f2, f3)| ≤ min
i=0,1,2,3

‖fi‖U3

whenever f0, f1, f2, f3 : G→ C are 1-bounded.
We now proceed as in the proof of Roth’s theorem. Suppose that A ⊂ [N ] has density α

and contains no nontrivial four-term arithmetic progressions, let p ∈ (6N, 12N) be a prime
(which, again, must exist by Bertrand’s postulate), and let fA := 1A − α1[N ] denote the
balanced function of A, which can be viewed naturally as a function on Z/pZ. By our choice
of p, the four-term arithmetic progressions in [N ] (mod p) are in bijective correspondence
with the four-term arithmetic progressions in [N ], and so the total number of four-term
arithmetic progressions in A equals p2Λ(1A), which, since A contains only trivial four-term
progressions, must equal αN . If N ≥ 100α−3, say, then

αN =
α4N2

α3N
≤ α4N2

100
,
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and so

Λ(1A, 1A, 1A, 1A) ≤ α4N2

100p2
≤ α4

3600
.

On the other hand, using that 1A = fA +α1[N ] and telescoping, we get that Λ(1A) equals

Λ(1A, 1A, 1A, fA)+αΛ(1A, 1A, fA, 1[N ])+α
2Λ(1A, fA, 1[N ], 1[N ])+α

3Λ(fA, 1[N ], 1[N ], 1[N ])+α
4Λ(1[N ]).

The first four quantities are bounded above by ‖fA‖U3 , α‖fA‖U3 , α2‖fA‖U3 , and α3‖fA‖U3 ,
respectively, and the last quantity is bounded below by α4

p2
· N

2
· N

6
≥ α4

123
= α4

1728
. It thus

follows that

‖fA‖U3 ≥ 1

4

(
α4

1728
− α4

3600

)
≥ α4

100000
. (15)

In order to deduce a density increment lemma from this, we will prove a local inverse
theorem for the U3-norm.

Theorem 23. Let f : Z/pZ→ C be 1-bounded with ‖f‖U3 ≥ δ for some δ ∈ (0, 1/2]. Then,

there exists an arithmetic progression P of length at least e−δ
−O(1)

pδ
O(1)

and polynomials
Qi ∈ Z[x] of degree at most 2 such that

Ei∈G |Ex∈i+Pf(x)ep(Qi(x))| ≥ δO(1).

As you showed in one of the bonus problems on the first homework, it is not possible to
prove that any 1-bounded function f with large U3-norm must have large correlation on all
of Z/pZ with a quadratic phase function ep(Q(x)).

From this, one can deduce the following density-increment lemma, from which Gowers’s
bound for sets lacking four-term arithmetic progressions follows by the same sort of iteration
as in the proof of Roth’s theorem.

Lemma 33. There exist absolute constants c1, c2 > 0 such that the following holds. Let
A ⊂ [N ] have density α ≤ 7

8
and assume that A contains no nontrivial four-term arithmetic

progressions. Then either N < α−c1, or there exists an arithmetic progression P = a+q · [N ′]
with N ′ ≥ Nαc1 such that

|A ∩ P |
|P |

≥ α + αc2 .

Observe that if A ⊂ [N ] has density > 7
8
, then A contains a nontrivial four-term arith-

metic progression (in fact, of step size 1), simply by the pigeonhole principle. Next, we will
begin the proof of the local inverse theorem for the U3-norm.

6.3 The structure of the large Fourier coefficients of ∆hf

Let G = Z/pZ for a large prime p, and assume that f : G → C is 1-bounded and satisfies
‖f‖U3 ≥ δ. Then,

Eh∈G‖∆hf‖4
U2 ≥ δ8,

and thus ‖∆hf‖U2 ≥ δ2

2
, say, for at least a δ8

2
-proportion of h ∈ G, for otherwise we would

have

δ8 ≤ δ8

2
+
δ8

16
< δ8.
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By the inverse theorem for the U2-norm (which, recall, says that if g : G→ C is 1-bounded
and ‖g‖U2 ≥ δ, then |ĝ(ξ)| ≥ δ2 for some ξ ∈ G), it follows that there exists φ(h) ∈ G such
that ∣∣∣∆̂hf(φ(h))

∣∣∣ ≥ δ4

4

for such h ∈ G (the set of which we will call H). We will show that this function φ respects
many additive quadruples.

Lemma 34. Let f : G→ C be a 1-bounded function, H ⊂ G, and φ : H → G. Assume that∑
h∈H

∣∣∣∆̂hf(φ(h))
∣∣∣2 ≥ δp.

Then, there are at least δ4p3 quadruples (a1, a2, a3, a4) ∈ H4 such that

a1 + a2 = a3 + a4

and
φ(a1) + φ(a2) = φ(a3) + φ(a4).

Proof. Expanding the definition of the Fourier transform, we have that∑
h∈H

Ex,y∈Gf(x)f(x+ h)f(y)f(y + h)ep(−φ(h)(x− y)) ≥ δp,

which, by making the change of variables y = x+ k, becomes∑
h∈H

Ex,k∈Gf(x)f(x+ h)f(x+ k)f(x+ h+ k)ep(φ(h)k) ≥ δp.

The idea is to now apply the Cauchy–Schwarz inequality a couple of times to obtain infor-
mation about φ. By swapping the order of summation, we have that

δp ≤ Ex,k∈Gf(x)f(x+ k)
∑
h∈H

f(x+ h)f(x+ h+ k)ep(φ(h)k)

≤

Ex,k∈G

∣∣∣∣∣∑
h∈H

f(x+ h)f(x+ h+ k)ep(φ(h)k)

∣∣∣∣∣
2
1/2

=

(
Ex,k∈G

∑
h1,h2∈H

f(x+ h1)f(x+ h1 + k)f(x+ h2)f(x+ h2 + k)ep([φ(h1)− φ(h2)]k)

)1/2

by the Cauchy–Schwarz inequality and the assumption that f is 1-bounded. Thus, we have

δ2p2 ≤ Ex,k∈G
∑

h1,h2∈G

1H(h1)1H(h2)f(x+ h1)f(x+ h1 + k)f(x+ h2)f(x+ h2 + k)ep([φ(h1)− φ(h2)]k)

= Ex,k∈G
∑
h,`∈G

1H(h)1H(h+ `)f(x)f(x+ k)f(x+ `)f(x+ `+ k)ep([φ(h)− φ(h+ `)]k)
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by another change of variables. A final application of the Cauchy–Schwarz inequality (in the
variables x, k, and ` then yields

δ4p3 ≤ Ek∈G
∑

h,h′,`∈G

∆`1H(h)∆`1H(h′)ep([φ(h)− φ(h+ `)− φ(h′) + φ(h′ + `)]k).

Making the further change of variables h′ = h+m makes the above read

δ4p3 ≤ Ek∈G
∑

h,`,m∈G

∆`,m1H(h)ep([φ(h)− φ(h+ `)− φ(h+m) + φ(h+ `+m)]k).

Taking the average over k ∈ G inside and using orthogonality of characters, we thus obtain
that

δ4p3 ≤
∑

h,`,m∈G

∆`,m1H(h) ·

{
1 φ(h)− φ(h+ `)− φ(h+m) + φ(h+ `+m) = 0

0 otherwise
.

Since additive quadruples in H are in bijective correspondence with quadruples (h, h+ `, h+
m,h+ `+m) ∈ H4, the conclusion of the lemma follows.

Note that the conclusion of the lemma says that the graph Γ := (h, φ(h))h∈H contains
many additive quadruples, i.e., has large additive energy. We will now use this to deduce,
using the Balog–Szemerédi–Gowers theorem and the Freiman–Ruzsa theorem, that φ(h)
must agree with a linear function on a large subset of G. Indeed, by the Balog–Szemerédi–
Gowers theorem and the above lemma, there exists a subset H ′ ⊂ H of size � δO(1)p such
that the graph Γ′ := (h′, φ(h′))h′∈H′ has doubling |Γ

′+Γ′|
|Γ′| ≤ δ−O(1). The following lemma says

that functions whose graph has small doubling must agree on a long arithmetic progression
with a linear function.

Lemma 35. Let H ⊂ G and φ : H → G, and set Γ = ((h, φ(h))h∈H ⊂ G2 to be the

graph of φ. If |Γ + Γ| ≤ K|Γ| for K ≥ 2 and |H| ≥ eK
O(1)

, then there exists an arithmetic

progression P = a + q[N ] ⊂ G with N ′ ≥ pK
−O(1)

and a linear function L(x) = bx + c such
that φ(x) = L(x) for at least K−O(1)N elements x ∈ P .

Before we prove this, we recall from the proof of the Freiman–Ruzsa theorem that if
A ⊂ Z has small doubling, then 2A − 2A contains a large proper GAP of small dimension
(we then deduced the conclusion of the Freiman–Ruzsa theorem from an application of
Ruzsa’s covering lemma, which possibly ruined the properness of the GAP). In particular,
we proved the following.

Theorem 24. Let A ⊂ Z be finite. If |A + A| ≤ K|A| for K ≥ 2, then 2A − 2A contains
a proper generalized arithmetic progression of dimension at most KO(1) and size at least
e−K

O(1)|A|.

As a corollary, we can find a relatively long arithmetic progression on which a set A ⊂ Z2

with small doubling is dense.
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Corollary 6. Let A ⊂ Z2 be finite. If |A + A| ≤ K|A| for K ≥ 2, then there exists an

arithmetic progression P = (a1, a2) + (q1, q2)[N ] of size at least e−K
O(1)|A|K−O(1)

such that
|A∩P |
N
≥ K−O(1).

Proof. Note first that any finite A ⊂ Z2 is Freiman 8-isomorphic to a subset B of Z. Indeed,
this is a special case of a problem on the next homework, but one can also see this by letting
M ∈ N be such that A ⊂ [−M,M ]2 and considering the map (x, y) 7→ x + 8My. Thus,
|B +B| ≤ K|B| and 2A− 2A and 2B − 2B are Freiman 2-isomorphic.

We now apply the Freiman–Ruzsa theorem to locate a proper generalized arithmetic
progression Q0 of dimension at most KO(1) and size at least e−K

O(1)|B| in 2B − 2B. Since
Freiman 2-isomorphisms preserve proper generalized arithmetic progressions, it follows that
there exists a proper generalized arithmetic progression Q of dimension at most KO(1) and
size at least e−K

O(1) |A| in 2A− 2A. Note that

|A||Q| =
∑
x∈Z2

|A ∩ (x+Q)|,

but the sum on the right-hand side is supported in A − Q, which satisfies A − Q ⊂ A −
2A + 2A = 3A − 2A, which has size at most KO(1)|A| by the Plünnecke–Ruzsa inequality.
Thus, by the pigeonhole principle, there exists x ∈ Z2 for which |A ∩ Q′| ≥ K−O(1)|Q′|,
where Q′ := x + Q is also a proper generalized arithmetic progression of the same size and
dimension as Q.

Write
Q′ = {a + b1k1 + · · ·+ bnkn : ki = 0, . . . ,Mi − 1 for all i ∈ [n]}

for a,b1, . . . ,bn ∈ Z2, where n ≤ KO(1) and
∏n

i=1 Mi ≥ e−K
O(1)|A|. Without loss of gener-

ality, we may as well assume that Mn ≥ Mi for all i ∈ [n], so that Mn ≥ e−K
O(1)|A|K−O(1)

.
We can write Q′ as the disjoint union of

∏n−1
i=1 Mi shifts of a fixed arithmetic progression of

length Mn: ⊔
ki=0,...,Mi−1
i=1,...,n−1

{(a + b1k1 + · · ·+ bn−1kn−1) + bnkn : kn = 0, . . . ,Mn − 1} .

The desired conclusion now follows from |A∩Q′| ≥ K−O(1)|Q′| and the pigeonhole principle
again.

Now we can prove Lemma 35.

Proof. Let Γ′ ⊂ {0, 1, . . . , p− 1}2 be such that Γ ≡ Γ′ (mod p). Then,

|Γ′ + Γ′| ≤ 4|Γ + Γ| ≤ 4K|Γ′|,

and so, by the above corollary, there exists an arithmetic progressionQ′ = (a1, a2)+(q1, q2)[N ]

of size N ≥ e−K
O(1) |H|K−O(1)

such that |Γ
′∩Q′|
N
≥ K−O(1). By the assumption on |H|, this, in

particular, forces |Γ′ ∩Q′| > 1, so that at least one of q1 or q2 is not a multiple of p; since Γ′

is a graph, we must, in fact, have q1 not a multiple of p. Thus, setting Q = Q′ (mod p), we
have |Q| = |Q′| and |Γ ∩Q| ≥ K−O(1)N . This completes the proof with P = a1 + q1[N ] and
L(x) = a2 + q2

q1
(x− a1).
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Summarizing the results of this section, we obtain the following.

Lemma 36. There exists an absolute constant c > 0 such that the following holds. Let
f : Z/pZ → C be 1-bounded with ‖f‖U3 ≥ δ for some δ ∈ (0, 1/2]. Then, there exists an

arithmetic progression P = a+ q[N ] of length N ≥ e−δ
−O(1)

pδ
O(1)

and b, c ∈ G such that

Eh∈P

∣∣∣∆̂hf(bh+ c)
∣∣∣ ≥ δO(1).

6.4 Proof of the local inverse theorem for the U 3-norm

We will now use Lemma 36 to prove the local inverse theorem for the U3-norm. First, by
way of illustration, suppose we knew that ∆̂hf(bh+ c) were large for all shifts h ∈ G. Then,
by the Cauchy–Schwarz inequality,

δO(1) ≤ Eh∈G

∣∣∣∆̂hf(bh+ c)
∣∣∣2 = Ex,y,h∈Gf(x)f(x+ h)f(y)f(y + h)ep(−(bh+ c)(x− y))

= Ex,h,k∈Gf(x)f(x+ h)f(x+ k)f(x+ h+ k)ep((bh+ c)k)

as in the proof of the first lemma in the previous section. Setting

f1(x) = f3(x) = f(x)ep

(
b

2
x2

)
and f2(x) = f4(x) = f(x)ep

(
b

2
x2 + cx

)
,

observe that, since

b

2
x2 − b

2
(x+ h)2 − b

2
(x+ k)2 +

b

2
(x+ h+ k)2 − c(x+ h) + c(x+ h+ k) = bhk + ck,

we have
δO(1) ≤ Ex,h,k∈Gf1(x)f2(x+ h)f3(x+ k)f4(x+ h+ k).

Thus, by the Gowers–Cauchy–Schwarz inequality, ‖f1‖U2 ≥ δO(1). It follows by the inverse
theorem for the U2-norm that there exists c′ ∈ G such that

δO(1) ≤
∣∣∣∣Ex∈Gf(x)ep

(
b

2
x2 − c′x

)∣∣∣∣ ,
as desired. Alternatively, we could have applied Fourier inversion and orthogonality of
characters to obtain ∑

ξ∈G

f1(ξ)f2(−ξ)f3(−ξ)f4(ξ) ≥ δO(1),

and from this and Parseval’s identity deduced that f1 has a large Fourier coefficient.
In our situation, we merely have

Eh∈P

∣∣∣∆̂hf(bh+ c)
∣∣∣2 ≥ δO(1),

the left-hand side of which expands to

Ex,k∈GEh∈Pf(x)f(x+ h)f(x+ k)f(x+ h+ k)ep((bh+ c)k).
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By partitioning G into shifts of P , we obtain

δO(1) ≤ Ei,j∈G

∣∣∣Ex,h,k∈Pf1(i+ x)f2(i+ x+ h)f3(i+ x+ j + k)f4(i+ x+ h+ j + k)
∣∣∣ .

with f1, f2, f3, and f4 as above. For each i, j ∈ G, set

f
(i,j)
1 (x) := 1Pf1(i+x), f

(i,j)
2 (x) := f2(i+x), f

(i,j)
3 (x) := f3(i+j+x), and f

(i,j)
4 (x) := f4(i+j+x).

Thus, the above can be rewritten as

Ei,j∈G

∣∣∣Ex,h,k∈Pf
(i,j)
1 (x)f

(i,j)
2 (x+ h)f

(i,j)
3 (x+ k)f

(i,j)
4 (x+ h+ k)

∣∣∣ ≥ δO(1).

Our final reduction is to note that, by replacing each f
(i,j)
1 (x), . . . , f

(i,j)
4 (x) with f

(i,j)
1 (bx+c),

f
(i,j)
2 (bx + 2c), f

(i,j)
3 (bx + 2c), or f

(i,j)
4 (bx + 3c), respectively, it suffices to prove the desired

local correlation with quadratic phases when P = [N ].
We can now, almost, proceed as before, except that our variables x, h, and k range over

a (possibly very short) interval in G, instead of the whole group. This issue can be dealt
with by some standard Fourier-analytic maneuvering. Recall that the N we obtain is far
smaller than p; in particular, it is smaller than

√
N . Thus, we can view the f

(i,j)
k above (when

restricted to [3N ], say) as functions on Z. In particular, it suffices to prove the following
lemma.

Lemma 37. Let f1, f2, f3, f4 : Z→ C be 1-bounded functions with f1 supported on [N ] and
f2, f3, and f4 supported on [3N ]. If∣∣∣∣∣ 1

N

∑
x∈Z

Eh,k∈[N ]f1(x)f2(x+ h)f3(x+ k)f4(x+ h+ k)

∣∣∣∣∣ ≥ δ,

then there exists α ∈ R/Z such that∣∣Ex∈[N ]f1(x)e(αx)
∣∣� δO(1).

Indeed, such an α ∈ R/Z can be corrected to one in 1
p
Z at the cost of an error that’s

� N
p
� 1√

p
, and our inverse theorem is trivial when p is small in terms of δ.

Proof of Lemma 37. Set

µ(x) :=
1[N ](x)

N
,

and observe that ‖µ‖2
`2 = N−1, ‖µ‖`1 = 1, and ‖µ ? µ‖`1 = 1, where we temporarily define

(a ? b)(x) =
∑
y∈Z

a(y)b(x+ y).

The inequality assumed in the lemma therefore reads∣∣∣∣∣ 1

N

∑
x,h,k∈Z

f1(x)f2(x+ h)f3(x+ k)f4(x+ h+ k)µ(h)µ(k)

∣∣∣∣∣ ≥ δ.
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We first make the change of variables x 7→ x−h−k and apply the Cauchy–Schwarz inequality
to double the k variable to obtain

1

N

∑
x,h,k,k′∈Z

f2(x− k)f2(x− k′)f1(x− k − h)f1(x− k′ − h)µ(h)µ(k)µ(k′)� δ2.

Making the change of variables x 7→ x+ k and ` = k − k′, the above reads

1

N

∑
x,h,`∈Z

f2(x)f2(x+ `)f1(x− h)f1(x− h+ `)µ(h)(µ ? µ)(`)� δ2.

Using a similar application of the Cauchy–Schwarz inequality to double the h variable, we
obtain

1

N

∑
x,`,m∈Z

∆`,mf1(x)(µ ? µ)(`)(µ ? µ)(m)� δ4

after making a change of variables.
We now apply the Fourier inversion formula to (µ ? µ)(n) to get that∫ 1

0

∫ 1

0

|µ̂(ξ)|2 |µ̂(η)|2 1

N

∑
x,`,m∈Z

∆`,mf1(x)e(ξ`+ ηm)dηdξ � δO(1).

Taking the maximum absolute value of the inside sum thus yields

∥∥µ̂2
∥∥2

L1 max
ξ,η∈R/Z

∣∣∣∣∣ 1

N

∑
x,`,m∈Z

∆`,mf1(x)e(ξ`+ ηm)

∣∣∣∣∣� δO(1).

Since ∥∥µ̂2
∥∥2

L1 = ‖µ̂‖4
L2 = ‖µ‖4

`2 = N−2,

it follows that there exist ξ, η ∈ R/Z for which∣∣∣∣∣ 1

N3

∑
x,`,m∈Z

∆`,mf1(x)e(ξ`+ ηm)

∣∣∣∣∣� δO(1).

To finish, we set g1(x) := f1(x)e(−(ξ+η)x), g2(x) := f1(x)e(−ξ`) and g3(x) := f1(x)e(−ηm),
and then use that the left-hand side above equals

1

N3

∑
x,h,k∈Z

g1(x)g2(x+ h)g3(x+ k)f1(x+ h+ k).

The conclusion of the lemma now follows by viewing g1, g2, g3, and f1 as functions on Z/3NZ,
say, and then applying the Gowers–Cauchy–Schwarz inequality and the U2-inverse theorem.

This completes the proof of the local inverse theorem for the U3-norm. Next, we will see
how to deduce the density increment lemma from it, thus completing the proof of Gowers’s
bound for sets lacking four-term arithmetic progressions.
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6.5 Deducing the density increment

Recall that we used Dirichlet’s Diophantine approximation lemma to deduce a density in-
crement in our proof of Roth’s theorem.

Theorem 25. Let γ ∈ R and Q ∈ N. There exists q ∈ [Q] such that

‖qγ‖ < 1

Q
.

In order to prove a density increment lemma for sets lacking four-term arithmetic pro-
gressions from our local inverse theorem for the U3-norm, we will require a quadratic version
of Dirichlet’s diophantine approximation lemma.

Lemma 38. The exists an absolute constant c > 0 such that the following holds. Let γ ∈ R
and N ∈ N. There exists n ∈ [N ] such that

‖n2γ‖ ≤ 1

N c

.

We will require Weyl’s inequality for quadratic polynomials, which you proved on the
first problem set.

Lemma 39. Let α, β ∈ R, and assume that there exist a, q ∈ Z with q positive and (a, q) = 1
such that |α− a/q| ≤ q−2. Then,

∣∣En∈[N ]e(αn
2 + βn)

∣∣� logN

(
1

q
+

1

N
+

q

N2

)1/2

.

We will also require a bound for exponential sums with linear phases you proved along
the way.

Lemma 40. We have ∣∣∣∣∣ ∑
N≤n≤N+M

e(γn)

∣∣∣∣∣� min

(
M,

1

‖γ‖

)
for all γ,N,M ∈ R with M ≥ 1.

We will first prove Lemma 38 in the case that γ is rational, and then use Dirichlet’s
lemma to reduce to this case.

Lemma 41. Let a
q
∈ Q with (a, q) = 1 and N ∈ N. There exists n ∈ [N ] such that∥∥∥∥n2a

q

∥∥∥∥� √q log2 q

N

.
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Proof. Observe first that it suffices to prove the result when N ≤ q, since the case N > q
holds trivially by taking n = q. Let M ∈ N be a parameter to be chosen shortly. By
orthogonality of characters, if∑

|b|≤M

En∈[N ]Eξ∈Z/qZeq(ξ(an
2 − b)) > 0, (16)

then there exists n ∈ [N ] for which ‖n2 a
q
‖ ≤ M/q. The contribution to the above coming

from ξ = 0 is 2M+1
q

. When ξa
q

is far from a rational with small denominator, Weyl’s inequality

will give us a good bound for the average En∈[N ]eq(ξ(an
2 − b)). Otherwise, when ξ

q
is far

from an integer, we can sum over |b| ≤ M to get a savings. At least one of these will hold
most of the time, allowing us to bound the contribution of ξ 6= 0. Indeed, we have, for any
ξ 6= 0,

∑
|b|≤M

En∈[N ]eq(ξ(an
2 − b)) =

∑
|b|≤M

e

(
−ξb
q

)(En∈[N ]e

(
ξan2

q

))

� min
(
M, ‖ξ/q‖−1) logN

(
1

q
+

1

N
+

q

N2

)1/2

� min
(
M, ‖ξ/q‖−1) √q log q

N
.

Summing over ξ 6= 0, we thus obtain that the contribution of nonzero ξ is bounded by

� log q
√
qN

q−1∑
ξ=1

min
(
M, ‖ξ/q‖−1) ≤ √q log q

N

q−1∑
ξ=1

1

ξ
�
√
q log2 q

N
.

It follows that (16) holds whenever

M

q
�
√
q log2 q

N
,

completing the proof of the lemma.

Now we can prove our quadratic Diophantine approximation lemma in full generality.

Proof of Lemma 38. Let Q be a parameter to be chosen shortly (which we will take to be
greater than N). By Dirichlet’s lemma, there exist (a, q) = 1 with q ∈ [Q] such that
|γ − a/q| < (qQ)−1. If q ≤ N , then

‖q2γ‖ ≤ q‖qγ‖ < q

Q
≤ N

Q
.

If q > N , we apply the previous lemma to obtain n ∈ [N ] for which ‖n2 a
q
‖ �

√
q log2 q

N
, so

that

‖n2γ‖ � N2

qQ
+

√
q log2 q

N
� N

Q
+

√
Q log2Q

N
.

The optimal choice of Q is when Q3/2 log2Q � N2, so we take Q = N4/3/ log4/3N , which
gives the desired bound with c = 1

3
− 1

1000
, say.
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We will need one more technical lemma

Lemma 42. Any arithmetic progression P = a + q[N ] in Z/pZ can be partitioned into the
union of �

√
N integer arithmetic progressions in {0, 1, . . . , p− 1}.

Proof. By Dirichlet’s lemma, there exists a positive integer r ≤
√
N such that ‖rq/p‖ ≤

N−1/2, i.e., there exists (s, r) = 1 for which |q/p − s/r| ≤ 1
rN1/2 . First, divide P into

arithmetic progressions P0, . . . , Pr−1 depending on n (mod r), which will produce r ≤
√
N

such progressions, each of length ≤ dN/re ≤ 2
√
N . Then, since Pi ⊂ {a + q(rn + i)}, we

have that the difference between two elements of Pi is at most p, and so each can be split
into at most two integer arithmetic progressions.

Now, deducing the density increment lemma is straightforward.

Lemma 43. There exist absolute constants c1, c2 > 0 such that the following holds. Let
A ⊂ [N ] have density α ≤ 7

8
and assume that A contains no nontrivial four-term arithmetic

progressions. Then either N < α−c1, or there exists an arithmetic progression P = a+q · [N ′]
with N ′ ≥ Nαc1 such that

|A ∩ P |
|P |

≥ α + αc2 .

Proof. Let p ∈ (6N, 12N) be prime. By our manipulations a couple of sections ago, if
N ≥ 100α−3 ≥ α−O(1), then fA := 1A − α1[N ] (viewed as a function on G = Z/pZ) satisfies
‖fA‖U3 ≥ αO(1). The local inverse theorem for the U3-norm then says that there exists an

arithmetic progression P of length at least pα
O(1) ≥ NαO(1)

and polynomials Qi ∈ Z[x] of
degree at most 2 (in fact, with the same coefficient in front of the quadratic term) such that

Ei∈G |Ex∈i+PfA(x)ep(Qi(x))| ≥ αO(1).

Write Qi(i + a + qx) = aix
2 + bi, where P = a + q[N ′]. By mimicing the proof of Roth’s

theorem, using our linear and quadratic Diophantine approximation lemmas to approximate
both ai

p
and bi

p
by rationals with denominator not too large, there is a further partition of

each i+ P into arithmetic progressions Pi,j of length � pα
O(1)

such that

Ei∈GEj∈Ji
∣∣Ex∈Pi,jfA(x)

∣∣ ≥ αO(1).

We can, using the previous lemma, further partition each Pi,j into� |Pi,j|1/2 genuine integer
arithmetic progressions contained in [N ],

Ei∈GEj∈J ′i

∣∣∣Ex∈P ′i,jfA(x)
∣∣∣ ≥ αO(1).

Arguing again like in the proof of Roth’s theorem, there exists a P ′i,j of length � pα
O(1)

on

which A has density at least α + αO(1).
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7 The arithmetic regularity lemma

We will now give a couple of applications of the (Fourier analytic) arithmetic regularity
lemma, an arithmetic analogue of Szemerédi’s regularity lemma that was introduced by
Green in 2003 and extended (in various forms) to regularity lemmas for higher degree Gowers
norms in works of Gowers and Wolf on the “true complexity” of linear systems and in work
of Green and Tao. We will begin by illustrating the ideas in the finite field model setting,
and then work in the integer setting.

7.1 The finite field model arithmetic regularity lemma

For the sake of brevity, we will give a name to the situation where a set has no large Fourier
coefficients at nonzero frequencies.

Definition 10. Let A ⊂ Fn
p and ε > 0. We say that A is ε-uniform if

max
06=ξ∈Fnp

∣∣∣1̂A(ξ)
∣∣∣ ≤ ε.

If, in addition, V ≤ Fn
p is a subspace and W = v + V is a coset of V , we say that A is

ε-uniform on W if A ∩W is ε-uniform as a subset of W in the natural way, i.e.,

max
06=ξ∈V̂

∣∣∣ ̂1(A∩W )−v(ξ)
∣∣∣ ≤ ε,

where the Fourier transform of 1(A∩W )−v is taken on V .

Now we can state Green’s arithmetic regularity lemma in the setting of high dimensional
vector spaces over finite fields.

Lemma 44. For all primes p and ε > 0, there exists M(ε) = Mp(ε) ∈ N such that the
following holds. For all A ⊂ Fn

p , there exists a subspace V ≤ Fn
p of codimension at most

M(ε) such that A is ε-uniform on all but at most ε|Fn
p/V | cosets of V in Fn

p .

Thus, the arithmetic regularity lemma gives a partition of Fn
p into cosets of a space

of bounded codimension such that A is ε-uniform on all but an ε-proportion of parts of
the partition. Adapting the ideas from Gowers’s lower bound construction for Szemerédi’s
regularity lemma, Green, showed that there exists A ⊂ Fn

p for which any ε-uniform partition

into cosets of a subspace V requires codimV to be at least a tower of p’s of height� ε−Ω(1).
The proof of the arithmetic regularity lemma is very similar to the proof of Szemerédi’s
regularity lemma, and also gives an upper bound for M(ε) of the same shape.

For any A,B,C ⊂ Fn
p , a triangle in A×B×C is a triple (x, y, z) ∈ A×B×C satisfying

x + y + z = 0. One of the original applications of the arithmetic regularity lemma was to
prove an arithmetic version of the triangle removal lemma.

Lemma 45 (Arithmetic triangle removal lemma). For every ε > 0, there exists a δ = δ(ε) >
0 such that the following holds. If A,B,C ⊂ Fn

p and A×B×C contains δp2n triangles, then
A×B × C can be made triangle-free by removing at most εpn elements from A, B, and C.
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Later, Král, Serra, and Vena noticed that the arithmetic triangle removal lemma also
just follows from the triangle removal lemma for graphs, and thus Fox’s improved bound in
the triangle removal lemma (where the tower height depends on log(2/ε)) also applies to the
arithmetic triangle removal lemma. Green asked in 2003 whether a polynomial bound (i.e.,
polynomial dependence of δ on ε) could hold in the arithmetic triangle removal lemma, and
this was finally answered in the affirmative in 2017 by Fox and L. M. Lovász using results
on “tricolored sum-free sets”, which were proven using the slice-rank polynomial method.

There are still numerous genuine uses of both the Fourier-analytic and higher-order arith-
metic regularity lemmas. Another application in Green’s original paper was to answer a
question of Bergelson, Host, and Kra about popular differences in Roth’s theorem. Here is
the statement of Green’s result in the setting of high dimensional vector spaces over finite
fields.

Theorem 26 (Popular difference Roth’s theorem in Fn
3 ). For all ε > 0, there exists N =

N(ε) > 0 such that the following holds. If A ⊂ Fn
3 has density α and n ≥ N , then there

exists a nonzero y ∈ Fn
3 such that

# {x ∈ Fn
3 : x, x+ y, x+ 2y ∈ A} ≥

(
α3 − ε

)
3n.

Observe that one would expect very close to α33n 3-APs with common difference y in
a random subset of Fn

3 of density α, and so this theorem says that for any set one can get
arbitrarily close to this random density.

One application of higher order arithmetic regularity lemmas is to a conjecture of Gowers
and Wolf about the true complexity of linear configurations, i.e., the smallest s such that the
degree U s+1-norm that controls the average

Ex1,...,xm∈G

k∏
i=1

fi(ψi(x1, . . . , xm))

for any 1-bounded functions f1, . . . , fk. Gowers and Wolf made the conjecture that the true
complexity of a collection of linear forms ψ1, . . . , ψk equals the smallest positive integer `
such that the polynomials ψ`+1

1 , . . . , ψ`+1
k are linearly independent (say over Fp or, if G is a

cyclic group, over Q). The conjecture of Gowers and Wolf was proven in the setting of high
dimensional vector spaces over finite fields in a sequence of papers by Gowers and Wolf, for
special collections of linear forms in the cyclic group setting by Green and Tao, and in full
generality by Altman. All of these proofs use a version of the arithmetic regularity lemma.
Manners later gave a proof of a slightly weaker form of the conjecture in an extremely
elaborate argument mainly using repeated applications of the Cauchy–Schwarz inequality.

We will now prove the popular difference version of Roth’s theorem in the finite field
model setting.

Proof of Theorem 26. First, we apply the arithmetic regularity lemma to A with ε
4

in place
of ε. So, there exists M ∈ N depending only on ε and a subspace V ≤ Fn

3 of codimension
at most M such that A is ε

4
-uniform on all but at most an ε-proportion of cosets of V . The

idea now is that we will be able to find a popular common difference 0 6= y ∈ V since we can
use the uniformity of A on most cosets of V to count the number of 3-APs with common
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difference in V . For any v + V ∈ Fn
3/V , let αv denote the density of A ∩ (v + V ) in v + V .

If A is ε
4
-uniform on v + V , then the number of 3-APs in A ∩ (v + V ) is

|V |2Ex,y∈V 1A−v(x)1A−v(x+ y)1A−v(x+ 2y) = |V |2
∑
ξ∈V̂

1̂A−v(ξ)
21̂A−v(−2ξ)

= α3
v|V |2 + |V |2

∑
06=ξ∈V̂

1̂A−v(ξ)
21̂A−v(−2ξ)

≥
(
α3
v −

ε

4

)
|V |2,

by Parseval’s identity. Since all of these 3-APs have common difference in V , summing over
all v + V ∈ Fn

3/V for which A is ε
4
-uniform on v + V gives that the total number of 3-APs

with common difference in V is at least ∑
v∈Fn3 /V

α3
v − 2 · ε

4
3codimV

 |V |2 ≥ (α3 − ε

2

)
3n|V |

by Jensen’s inequality.
Now, let N be large enough so that |V | ≥ 2

ε
whenever n ≥ N . The number of trivial

3-APs in A is |A| = α3n, and thus, by our choice of n, at most 3n ≤ ε
2
3n|V |, so that the

number of nontrivial 3-APs in A with common difference in V is at least (α3− ε)3n|V |. The
conclusion of the theorem now follows by the pigeonhole principle.

Now, we will, finally, prove the Fourier analytic arithmetic regularity lemma for high
dimensional vector spaces over finite fields.

Proof of Lemma 44. The argument is very similar to the proof of Szemerédi’s regularity
lemma, also using an energy increment argument. So, we begin by defining an appropriate
notion of mean square density relative to a partition into cosets of a subspace. For any
B ⊂ Fn

p and subspace W ≤ Fn
p , the energy is defined by

E(B,W ) := Ev∈Fnp
|B ∩ (v +W )|2

|W |2
.

First of all, observe that E(B,W ) always lies in [0, 1]. If we set µW (x) := pcodimW · 1W to be
the indicator function of W weighted so that it has mean 1, then, since W = −W ,

(1B ∗ µW )(v) = Ex∈Fnp 1B(x)µW (x− v) =
|B ∩ (v +W )|

|W |
,

and so

E(B,W ) = ‖1B ∗ µW‖2
L2 = ‖ ̂1B ∗ µW‖2

`2 =
∑
ξ∈Fnp

∣∣∣1̂B(ξ)
∣∣∣2 ∣∣∣1̂W (ξ)

∣∣∣2 =
∑
ξ∈W⊥

∣∣∣1̂B(ξ)
∣∣∣2 .

As a consequence, we see that if W ′ ≤ W , then E(B,W ) ≤ E(B,W ′).
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Next, we will see that if V ≤ Fn
p is a subspace such that A is not ε-uniform on more

than an ε-proportion of cosets of V , then we can obtain a large energy increment. Indeed, if
B ⊂ Fm

p were not ε-uniform, then there would exist a nonzero ξ ∈ Fm
p for which |1̂B(ξ)| > ε.

Then,

E(B, 〈ξ〉⊥) =

p−1∑
j=0

|1̂B(jξ)|2 > |1̂B(0)|2 + ε2 = E(B,Fn
p ) + ε2.

Apply this locally to each nonuniform coset v+V of V to obtain refinements by intersecting
with 〈ξv〉⊥. Set V ′ := V ∩〈(ξv)v s.t. v+V nonuniform〉⊥, so that the codimension of V ′ is certainly
at most codimV + |Fn

p/V |. Then, since further refining a partition cannot decrease the
energy, we have that

E(B, V ′) = E(B, V ) + ε3.

Using this, we can now run an energy increment iteration. We have a sequence of
subspaces (Vi) of Fn

p constructed as follows: V0 = Fn
p , and, if A is not ε-uniform on all

but at most an ε-proportion of cosets of Vi, then we find a subspace Vi+1 ≤ Vi such that
E(A, Vi+1) ≥ E(A, Vi) + ε3 as above. The energy cannot exceed 1, and so at some point
this iteration must terminate (in at most ε−3 steps, in fact), at which point we can find a
suitable V .

There is also a useful “functional decomposition” version of the Fourier-analytic arith-
metic regularity lemma, from which our earlier formulation follows. Usually, when one refers
to an arithmetic regularity lemma (especially for higher degree Gowers norms) one usually
means a result of the following form.

Lemma 46. For every function F : Z≥0 → [0,∞), ε > 0, and f : Fn
p → [0, 1], there exists

a positive integer M �ε,F 1 such that f can be decomposed as

f = fstr + fsml + fpsd,

where fstr = f ∗ µV for some subspace V ≤ Fn
p of codimension at most M , ‖fsml‖L2 ≤ ε,

and ‖f̂psd‖`∞ ≤ F(M)−1.

7.2 The arithmetic regularity lemma in the integer setting

There is also a popular difference version of Roth’s theorem in the integer setting, first proven
by Green.

Theorem 27. For all ε > 0, there exists N0 = N0(ε) ∈ N such that the following holds. If
N ≥ N0, then, for all A ⊂ [N ] of density α, there exists a nonzero y ∈ Z such that

#{x ∈ [N ] : x, x+ y, x+ 2y ∈ A} ≥ (α3 − ε)N

The best known bounds are due to Fox–Pham–Zhao, and give N bounded by a tower of
2’s of height � log(2/ε), which (as in the finite field model case) they also show is basically
best possible. I will put the proof of Theorem 27 on the last homework. It can be proven
by leveraging another Fourier-analytic arithmetic regularity lemma, which we will state and
prove shortly.
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First, we will define the U2-norm of a finitely supported function on Z. For any f : Z→ C
supported on [N ], we define

‖f‖U2(N) :=
‖f‖U2(Z/MZ)

‖1[N ]‖U2(Z/MZ)

for any M ≥ 2N . Observe that the definition of ‖ · ‖U2(N) does not depend on M , as long
as M ≥ 2N . The inverse theorem for the U2(N)-norm follows immediately from the inverse
theorem for the U2(Z/2NZ)-norm:

Lemma 47. If f : Z→ C is 1-bounded, supported on [N ], and satisfies ‖f‖U2(N) ≥ δ, then
there exists ξ ∈ T such that ∣∣En∈[N ]f(n)e(ξn)

∣∣� δ2.

We will need the notion of a Lipschitz function on Td, and so we should pick a metric
on Td. For each x, y ∈ Td, let d(x, y) denote the distance between x and y in the Euclidean
metric on Td. Then, the Lipschitz norm of a function F : Td → C is

‖F‖Lip := ‖F‖L∞ + sup
x 6=y

|F (x)− F (y)|
d(x, y)

.

A function f : [N ]→ C is said to have complexity at most M if, for all n ∈ [N ], f(n) = F (θn)
for some θ ∈ Td and function F : Td → C with d ≤M and ‖F‖Lip ≤M .

Let F : (0,∞) → (0,∞) be increasing. We say that a function f : [N ] → C is Fourier
measurable with growth F if, for all M > 0, there exists a function fM : [N ] → C of
complexity at most F(M) such that ‖f − fM‖L2 ≤ M−1 (where, here, the L2-norm is
normalized by dividing through by N). We say that E ⊂ [N ] is Fourier measurable with
growth F if 1E is Fourier measurable with growth F . Note that polynomial combinations
of Fourier measurable functions of growth F are again Fourier measurable with growth
depending only on F and the polynomial. We will write that F �δ 1 for some parameter
δ to mean that there exist functions Gδ : (0,∞) → (0,∞) for which F(M) ≤ Gδ(M) for all
M > 0.

Recall that, in the finite field model setting, we proved the arithmetic regularity lemma
by iteratively refining a partition of Fn

p into cosets of a single subspace. The notion of
Fourier measurability will be useful for formulating an analogue of this procedure in the
integer setting, where the analogue of subspaces (Bohr sets) are much less nice.

To this end, we define a factor of [N ] to be any subalgebra of subsets of [N ] (i.e.,
a collection of subsets containing [N ] and closed under complementation, finite union, and
finite intersection). Specifying a factor of [N ] is the same as specifying a partition S1t· · ·tSk
of [N ] into nonempty subsets–the factor is then simply the factor generated by complements,
finite unions, and finite intersections of the Si, which are called the atoms of the factor.
Given a factor B of [N ], we denote the atom containing n ∈ [N ] by B(n), and a function
f : [N ] → C is said to be B-measurable if f is constant on atoms of B. We say that a
factor B′ is a refinement of a factor B if every atom of B is a union of atoms of B′. Given
an increasing function F : (0,∞)→ (0,∞) and an M > 0, we say that a factor B of [N ] is
a Fourier factor of [N ] with complexity at most M and growth F if B has at most M cells,
each of which is a Fourier measurable set with growth F .
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The conditional expectation of a function f : [N ] → C relative to a factor B to be the
function E(f |B) on [N ] is defined by

E(f |B)(x) = Ey∈B(x)f(y).

We also define the energy by E(f,B) := ‖E(f |B)‖2
L2 . When f is the indicator function of a

subset of [N ], this is the integer analogue of our definition of energy in the finite field model
setting. Note that if B′ refines B, then E(f,B′) ≥ E(f,B). Indeed, we certainly have

‖E(f |B′)− E(f |B)‖2
L2 ≥ 0.

Expanding the left-hand side yields

E(f,B′) + E(f,B)− 2En∈[N ] [E(f |B′)(n)E(f |B)(n)] ≥ 0.

Since the sum of E(f |B′)(n) over any fixed atom of B equals the value of E(f |B) on that
atom, we have that

En∈[N ] [E(f |B′)(n)E(f |B)(n)] = En∈[N ]E(f |B)(n)2 = E(f,B).

It follows that E(f,B′)− E(f,B) ≥ 0.
Next, we will prove an analogue of the statement that if a set that is not Fourier uniform

on a subspace, then one can find a partition of the subspace that has substantially higher
energy with respect to the set. We will require (a version of) the Hardy–Littlewood maximal
inequality.

Theorem 28. Let µ be a Borel probability measure on R, and let

(Mµ)(t) := sup
r>0

µ([t− r, t+ r])

2r

be the associated maximal function. Then, for all λ > 0, we have

|{t ∈ R : (Mµ)(t) > λ}| � 1

λ
.

Now we can prove the promised lemma.

Lemma 48. Let f : [N ]→ C be a 1-bounded function. If ‖f‖U2(N) ≥ δ, then there exists a
Fourier measurable E ⊂ [N ] with growth F �δ 1 such that∣∣En∈[N ]f(n)1E(n)

∣∣�δ 1.

Proof. By the U2(N)-inverse theorem, there exists α ∈ T such that∣∣En∈[N ]f(n)e(αn)
∣∣� δ2.

The remainder of the proof is just a sequence of maneuvers to turn this linear phase into
the indicator function of a low complexity set. Writing e(αn) = cos(2παn) + i sin(2παn), we
have by the triangle inequality and pigeonhole principle that∣∣En∈[N ]f(n)g(n)

∣∣� δ2
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for g equal to either cos(2πα·) or sin(2πα·). Writing g = g+− g−, where g+ = max(g, 0) and
g− = −min(g, 0) and arguing similarly, we conclude that there exists h : R → [0, 1] such
that ∣∣En∈[N ]f(n)h(n)

∣∣� δ2,

where, since max(g, 0) = x+|x|
2

and min(g, 0) = x−|x|
2

, the function h can be written as H(αn)
where ‖H‖Lip � 1.

We now apply the layercake decomposition to h. For each t ∈ [0, 1], set

Et := {n ∈ [N ] : h(n) ≥ t} .

Then,

h(n) =

∫ 1

0

1Et(n)dt.

Plugging this in for h and using the triangle inequality yields∫ 1

0

∣∣En∈[N ]f(n)1Et(n)
∣∣ dt ≥ Cδ2

for some C > 0. Let S ⊂ [0, 1] be the set of t ∈ [0, 1] for which
∣∣En∈[N ]f(n)1Et(n)

∣∣ ≥ C
2
δ2,

say. Then S is a Borel set, and has measure |S| ≥ C
2
δ2 (or else it would contradict the

inequality above).
We now apply the maximal inequality with the Borel probability measure

µ(A) :=
# {n ∈ [N ] : h(n) ∈ A}

N

on R, where we extend h to be zero outside of [0, 1]. This tells us that

|{t ∈ [0, 1] : (Mµ)(t) > λ}| � 1

λ

for all λ > 0. Taking λ � δ−2, it follows that there must exist some t ∈ S with (Mµ)(t) �
δ−2. That is,

#{n ∈ [N ] : h(n) ∈ [t− r, t+ r]} � δ−2rN

for any r > 0. Fix this t.
For each r > 0, let φr : R → [0,∞) be a 1-bounded function with ‖φr‖Lip � r−1 such

that φr(x) is zero on (−∞, t− r) and is 1 on (t+ r,∞). Then, since φr ◦ h differs from 1Et
only when h(n) ∈ [t− r, t+ r], we have

‖1Et − φr ◦ h‖2
L2 �δ r,

and so, taking r = CδM
−2 for Cδ the implied constant above and setting fM = φCδM−2 ◦ h,

we have that ‖1Et−fM‖L2 ≤M−1 and that fM has complexity�δ M
2, since h(n) = H(αn)

with ‖H‖Lip � 1 and ‖φCδM−2‖Lip �δ M
2. This means that E = Et is Fourier measurable

with growth F �δ 1, and since t ∈ S,∣∣En∈[N ]f(n)1E(n)
∣∣ ≥ C

2
δ2 �δ 1

as desired.
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Now we can prove an analogue of the result from last time saying that if a set is nonuni-
form on many cosets of a subspace, then one can refine the partition of Fn

p into a union of
cosets of a smaller subspace to obtain a substantial energy increment.

Lemma 49. Let F : (0,∞)→ (0,∞) be an increasing function, M > 0, and f : [N ]→ R be
1-bounded. Suppose that B is a Fourier factor of [N ] with complexity at most M and growth
F . If

‖f − E(f |B)‖U2(N) ≥ δ,

then there exists a refinement B′ of B of complexity at most 2M and growth �M,δ,F 1 such
that

E(f,B′)− E(f,B)�δ 1.

Proof. By the above lemma, there exists a Fourier measurable E ⊂ [N ] with growth �δ 1
such that ∣∣En∈[N ](f − E(f |B))(n)1E(n)

∣∣�δ 1.

Let B′ be the factor generated by B and E, so that B′ has complexity at most 2M (by
intersecting each atom of B with E or [N ]\E to obtain atoms for B′) with growth�M,δ,F 1.
Then, since 1E is B′ measurable and thus constant on atoms of B′, we can replace f by the
conditional expectation E(f |B′) above to obtain∣∣En∈[N ](E(f |B′)− E(f |B))(n)1E(n)

∣∣�δ 1.

Applying the Cauchy–Schwarz inequality yields

‖E(f |B′)− E(f |B)‖2
L2 �δ 1.

Expanding the left-hand side, we get that

1�δ E(f,B′) + E(f,B)− 2En∈[N ]E(f |B)E(f |B′) = E(f,B′) + E(f,B)− 2En∈[N ]E(f |B)2

since the sum of E(f |B′) over each atoms of B equals the sum of E(f |B) over that atom.
Thus,

E(f,B′)− E(f,B)�δ 1.

as desired.

Now, by running an energy increment iteration just like in the finite field model case, we
can deduce what’s known as the weak arithmetic regularity lemma, which gives a decompo-
sition of any 1-bounded function into a structured part and a U2-pseudorandom part.

Lemma 50 (Weak Fourier analytic arithmetic regularity lemma). Let F : (0,∞)→ (0,∞)
be an increasing function, M > 0, B be a Fourier factor of [N ] of complexity at most M and
growth F , and f : [N ] → R be 1-bounded. There exists a refinement B′ of B of complexity
�δ,M 1 and growth �δ,M,F 1 such that

‖f − E(f |B′)‖U2(N) ≤ δ.
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Proof. We repeatedly apply the previous lemma to obtain a sequence (Bi) of refinements
of B such that E(f,Bi+1) − E(f,Bi) �δ 1 if ‖f − E(f |Bi)‖U2(N) > δ. Since energy cannot
exceed 1, this iteration must terminate in �δ 1 steps, at which point we must have ‖f −
E(f |Bi)‖U2(N) ≤ δ and that B′ = Bi is a refinement of B of complexity �δ,M 1 and growth
�δ,M,F 1.

Now we can prove the full Fourier analytic arithmetic regularity lemma.

Theorem 29. Let ε > 0, F : (0,∞) → (0,∞) be increasing, and f : [N ] → [0, 1]. There
exists M �ε,F 1 and a decomposition

f = fstr + fsml + fpsd

into 1-bounded functions [N ]→ R such that

1. fstr has complexity at most M ,

2. ‖fsml‖L2 ≤ ε,

3. ‖fpsd‖U2(N) ≤ F(M)−1, and

4. both fstr and fstr + fsml take values in [0, 1].

Proof. The proof proceeds by another iteration. We construct a sequence of increasing real
numbers, factors of [N ], and 1-bounded real valued functions on [N ] as follows. Set M0 = 1
and B0 = {∅, [N ]} to be the trivial factor (which, trivially, has complexity � 1 and growth
� 1), and f0 to be the constant function En∈[N ]f(n). If (Mi,Bi) has been given and Bi has
complexity and growth �i,M,F 1, then, by definition, there exists a function fi : [N ]→ [0, 1]
of complexity Mi+1 �ε,i,F 1 such that Mi+1 ≥Mi for which

‖E(f |Bi)− fi‖L2 ≤ ε

2
.

Further, by the weak regularity lemma, there exists a refinement Bi+1 of Bi of complexity
and growth �i,Mi+1,F 1 such that

‖f − E(f |Bi+1)‖U2(N) ≤
1

F(Mi+1)
.

Now, since energy can only increase under refinement, E(f,Bi) is an increasing sequence
of reals between [0, 1]. By the pigeonhole principle, there must exist i ≤ 4

ε2
�ε 1 such that

E(f,Bi+1)− E(f,Bi) ≤
ε2

4
.

For this choice of i, set M = Mi+1 �ε,F 1, fstr = fi, fsml = E(f |Bi+1) − fi, and fpsd =
f − E(f |Bi+1). Then, since

‖fsml‖L2 ≤ ‖E(f |Bi+1)− E(f |Bi)‖L2 + ‖E(f |Bi)− fi‖L2 ≤ 2
ε

2
= ε

because E(f,Bi+1)−E(f,Bi) = ‖E(f |B′)−E(f |B)‖2
L2 , this gives the desired decomposition.
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8 The transference principle

The last topic we will cover in this class is (an instance of) the Fourier analyic transference
principle, which allows one to transfer certain results about dense subsets of intervals of
integers or abelian groups into statements about dense subsets of sparse pseudorandom
subsets. This first appeared in work of Ben Green in 2003, in which he proved Roth’s
theorem relative to the primes.

Theorem 30. If A is a subset of the primes that has positive upper density in the primes,
then A contains a nontrivial three-term arithmetic progression.

The ideas in this work of Green were later extended on by Green and Tao to prove their
famous theorem about arithmetic progressions in the primes.

We will illustrate the transference principle via an argument due to Prendiville concerning
subsets of Sidon sets.

Definition 11. A subset A of an abelian group is a Sidon set if it contains no nontrivial
additive quadruples, i.e., if

a1 + a2 = a3 + a4

for a1, a2, a3, a4 ∈ S only when {a1, a2} = {a3, a4}.

For example, the powers of 2, {2i : i ∈ Z ≥ 0}, are a Sidon set in Z, the logarithms of
primes, {log p : p prime}, are a Sidon set in R (since the primes form a Sidon set in Q×),
and the graph {(x, x2) : x ∈ Fp} is a Sidon set in F2

p when p > 2 (as one can check quickly
by hand).

As observed by Erdős and Turán in the 1940s, it is not hard to show that if A ⊂ [N ] is a
Sidon set, then |A| ≤

√
N(1 + o(1)), and that there exists a Sidon set in [N ] of size at least√

N(1 − o(1)). Similarly, any Sidon set in a finite abelian group of size n has size at most√
n(1 + o(1)). There are, essentially, three main open problems concerning Sidon sets, the

last of which is probably hopeless:

1. Determine, asymptotically, the size of the largest Sidon set contained in [N ]. Erdős
famously offered $500 to prove an upper bound of ≤

√
N +Oε(N

ε). The current best
bound is ≤

√
N +O(N1/4).

2. Find the densest infinite Sidon set in N. The current world record is due to Ruzsa,
who constructed a Sidon set A ⊂ N such that |A ∩ [N ]| �ε N

√
2−1−ε for all N ∈ N.

3. Classify large (i.e., maximal or close to maximal) Sidon sets in finite abelian groups.
Eberhard and Manners have an interesting short paper in which they put many known
examples into a single framework.

For the purpose of this section, the most important quality of Sidon sets is that they are
very Fourier uniform. We will use the transference principle to give an alternative proof due
to Prendiville of the following result originally due to Conlon, Fox, Sudakov, and Zhao:
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Theorem 31 (Conlon–Fox–Sudakov–Zhao, 2021). Let α > 0. If N �α 1, then any Sidon
set S ⊂ [N ] with |S| ≥ α

√
N contains a solution to

x1 + x2 + x3 + x4 = 4x5 (17)

with x1, . . . , x5 all distinct.

This is the “relative” version of the following result, which can be proven either directly
by using the arithmetic regularity lemma, or by combining a density increment argument
with an averaging argument as in the first homework to prove a supersaturation result.

Theorem 32. For any A ⊂ [N ] with |A| ≥ αN , we have

#
{

(x1, . . . , x5) ∈ A5 : x1 + x2 + x3 + x4 = 4x5

}
�α N

4.

The most common incarnation of the transference principle is via a “dense model lemma”,
which allows, via relatively standard arguments, one to transfer statements about dense sets
(like Theorem 32) into statements about dense subsets of pseudorandom sets (like Theo-
rem 31). Here is the dense model lemma that we will use.

Lemma 51. Let S ⊂ [N ] be a Sidon set and ε > 0. If N �ε 1, then there exists a dense
model f : [N ]→ [0,∞) such that

‖f‖L2 � 1

and ∥∥∥f̂ −√N · 1̂S∥∥∥
L∞
≤ ε.

Here, as in the previous section, we take the normalized Fourier transform of a func-
tion g supported on [N ]: ĝ(ξ) := En∈[N ]f(n)e(−ξn) and the normalized L2-norm ‖g‖L2 :=(
En∈[N ]|g(n)|2

)1/2
.

It is not hard to show that the count of solutions to x1 + x2 + x3 + x4 = 4x5 in a set is
controlled by Fourier analysis. The function f from the lemma can be considered a model
for the scaled indicator function

√
N · 1S of S (so normalized to have mean � 1) in the sense

that its Fourier transform is very close to the Fourier transform of
√
N · 1S. This function f

can further be considered a “dense” model because it typically resembles a bounded function
with large mean when S is a dense Sidon set, meaning that |S| ≥ δ

√
N . Indeed, the L∞

bound on f̂ −
√
N · 1̂S tells us that En∈[N ]f(n) is within ε of

√
NEn∈[N ]1S(n) ≥ δ, and f ’s

L2-norm is the same order of magnitude as a 1-bounded function.
We will begin by deriving Theorem 31 from Theorem 32 using the dense model lemma.

The first step is to deduce a version of Theorem 32 in which indicator functions of dense
sets are replaced by functions with large mean and bounded L2-norm, as in the dense model
lemma.

Corollary 7. For any f : [N ]→ [0,∞) with En∈[N ]f(x) ≥ α and ‖f‖L2 ≤ 1, we have∑
x1+x2+x3+x4=4x5

f(x1)f(x2)f(x3)f(x4)f(x5)�α N
4.
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Proof. Set A := {n ∈ [N ] : f(n) ≥ α/2}. Then,

αN ≤
∑
n∈[N ]

f(n) =
∑
n∈A

f(n) +
∑

n∈[N ]\A

f(n) ≤
∑
n∈A

f(n) +
αN

2
,

and so, by the Cauchy–Schwarz inequality,

αN

2
≤
∑
n∈A

f(n) ≤
√
|A|
√
N‖f‖L2 ≤

√
|A|N.

Rearranging and squaring both sides yields |A| ≥ α2N
4

. By Theorem 32,∑
x1+x2+x3+x4=4x5

1A(x1)1A(x2)1A(x3)1A(x4)1A(x5)�α N
4.

Since 2
α
f(n) ≥ 1A(n) for all n ∈ A, the desired conclusion immediately follows.

Next, we will prove a lemma that will help us compare the count of solutions to (17) in
a dense Sidon set with the number weighted by a dense model.

Lemma 52. Let ν : [N ]→ [0,∞) be a weight satisfying∑
x,h,k∈Z

∆h,kν(x) ≤ N3.

If f1, f2, f3, f4, f5 : [N ]→ R satisfy |fi| ≤ ν for all i = 1, . . . , 5, then∣∣∣∣∣ ∑
x1+x2+x3+x4=4x5

5∏
i=1

fi(xi)

∣∣∣∣∣ ≤ N4 min
i∈[5]
‖f̂i‖L∞ .

Proof. By plugging in the definition of the Fourier transform and using orthogonality of
characters, we have

N5

∫
T

f̂1(ξ) · · · f̂4(ξ)f̂5(−4ξ)dξ =
∑

x1+x2+x3+x4=4x5

5∏
i=1

fi(xi).

For each i ∈ [4],∣∣∣∣∫
T

f̂1(ξ) · · · f̂4(ξ)f̂5(−4ξ)dξ

∣∣∣∣ ≤ ‖f̂i‖L∞ ∫
T

|f̂5(−4ξ)|
∏
i 6=j≤4

|f̂j(ξ)|dξ

≤ ‖f̂i‖L∞
∏
i 6=j≤5

‖f̂i‖L4

by Hölder’s inequality and a change of variables, and, similarly,∣∣∣∣∫
T

f̂1(ξ) · · · f̂4(ξ)f̂5(−4ξ)dξ

∣∣∣∣ ≤ ‖f̂5‖L∞
4∏
j=1

‖f̂i‖L4 .
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For each i ∈ [5], we have

N4‖f̂i‖4
L4 =

∑
x,h,k∈Z

∆h,kfi(x) ≤
∑

x,h,k∈Z

∆h,kν(x) ≤ N3.

Thus, ∣∣∣∣∣ ∑
x1+x2+x3+x4=4x5

5∏
i=1

fi(xi)

∣∣∣∣∣ ≤ N4 min
i∈[5]
‖f̂i‖L∞ .

Now, assuming the dense model lemma, we can show that dense Sidon sets contain many
solutions to (17).

Theorem 33. Let S ⊂ [N ] be a Sidon set with |S| ≥ α
√
N . Then,

#{(x1, . . . , x5) ∈ S5 : x1 + x2 + x3 + x4 = 4x5} �α N
3/2.

Proof. Let ε > 0 be a parameter to be chosen later, depending only on α. We may as well
assume that N �ε 1�α 1, or else the result follows trivially just by considering the diagonal
solutions. Thus, we can apply the dense model lemma to obtain f : [N ]→ [0,∞) such that

‖f‖L2 � 1 and ‖f̂ −
√
N 1̂S‖L∞ ≤ ε.

Observe first that, since 1̂S(0) = |S|/N ≥ α, we have En∈Nf(n) ≥ α−ε� α by ensuring
that ε ≤ α/2, say. Thus, by Corollary 7,

∑
x1+x2+x3+x4=4x5

5∏
i=1

f(xi)�α N
4.

Now, set

Λ(f1, . . . , f5) :=
∑

x1+x2+x3+x4=4x5

5∏
i=1

fi(xi)

for all f1, . . . , f5 : [N ]→ C. Then, writing f = f −
√
N1S +

√
N1S and using the multilin-

earity of Λ, we have

Λ(f, . . . , f) = Λ(f, . . . , f, f −
√
N1S) + Λ(f, . . . , f,

√
N1S)

= Λ(f, . . . , f, f −
√
N1S) + Λ(f, f, f, f −

√
N1S,

√
N1S) + Λ(f, f, f,

√
N1S,

√
N1S)

= N5/2Λ(1S, . . . , 1S) +
5∑
j=1

Λ(

j−1 times︷ ︸︸ ︷
f, . . . , f , f −

√
N1S,

5−j times︷ ︸︸ ︷√
N1S, . . . ,

√
N1S).

Thus,

∣∣Λ(f, . . . , f)−N5/2Λ(1S, . . . , 1S)
∣∣ ≤ 5∑

j=1

∣∣∣∣∣∣∣Λ(

j−1 times︷ ︸︸ ︷
f, . . . , f , f −

√
N1S,

5−j times︷ ︸︸ ︷√
N1S, . . . ,

√
N1S)

∣∣∣∣∣∣∣
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and it suffices to bound each of the five terms on the right-hand side.
To do this, we will apply the previous lemma with Cν = f +

√
N1S for some sufficiently

large absolute constant C ≥ 1. Observe that, since f ≥ 0, we indeed have ν : [N ]→ [0,∞).
Further, ( ∑

x,h,k∈Z

∆h,kCν(x)

)1/4

= N‖Ĉν‖L4 ≤ N
(
‖f̂‖L4 +

√
N‖1̂S‖L4

)
.

We have

‖f̂‖4
L4 ≤ ‖f̂‖2

L∞‖f̂‖2
L2 �

1

N

where we have used Parseval’s identity and that, again assuming N �ε 1, we have ‖f̂‖L∞ �
‖
√
N 1̂S‖L∞ � 1, and, since S is a Sidon set,

N4‖1̂S‖4
L4 = |S|+ 2

(
|S|
2

)
= |S|2 � N.

Thus, ( ∑
x,h,k∈Z

∆h,kCν(x)

)1/4

� N
(
N−1/4 +N1/2−3/4

)
� N3/4,

and hence
∑

x,h,k∈Z ∆h,kν(x)� C−1N3. Fixing C � 1 then makes ν satisfy
∑

x,h,k∈Z ∆h,kν(x) ≤
N3, as needed to apply the previous lemma. Since |f |, |

√
N1S|, |f −

√
N1S| ≤ Cν and

‖ ̂f −
√
N1S‖L∞ ≤ ε, it thus follows that∣∣∣∣∣∣∣Λ(

j−1 times︷ ︸︸ ︷
f, . . . , f , f −

√
N1S,

5−j times︷ ︸︸ ︷√
N1S, . . . ,

√
N1S)

∣∣∣∣∣∣∣� εN4

for all j ∈ [5]. We conclude, fixing 0 < ε�α 1 sufficiently small, that

N5/2Λ(1S, . . . , 1S)�α N
4.

Thus, Λ(1S, . . . , 1S)�α N
3/2, as desired.

The theorem of Conlon–Fox–Sudakov–Zhao now follows by bounding the number of triv-
ial solutions to (17) in Sidon sets.

Proof of Theorem 31. We will bound the number of solutions to (17) in S with x4 = x5, say;
the analogous arguments for the remaining nine pairs proceed in the same way. The number
of such solutions is∑

x1+x2+x3=3x4

1S(x1)1S(x2)1S(x3)1S(x4) = N4

∫
T

1̂S(ξ)31̂S(−3ξ)dξ

by orthogonality of characters. But, by the triangle inequality and Hölder’s inequality,∣∣∣∣∫
T

1̂S(ξ)31̂S(−3ξ)dξ

∣∣∣∣ ≤ ‖1̂S‖4
L4 �

1

N

since S is a Sidon set. Thus, the number of trivial solutions is� N . Since the total number
of solutions is �α N

3/2, the conclusion of the theorem follows provided that N �α 1.
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It just remains to prove the dense model lemma.

Proof. For this proof, since not every function appearing will be supported on [N ], we
will un-normalize the Fourier transform and L2-norm, so that when g : Z → C is finitely
supported,

ĝ(ξ) :=
∑
n∈Z

g(n)e(−ξn),

and we will want to prove that our dense model satisfies ‖f‖L2 �
√
N and∥∥∥f̂ −√N · 1̂S∥∥∥

L∞
≤ εN.

We have already defined the notion of the large spectrum of a set in the cyclic group
setting, and can make the analogous definition in the integer setting. For any δ > 0, we set

Specδ(S) :=
{
ξ ∈ T :

∣∣∣1̂S(ξ)
∣∣∣ ≥ δ|S|

}
.

Let 0 < δ � ε be a parameter to be chosen shortly depending only on ε. Set

B := {n ∈ [−δN, δN ] ∩ Z : ‖ξn‖ ≤ δ for all ξ ∈ Specδ(S)} ,

which is a Bohr set in the interval [−δN, δN ] ∩ Z, and define

g(x) :=
1

|B|
∑
y∈Z

1S(x− y)1B(y),

a weighted convolution of 1S and 1B (note that 0 ∈ B, so |B| > 0). Since S ⊂ [N ], g is
supported on (−δN, (1+ δ)N ]∩Z. After a bit of massaging, g will become our desired dense
model f .

First, note that if ξ /∈ Specδ(S), then∣∣∣1̂S(ξ)− ĝ(ξ)
∣∣∣ =

1

|B|

∣∣∣1̂S(ξ)
∣∣∣ ∣∣∣|B| − 1̂B(ξ)

∣∣∣ ≤ 2δ|S|,

and if ξ ∈ Specδ(S), then, since e(ξn) = 1 + O(δ) whenever n ∈ B, we have 1̂B(ξ) =
|B|+O(δ|B|) ∣∣∣1̂S(ξ)− ĝ(ξ)

∣∣∣ =
1

|B|

∣∣∣1̂S(ξ)
∣∣∣ ∣∣∣|B| − 1̂B(ξ)

∣∣∣� δ|S|

by bounding 1̂S(ξ) trivially by |S|. Setting g′ :=
√
Ng, we thus have∥∥∥ĝ −√N · 1̂S∥∥∥

L∞
� δN.

Now, expanding the definition of the convolution, note that∑
n∈Z

g′(n)2 =
N

|B|2
∑

a1+a2=a3+a4

1S(a1)1B(a2)1S(a3)1B(a4)

≤ N

|B|2
(
|S||B|+ |B|2

)
≤ N

(
|S|
|B|

+ 1

)
,
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where we have used that, since S is Sidon, there is at most one representation a1−a3 = a4−a2

of any nonzero integer with a1, a3 ∈ S. Thus, ‖g′‖L2 � N provided that |B| � |S|. We will
verify that this is the case whenever N is sufficiently large in terms of δ (and thus, ε).

We can obtain a lower bound on |B| in a similar manner to how we obtained a lower
bound on the size of Bohr sets in cyclic groups. Let ξ1, . . . , ξR be a maximal collection of
1
N

-separated frequencies in Specδ(S). By maximality, every element of Specδ(S) is within a
distance of 1

N
of some ξi, and thus B contains the Bohr set

B′ := {[−δN/2, δN/2] : ‖ξin‖ ≤ δ/2 for all i ∈ [R]}

by the triangle inequality. By the same argument we used to obtain a lower bound on the
size of Bohr sets in cyclic groups, we have |B′| ≥ (δ/2)R (δN + 1) ≥ (δ/2)R+1N , say. To
bound R, note that, since |e(α)− e(β)| ≤ 2π‖α− β‖ for all α, β ∈ T, we have

R⋃
i=1

(
ξi −

δ

4πN
, ξi +

δ

4πN

)
⊂ Specδ/2(S),

and so, since the ξi’s are 1
N

-separated,

R
δ

2πN
≤ m(Specδ(S)) ≤ 1

(δ|S|)4

∫
T

∣∣∣1̂S(ξ)
∣∣∣4 dξ ≤ 1

δ4|S|2
� δ−O(1)

N

since S is Sidon. Rearranging yields R� δ−O(1), and so

|B| ≥ (δ/2)O(δ−O(1))+1N �δ N.

To finish, we just need to correct g′ to a function supported on [N ] by setting f := 1[N ]g
′.

This cannot possibly increase the L2-norm, and so it remains to check that f̂ is still a good
approximation for

√
N 1̂S. Note that, by the Cauchy–Schwarz inequality,

∣∣∣ĝ′(ξ)− f̂(ξ)
∣∣∣ ≤

 ∑
−δN<n≤0

+
∑

N<n≤(1+δ)N

 |g′(n)|

�
√
δN‖g′‖L2 �

√
δN

for all ξ ∈ T provided that N �δ 1. Thus, fixing 0 < δ � ε2,

‖f̂ −
√
N 1̂S‖L∞ ≤ εN

and ‖f‖L2 ≤
√
N , again provided that N �ε 1.
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